Projet ANR-19-CE45-0016

DNA-PolyChrom

 Dynamical Nucleus Architecture - a Polymer physics based approach to Chromosome dynamics imaging

Programme AAPG 2019


Summary of the project 🇬🇧

Chromatin, the plastic DNA-protein assembly that fills the nucleus, is organized in multi-scale compartments. By quantifying the number of interactions between genomic loci that are nearby in 3D space, HiC technology has revealed that one important level of organization is, at the 10 kb to Mb scale, the ​Topologically Associating Domain (TAD), supposed to make different genome segments occupy separate regions such that their individual activities are non-interfering. 3D fluorescent in situ hybridization and super-resolution microscopy have indeed revealed more or less separated compartments and characterized their spatial organization by measuring their spatial variance (or gyration radius). The scaling laws describing how gyration radii increase with the genomic length of the domains in Drosophila show a clear difference for the three different activity states: active (transcribing), inactive (non-transcribing) or repressed (actively silenced transcription).

Functional chromatin domains can also be defined based on the presence of biochemical markers called epigenetic marks. Epigenetic coloring is specific to different gene activity states: in Drosophila, TADs, activity domains and epigenetic domains practically coincide, with three epigenetic colors (“red”, “black” and “blue”) corresponding to the three aforementioned activity states, respectively. Epigenetics is responsible for the temporal and spatial control of gene activity during cell differentiation, and we suggest that the 3D arrangement may be the mechanistic way how epigenetics controls gene activity.

Dynamical features can also be investigated. In vivo tracking of chromosome fluctuations allows to quantify single loci diffusion and reveals multiple dynamical, low-frequency interactions. Partner 3 experimentally showed that sustained physical proximity between enhancer and promoter is necessary for productive transcription to occur, with a longer and closer pairing in transcribing regions. However, no clear results have been obtained allowing to connect loci diffusion, inter-loci distance fluctuations or inter-loci contact frequencies with the underlying folding state of chromatin. Our project aims at filling this gap. It will provide a novel perspective on epigenetically driven regulation of genetic networks. We will thus provide a theory that describes domains in terms of a physical state, that, if close to criticality, would explain the origin of phase transitions in the nuclear environment.

More precisely, we will address the question whether sustained enhancer-promoter proximity is the signature of an optimized dynamics where either the rapidity, encounter frequency, or selectivity of any generic inter-loci encounter is maximized. How do these dynamical features depend on the 3D organization of active, inactive, repressed domains? ​To answer, we will identify a set of epigenetic domains and study the distribution and temporal fluctuations of single and inter-loci distances in living Drosophila by multi-color imaging. Additional information on the folding state of an epigenetic domain will be obtained by a new approach based on the spectral analysis of 3-loci measurements. .

Linking epigenetics, domain folding and dynamics will require the development of efficient data analysis methods and of a coherent theoretical model. Partners 1 and 2 have already laid out a foundation for such a model by developing (i) a scheme to describe single loci diffusion in the framework of polymer dynamics, that brought the concept of Rouse with transient internal contacts, and (ii) a new methodology to extract the best information from super-resolution data, showing that the measured gyration radii distributions are compatible with the behavior of a self-attracting polymer, close to the coil-globule crossover. This points towards a crucial role of criticality to enhance the system responsivity, with possible interesting consequences on dynamics that will be explored in this project.  

 RĂ©sumĂ© du projet   🇫🇷

La chromatine, assemblage ADN-protĂ©ine qui remplit le noyau, est organisĂ©e en compartiments multi-Ă©chelles. En quantifiant le nombre d'interactions entre loci gĂ©nomiques, la technologie HiC a rĂ©vĂ©lĂ© qu'un niveau d'organisation important est, Ă  l'Ă©chelle 10 kb - 1 Mb, le Topologically Associating Domain (TAD), dont le rĂ´le semble ĂŞtre d’isoler, en 3D, diffĂ©rents segments du gĂ©nome, de sorte que leurs activitĂ©s individuelles n’interfèrent pas. Les techniques de fluorescent in situ hybridization et microscopie super-rĂ©solue ont en effet rĂ©vĂ©lĂ© des compartiments plus ou moins sĂ©parĂ©s et dĂ©crit leur organisation en mesurant leur variance spatiale (ou rayon de gyration). Dans la Drosophile, les lois d'Ă©chelle dĂ©crivant comment les rayons de giration augmentent avec la longueur gĂ©nomique des domaines montrent une nette diffĂ©rence pour les trois diffĂ©rents Ă©tats d'activitĂ© : actif (en transcription), inactif ou rĂ©primĂ©.

Les domaines fonctionnels de la chromatine peuvent également être définis en fonction de la présence de marqueurs biochimiques appelés marques épigénétiques. La coloration épigénétique est spécifique des différents états d'activité des gènes : chez la drosophile, les TAD, les domaines d'activité et les domaines épigénétiques coïncident, avec trois couleurs épigénétiques ("rouge", "noir" et "bleu") correspondant respectivement aux trois états d'activité mentionnés ci-dessus. L'épigénétique est responsable du contrôle temporel et spatial de l'activité des gènes pendant la différenciation cellulaire, et nous suggérons que l'arrangement 3D pourrait être le moyen mécanistique par lequel l'épigénétique contrôle l'activité des gènes.

