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We address the problem of DNA sequences, developing a “dynamical” method based on the
assumption that the statistical properties of DNA paths are determined by the joint action of
two processes, one deterministic with long-range correlations and the other random and é§-function
correlated. The generator of the deterministic evolution is a nonlinear map belonging to a class of
maps recently tailored to mimic the processes of weak chaos responsible for the birth of anomalous
diffusion. It is assumed that the deterministic process corresponds to unknown biological rules
that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional
environment on the biological process under study. We prove that the resulting diffusion process,
if the effect of the random process is neglected, is an a-stable Lévy process with 1 < a < 2. We
also show that, if the diffusion process is determined by the joint action of the deterministic and the
random process, the correlation effects of the “deterministic dynamics” are canceled on the short-
range scale, but show up in the long-range one. We denote our prescription to generate statistical
sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences
and their CMM realizations with a variety of techniques and we especially focus on a method of
regression to equilibrium, which we call the Onsager analysis. With these techniques we establish
the statistical equivalence of the real DNA sequences with their CMM realizations. We show that
long-range correlations are present in exons as well as in introns, but are difficult to detect, since the
exon “dynamics” is shown to be determined by the entanglement of three distinct and independent
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CMM’s.

PACS number(s): 87.10.+e, 05.40.4j, 05.70.Ln

I. INTRODUCTION

In the past decade or so there has been a ground swell
of interest in unraveling the mysteries of DNA. One ap-
proach that has, in just a few years, proven to be partic-
ularly fruitful in this regard is the statistical analysis of
DNA sequences [1-9] using modern statistical measures.
One focus of this analysis has been on the distribution of
the four bases adenine, cytosine, guanine, and thymine
(A,C,G, and T) in order to shed light on the following
fundamental problems: (i) establishing the role of the
noncoding regions in DNA sequences (introns) in the hi-
erarchy of biological functions [2,5], (ii) finding simple
methods of statistical analysis of such sequences to dis-
tinguish the noncoding from the coding regions (exons)
[6], (iii) discovering the constraints and regularities be-
hind DNA evolution and their connections to the Darwin
theory of selection and more generally to contemporary
evolution theories [7,8], (iv) extracting new global infor-
mation on DNA and its function [2,3,5], and (v) estab-
lishing the roles of chance and determinism in genetic
evolution and coding regarded as being the “program”
underlying the development and life of every organism
[7]-

A familiar kind of analysis of DNA sequences is that
used by Voss [3] based on the equal-symbol correlation.
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He uses a binary indicator function Ug(z,) that is equal
to 1 if a letter k occurs at the position z,, and to 0 oth-
erwise. The letter k£ is defined by the four nucleotides
k= A,C,T,G. The indicator functions are used to con-
struct the correlation function and its Fourier transform,
the spectral density

sH= >

k=A,C,T,G

Sk(f)s 1)

from which he removed the white noise floor. The details
of this technique are reviewed in Sec. IIID.

The analysis of the spectrum S(f) led Voss to the
following two major observations regarding the general
properties of DNA spectra: (a) the spectra have a peak
at f = 1/3, t = 3 (for coding sequences) and (b) the
DNA sequences have long-range correlations as indicated
by the slope of the spectrum, when plotted on a log-log
graph paper.

We shall discuss the 1/3 peak subsequently. Here we
stress that the long-range correlation means that

lim S(/) o< fi )

with 1 > v > 0 (the case v = 0 corresponds to a com-
pletely random distribution, with no correlation). The
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result for S(f) given by (2) is equivalent to the corre-
sponding result for the correlation function [10]

. 1
Tlggo C(r) vk 3)
with 8 = 1 — v, which is obtained using a Tauberian

theorem. This consequently implies the condition 1 >
3 > 0, so that it is not possible to define a length scale for
the correlation function, e.g., the correlation is nonzero
at all the distances 7 separating elements in the sequence.
This interpretation is the reason why this inverse-power-
law behavior is called long ranged (see also [11]).

Voss finds these inverse-power-law spectra for the se-
quences studied regardless of the percent of intron con-
tent. This is where the results of Voss disagree with those
of Stanley et al. [5], who, on the contrary, focus their at-
tention on the different degrees of correlation in intronless
and intron-containing sequences and find no correlation
in cDNA sequences.

Let us now briefly review some of the main results of
the research work of Stanley et al. [5]. They find long-
range correlations in the noncoding regions and no cor-
relation at all in the coding regions of DNA sequences.
They use methods of analysis different from that of Voss
and are related to the dynamical treatment that we il-
lustrate in Sec. II. They study the landscape variable,
which, adopting the notation of this paper, reads

£
z(f) = .EE’" (4)

Here ¢ represents the position in a sequence and £ the
distance along a DNA sequence (£ is an integer between
1 and N, the length of the sequence) and §; is a variable
that assumes the value +1 if a purine occurs and —1 if a
pyrimidine occurs at the position i. Thus the cumulative
variable z(£) with the increase of “time” f executes a
trajectory similar to that of diffusional one-dimensional
motion, called, by Stanley and co-workers, a DNA walk.

This trajectory has a fractal structure (like a mountain)

and is therefore called a “landscape.” Stanley et al. [5]
focus their attention on the second-order properties of
the landscape, such as the mean square deviation from
the mean

F2(0) = (Az — (Az),,)?), ()

where £g is the initial point of the walk, the £y subscript
on the bracket means an average over initial positions,
and

In Sec. II we introduce the statistical arguments ap-
propriate for correlation fluctuations and show that with
a correlation function of the form (3) with 1 > 8 > 0 the
asymptotic form of the second moment (5) becomes

lim F?(¢) oc £2H, (7
£— 00
where H = 1 — (3/2, so that 1 > H > 0.5 (again, the
case of complete randomness corresponds to the extreme
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value H = 0.5). In the case of introns Stanley et al. [5]
actually find H > 1/2, in agreement with the results of
Voss. In the case of the intronless sequences (where the
introns were removed), on the contrary, Stanley et al.
[5] find H = 0.5 in the case of sufficiently short £. In
the analysis of some coding sequences Stanley et al. [5]
noticed that some coding DNA landscapes were a juxta-
position of patches of different biases whose lengths were
distributed around a typical length scale; they noticed
further that the dispersion they measured within such
subsequences was normal. To avoid the subjectiveness
of selecting such subsequences, they developed the de-
trended fluctuation analysis: they generalized the func-
tion F%(¢) and adopted the function F2(£), allowing them
to distinguish the cases where the inverse-power-law be-
havior exists at all length scales from those where the cor-
relation only appears on a typical length L. This length
scale is identified with the typical length of the random
subsequences that they find in the studied intronless se-
quences. Thus Stanley et al. [5] attribute the presence
of correlations at large £ in the exons to a crossover ef-
fect among the subsequences, thereby implying that no
substantial long-range correlation exists in the exons.

Stanley et al. [5] also proposed some models of evo-
lution and reported the results of analyses of sequence
coding for the same protein belonging to organisms in
different positions in the evolutionary tree. They find an
interesting increase of the coefficient H with biological
complexity, i.e., H is a function of the position in the
tree.

The differences in the findings of the two groups—long-
range correlations being ubiquitous in DNA sequences by
Voss [3] and such correlations being absent in exons by
Stanley et al. [5]—has motivated us to develop a phe-
nomenological dynamical model that might not only mit-
igate these differences, but also suggests the dynamical
origins of the observed statistical properties. The pro-
posed model is an application of nonlinear mappings to
the understanding of the statistics of DNA sequences.
We also believe that this affords a completely different
strategy for determining the biological mechanisms un-
derlying DNA structure and thereby indirectly biological
functions.

