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DNA in the nucleus : chromatin 

Hübner, Eckersley-Maslin, Spector, Current Opinion in Genetics & Development,  2013


1. DNA


2. nucleosome


3. chromatin fiber (or...)


4. « Topologically associating »#
     domains (TADs, 200 kb to 1 Mb) 


5. Chromosome territories


The current model of nuclear architecture
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Topologically associated domains (TADs) 

Sexton T. et al., Three-Dimensional Folding and Functional Organization Principles of the !
Drosophila Genome, Cell 2012
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TAD 

Chromosome conformation capture techniques (Hi-C)

Contact map
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Epigenetic domains 

Filion et al. Systematic protein location mapping reveals five principal chromatin types in 
Drosophila cells, Cell, 2010
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Drosophila 

In Drosophila, epigenetic domains ≃ TADs
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Sexton T. et al., Three-Dimensional Folding and Functional Organization Principles of the !
Drosophila Genome, Cell 2012
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3D imaging,#
20-50-nm resolution#

3 epigenetic states:
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Inactive


Repressed
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What to measure? 

mass (fluorescence) distribution :


mass (fluorescence) barycenter : 


mass (fluorescence) variance : 
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        radius of gyration 
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monomer-monomer#
interaction ! = J/kBT
 = J/kBT


What to compare with? 
Polymer physics: 

Self-Avoiding Walk (SAW) #
coil


Equilibrium #
globule#
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scaling law


critical #
εΘ = 0.27
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 0.6  

 0.33 

ν 
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Idea: finite-size effects 

A polymer with N identical monomers:


thermodynamic limit critical 
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•  Small polymers are coil

•  Big polymers are globule


! = J/kBT
 = J/kBT


coil-globule transition:  ε

N
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Idea: finite-size effects 
Crossover : scaling law rupture 
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N


R
G
 


Crossover region 

critical #
εΘ = 0.27
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Why interesting? 
Theoretical modeling available 

Renormalized density


RG distribution                                                     (and average)
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Compare with data...  
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Simulation snapshots by Pascal Carrivain


rigidity Kuhn length Knm?

linear compaction  base-pairs / nm  Kbp ?



 
what is a monomer ?


A self-tuning polymer 
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Knm [nm] 
Kbp [bp] 

Simulation snapshot !
by Pascal Carrivain


= L/Knm 4  L  [nm] 

c =Kbp /Knm   [bp/nm] 

Chromatin


ε   
N 
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New fitting parameters 

Fitting parameters 

Polymer


16!

ε   
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Fit of experimental data 

Fit of the whole dataset (histograms) 
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DATA FROM:!
Boettiger et al. “Super-Resolution Imaging Reveals Distinct Chromatin !
Folding for Different Epigenetic States.” Nature 2016
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Fit of experimental data 

DATA FROM:!
Boettiger et al. “Super-Resolution Imaging Reveals Distinct Chromatin !
Folding for Different Epigenetic States.” Nature 2016


Resulting average Rg 
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Results 

Parameters 
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close to transition  highly responsive 
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Energies ε for the 3 states 

active ε = 0.15


inactive ε = 0.36


Nmax ~ 1000

Nmax ~ 200


Nmax ~ 300


repressed ε = 0.37


critical #
εΘ = 0.27
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Architecture as a tuning parameter 
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An image of the 3 states 

 Active         


 Inactive      


Repressed
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Interpretation, and questions 

22!

Repressed domains 

actively repressed by #
proteins of the polycomb group

 ε justified


 mechanistic scenario? 
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Interpretation, and questions 
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Inactive domains 

much larger persistence length: #
 ~ 60 nm  ~ 17 nucl.


 role of histone H1? 


no known binding proteins: #
how ε can be justified?  


 nucleosome-nucleosome interactions? 
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Interpretation, and questions 

24!

Active domains 

Bajpai et al !
PLoS comp. biology 2017


 softening effect of non-histone binding 
(and bending)  proteins as HMG ? 


low ε: different nucleosome-nucleosome interaction?


very low persistence ~  16 nm  ~ 2 nucl.

less than for DNA (50 nm)! 




Conclusion 

Experimental data




coarse-grained model



fit




underling structural features
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Simulation snapshot !
by Pascal Carrivain


Chromatin


= L/Knm 4  L  [nm] Knm [nm] 

ε  (kBT) 

N 
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New fitting parameters 

Fitting parameters 

Polymer
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c =Kbp /Knm   [bp/nm] Kbp [bp] 

Kuhn lengths


Bundle
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Final fit 

(Medians) 
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