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D NA sequences store the complete genetic information of a biological
organism. Understanding the “genetic language” in DNA sequences is the ulti-
mate goal of the Human Genome Project, which will have a profound impact on

biology, medicine, and human society [1]. In one sense, the genetic language written in
DNA sequences is simpler than the English language because it is composed of only
four letters—A, C, G, and T—representing the four nucleotides (also referred to as bases).
In another sense, DNA sequences are more complex than English because of their
length, which allows more combinations of letters, thus more “words.” So how com-
plex can a given DNA sequence be?

Besides the question of genome complexity, whose measure ranges from the total
length of the DNA sequences to the total number of genes produced in a genome, there
is also a question of how complicated the symbolic text of a DNA sequence is. This
sequence-complexity question requires a measurement of the statistical features in
the arrangement of the four nucleotides. We now know that the base composition and
correlations among neighboring bases are not the major contributing factors to the
sequence-wide pattern. It is the spatial heterogeneity of the base composition [2, 3] or
the long-range correlation [4, 5] that largely shapes the complexity of the whole se-
quence.

At first, it is thought that the heterogeneity in DNA sequences is simple. In the bac-
teriophage lambda sequence, for example, the spatial difference of base composition
is “black and white”: The C+G density is higher on the left half of the sequence and
lower on the right half. Some people think that the bacteriophage lambda sequence is
a good representative of all DNA sequences and that the long-range correlation can be
completely explained by this simple heterogeneity [6].

A s one of the people who first observed the long-range correlation in DNA se-
quences [7, 8], it was clear to the author that this proposition was not correct. In
fact, the surprise in our first observation of the long-range correlation in DNA

sequences was not the long-range per se, but a special type of long-range correlation
called “1/f spectra” or “1/f noise.” Simple heterogeneity could lead to a deviation from
the random sequences (“white noise” or “white spectra”) but does not automatically
lead to “1/f spectra.” Extra features besides simple heterogeneity are needed to explain
this special type of long-range correlation.

Some recent developments in the study of compositional heterogeneity of DNA se-
quences enable us to address this issue in a satisfactory fashion [9, 10]. With respect to
the base composition, a DNA sequence can be homogeneous, heterogeneous in a simple
way, or heterogeneous in a complex way. The complex heterogeneity is characterized
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by the “domains within a domain” phe-
nomenon [4, 5, 9, 10]. For these se-
quences, whether a region is homoge-
neous is only relative. Interestingly, the
measure of base composition heteroge-
neity coming out of the study of long-
range correlation in DNA sequences is
intrinsically related to measures of com-
plexity in the study of complex systems.
This connection is the topic to be ad-
dressed in this commentary.

PARTITIONING HETEROGENEOUS DNA
SEQUENCES
First things first: We need to partition a
heterogeneous DNA sequence into two
relatively homogeneous subse-
quences. In the field of infor-
mation theory, a quantity called
Jensen-Shannon distance [11]
can be used to measure the dis-
tance between two statistical
distributions. This Jensen-
Shannon distance is defined as
the difference between the en-
tropy (another well-known
quantity in information theory,
as well as in statistical physics)
calculated from the whole sys-
tem and the weighted sum of
entropies calculated from the
subsystems. The Jensen-Shan-
non distance is successfully ap-
plied to the DNA sequences for
the purpose of partitioning the
sequence [9, 10].

One first calculates the
Jensen-Shannon distance D for
each possible partition point i
along the DNA sequence. This
D(i) function is plotted in Fig-
ure 1 for the DNA sequence
from the first chromosome of
budding yeast (whose aca-
demic name is Saccharomyces

cerevisiae). This sequence contains
230,208 nucleotides. The higher the value
of the Jensen-Shannon distance D(i) at a
given point i, the bigger the difference of
the two subsequences as partitioned at
point i, and the more ideal to choose that
point to partition the sequence. In Figure
1, the highest point of D(i) is actually
reached at one telomere region—the end
of the chromosome—and the second
highest point at another telomere region.
What it tells us is that both telomeric re-
gions are quite different from the rest of
the sequence, with respect to base com-
position.

Besides the two telomeric regions, the
third-highest point of D(i) in Figure 1 is
near  ≈ 189,000. The fourth-highest point
is near i ≈ 27,000, etc. Overall, there are
several other places where we can parti-
tion the sequence and the resulting base
composition difference between the two
subsequences is large.

The Jensen-Shannon distance for a
random sequence scrambled from the
yeast sequence is also calculated (Figure
1). Although there are also ups and

downs, the average value of D(i) is at least
10 times lower than that for the yeast se-
quence. These ups and downs in D(i) for
the random sequence are purely random
fluctuations.

What about the bacteriophage
lambda sequence? Its D(i) function is
shown in Figure 2 (again, a random se-
quence is included for comparison). The
sequence length is 48,502 nucleotides.
There is an unambiguous optimal parti-
tion point around i ≈ 22,000 which maxi-
mizes the Jensen-Shannon distance be-
tween the two subsequences. Just like the
boundary separating a black and a white
region, moving away from the boundary
gradually mixes some black with the
dominantly white region or white with
the dominantly black region, and the
Jensen-Shannon distance D(i) monotoni-
cally decreases. This is exactly what hap-
pens in Figure 2, indicating an easily de-
scribable heterogeneity structure in the
bacteriophage lambda sequence.