Within this context we must mention the work of Gros-
berg et al. [2], who suggest that an intrinsic constraint
might lead DNA evolution towards a given statistical con-
formation. In fact, Grosberg et al. studied the statisti-
cal properties of a polymer confined within a minimum
volume but constrained to remain essentially knot-free.
Under these conditions the sequence must result in long-
range correlations with H = 2/3. This kind of packing
(crumpled globule structure) shows up in the complete
sequence of the DNA of the eukariots, i.e., the living be-
ings whose DNA is contained in a nucleus and are charac-
terized by the presence of introns, that is, DNA sequences
that do not code for proteins. The nuclear DNA must
keep the capability of unfolding itself for the purpose of
transcription and duplication. The complete sequence
consists mainly of noncoding DNA. For all these reasons
Grosberg et al. argue that the role of introns might be
that of producing the needed long-range correlation so as
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to rigorously maintain the convenient spatial configura-
tion for the whole genome and, consequently, the correct
function. According to this interpretation of the work of
Grosberg et al. the lack of correlation in the coding se-
quences would be justified by the fact that in addition to
the exons (which are responsible for the other fundamen-
tal function, the code) a further “structure” responsible
for the function should exist.

It must be added that Lié et al. [8] also stress that
the statistical properties of the DNA sequences imply
either a series of internal causes or relations with the
cellular environment. These are constraints concerning
the proper function of the DNA code and the complex
mechanisms needed for the cell life. These authors apply
the mutual information function to the pairs of bases AT
and CG@G, distinguishing between weak and strong bonds,
and find a period-3 correlation for the pair CG (strong)
in organism living in limiting life conditions. They also
mention a sort of internal natural selection that should
account for these properties. This is additional evidence
that the statistical properties of the DNA sequences may
be related to internal and external constraints.

We plan to approach the discussion of all these issues
by adopting a dynamical model from the point of view
that the different positions of the sequence can be re-
garded as distinct values of a discrete time and the land-
scape variable (4) can be regarded as the collection of all
the fluctuations that the statistical variable £, the “veloc-
ity” of our “Brownian particle,” undergoes throughout
the observed time interval. Our modeling is based on
the assumption that this diffusion process rests on the
joint action of two distinct statistical sources, the former
being a statistical process with long-range correlations
and the latter being a noise, namely, a random process
with no correlations. The generator of the process with
long-range correlations is assumed to be a deterministic
nonlinear map, mimicking a state of weak chaos, and
is thought of as expressing the rules determining the
dynamics of the biological process under study. This
biological process interacts with an infinite-dimensional
environment and, according to traditional wisdom, this
interaction is mimicked by a d-function correlated ran-
dom process. The weight of these two distinct statistical
sources is determined by a fitting procedure of the ex-
perimental data. This results in a special map, which we
term the copying mistake map (CMM) and is our pro-
posed model to interpret the DNA sequences.

Thus we see that our model balances the two major
sources of randomness in statistical mechanics: noise, the
traditional process introduced to model the infinite num-
ber of degrees of freedom of a complex mechanical sys-
tem, and chaos, the paradigm of deterministic random-
ness from nonlinear dynamics. This choice of including
both noise and chaos is dictated by a criterion of effi-
ciency as well as by a “philososophical” perspective on
DNA sequences, in which the sequence is perceived as the
result of a compromise between chance and necessity. In
fact, as will become transparent from the content itself
of this paper, the DNA sequences are a biological case
of anomalous diffusion and anomalous diffusion is deter-
mined by waiting time distributions in each of the states 1
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or —1 of the velocity £ with an inverse power law. The de-
terministic map used in this paper is one of several possi-
ble generators of inverse-power-law distributions, another
well know one being, for instance, a hierarchical model
[12]. The choice of the deterministic map is also dictated
by a criterion of efficiency, which makes the CMM an es-
pecially simple way of generating sequences statistically
indistinguishable from the real DNA sequences. Further-
more, we shall see that the adoption of the deterministic
map makes it possible to realize a variety of different
conditions, including the oscillations detected by Voss [3]
and Lié et al. [8] using a single approach.

The outline of the paper is as follows. In Sec. II
we review the dynamical basis of anomalous diffusion,
with emphasis on nonlinear deterministic maps. Here the
statistics of anomalous diffusive processes are shown to be
Lévy stable and the waiting time distribution functions
to be inverse power laws. These considerations lead to
the formation of a map, which results in the CMM when
the enviromental perturbations are properly taken into
account. The CMM generates sequences by a chaotic
map with long-range correlation and uncorrelated ran-
dom mutations that destroy short-range correlations. In
Sec. III we review the traditional methods of analysis of
DNA sequences: diffusion analysis, detrended analysis,
Hurst analysis, and spectral analysis. In addition we in-
troduce into this context a procedure inspired by Onsager
[13] in which the regression of a perturbed system back to
equilibrium is used to determine the equilibrium correla-
tion function. In Sec. IV we apply the standard methods
of analysis to real DNA sequences to compare and con-
trast the result with those generated by the CMM. We
summarize our results and draw some conclusions in Sec.
V, which also illustrates the research directions suggested
by the results of this paper.

II. DYNAMICAL THEORY
OF ANOMALOUS DIFFUSION

The purpose of this section is to present a dynamical
approach to the generation of the statistical behavior of
DNA sequences and the theoretical motivation behind it.
First of all, we show that a dynamical approach to the
diffusion of a variable z is due to its velocity £ fluctuat-
ing between two values 1 and —1, naturally resulting in
a Lévy process if the fluctuations are stationary, and the
waiting time distribution of the velocity £ is an inverse
power law with a finite first moment. Second, we propose
a deterministic map, which is probably the most conve-
nient generator of this inverse-power-law distribution of
sojourn times to model the fluctuating velocity. Finally,
we build up a CMM, namely, a process resulting from
the joint use of a deterministic map, responsible for the
birth of correlations, and a é-function-correlated random
process. This §-function-correlated process mimics ran-
dom pointlike mutations and has the effect of destroying
these map-generated correlations on a short-time scale.
The biophysical and biochemical sources of the inverse-
power-law distributions of waiting times, necessary to
produce anomalous diffusion in the form of a-stable Lévy
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processes, remain unexplained. However, our approach
demonstrates that the resulting diffusion is remarkably
similar to that generated in Hamiltonian systems, where
the source of a waiting time distribution with an inverse
power law is known to be the fractal nature of the border
between stable islands and the chaotic sea [14-18].