Les aspects dynamiques peuvent Ă©galement ĂŞtre Ă©tudiĂ©s. Le tracking in vivo permet de quantifier la diffusion de loci chromosomiques uniques et rĂ©vèle de multiples interactions dynamiques. Notre Partner 3 a montrĂ© expĂ©rimentalement qu'une proximitĂ© physique prolongĂ©e entre enhancer et promoter est nĂ©cessaire Ă  la transcription, avec un contact plus rapprochĂ©. Cependant, aucun rĂ©sultat clair n'a Ă©tĂ© obtenu permettant de relier ni la diffusion de loci uniques, ni les distances ou les frĂ©quences de contact inter-loci avec l'Ă©tat d’organisation sous-jacent de la chromatine. Notre projet vise Ă  combler cette lacune. Nous fournirons une thĂ©orie qui dĂ©crit les domaines en termes de polymères dont l’état physique, proche de la criticitĂ©, peut expliquer l'origine des transitions de phase dans l'environnement nuclĂ©aire.

Nous aborderons la question de savoir si la proximitĂ© entre enhancer et promoter observĂ©e est la signature d'une dynamique optimisĂ©e oĂą la rapiditĂ©, la frĂ©quence des rencontres ou la sĂ©lectivitĂ© de toute rencontre inter-loci est maximisĂ©e. Comment ces caractĂ©ristiques dynamiques dĂ©pendent-elles de l'organisation 3D des domaines actifs, inactifs, rĂ©primĂ©s ? Pour y rĂ©pondre, nous identifierons un ensemble de domaines Ă©pigĂ©nĂ©tiques et Ă©tudierons in vivo la distribution et les fluctuations des distances entre loci chez la Drosophile par imagerie multi-color. Additional information on the folding state of an epigenetic domain will be obtained by a new approach based on the spectral analysis of 3-loci measurements.

Lier l'Ă©pigĂ©nĂ©tique, le repliement des domaines et la dynamique nĂ©cessitera l'Ă©laboration de mĂ©thodes d’analyse des donnĂ©es performantes et d'un modèle thĂ©orique cohĂ©rent. Les partenaires 1 et 2 ont dĂ©jĂ  jetĂ© les bases d'un tel modèle en dĂ©veloppant (i) la description de la diffusion de loci uniques dans le cadre de la dynamique des polymères, introduisant le concept de Rouse with transient internal contacts, et (ii) une nouvelle mĂ©thodologie pour maximiser l’information tirĂ©e des donnĂ©es de super-rĂ©solution, montrant que les ces dernières sont compatibles avec le comportement d'un self-attracting polymer proche de la transition coil-globule. Cela met en Ă©vidence le rĂ´le crucial de la criticitĂ© pour amĂ©liorer la susceptibilitĂ© du système, avec potentiellement des consĂ©quences intĂ©ressantes sur la dynamique qui seront explorĂ©es dans le cadre de ce projet.  


Partner

Name

First name

Current position

Role & responsibilities in the project 

Sorbonne Université
(LPTMC)

BARBI

Maria

Professor

Coordinator, scientific leader (Partner 1)

CNRS (LPTMC)

VICTOR

Jean-Marc

Researcher (DR)

Technical leader (Partner 1)

Sorbonne Université
(LPTMC)

FOLDES

Timothy

PhD

Other member

Sorbonne Université
(PHENIX)

DAHIREL

Vincent

Associate professor

Scientific and technical leader (Partner 2)

Sorbonne Université
(PHENIX)

JARDAT

Marie

Professor

Other member

Sorbonne Université
(PHENIX)

LESAGE

Antony

Post-doc

Other member

Institut Pasteur 

GREGOR

Thomas

PI

Scientific and technical leader (Partner 3)

Institut Pasteur

Unknown

Unknown

Post-doc, to be recruited

Other member





Summary of the previous results of Partners 1 and 2. Gyration radius distributions (B) obtained from 3D super-resolution images of epigenetic domains (D) (in Boettiger 2016) are fitted (B, C) using a theoretical finite-size interacting self-avoiding walk polymer model (A). The resulting parameters indicates that all epigenetic domains are close to coil globule transition and allow for estimations of microscopic parameters as the interaction energy, compaction and Kuhn length of the chromatin (involved in the definition of the polymer monomers, E and F).






The semi-synthetic setup to study long-distance E-P interactions developed by Partner 3. A) A reporter with an eve promoter driving PP7 transcription is integrated at -142 kb upstream of an MS2-tagged endogenous eve locus in the Drosophila genome. An ectopic homie insulator is also included in the reporter in order to force loop formation through homie-homie pairing with the endogenous locus. Furthermore, a parS sequence is integrated near the reporter. B) Snapshots of a time course following two nuclei for ~1 min. The lower nucleus (nucleus B) displays PP7 activity, the upper (nucleus A) has none. C) E-P distance distribution for the experimental construct shown in A. Three topological states (Ooff, Poff and Pon) are shown with Gaussian fits. Inset, transition kinetics between the three states, arrow widths representing transition time scales (i.e. transition rates).







RĂ©fĂ©rence du formulaire : ANR-FORM-090601-02-02