DOMAINS WITHIN DOMAINS
When the partitioning process [9] is re-

FIGURE 1

Jensen-Shannon distance D(i) between the subsequence on the two sides as a function of the partition point
i for the DNA sequence in budding yeast chromosome 1 and a scrambled random sequence (same length and
same base composition). A logarithmic scale is used for the D values.

. . . the surprise in our first
observation of the long-range
correlation in DNA sequences

was not the long-range per se,
but a special type of long-range

correlation called “1/f
spectra” or “1/f noise.”
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cursively applied to each subsequence
of an already-partitioned sequence, se-
quences with simple heterogeneity are
expected to behave differently from se-
quences with complex heterogeneity.
If the sequence is a simple “black and
white” type—“black” on one side,
“white” on the other—further parti-
tioning is not expected to reveal new
structures in the subsequences. On the
other hand, if there are sub-domains
within a domain, sub-sub-domains
within a sub-domain, etc., the recur-
sive partitioning can go on much
longer and further down to the smaller-
length scales.

Since even homogeneous random
sequences can have small differences
between any two regions, we might
want to distinguish the partitioning
due to true heterogeneity and that due
to a random fluctuation. A significance
level s can be set as the cutoff point. For
example, if s is set at 99.9 percent, par-
titioning is halted when the Jensen-
Shannon distance is not as large as
would be expected by a 0.1-percent
chance due to pure random fluctua-
tion. When recursive partioning is finally
halted, all delineated subsequences are
true homogeneous regions with a prob-
ability of 99.9 percent.

At this point, a final Jensen-Shannon
distance can be calculated which adds up
the distributional differences between
each subsequence pair in each stage of the
partitioning (with a certain weight so the
partitioning of a shorter subsequences
contributes less to the final distance than
longer subsequences) [10]. The result thus
obtained is called “compositional com-
plexity” D*(s) in [10]. It is a function of the
significance level s, and a * is used to indi-

cate that each partition point at each stage
is optimally chosen to maximize the
Jensen-Shannon distance at that stage of
the partition [10]. Also note that D*(s) is a
measure of the distance among many dis-
tributions, whereas D(i) is a distance be-
tween two distributions.

This final Jensen-Shannon distance as
a function of the significance level for
these four sequences, two DNA se-
quences and two scrambled random se-
quences, is plotted in Figure 3. We can see
that at the same s value, D*(s) for the yeast
sequence is always larger than that of the
bacteriophage lambda sequence. This
again supports our early conclusion that
there is a higher degree of heterogeneity
in the yeast sequence than in the bacte-
riophage lambda sequence. As for the
random sequences, these behave as ho-
mogeneous sequences when s is large—
with a very small number of domains.
When s is reduced, the random fluctua-
tion leads to spurious heterogeneity. The
random sequence corresponding to the
bacteriophage lambda sequence even
overtakes the original sequence as s is re-
duced, meaning that the bacteriophage

lambda sequence is very similar to a ran-
dom sequence once the simple hetero-
geneity is removed—a point debated so
heatedly in the literature and so easily il-
lustrated by this D*(s) plot!

THE PERSPECTIVE OF SPECTRAL
ANALYSIS
The difference between DNA sequences
being homogeneous, heterogeneous in a
simple way, and heterogeneous in a com-
plex way can be elegantly shown by the
D*(s) plot. Here I want to comment that
these differences can also be shown
(though not so elegantly) by the tradi-
tional spectral analysis.

Power spectrum is a technique used
to represent the correlation structure in
a sequence according to wavelength (or
frequency f which is the inverse of the
wavelength). The power at a given fre-
quency, P(f), is the contribution from that
frequency component to the total vari-
ance of the fluctuation in the sequence.

A random sequence lacks correlation
at any length scale, and the contribution
to the total variance of fluctuation in the
sequence from each frequency

FIGURE 2

Similar to Figure 1 but for the bacteriophage lambda sequence.

When the partitioning process
is recursively applied to each

subsequence of an already-
partitioned sequence,
sequences with simple

heterogeneity are expected to
behave differently from
sequences with complex

heterogeneity.



36        C O M P L E X I T Y © 1997 John Wiley & Sons, Inc.

FIGURE 3

Final Jensen-Shannon distance D*(s) (“compositional complexity”) as a function of the significance level s for
yeast chromosome 1 sequence, bacteriophage lambda dequence, and the two corresponding random sequenc-
es. The larger the value of s, the more difficult to partition a sequence and the more likely that the resulting
partition reflects true heterogeneity rather than a random fluctuation.

compodom sequence is plot-
ted, it is flat. Using an analogy
to visible light, since the color
white takes equal contribution
from colors of all frequencies, a
random sequence with a flat
power spectrum is also known
as “white noise” (see, e.g., [12]).