A. General dynamical remarks

A diffusion process in the one-dimensional case stems
from the remarkably simple equation

&(t) = £(2), (8)

where z is the diffusing variable and £ is the stochas-
tic process generating diffusion. We assume that the
stochastic variable x is independent of £&. We focus on
the special case where this is a statistical process, with
only two possible values £ = 1 and £ = —1. We also as-
sume that these two states are equally weighted, thereby
resulting in

(€(®))eq = 0 (9)

In the case of DNA sequences, as pointed out in the
Introduction, the two values 1 and —1 denote different
molecular groups and the time ¢ corresponds to the dis-
tance of the molecular site considered from a given ori-
gin. Note that for large sequence distances (and therefore
large times) one can safely adopt the continuous time rep-
resentation, which makes it easier to establish a formal
connection with typical diffusion processes such as ink
in water. It must be remarked that in physical systems
the averages are made on a Gibbs ensemble of identical
systems and the assumption is made that the velocity &
is in a state of statistical equilibrium. In principle, one
might instead use a single system and replace the Gibbs
averages with averages over long times. The connection
between the two pictures involves the ergodic assump-
tion. In the case of DNA sequences we have available,
so to speak, only single trajectories or realizations. Con-
sequently, the connections with the dynamical approach
outlined here is made possible by assuming that the DNA
sequence can be dealt with as being a single realization
of an ergodic process. We also make the assumption that
the time averages on the variable £ would correspond to
a stationary, or equilibrium, condition. The integration
of (8) allows us to construct the second moment

() = (=2(0)) + 2(¢?)., /0 dt’ A dt"®e(t"), (10)

where ®;(t) denotes the equilibrium correlation function
defined by

_ (€(0)¢())
Qf(t) = (£2> . (11)
It has to be stressed that (10) implies that (£(¢')¢(¢"))

depends on the time difference |t' — t"'|, as suggested by
the assumption that the process is stationary, thereby
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making (z%(t)) depend on the one-time correlation func-
tion (11). The investigation carried out herein also rests
on this assumption.

Normal diffusion is a natural consequence of the exis-
tence of the microscopic time scale, defined by

r= / ~ o (t)dt. (12)
0

If the correlation function ®¢(t) decays quickly enough
to make 7 finite, we can explore the process for times ¢
very large compared to 7, thereby making the long-time
limit of (10) indistinguishable from

(z?(t)) = (=*(0)) + 2Dt, (13)

where the diffusion coefficient for the process is defined
by

D = (&) (14)

The time scale separation between the diffusion process
and the velocity fluctuations allows the central limit the-
orem to work, thereby realizing a Gaussian diffusion pro-
cess.

What about the case where the definition of the micro-
scopic time scale is impossible (7 — c0)? A natural way
of realizing this unusual condition would be given by an
autocorrelation function ®¢(t) with the asymptotic prop-
erty

. 1
Jim @e(t) o« =, (15)
with
0<B<1. (16)

It is evident indeed that in this unusual condition the
correlation time 7 (12) diverges and the time scale sep-
aration between the macroscopic (diffusion) and the mi-
croscopic process (fluctuations of the velocity variable &)
would not be possible. To shed light on this question one
might use the connection, established by Geisel et al. [19],
between the stationary correlation function ®¢(t) and an-
other important statistical function, the waiting time dis-
tribution % (¢). This function determines the probability.
that £(t) has made a transition between states in a time t.
In the specific case where the variable £ is a dichotomous
process, as in the case of the DNA sequences we are ex-
ploring in this paper, this connection between ®,(t) and
¥ (t) is exact and reads

J& (T - t)p(T)dT
J5. Ty(T)dT

Be(t) = (17)

From this exact relation we see that the condition (16)
is realized provided

lim (t) o tl“’ (18)

t—oo

with

2<p<3. (19)
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This restriction on the index p arises from (16) since from
(17) it is evident that

B=p-—2 (20)

In conclusion, we see that the functional form of ¢ (t) (18)
with the power p in the range (19) generates the inverse-
power-law behavior of ®,(t) and hence the breakdown of
the condition of a finite 7 (12) for normal diffusion.

It is easy to prove that in the case where (19) applies
the asymptotic behavior of the second moment of the
diffusing variable z is given by

(2?) 28, (21)
with
sz—g, (22)

which therefore ranges from 1/2 to 1. The relation be-
tween the indices (22) can be easily obtained by twice
differentiating (21) and (11) and equating the resulting
expressions. Much more exciting is the fact that the dis-
tribution of z is not Gaussian and it is characterized by
long-range tails. These tails cannot result in diverging
moments, a fact that would be incompatible with the
dynamical realization of the process, where the diffusing
particle cannot travel with a velocity faster than that
of the limiting trajectory |z| = t. However, if this un-
avoidable truncation is ignored, the distribution is indis-
tinguishable from that of a Lévy process [20,21]. Let
us denote by P(k, t) the Fourier transform of the distri-
bution P(z,t) and let us focus our attention on it. It
is shown [20,21] that if the dynamical truncation of the
distribution is neglected, the diffusion generated by the
fluctuating variable £ with the waiting time distribution
¥(t) fulfilling (18) and (19) results in the characteristic
function for a symmetric Lévy stable process

P(k,t) = exp (—b|k|*t), (23)
with the Lévy index
a=p—1. (24)

This means that we are observing an a-stable Lévy
process with an index in the interval 1 < a < 2. Notice
that in principle the a-stable Lévy processes concerns the
wider range 0 < a < 2. However, the condition a < 1
refers to processes faster than ballistic diffusion and so
is incompatible with the dynamical nature of the process
described by (8), with the further assumption, obvious
in the case of the DNA sequences, that the fluctuating
variable £ is independent of z. The condition pu < 2
does not lead to a Lévy process, but it is proved [20,21]
to result, throughout the whole range 1 < p < 2, in a
process with H = 1. In fact, in this case the integration
of (17) leads to a time-independent ®; to which (20) does
not apply.

Are there physical and biophysical systems that fulfill
the conditions leading to (21), with (22) and (19)? It
has been noticed recently by several investigators [14,15]
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that the momentum of a kicked rotator in the so-called
accelerator state is driven by a variable, playing the role
of the velocity £, which fluctuates between two distinct
values. The corresponding waiting time distribution has
the same structure as (18) with the condition, (19). It is
curious that Hamiltonian processes realize the condition
(19), which corresponds precisely to the overlap between
the Lévy processes and their dynamical realization. In
the case of Hamiltonian systems, it is well understood
how the inverse power law (18) is generated, this being
due to the fractal nature of the border between chaotic
and ordered regions in the phase space for the dynami-
cal system [14-18]. However, so far there are no theories
establishing the range of the index p. The fact that p
is located in the range (19) is the result of a numeri-
cal “observation” not yet substantiated by a theory. It
must be pointed out that this observation, supplemented
by the theory of Refs. [20,21], is equivalent to proving
that Hamiltonian systems in a stationary condition re-
alize anomalous diffusion in the specific form of Lévy
processes, where these processes are compatible with a
dynamical realization (2 < p < 3).

What about DNA sequences? The DNA sequences,
when the association between letters and numbers that
we use is adopted, are a biological realization of the equa-
tion of motion (8), with the velocity £ fluctuating be-
tween the two values 1 and —1. According to the results
illustrated here, the simplest possible way for these se-
quences to produce anomalous diffusion is by realizing
a waiting time distribution with the structure of (18)
and with 4 < 3. The case u > 3 would result in triv-
ial Brownian motion. We note that the prescription of
Grosberg et al. resulting in H = 2/3 corresponds pre-
cisely to the dynamical condition (19), with u ~ 2.7, and
is compatible with a dynamical derivation based on the
stationary correlation function ®¢(t). Is the condition
2 < p < 3 fulfilled by the rule of Grosberg et al., a gen-
eral property of DNA sequences? Actually, there are no
compelling reasons why, if the anomalous character of
diffusion is accepted, DNA sequences should also fulfill
the condition p > 2, in addition to pu < 3. However, it
is attractive to imagine that DNA sequences share the
same “dynamical” property as the Hamiltonian systems
and realize anomalous diffusion only under the form of
an a-stable Lévy process with 2 < y < 3. Note indeed
that u < 2 would lead to a ballistic process distinct from
a Lévy diffusion [21]. Thus the analysis of this paper on
the DNA sequences is made having in mind the condi-
tion (19), namely, the same range as that of Hamiltonian
systems in the so-called weak chaos state [14-18].

