PHYSICAL REVIEW E, VOLUME 63, 066212
Stabilization of ratchet dynamics by weak periodic signals

Maria Barb¥ and Mario Salernb
Dipartimento di Fisica “E.R. Caianiello,” Universitadi Salerno, Salerno, Italy
and Istituto Nazionale di Fisica della Materia (INFM), Salerno, Italy
(Received 20 November 2000; published 21 May 2001

We study the influence of weak periodic signals on the transport properties of underdamped ratchets. We
find that the constant current intervals related to the ratchet can be significantly enlarged by a weak subhar-
monic signal that is in phase with the internal driver. This stabilization phenomenon is found to exist both in
absence and in presence of noise. The dependence of this effect on the phase of the applied signal is also

investigated.
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I. INTRODUCTION ing steps arising in the voltage-current characteristic of a

long-Josephson junction can be stabilized by applying weak
Ratchet Systems, i.e., Brownian partic|es mo\/ing in asymsubharmonic signals that suppress the deterministic chaos
metric periodic potentials, have been largely investigated in28]- The above phase locking interpretation of the ratchet
the last ten years, since their first version was introduced bynamics naturally suggests that similar stabilizations could
Ajdari and Prosf1]. These systems are maintained far from X'ISt a;llso |nfluctuat|ng-forceratghethmo?fels. ¢ weak subh
equilibrium by periodic or correlated stochastic forces that n the prelsent pe:]per wehstudyt ee ec]:cs 0 weda dsu ar(;
can be either multiplicative or additivéhe corresponding monic signals on the ratchet dynamics of an underdampe
models being calledushing-potentialand fluctuating-force particle moving in an asymmetric potential both in absence

ratchets, respectivelyIn these conditions, thermal fluctua- an((j)m pfesﬁnce _Of nmfsek.j o id : d
tions can assist the conversion of the energy of the nonequi- | ur aan ereis tW(; Oh - 2N One side we a;e |ntﬁ_re§te lg(l)
librium driving into effective work, without any conflict with enlarge the regions of the parameter space for which stable

the second law of thermodynamica. The damping and the direct currents are observed. We find that this is indeed pos-
asymmetry of the potential are crucial ingredients for thiss'ble and better achieved when weak subharmonic signals, in

conversion, both in the multiplicativiL,3,4 and in the ad- phase with the internal driver, are applied. The stabilization

ditive [4—7] case. This phenomenon arises in a variety Ofeffecf[ is observed_ bOth_ in presence_and in absence_ of r_10ise
different systems and has been used to design new expe nd is accompamgd, in analogy W'.th. J_osephson junctions
mental devices both for physical and biological applicationd 26} Py @ suppression of the deterministic chaos, a property

[8—14]. Moreover, the ratchet effect is presently considerecﬂ.‘at can be _useful n t.echnlcal applications. On the other
as a possible mechanism by which molecular moterg., side, we are interested in an external control on the function-

kinesins, myosins, dyneipsake advantage of thermal fluc- ing of the ratchet mechanism. We find that, depending on the
tuations to perform their functior(s, 15—19 relative phase between external and internal drivers, one can

On the other handjuctuating-forceratchet dynamics are stabilize different orbits of the system, as well as destabilize

possible also in absence of noise, both in overdamped Sygje ratchet. Thus, when the unidirectional motion of a physi-

tems[7,20,21 and in underdamped chaotic orf@2,23. In cal or biological system is governed by an additive ratchet, it
a previous pap€i24] the ratchet motion of a particle subject cgrld be p;oshsmle tobchontrol Its d_ynarlnlcs by applying suit-
to an additive periodic forcin¢fluctuating-force ratchetwas ~ 2PI€ out-of-phase subharmonic signals.

; : : : In the situations in which the relative phase between the
ascribed to phase locking between the motion of the particle o o
b 9 P internal and the externdsubharmonigdriver is difficult to

in the asymmetric potential and the frequency of the driver. | the bh hould b idered d iabl
The current steps arising from this phase locking dynamic§Ontro » the phase should be considered as a random variable

were well preservedat least the relevant orealso in pres- S0 that a final average on it should be taken. We find that

ence of noise, with a tendency of decreasing in width as thé1ISO in this C%S_I?' a_Ithoughhreducehd, tge sub_harmonlc signal
noise intensity was increased. Thus, at least for these types Biduces a stabilization on the ratchet dynamics.

ratchets, phase locking is the basic mechanism underlying '€ galper '5‘ g_rganize(:]as foltl)gl\_/vs..ln S_eg. I v(\;etintroducek
ratchet dynamics, both in presence and in absence of nois )¢ model and discuss the stabilization induced by a wea
Since phase locking is a very well known and |arge|ysubharmon|c field, in phase with the internal driver, both in

investigated phenomend@s], one can take advantage of its absence and in presence of noise. In Sec. lll we investigate
knowledge to infer results in the field of ratchets. Thus, fort€ effects of a relative phase between the two drivers on the

example, in Refs[26,27 it was shown that the phase lock- stabiliza_tion phenomen.on. Finally, the main results of the
paper will be resumed in the conclusions.

