

UE Phys. 105: Biophysique

T.D. n°1: Travail, chaleur et 1^{er} principe

Exercice 1 : Premier principe

On considère un cycle ABCD effectué, de manière quasi statique, par n moles de gaz parfait . Partant de A où la pression est $P_0 = 1$ atm, le volume $V_0 = 10$ litres et la température $T_0 = 300$ K, le gaz subit une dilatation à pression constante jusqu'au point B où le volume a doublé. Entre B et C, la dilatation se poursuit mais à température constante ; il atteint C avec un volume triple de son volume initial V_0 . Entre C et D, on le laisse refroidir à volume constant jusqu'à une température T_D . Il revient ensuite à son état initial (point A) par une compression adiabatique .

- 1) Calculer, en fonction de P_0 , V_0 , T_0 et γ , les pression, volume et température aux points B, C et D. Application numérique.
- 2) Faire la représentation graphique de ce cycle dans le diagramme (V, P).
- 3) Donner les expressions des capacités thermiques molaires à volume et à pression constante en fonction de R et γ .
- 4) Calculer, en fonction de P_0 , V_0 et γ , le travail échangé par le gaz avec le milieu extérieur au cours du cycle ABCDA. Justifier les signes obtenus pour chaque partie du cycle. Application numérique.
- 5) Calculer, en fonction de P_0 , V_0 et γ , la quantité de chaleur échangée par le gaz avec le milieu extérieur pour chaque partie du cycle ABCDA. Application numérique.
- 6) Vérifier que la variation de l'énergie interne du gaz au cours du cycle est nulle A.N. : $\gamma = 1.47$; $3^{1.47} \approx 5$; $\ln(3/2) \approx 0.4$.

Exercice 2: Cycle monotherme

Une certaine quantité d'hélium (gaz monoatomique supposé parfait) subit le cycle suivant :

- AB: transformation adiabatique;
- BC: transformation isochore:
- CA: transformation isotherme.

Toutes les transformations sont quasi-statiques.

Données: $V_A = 10 L$; $P_A = 10^5 Pa$; $T_A = 300 K$; $V_B = 20 L$;

Pour toutes les questions, on donnera les expressions *littérales* des quantités demandées, et ce *uniquement* en fonction de VA, PA, TA, VB et $\gamma(\gamma = CP/CV)$.

- **1.** Donner les expressions de PB, TB, VC, PC et TC. Tracer les courbes correspondant aux trois transformations dans le diagramme (P, V). Applications numériques.
- **2.** Calculer les travaux *W*AB, *W*BC, *W*CA et les quantités de chaleur *Q*AB, *Q*BC, *Q*CA reçus par le système au cours des transformations AB, BC et CA. Applications numériques.
- **3.** Calculer le travail W_{tot} et la quantité de chaleur Q_{tot} reçus par le système pendant tout le cycle. Applications numériques. Ces résultats sont-ils cohérents ?