B. Deterministic approach to an inverse power law
for the waiting time distribution (t)

Here we illustrate the deterministic map we adopt to
generate the waiting time distribution (19). This map is
very similar to that originally derived by Geisel et al. [19]
and more recently studied by Zumofen and Klafter [21]
with the help of generalized versions of the continuous
time random walk and generates a waiting time distri-
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bution %(t) with an inverse power law and an index p
ranging from 1 to oo and thus in principle also including
the nonstationary region 1 < p < 2.
The explicit form of the map is
Yi+1 = f(¥), (25)
where ¢ is the iteration number. The functional form of
the map is

Y+ ay® for0<y<d
fly) =4 T%¢ ford<y<1-—d (26)

y—a(l—y)® forl-d<y<1,

where a = (1 — 2d)d'~* (this choice is made to fulfill er-
godicity and to avoid oscillating trajectories). The map is
shown in Fig. 1 to be piecewise continuous. The variable
that takes the values +1 or —1 is
G=[2y] -1, (27)
where the square brackets denote the integer part of the
quantity inclosed. Note that in the case z =1 and z = 2
this map becomes identical to that recently developed by
Leibovitch and Téth [22] to study the dynamics of ionic
channels.
A unidimensional map is a dynamical description of
a variable y;, where the subscript ¢ indicates a discrete
time, according to the recursive rule (25). A class of maps
fulfilling the property of having motion inside a certain
region, with an inverse power law for the waiting time
distribution (), are those containing hyperbolic fixed
points where the mapping function z = f(y) is tangential
to the straight line z = y. In our mapping we have two
such points, one at y = 0 and the other at y = 1 (see Fig.
1). In this case the particle undergoes a very slow motion
out of the region near the fixed point (weak repeller) and
then eventually exits the laminar region giving rise to the

f)

FIG. 1. Solid lines represent the nonlinear map of (26) with
z =5/3 and d = 0.45. We can see that the 45° diagonal is
tangential to the curve at 0 and 1. The side regions (called
“laminar regions”) are separated by a switching region. The
three regions are clearly distinguishable as we plotted vertical
lines between them.
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so-called intermittent behavior. The typical form of this
kind of map near the fixed point is
fy) =y +ay’, (28)
where z > 1. Since the dynamics are slow, that is, the
particle undergoes many recursions near the fixed point,
we can express (25), together with (28) in the continuous
time limit, in the form
, Y = ay®, (29)
which can be solved by quadrature. In particular, if we
imagine our particle to start from a position y,, within
one laminar region (let us say the left one), and to exit in
an escape time t..., when the particle reaches the position
y = d, we can write

d t
d esc
/ —f =a/ dt.
v Y 0

It is easy to cast the solution of this equation in the form
Yo(tesc); if p(yo) is the distribution of initial condition
(we can take it to be flat), we can connect the two dis-
tributions through the Jacobian, i.e.,

(30)

dy
Y(tesc) = p(¥o) dt : ’ (31)
so that it is easy to prove (18) where
z
= 32
p=—— (32)

C. DNA sequences as CMM’s

The map (26) does not describe all the dominant prop-
erties of DNA sequences. Although the map (26) gives
rise to the dynamical long-range correlations observed in
introms, it does not have the uncorrelated diffusive prop-
erties observed in exons. To achieve this latter property
we introduce [7] a kind of a posteriori noise, so as not to
interfere with the long-range correlations. This noise is
intended to mimic pointlike mutations. In real DNA se-
quences indeed no large patches of consecutive sites with
the same sign, like the one predicted by the map, are ob-
served. The noise we introduce is called copying mistake
noise and the resulting map is given by the variable ¢;,

& = Gi with probability €
* 7 | random {-1,+1} with probability (1 — €),

(33)

where 0 < € < 1 and (33) is called the copying mistake
map.

The CMM is based on the independent action of the
deterministic one-dimensional nonlinear dynamical pro-
cess (27) and a stochastic uncorrelated one. The inde-
pendence of the two processes from one another results
in a second moment for the landscape variable given by

(z2(€)) = AL?H 4 By, (34)
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where H = 2 — z/2(z — 1). Exploiting the independence
of the two processes, it is easy to prove that the ratio
A/B is proportional to €/(1 — €).

In Sec. IV we show that the CMM model describes in-
tronless and intron-containing sequences in a unified way,
the differences arising from different values of the copying
mistake probability (1 —€). However, (34) makes it clear
that it is very difficult to detect long-range correlations
within a short distance scale if such probability is large,
namely, if B > A. This is indeed what happens in the
case of coding sequences, i.e., exons.

The structure of (34) might suggest that the role of
chance in exons is much stronger than in introns, when
one at first would expect the opposite to be true. Stan-
ley et al. [5] made the hypothesis that introns (and in-
trons only) carry long-range information. The work of
Grosberg et al. [2] shows that this information could be
simply related to global properties of DNA, such as the
tertiary structure. We show how this correlation infor-
mation shows up (with some difficulty) in exons as well
as in introns and in the Conclusion attempt to give some
possible biological explanations. Here we mention that
in part the copying mistake disorder in exons is indeed
a consequence of the physical and biological constraints
on the protein coding, which do not produce long-range
effects and may be perceived as an uncorrelated noise at
the level of DNA base-base correlation.

III. METHODS OF ANALYSIS

The development of techniques to analyze the statisti-
cal properties of DNA sequences has become a very ac-
tive field of research. A frequently used technique [1,5,8]
is the method of information entropy, which is thought
to be free from the somewhat arbitrary identification of
symbols with real numbers [9]. We are aware of that
problem and consequently of the potential importance of
adopting the information entropy and other such bias-
free methods. However, since our aim here is to apply
our dynamical model of DNA sequences, we prefer to
focus on those traditional methods of analysis that asso-
ciate letters with numbers in the assessment of the utility
of the CMM. On the other hand, our statistical method
leads us to conclusions consistent with those reached by
Li6 et al. [8], on the basis of the entropy information
method.

In this section we present a brief illustration of other
methods of analysis that can be related to the dynamical
approach, which we therefore apply in this paper.

A. Diffusion analysis

Diffusion analysis is the most direct way to detect the
diffusion exponent H. The method consists of transform-
ing the symbolic data sequences into a series of +1’s and
—1’s, by substituting nucleotides A and G (purines) with
a +1 and C and T (pyrimidines) with a —1. Although
this choice, as pointed out by Stanley et al. [5], is ar-
bitrary, it has some merit compared to other possible
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choices. Let us consider, for instance, the choice of AT vs
CG@G. This is biologically correct since it groups the pairs
according to the hydrogen bond in the doubled stranded
DNA. However, this choice is proved to be affected by
biases that have to do with the local tertiary structure
(pieces rich in AT are more flexible than pieces rich in
CQG) and that constitute a kind of external noise in our
search of long-range correlations. The numerical treat-
ment of the data is essentially performed according to
(5). The evaluation of H comes from the equation for
the second moment (10), where the averages are taken
over all the possible initial conditions. It is also possi-
ble to evaluate the distribution probabilities P(x,t) that
describe the probability of having traveled a “displace-
ment” distance = in a “time” ¢t. Such distributions are
Gaussians for uncorrelated processes and, for the rea-
sons pointed out in Sec. II, are Lévy functions for the
long-range correlated processes supplemented by the sta-
tionary assumption. This kind of analysis was applied to
the study of the DNA sequences by Li and Kaneko [1].
They studied a three-dimensional pseudorandom walk, of
which each of the four bases represented a velocity vector
relative to the four angles of a regular tetraedron. Our
one-dimensional approach is a simplified version of this
method since it can be regarded as being a geometric pro-
jection on a straight line connecting the middle points of
two opposite sides of this tetraedron.

B. Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) was origi-
nally introduced by Stanley and co-workers [5] for the
purpose of distinguishing, within a reasonably short time
scale, if the dynamical process stemming from a DNA se-
quence is dominated by correlated or uncorrelated fluc-
tuations. This method was shown to be successful in
distinguishing introns from exons in a yeast chromosome
[6]. It rests on the rule that short correlations are de-
stroyed for cDNA sequences; a rule that has still to be
shown to be valid in general. When applied to CMM, the
DFA gives, for short and intermediate time regimes, val-
ues of H around 1/2 if the probability of mutation 1 — €
is large.

The DNA sequence y(n) (+1’s and —1’s) is divided
into N/l sequences of length I, each subsequence being
confined in a box. The boxes are labeled by the index s.
The total bias in the sth box is

sl

M} :% >

n=(s—1)I+1

Then the detrended walk is defined

y(n) | - (35)

Y’(n) =y(n) —nMy for (s—1)l+1<n<sl, (36)

with the variance in the box given by

sl

ol = % Z

n=(s—-1)I+1

[¥,* (n))*. 37
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FIG. 2. DFA analysis performed over four sets of data. The
squares represent a sequence from the E. coli K12 genome.
This sequence is composed of exons and is fitted with an un-
correlated control sequence (x’s). The resulting H is ~ 0.5.
The circles represent a human intron containing sequence,
which is in turn fitted with a correalated control sequence.
Both sequences turn out to have H > 0.5 (adapted from [32]).

The function F2(1) is defined as the average of o2 over
the N/l boxes and is a funcion of ! (the width the boxes
into which the sequence is divided). If the dynamical
process is a fractional Brownian motion (and so a Gaus-
sian distributions is assumed) characterized by a certain
H, it is possible [5] to show that

F2(l) < IH. (38)

Stanley et al. [5] find H > 0.5 for intron-containing
sequences, while for intronless sequences they find H =
0.5 under a certain characteristic length and H > 0.5 for [
over that length. This can be seen in Fig. 2, which shows
some results of Stanley et al. [5] for intronless sequences
using the DFA analysis.

C. Hurst analysis

Hurst analysis [23] is a classic procedure for detecting
anomalous diffusion behavior. It is based on the following
steps. First, one defines the span of the DNA walk

1<t<r

S(r) = max > (& —(€),) — min 3 (&~ (©.),

(39)
where the angular brackets denote the ensemble average
up to the time 7 > ¢t. Second, the variance of the walk is
constructed

V()= [i PGS <s>,)2]

2

(40)
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Finally, we construct the rescaled range variable

R(r) = f;((g - (g)H”,

(41)

where Hy is the Hurst exponent usually denoted as H.
In the specific case of fractional Brownian motion H =
Hpy, but in general the two exponents are not equal [24].

This analysis was recently adopted to study anoma-
lous diffusion produced by either deterministic maps or
stochastic processes [24]. We performed Hurst analysis
on DNA sequences and found the same long-time behav-
ior as that stemming from the DFA and the same value
of H. This is so because these two kinds of analyses are
essentially equivalent. It must be pointed out that this
value of H might be different from that provided by the
diffusion method (study of the second moment of z) if
the process is not Gaussian [24].

D. Spectral analysis

Spectral methods rest on the numerical evaluation of
the equilibrium correlation function (11) followed by the
application of a fast Fourier transform. The long-time
correlations are then related to the low-frequency region
of the spectrum due to the complementary relation be-
tween the Fourier transform and its inverse. As we men-
tioned in the Introduction, Voss defined a symbolic cor-
relation function introducing a binary indicator function
Uk(zr) that is equal to 1 if a letter k£ occurs at the po-
sition z,, and to 0 otherwise. The letter k is defined by
k = A,C,T,G. In this way the four-symbol indicator
correlation function can be defined as

N

DY

Il

C(T) Uk(a’n)Uk (xn+1')

1 k=A,C,G,T

Cy (1), (42)

ne=
A,C,G,T

while C(7) is defined as an equal-symbol correlation
function and N is the total length of the considered se-
quence. As already stated, if the Fourier spectrum is

1
S(f)~ 4 (43)
f
with 1 > v > 0, then the correlation function is
1
() ~ =5 (49)

with 8 = 1 — v, which consequently fulfills the condition
1 > B > 0. This method is implemented in a purely
symbolic way so as to avoid cross-correlation effects due
to projections in spaces with dimension smaller than 4.
However, we can directly apply the Fourier spectrum
evaluation to the dichotomous sequence generated by the
purine-pyrimidine random walk rule (the evaluation in
the one-dimensional numeric subspace, however, seems
to recover the same value for the correlation function,
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when the purine-pyrimidine rule is chosen). The advan-
tage of the spectral method is that it is possible to sub-
tract the white noise background for the spectrum so as
to make easier the detection of anomalous behavior, even
within relatively short-time scales. One can compare
the spectrum with that of a really uncorrelated sequence
(e.g., from the decimal figures of 7) of the same length.
The white noise subtraction is carried out in a subjective
way since one cannot determine its level unambiguously
and for this reason the spectral method has been crit-
icized by Buldyrev et al. [25]. Yet this method might
be used to distinguish coding from noncoding sequences
since it is able to reveal a peak of frequency 1/3, namely,
a harmonic component of period three in the correlation
function, suggesting the presence of “codomns,” the nu-
cleotide triplets responsible for the codification of a single
aminoacid (or a “stop” signal for the coding procedure).
To be precise, we have to mention that pseudogenes, a
kind of noncoding sequences recently (in the evolution
time scale) evolved from exons, also reveal period-3 os-
cillations and other statistical properties that are typical
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FIG. 3. Equal symbol spectrum analysis for several DNA
sequences. The white noise background has been subtracted
and data are offset for clarity. We notice that the measured
v’s lead to values of H > 0.5 for all categories. In partic-
ular for prokariotes a behavior near the ballistic regime is
observed. We remark that this symbolic measure is compat-
ible with the dynamical interpretation of (10) only if » < 1,
since H = (v + 1)/2 [adapted from 3(a)].
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of cDNA; therefore one has to be careful when using al-
gorithms based on statistical rather than biological prop-
erties.

The inverse-power-law behavior of the spectra of the
base-base correlation function is shown in Fig. 3. The
1/3 frequency peaks can be observed for cDNA se-
quences.

E. Onsager experiment

A method we have found particularly useful in the de-
termination of the statistics of DNA sequences is the
Onsager regression technique [13], according to which
an initial macroscopic fluctuation £(0) far from equilib-
rium regresses to equilibrium in a manner proportional
to the equilibrium correlation function (11). Thus, if one
views the DNA sequence as being a dynamical system
whose statistical properties are unknown (in particular
the sequence might not be long enough to guarantee the
stationarity condition), then one can proceed as follows:
create an initial state corresponding to a nonvanishing
macroscopic fluctuation (this is done choosing as an ini-
tial condition the first L sites with value +1) and observe
its regression to equilibrium.