. . . Il. SUBHARMONIC STABILIZATION EFFECTS
*Email address: barbi@sa.infn.it

"Present address: Physics Department of DTU, Denmark, DK- To conform with previous studies we take the same model
2800, Lyngby, Denmark. Email address: salerno@sa.infn.it as in Ref[24], i.e., we consider a particle that moves in the
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spatially periodic asymmetric potentigl(x),

V/2
1 1
V(X)=C~— 1725 sin{27r(X—Xg)} + Zsin{47r(x—x0)} ,
(1)

subject to time-periodic forcing, damping, and noise. In Eq.~ o

V/4

(1) C andx, are introduced in order to have one potential <03 [T T
minimum in x=0 with V(0)=0, and &= sin(2m|xy|) Vi B
+7sin(4mlxo|). Since we are interested in stabilization ef- 02T
fects, a small subharmonic signal is also introduced, so tha 2.01 - .
the equation of motion, in dimensionless variables, is V2 o .00
1 L | ¢ L 1 L 1 L 1 L
. dV(x) w 0.058 0.066 0.074 0.082 0.09 0.008
X+bXx+ ax +2D¢é(t)=acoqwt+ ¢)+cco Et . a
2 FIG. 1. Mean velocity as a function of the internal drive ampli-

tude a for the system(2) in absence of noiseD(=0) and for ¢

=0. The solid line refers to the case=0 where there is no sub-

harmonic signal. The other curves correspond to the cases

- . ; =0.001, 0.002, 0.003, 0.004: we have shifted each of them verti-

plitude of a small ¢<1) subharmonic field, ang a relative 1y in order to distinguish them more easily. Note how the appli-

phase. cation of subharmonics with increasing amplitudes tends to enlarge
In the deterministic case and in absence of the subhakhe main step in current, suppressing the chaotic region araund

monic signal(D=0, c=0), it is known that net average mo- =0.080. Inset: Width of the main step in the displayed curves as a

tion in one direction arises when the time required for thefunction of the subharmonic amplitude All plotted variables are

particle to move from one well of the potential to another isin dimensionless units.

commensurable with the period of the internal driver, i.e.,

when the particle motion becomes locked to the dr\2#.  fect in this case is seen from the enlargement of the steps

The mean velocity of the particle stays constant for all pacomputed forc=0.001,c=0.002,c=0.003, andc=0.004

rameter values for which the locked solution is stalbek- as reported by the broken curves of Fig(thhe curves with

Hereb is the friction coefficient(t) is a white noise fluc-
tuation andD its intensity, ® and a are, respectively, the
frequency and amplitude of the internal driveris the am-

ing range, and is given by increasing values of were vertically shifted to avoid over-
lapping. In the inset of the figure the step width as a func-

() _mL_ TiL: TV neN, mez (3 tion of ¢ is also reported. With E¢(2) invariant under the

t T n27w n-’ ' transformationc— —c, t—t+2#/w, the dependence for

smallc is expected to be parabolic. This is indeed rather well

wherelL is the spatial period of the potenti@h our caseL consistent with results shown in the inset of Fig. 1. As ex-
=1), T=2m/w and we callV the fundamental locked mean pected from Ref{26], the subharmonic signal tends to sup-
velocity induced by the drivewL/27 (the current is calcu- press the chaos present in the system, anc=d0.004 the
lated as the particle velocity averaged over time, or, brieflychaotic region neaa=0.078, visible in thec=0 case, dis-
mean velocity (v);). When the conditions of Eq) are  appears completely. At higher values @fthe situation be-
achieved the particle follows regular orbits in the phasecomes more involvedsteps can “break” and instabilities
space, otherwise it displays a chaotic motion with zero meaarise due to the more complicated structure of the phase
velocity [24]. To simplify our study we fix in all the follow- space of the two-drivers systefim these cases however the
ing numerical simulationsy=0.67 ando= 0.1 (qualitatively ~ subharmonic is not anymore a small perturbation
similar results are obtained for other parameter valaes Let us now introduce noise in the system but still with the
considera andc to be free parameters. relative phasep fixed to zero. We choose a noise intensity