Now what about sequences
with simple or complex hetero-
geneity? The answer is not obvi-
ous. Let me calculate the P(f)s
for our four sequences and show
these in Figure 4. The two ran-
dom sequences have flat power
spectra as expected. Both yeast
chromosome 1 and the bacte-
riophage lambda sequence de-
viate from the flat spectrum. But
can we distinguish simple and
complex heterogeneity by the
power spectra?

We actually can. More discus-
sion can be found in [4, 5]. The
proposition is that DNA se-
quences with simple heteroge-
neity exhibit 1/f 2 power spectra,
whereas those with complex het-
erogeneity frequently exhibit 1/f
power spectra (for a readable ac-
count of 1/f and 1/f 2 power spec-
tra, see [12, 13]). Power spectra of
other shapes are of course pos-
sible but not common in DNA
sequences. Also, the grouping of
all possible spectra into only 1/f
and a 1/f 2 is a simplification,
considering the case of a 1/f 1.5

power spectrum, for example.
The reason that such simplified
picture is presented is to empha-
size the importance of the differ-
ence between 1/f and a 1/f 2

power spectra.
In Figure 4, a 1/f 2 and a 1/f

function (these are straight lines
in the double-logarithmic plot)
are shown as reference functions
that can be compared with the
power spectra from the two DNA
sequences. Indeed, the bacte-
riophage lambda sequence and
the yeast chromosome exhibit dif-
ferent spectra: 1/f 2 spectrum for
the former and 1/f spectrum for
the latter.

FIGURE 4

Power spectra P(f) of the DNA sequence from the yeast chromosome 1, the bacteriophage lambda sequence,
and two corresponding random sequences. The power P is plotted as a function of the freqeuncy f (both in the
logarithmic scale). These power spectra are smoothed. Two reference lines are also shown: One represents a
1/f spectrum, and the other a 1/f 2 spectrum.
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MEASURE OF HETEROGENEITY
COMPLEXITY
Our original goal was to distinguish DNA
sequences with simple and complex het-
erogeneity, and the introduction of D*(s)
seems to be able to accomplish this task.
Does D*(s) have anything to do with mea-
sures of complexity in the field of com-
plex systems studies?

We first need to clarify what is meant
by a measure of complexity. In the most
general framework, a measure of complex-
ity of a task is any measure that character-
izes the difficulty in accomplishing that
task (e.g.,[14]). A measure of complexity of
an object is a measure of complexity of a
task performed on that object. Describing
an object using a specific language with a
specific set of vocabularies, for example,
is a task performed on that object. All the
following examples can be considered a
measure of complexity of a symbolic se-
quence: the length of the shortest descrip-
tion of a sequence (algorithmic complex-
ity [15]); the length of the shortest
description of the regularities in a se-
quence (effective complexity [16]); the
time required to reproduce a sequence
from a short, if not the shortest, descrip-
tion, or the time consumed in finding this
short description (logical depth [17]), etc.

When describing an object, one can
describe every detail (a strong description)
or only the nonrandom regularities of the
object (a weak description). Correspond-
ingly, there can be strong and weak ver-
sions of a measure of complexity. In de-
scribing the heterogeneity of base
composition in a DNA sequence, we
clearly describe a specific regularity, thus
the weak version. If we use the length of a
description of the heterogeneity in a DNA
sequence as the measure of complexity,
the question is: is D*(s) such a measure?

D*(s) mainly contains two pieces of in-
formation: (1) the total number of homo-
geneous domains and (2) the magnitude
of base composition differences among
these domains. Increasing either one of
these, D*(s) is also increased. With some
exceptions, the length of a description of
the heterogeneity in a sequence increases
with the total number of domains. One ex-
ception is the case of perfectly periodic
domain structures, which nevertheless is
rarely applicable to DNA sequences.

The magnitude of the differences
among domains does not necessarily
contribute to the length of a description
of the heterogeneity. However, a stronger
difference between domains makes the
domain structure more convincing. We
might consider a larger difference among
domains a better assurance that the num-
ber of domains obtained is correct. So the
magnitude of the differences indirectly
contributes to the length of a description
of the heterogeneity.

The most interesting common feature
between D*(s) and the measure of com-
plexity is that they both increase with the
level of details in the description. Intu-
itively, details not visible to the naked eye
could be revealed by a magnifying glass.
Similarly, a presumably homogeneous
domain with a higher significance level
can be partitioned to more domains
when the significance level is reduced.
Also, a description working at a crude
level does not describe the details at a
finer level. All these arguments point out
that D*(s) and measures of complexity are
monotonic functions with the level of de-
scription: the smaller the s, the higher the
D*(s); the finer the detail, the larger the
measure of complexity.

In general, the measure of complexity
must take into account at what level one
wants to describe the object [16]. Ran-
dom sequences require a long descrip-
tion if all details are to be described, but
a very short one if only a rough picture is
required. A measure of complexity for a
random sequence is thus unstable with
respect to the level of detail in the de-
scription. To my knowledge, very few, if
any, proposed measures of complexity
actually address the issue of the level of
detail in the description. The D*(s), how-
ever, is explicitly a function of the level s.
Perhaps we can learn a lesson or two from
the measure of heterogeneity, D*(s), and
introduce level-dependence explicitly to
the measure of complexity.
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