We now make the assumption that the equilibrium ex-
ists, even if it is reached very slowly with an inverse-
power-law decay rather than with an exponential regres-
sion, as in ordinary statistical mechanics. In this case
the regression to equilibrium of the macroscopic fluctua-
tion is proportional to the equilibrium correlation func-
tion. It has to be remarked that the Onsager method is
eventually equivalent to a direct calculation of the cor-
relation function, but this equivalence requires the sta-
tionary property on which the definition of ®¢(¢) itself
rests. However, we can perform the Onsager experiment
even without knowing if the sequence is long enough to
guarantee the attainment of the correct equilibrium with
averages in time. We see that in cDNA sequences the
presence of oscillations helps us to deal with this prob-
lem in an unambiguous way. These oscillations help us to
assess whether the system satisfies the stationarity condi-
tion necessary to properly define the equilibrium correla-
tion function (11). In future work we plan to investigate
how the Onsager experiment is able to draw information
out of nonstationary sequences.

We stress that in the case where the system is able to
reach a stationary condition, the Onsager experiment is
an efficient way of determining the correlation function.
The only disadvantage is that it requires fairly long se-
quences, also because of the effects produced by the finite
length of the time series: the lower L is, the worse the
statistics are [3,26).

As proved by work in progress, a beneficial aspect
of the Onsager analysis method is that in addition to
detecting the presence of inverse-power-law correlation
functions, it is an effective and accurate method for the
detection of short-range correlational features (e.g., first
neighbors anticorrelations and features introduced by re-
peated sequences and by codon usage statistics).
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IV. DATA ANALYSIS AND RESULTS

In this section we present results given by the methods
discussed in the previous sections, when applied to real
DNA sequences and to the CMM generated sequences.
Figures 2 and 3 are extracted from the papers of Stan-
ley et al. [5] and of Voss [3], respectively. We notice
that while there is substantial agreement on the presence
of long-range correlation in intron containing sequences,
there is substantial disagreement for cDNA sequences. In
particular, Voss [3] finds for viruses values of H near the
ballistic regime, while for Stanley et al. [5] in viruses, like
in the other prokariotes, there are no long-range correla-
tions at all.

In our dynamical model, intronless and intron-
containing sequences are generated with the same map.
However, we have to choose the parameters in order to
adapt the map to the DNA sequence explored. To gener-
ate cDNA sequences with the CMM we need parameter
values such that B > A in (34) and this is achieved by
choosing a large copying mistake rate 1 — e. This super-
position of anomalous and normal diffusion explains why
the detection of the long-range correlation is so difficult
and why the short-time dynamics are essentially domi-
nated by the properties of standard diffusion (H = 1/2),
as pointed out by the detrended analysis of Stanley et al.
[5]. We emphasize that their major discovery, namely, a
difference in correlation for the two kinds of sequences
at short-time scale, holds true. However, we are not sat-
isfied with their explanation that the patches of biases
present in intronless sequences are unimportant and do
not contribute to the asymptotic correlational properties.

Figure 4 shows landscapes generated by the random
walk prescription applied to the human Cytomegalovirus
strain AD169, compared to that of a CMM, with the pa-
rameters indicated. The qualitative similarity between
the two landscapes is quite impressive. However, we find
that quantitative measures applied to the two landscapes
are even more impressive. We apply three kinds of analy-
sis to the two data sets of Fig. 4, namely, the determina-
tion of H, Hy (stemming from Hurst analysis), and Hy
(stemming from DFA). The results are indicated in Fig.
5 and lead us to the conclusion that the CMM gener-
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FIG. 4. (a) Landscape generated with the CMM with
z =5/3,d = 0.45, and € = 1/9. (b) Landscape generated
by the Cytomegalovirus strain AD169. For both the land-
scapes the number of base pairs (BP) is 229 354.
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FIG. 5. Three analyses (from top to bottom: diffu-

sion, rescaled hurst, and detrended) applied to the Cy-
tomegalovirus strain AD169 sequence (solid curves) and to the
CMM (dotted curves) with z = 5/3, d = 0.45, and € = 1/9.
The function Z(t) is defined as o(t), R(t), and Fy(t) [Fa(t) as
denoted in the work of Stanley et al. [5]] for the three anal-
yses, respectively. The theoretical prediction for the CMM is
Hp = 3/4, slightly larger than the slope of this curve. Notice
that the slopes of the detrended curves for both the map and
the virus change from a slope =~ 0.5 (dashed line) for a short
“time” partition to a slope > 0.5 for longer partitions.

ates sequences that are virtually indistinguishable from
those of real DNA, using these measures. Notice that
Hy = Hy = H is also justified by the histograms for the
probability density P(z,t) shown in Fig. 6 whose widths
increase with time and that are characterized by the fol-
lowing properties: (i) at short times, when the sequence
is sufficiently long to provide adequate statistics, the his-
tograms are essentially indistinguishable from Gaussian
distributions; (ii) at later times, the lack of statistics
makes it impossible to assess whether or not the densities
develop long-range tails and consequently prove that the
Gaussian assumption is incorrect. If DNA were really
well described by our simple model, the theoretical dis-
tribution could not be Gaussian, since the Gaussian and
the Lévy process act independently, and so we expect a
linear superposition for P(z,t). However, the Gaussian
process is strong enough to destroy possible tails in the
short-time regime, while in long-time regime the tails are
destroyed by the errors generated by the finite length of
the sequences.

Long-range correlations can also be detected by ob-
serving the eventual asymptotic inverse power law of the
correlation function (11). As explained in Sec. III, we
use the Onsager experiment to determine ®¢(t). This
method is equivalent to a direct evaluation of ®.(t)
through the definition (11), but it has some technical
advantages, since the ensemble over which the averages
are performed is chosen throughout the whole sequence.
So it is possible to detect an inverse power law with good
statistics. In fact, it has to be pointed out that although
®,(t) implies the existence of a stationary condition, the
direct observation of its slow relaxation to zero (with an
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inverse power-law form) might involve technical difficul-
ties. The observation of the regression to equilibrium of
a macroscopic fluctuation is a very efficient way of calcu-
lating ®¢(t).

In Fig. 7(a) the regression to equilibrium of the map
with no copying mistakes is shown. A log-log plot of the
long-time regression, shown in Fig. 7(b), yields a straight
line, indicating an inverse-power-law correlation function
with index a = 0.5, agreeing perfectly with the theoreti-
cal predictions of Trefin et al. [20] and others [19,21], for
the map with z = 5/3. Notice that the agreement is good
in the asymptotic limit, where the continuous treatment
of the map dynamics is valid, and fulfills a stationary
scaling relation according to the treatment from (29) to
(32). The results of the Onsager regression experiment
on the CMM and the DNA sequence are also shown in
Fig. 7(a). We find that there is good qualitative agree-
ment between the two. In both cases we notice a rapid
regression to the white noise background at the first time
step. This is in line with the analysis that led to (34).
We see, however, that there is also a striking discrepancy:
in the case of the DNA sequence, after the short-time re-
gression to the level of background noise we find regular
oscillations with a time period of 3. This property is the
time counterpart of the peak found by Voss at f = 1/3

in the frequency spectra shown in Fig. 3 [3]. It is im-
portant to stress that the Onsager experiment makes it
possible for us to establish a connection between such os-
cillations and anomalous diffusion, in a clearer way than
using spectral analysis alone.

In Fig. 8(a) we see indeed that the maxima of the oscil-
lations regress to equilibrium with the power law a ~ 0.5
that is in perfect agreement with the theoretical predic-
tions for the CMM shown in Figs. 4 and 5. This makes
it clear that the detection of the anomalous diffusion is
extremely delicate (for B > A) and is strongly affected
by the coarse graining. The analysis that led us to the
results of Fig. 5 is based on the adoption of time repar-
titions much larger than the period 3, thereby making it
impossible to observe them.