The solid curve reported in Fig. 1 represents the averagp=10 °, corresponding, in the dimensional parameter
velocity (curreny of the particle vs the internal driver ampli- space, to approximatively thermal noise at room temperature
tude forc=0 and in absence of noigéhe average is taken for a system with mass~ 200 k amu-3.3x10 ??kg, spac-
over 300 forcing periods, with a time step ©1000. Cur-  ing L~8 nm, and a potential barrier of 8 KP4].
rent steps with velocities &//2,—V/4,—V/2, as well as cha- In Fig. 2 we present the results of the application of the
otic regions without locking effects, are clearly recognized.same external driving forces considered in the deterministic
To investigate stabilization phenomena induced by the subcase to a population of 50 particles in presence of noise. We
harmonic driver we consider+#0 in Eq. (2) and focus, for have introduced again a vertical shift for each curve for the
simplicity, on the largest current step in Fig(dolid curve  aim of readability of the picturéthe mean velocity is now
corresponding approximately to the range (0.062,0.076) averaged also over all particle§u))y). At D=10° and
[29]. c=0 (Fig. 2, solid ling, almost all the steps in the same

Let us start first with the case of zero noise and zeraange of Fig. 1 disappear; nevertheless, the largest one is
relative phase between the two drivers. The stabilization efpreserved and still corresponds to a constant veld¢iB.
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FIG. 2. Mean velocity, averaged on a set of 50 particles, as a FIG. 3. Mean velocity as a function of the phagefor four
function of the internal drive amplitude for the system(2) in  different values of the internal drivéa=0.077, 0.078, 0.079, and
presence of noiseX(=10"°) and for=0. The solid line refers to  0.097 with c=0.04 andD =0. Plotted variables are in dimension-
the casec=0. The other curves correspond to the case0.001, less units.

0.002, 0.003, 0.004: we have shifted each of them vertically in

order to distinguish them more easily. Inset: Width of the main steghteresting values o& are shown in Fig. 3. The first three

in the displayed curves as a function of the subharmonic amplitud¥alues of the internal driver of Fig. 3, ie.a

c. All plotted variables are in dimensionless units. =0.077,0.078,0.079, all correspond to points on the current
step(see Fig. 1, dotted line The effect of the subharmonic

Note that the step width is considerably reduced in the presdriver results to be indeed phase dependent. While the mean

ence of noise. Even in this case, however, the stabilizatiomelocity at¢p=0 is V/2 in all three cases, the stabilization of

effect of the subharmonic signal results with evidence. Théhe corresponding orbit arises only in some ranges of the

step-in current is more and more enlarged by the applicatioparameterp. When the internal and external drivers are ap-

of the external forcing with increasing amplitudes. In theproximately around phase/2 or 37/2, it can happen that the

inset of Fig. 2 the step width as a function ois also re- subharmonic tends to destabilize the system to a chaotic or-

ported. We see that, in contrast to the inset of Fig. 1, theit, as fora=0.077; in other cases, it tends instead to stabi-

dependence is close to be linear, due to the breaking of theze a symmetrical orbit with opposite velocity V/2, as for

c— —C, t—t+27/w symmetry induced by the noise. a=0.078. The stabilization regions, however, are dominant

From these results we see that the region of the internakith respect to the chaotic ones. This is a consequence of the
parameter space for which a stable direct current is observerbexistence of different regular orbits at a tifigl] so that
can be significantly enlarged by the application of a weakwhen one orbit destabilizes, another oifwitth different cur-
subharmonic field, in phase with the internal driver, both inreny becomes available for transpdthe chaos is only be-
absence and in presence of noise. Moreover, we observe thateen one one stable motion and anoth&his is very simi-
the stabilization effect is always associated with a suppredar to what is described in R€f27] on the stabilization of the

sion of the deterministic chaos. phase locking dynamics of long-Josephson junctions.
For other values of the parameter range, many different
IIl. PHASE DEPENDENCE regular orbits can be stabilized for different values of the

phase, as in the case a&=0.079. Note that in this case the

In natural systems, such as biological motors, the phase gfarticle motion is regular almost everywhere. Nevertheless,
the internal driver is an unknown parameter so tihabe-  an average of the mean velocity over all different values of
comes difficult(if not impossible to control. Furthermore, a the phase for values a=0.078 anda=0.079 will give
population of many of such motors should correspond to @almost zero, because of the mixing up of orbits with opposite
set of model particles with random phases, their internalelocities. This has important consequences in the case of an
drivers being, in principle, not synchronized. It is thereforeensemble of particles with random phases, as discussed be-
interesting to study the effect of the phageon the stabili- low. The last case shown in Fig. &=0.097, corresponds to
zation. Since the noise leads to a smoothing of the currerthe second end of the whole interval considered in Fig. 1
steps with a reduction of their widths, we shall concentratethis region is chaotic foc=0). Interestingly, while in the
only on the deterministicl) =0) case. in-phase case the subharmonic driver has no effects on this