The Onsager analysis of Fig. 8(a) implies H = 3/4,
which is slightly larger than the value given by the anal-
ysis of the finite sequence (Fig. 5); this prediction is,
however, in very good agreement with the CMM studied
in Fig. 4. Note that the analysis of this paper (Fig. 5)
proves this CMM to be equivalent to the DNA sequence
and that the exact H of the CMM is known [19-21]. This
is so because using (22) and (32) H is directly derived
from the parameter z of the CMM (z = 5/3 leading to
H = 3/4). The discrepancy between the standard equi-
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librium analysis and the “correct” prediction of the non-
stationary Onsager analysis might become dramatically
important when H ~ 1.

In Fig. 8(b) we plot the results of the Onsager ex-
periment in a way that we can distinguish between two
sets of points. The curve formed by the points in posi-
tion 3n + 1 (the “peaks” curve), where n is an integer
number, and the curve formed by the others points are
separated in the short-time regime and they merge only
at later times. The points that do not belong to the
peaks curve form a kind of white noise background un-
der the peaks curve itself. The absence of large drifts
in the lower uncorrelalated curve tells us that the sta-
tionary assumption is fulfilled by our sequence. We can
actually take the level of this curve as the true base line
for computing the correlation function. We notice that
for the splitting to become detectable we need fairly long
sequences. However, when the splitting becomes visible,
this represents an unambiguous method to remove part
of the white noise background. We also stress that this
behavior is typical of viruses of the same kind and we
plot another example (Varicella Zooster) in Fig. 8(c).

1.0 ~— T

(a)

C(r)

FIG. 7. (a) Onsager regression function C(t) (where ¢ de-
notes the discrete time) relative to the Liebovitch-Téth map
(dashed line), to the Cytomegalovirus strain AD169 sequence
(solid line), and to the CMM with z = 5/3, d = 0.45, and
€ = 1/9 (dotted line). The number of initial conditions is
L = 10°. (b) C(t) relative to the Liebovitch-Téth map. The
dashed line represent a fit curve relative to 8 = 1/2 and there-
fore H = 3/4.
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As stressed by Voss [3], the period-3 oscillations cor-
respond to the number of bases present in a codon. To
shed light on these oscillations we have built up three sub-
sequences relative to the position (1, 2, or 3) of the bases
within their codons. We have established that the three
separate subsequences are characterized by a regression
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FIG. 8. (a) First relative maxima of the Onsager regression
function C(t) (with L = 10°) concerning the Cytomegalovirus
strain AD169 sequence. All these maxima are located in po-
sition 3t + 1, where t denotes the discrete time. (b) Same
sequence as in (a), with all points plotted. Those correspond-
ing to the position 3n+ 1 are denoted by solid squares, all the
remaining points are denoted by +’s. (c) Same as (b), for the
Varicella Zoster Virus genoma. Here L = 60 000; the length
of the sequence is 124 884 BP.
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FIG. 9. DFA performed on the three subsequences of Cy-
tomegalovirus Strain AD169. The solid line (circles) is rela-
tive to the subsequence of the bases on the first position in
codons; the dashed line (diamonds) represents the analog for
the second position; the dotted line (squares) is the analog
for the third position in codons.
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with a short-time inverse power law and no regular oscil-
lation, in full agreement with (34). The regression of the
three independent subsequences agrees quite well with
the predictions of CMM with the right amount of copy-
ing mistakes (reduced by 1/3 as expected on the basis of
simple arguments). In Figs. 9 and 10 we show the behav-
ior of these sequences under the DFA and the Onsager
analyses, respectively. On the basis of these results we
are forced to rule out the attractive biological conjecture
[27] that the correlation in cDNA sequences could be at-
tained through the degeneracy (presence of synonyms)
of the code. Since most of the synonyms are due to the
change of the third base in the codon, one would expect
the subsequence relative to the third position to be much
more correlated than the other two. This is only partially
true, as we can see in Fig. 10.

The presence of the period-3 oscillations in Fig. 8
suggests that the three subsequences are mutually inde-
pendent, i.e., there is no correlation among them. This
means that in the context of our model cDNA sequences
are described by three independent CMM maps, entan-
gled in the following way. One map describes the values

FIG. 10. Onsager experiment with the same L = 30000 for (a) the subsequence relative to the first position in the codon,
(b) the subsequence relative to the second position in the codon, (c) the subsequence relative to the third position in the codon,
and (d) a human intron containing the sequence HUMHBB (human beta-globin chromosomal region) of total length 73 239 BP.
Comparing (d) with, e.g., (c), we notice that this human intron containing the sequence HUMHBB presents the same degree
of correlation as the intronless subsequences of the Cytomegalovirus, a virus affecting human beings.
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of the sequence for positions 3n, a second for positions
3n + 1, and a third for positions 3n + 2. In future work
we plan to study the formal statistical properties for this
kind of entanglement. For the time being we limit our-
selves to predict, on the basis of Sec. II, that the asymp-
totic behavior of the total waiting time distribution is
an inverse power law if the three subsequences have the
same power K.

A significant result of the work reported herein is that
long-range correlations show up in cDNA sequences, but
this property becomes difficult to detect since the corre-
lation is divided among three independent subsequences.
‘We note that the adoption of a coarse-graining procedure,
masking the fast oscillations, would generate sequences
statistically equivalent to an unusually large copying mis-
take probability. This explains why in Sec. II C we have
been compelled to adopt the condition A > B.

We must point out that such subsequences present a
degree of correlation that is comparable to that found by
Stanley et al. [5] in human intron containing sequences.
Figure 10(d) shows the Onsager experiment on the gene
HUMHBB, a human gene that contains mostly introns.
A comparison between the subsequence relative to the
third position in codons of the cytomegalovirus strand
AD 169 and the sequence HUMHBB shows that the two
sequences have the same degree of correlation and essen-
tially the same H.

V. CONCLUSIONS

On the bases of the results obtained herein we are led
to make the following final remarks.

(a) We have introduced a method of analysis of statisti-
cal sequences. The Onsager method is able to detect the
principal correlational features of DNA sequences. No
coarse-graining procedure is involved and no stationar-
ity assumption is necessary. We will determine in future
work whether it is possible for this method to extract in-
formation from nonstationary CMM and if there are real
DNA sequences corresponding to this condition. Further
work will be devoted to determine if the Onsager method
is able to detect important short-range correlations due
to the presence of repeated sequences, codon usage prop-
erties, and other biological features.

(b) We are now in a position to draw some interesting
biological conclusions. The relative role of chance and
necessity is one of the key issues in the present debate on
evolutionary processes. According to the classical neo-
darwinist theory [28], mutations, the basis of genetic di-
versity, are the result of random discrete changes in the
genetic material. Chance plays a fundamental role also in
the dynamics of allele populations. Natural selection, on
the other hand, acts on phenotypes, as an external con-
straint. More recently, structural internal constraints,
due to self-organization rules, have been considered as
an important factor in evolution, particularly within the
framework of the somewhat extremist view of autoevolu-
tionists [29].