To this end we shall study the effect of the phaséor  chaos, for some values of the phdagain neawp= w/2 and
some fixed values of the internal and external driver ampli-37/2) the subharmonic field can induce the stabilization of
tude. The external driver is fixed =0.004 in all cases. regular orbits with mean velocitiesV and —V/4. From this
Letting the system evolve according to E#) for each dif- we can conclude that a weak subharmonic perturbatiioim
ferent value of¢ in (0, 2r), we obtain for different values of an appropriate phasavith respect to the internal driver can
a the mean velocity as a function @f. Results for some induce phase locking in parameter regions where only cha-
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T T T ' ues where the averaged mean velocity drops to zero seem to
coincide with the chaotic region of the unperturbed system
arounda=0.078. One could then be tempted to conclude
that the chaotic orbits are actually preserved in average, with
no relevant stabilization effect. This, however, is not the case
as one can see by calculating in the same range of parameters
the average of the mean velocipsolute valug(|(v )y -

The result is shown in the same Fig. 4, as a dashed line. The
absolute value of the velocity is clearly well above zero for
all values ofa, and we can conclude that the zero average of
the velocity is due to the mixing of orbits with positive and
negative velocitiesand not to the presence of chaotic orbits
L I TN L . with zero mean velocity We finally remark that the average
0.058 0.066 0.074 0.082 0.09 0.098 on the phase leads to a lowering of the mean velocity, with a
a deviation of the current step from a straight segment, this

. . . in n n f the mixing of orbits with differen
FIG. 4. Mean velocity, averages on a set of 200 particles Wlthbe g a consequence of the g of orbits with different

random phase#; , as a function of, for c=0.004(solid line). The velocities stabilized by different phases.

¢»=0 mean velocity for the cases=0 (open squargsand C

=0.004 (small dot3 are shown for comparison. The dashed line is IV. CONCLUSIONS

the average over the particles of the absolute value of the mean In this paper we have studied the stabilization effects of a

velocity, {|(v)i|)n . Plotted variables are in dimensionless units. ~weak subharmonic field on the phase-locked dynamics of a
ratchet system. We found that, for fluctuating-force ratchets,

tic motion is present for the unperturbed svstem. Th ”'Ehe application of an external subharmonic driver suppresses
otic motion IS presentfor the unperturbed system. 1ne appliz, 555 anqg stabilizes regular orbits over larger ranges of the
cation of an external subharmonic driver has therefore rel

. internal driver amplitude. This phenomenon strongly de-
evant phase-dependent effects an the ratchet dynamics. g:nds on the relative phase of the internal and external driv-

vi2 |-

V/i4 |-

/4 |

V2

tl)?] orrrtrj]e:]ito ﬁogsider: the ;iha;se—z;/?rags\;j ehff(?/ct Ofr‘? ‘;Vrﬁa rs that can then be used as a control parameter in the stabi-
subharmaonic signal on a set of particies, we have pertormeg, .., of 5 particular ratchet motion.

the same analysis of Fig. 2 but introducing a random phase It would be interesting to apply these ideas to real experi-

¢; for each particle =1N. We used in this case a popula- mental devices such as, for example, ratchet particle separa-
tion of 200 particlesg=0.004, andD =0. Results are shown tors[10,11] ' pie. P P

in Fig. 4. The results obtained in the casgs=0, c=0 and
¢;=0, ¢c=0.004 are also shown for comparison. According
to Fig. 4, the phase averaging causes a reduction of the mean
velocity in the main-locked window, and the plateau is, in  M.B. thanks the EC and the University of Salerno for
this case, poorly defined. Note that although the width of theheir research support. M.S. wishes to thank the Department
step is reduced with respect to the correspondhsg0 case of Physics of the Technical University of Denmark for their
(dotg, it is still slightly larger than the one in absence of hospitality and for providing financial support during which
subharmoniqopen squargs this work was finished. Partial financial support from INFM

We also remark that the averaged mean velocity shown imand from the European grant LOCNE{Contract No.
Fig. 4 could lead to misleading conclusions. Indeed, the valHPRN-CT-1999-00168is also acknowledged.
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