The CMM can be interpreted as a compromise be-
tween chance and determinism since it clearly affords a
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dynamical picture that is the proper combination of the
two, giving rise to a random fractal process. It must be
stressed, however, that in this case the distinction be-
tween order and randomness is not so unambiguous, as
it might seem at first sight. In fact, we must empha-
size that the dynamics that gives rise to the long-range
correlations is chaotic. On the other hand, the lack of
short-range correlations (which in our picture is a conse-
quence of the copying mistake fluctuations) is partly due
to the fact that the ordered sequences of amino acids of
the coded proteins are not long-range correlated [30] and
thus the corresponding DNA sequences may result in a
random distribution. We demonstrated that long-range
correlations can also be seen in exons as well as in in-
trons. A possible biological explanation could be the fol-
lowing. There are reasons why DNA sequences develop a
global order. This means that all types of sequences obey
the same structural constraints (internal selection), while
the coding sequences must also obey the functional con-
straint of the coded proteins, and thus the relative muta-
tions are affected by Darwinian natural selection acting
on phenotype (ezternal selection). Nevertheless, the lat-
ter are able to develop long-range correlations through a
period-3 periodicity that is naturally connected with the
codon structure and also partly via the degeneracy of the
code [27]. This property can be detected only by looking
at very long distance scales.

Li6 et al. [8], who have observed another statistical
property emerging via the code degeneracy, namely, a
relative abundance of G and C nucleotides in the third
position of the codons in several coding regions, have in-
terpreted this periodicity as a signal for an internal selec-
tion constraint. The long-range correlation, modulated
with the same periodicity, of the virus genomas of Fig. 8
might thus be the evolutionary response to certain inter-
nal constraints or to constraints of the host cell. Along
this line, the map dynamics responsible for the corre-
lated motion [first term of right-hand side of (34)] can be
associated with the internal selection.

(c) Once the theoretical arguments of Sec. IIA are
established and the reason why we restrict our analy-
sis to the region (19) is understood, the nature of the
generator of a specific u seems to become essentially ir-
relevant. However, it should be clear by now why a spe-
cific choice of a given generator has to be made. It is
relatively simple to associate anomalous diffusion in the
range with 1/2 < H < 1 to the waiting time distribution
(18) with the index g in the range (19) and it is possible
to prove that this is a dynamical realization of the Lévy
processes [20,21]. However, as we have seen, the DNA
sequences realize anomalous diffusion in a more complex
way. First of all, the long-range properties are partially
hidden by the interaction with the infinite-dimensional
environment, thereby requiring the introduction of the
CMM, which already implies a more complicated expres-
sion for the function (t). Furthermore, even in the
long-time regime they show distinct high-frequency oscil-
lations. Accounting for all these properties by means of a
suitable choice of a waiting time distribution (¢) would
have turned out to be extremely complicated and would
not have illuminated these biological processes. This sug-
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gested that we choose a specific generator of an inverse
power law and we deal with the intricacies of DNA se-
quences through the joint use of this generator and ran-
dom noise or the joint use of three distinct generators.

Which is the most convenient generator of a distribu-
tion of waiting times with an inverse power law? The
choice of a nonlinear deterministic map as a generator
of an inverse power law is suggested by the philosophical
arguments we illustrate in (d). In addition to this, as
pointed out in the Introduction, this choice is also dic-
tated by the criterion of efficiency. To make a convincing
example, let us refer to the work of Liebovitch. This
author made two distinct proposals to account for the
fractal nature of the dynamics of ion channels. One is
a deterministic map, of which (26) is a special version.
The other is a model where the inverse power law of the
distribution of waiting times in the closed channel state
[31] is determined by the fact that, due to the thermal
activation, which in turn implies the interaction between
the system and its environment, the particle jumps into
wells of increasing depth. Although the resulting ()
in the latter case is the same as that given by the de-
terministic map, the numerical realization of it would
require much more computer time and would be less ef-
ficient than the deterministic map. Thus we see that our
choice is dictated by a criterion of efficiency, elegance,
and conceptual clarity. The adoption of the model where
the waiting time distribution with an inverse time distri-
bution is already determined by thermal fluctuation and
thus by the interaction with the environment would have
made the distinction between determinism and random-
ness very confusing.

In future work we plan to investigate if it is possible
to distinguish between these two kinds of processes and
to shed light on the chance-necessity dichotomy in evo-
lution.

(d) Herein we established that if DNA sequences re-
sult, as they do, in long-range correlations, and if they
are stationary processes, then they must be a-stable Lévy
processes. This conclusion opens up avenues for further
interesting work of both biological and statistical research
relevance. To make this aspect transparent let us con-
sider (8). The power u of the waiting time distribution
of the variable £ in one of the two states 1 or —1, in prin-
ciple, can range from pu = 1 up to infinity. The region
p > 3 is where the usual form of the central limit theorem
is recovered since it is possible to define the finite time
scale 7 of (12). The region with ;1 < 2 is incompatible
with equilibrium. We thus reach the conclusion that a
complex system, either physical or biological, “aiming”
at realizing long-range correlations with no conflict with
the requirement of taking place at equilibrium, has to
locate itself in the region 2 < pu < 3. In the case of
Hamiltonian systems, the reasons why the waiting time
distribution % (t) must have an inverse-power-law struc-
ture of (18) are known [16], and are related to the fractal
nature of the region at the border between the chaotic sea
and deterministic islands. However, it is not yet known
how to derive pu from the Hamiltonian and consequently
it is not yet understood why the power u so far has al-
ways been found, as a result of numerical observation, in
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the range (19). We are tempted to say that it must be
so if we have to fulfill the tenet that thermodynamical
equilibrium is compatible with a microscopic derivation,
but more direct evidence would be welcome.

In the case of DNA sequences, the situation is similar:
the implication of DNA tertiary structure in eukariotes
[2] represent a biophysical argument, which can be con-
sidered the counterpart of the Hamiltonian arguments
mentioned earlier, establishing that the distribution of
waiting times must be an inverse power law. Moreover,
from the work of Grosberg et al. we can obtain a pre-
diction for what concerns the value of u, that is, 2/3.
However, this prediction is not valid for prokariotes and
we have shown that we have long-range correlation at
least in long-DNA-sequence viruses affecting human be-
ings. What has this to do with a “Darwinian” selection
for viruses? In other words, for an external DNA seg-
ment to be efficient in a host cell, is it necessary for it to
obey certain constraints, one of them being a long-range
correlation with a certain power? This kind of conjec-
ture has to be tested in future work for the important

‘genetical implication that it may have.

However, we think that the analysis made herein indi-
rectly proves that, within a coarse graining at least, the
states 1 and —1 are characterized by an inverse-power-law
distribution of waiting times. Where is the power u ex-
pected to be located in the case of DNA sequences? The
analyses of this paper show that in the case of DNA se-
quences the condition (19) corresponding to the dynami-
cal realization of Lévy processes is fulfilled. However, we
cannot rule out the possibility that in some cases p < 2,
which would correspond to ballistic motion, with H = 1,
studied by Zumofen and Klafter [21]. We cannot rule
out the possibility that H > 1 either. This would be
in conflict with either the assumption that the station-
ary correlation function (11) can be defined or that the
fluctuations of £ are independent of x. We have adopted
the strategy of first investigating the consequences of a
dynamical model compatible with (10). In the future we
shall focus on the possible violations of this picture and,
if they exist, on their effects.

We must also point out that according to the dynam-
ical modeling for the DNA sequences proposed in this
paper, such sequences are not derived only from the de-
terministic map but they result from the joint dynamics
of the deterministic map and noise (CMM) or from the
parallel run of three independent CMM’s. This makes it
difficult, if not impossible, to establish all the dynamical
properties in terms of a simple analytical expression of
¥ (t). However, it also has the attractive effect of disclos-
ing a channel for the short-time dynamics to show up in
the long-time regime, which according to traditional wis-
dom is expected to be dominated by an inverse power-law
decay, if this exists. We think that the statistical dynam-
ics of these processes is worth a more careful analysis.
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