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Stabilization of ratchet dynamics by weak periodic signals
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We study the influence of weak periodic signals on the transport properties of underdamped ratchets. We
find that the constant current intervals related to the ratchet can be significantly enlarged by a weak subhar-
monic signal that is in phase with the internal driver. This stabilization phenomenon is found to exist both in
absence and in presence of noise. The dependence of this effect on the phase of the applied signal is also
investigated.
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I. INTRODUCTION

Ratchet systems, i.e., Brownian particles moving in asy
metric periodic potentials, have been largely investigated
the last ten years, since their first version was introduced
Ajdari and Prost@1#. These systems are maintained far fro
equilibrium by periodic or correlated stochastic forces t
can be either multiplicative or additive~the corresponding
models being calledflushing-potentialand fluctuating-force
ratchets, respectively!. In these conditions, thermal fluctua
tions can assist the conversion of the energy of the none
librium driving into effective work, without any conflict with
the second law of thermodynamics@2#. The damping and the
asymmetry of the potential are crucial ingredients for t
conversion, both in the multiplicative@1,3,4# and in the ad-
ditive @4–7# case. This phenomenon arises in a variety
different systems and has been used to design new ex
mental devices both for physical and biological applicatio
@8–14#. Moreover, the ratchet effect is presently conside
as a possible mechanism by which molecular motors~e.g.,
kinesins, myosins, dyneins! take advantage of thermal fluc
tuations to perform their functions@4,15–19#.

On the other hand,fluctuating-forceratchet dynamics are
possible also in absence of noise, both in overdamped
tems@7,20,21# and in underdamped chaotic ones@22,23#. In
a previous paper@24# the ratchet motion of a particle subje
to an additive periodic forcing~fluctuating-force ratchet! was
ascribed to phase locking between the motion of the part
in the asymmetric potential and the frequency of the driv
The current steps arising from this phase locking dynam
were well preserved~at least the relevant ones! also in pres-
ence of noise, with a tendency of decreasing in width as
noise intensity was increased. Thus, at least for these type
ratchets, phase locking is the basic mechanism underl
ratchet dynamics, both in presence and in absence of no

Since phase locking is a very well known and large
investigated phenomenon@25#, one can take advantage of i
knowledge to infer results in the field of ratchets. Thus,
example, in Refs.@26,27# it was shown that the phase lock
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ing steps arising in the voltage-current characteristic o
long-Josephson junction can be stabilized by applying w
subharmonic signals that suppress the deterministic ch
@28#. The above phase locking interpretation of the ratc
dynamics naturally suggests that similar stabilizations co
exist also influctuating-forceratchet models.

In the present paper we study the effects of weak sub
monic signals on the ratchet dynamics of an underdam
particle moving in an asymmetric potential both in absen
and in presence of noise.

Our aim here is twofold. On one side we are interested
enlarge the regions of the parameter space for which st
direct currents are observed. We find that this is indeed p
sible and better achieved when weak subharmonic signal
phase with the internal driver, are applied. The stabilizat
effect is observed both in presence and in absence of n
and is accompanied, in analogy with Josephson juncti
@26#, by a suppression of the deterministic chaos, a prop
that can be useful in technical applications. On the ot
side, we are interested in an external control on the functi
ing of the ratchet mechanism. We find that, depending on
relative phase between external and internal drivers, one
stabilize different orbits of the system, as well as destabi
the ratchet. Thus, when the unidirectional motion of a phy
cal or biological system is governed by an additive ratche
could be possible to control its dynamics by applying su
able out-of-phase subharmonic signals.

In the situations in which the relative phase between
internal and the external~subharmonic! driver is difficult to
control, the phase should be considered as a random var
so that a final average on it should be taken. We find t
also in this case, although reduced, the subharmonic si
induces a stabilization on the ratchet dynamics.

The paper is organized as follows. In Sec. II we introdu
the model and discuss the stabilization induced by a w
subharmonic field, in phase with the internal driver, both
absence and in presence of noise. In Sec. III we investig
the effects of a relative phase between the two drivers on
stabilization phenomenon. Finally, the main results of
paper will be resumed in the conclusions.

II. SUBHARMONIC STABILIZATION EFFECTS

To conform with previous studies we take the same mo
as in Ref.@24#, i.e., we consider a particle that moves in t
-
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spatially periodic asymmetric potentialV(x),

V~x!5C2
1

4p2d Fsin$2p~x2x0!%1
1

4
sin$4p~x2x0!%G ,

~1!

subject to time-periodic forcing, damping, and noise. In E
~1! C and x0 are introduced in order to have one potent
minimum in x50 with V(0)50, and d5sin(2pux0u)
11

4 sin(4pux0u). Since we are interested in stabilization e
fects, a small subharmonic signal is also introduced, so
the equation of motion, in dimensionless variables, is

ẍ1bẋ1
dV~x!

dx
12Dj~ t !5a cos~vt1f!1c cosS v

2
t D .

~2!

Hereb is the friction coefficient,j(t) is a white noise fluc-
tuation andD its intensity, v and a are, respectively, the
frequency and amplitude of the internal driver,c is the am-
plitude of a small (c!1) subharmonic field, andf a relative
phase.

In the deterministic case and in absence of the sub
monic signal~D50, c50!, it is known that net average mo
tion in one direction arises when the time required for
particle to move from one well of the potential to another
commensurable with the period of the internal driver, i.
when the particle motion becomes locked to the driver@24#.
The mean velocity of the particle stays constant for all
rameter values for which the locked solution is stable~lock-
ing range!, and is given by

^v& t5
m

n

L

T
5

m

n

v

2p
L5

m

n
V, nPN, mPZ ~3!

whereL is the spatial period of the potential~in our caseL
51!, T52p/v and we callV the fundamental locked mea
velocity induced by the drivervL/2p ~the current is calcu-
lated as the particle velocity averaged over time, or, brie
mean velocity, ^v& t!. When the conditions of Eq.~3! are
achieved the particle follows regular orbits in the pha
space, otherwise it displays a chaotic motion with zero m
velocity @24#. To simplify our study we fix in all the follow-
ing numerical simulations,v50.67 andb50.1 ~qualitatively
similar results are obtained for other parameter values! and
considera andc to be free parameters.

The solid curve reported in Fig. 1 represents the aver
velocity ~current! of the particle vs the internal driver ampl
tude forc50 and in absence of noise~the average is taken
over 300 forcing periods, with a time step ofT/1000!. Cur-
rent steps with velocities 0,V/2,2V/4,2V/2, as well as cha-
otic regions without locking effects, are clearly recognize
To investigate stabilization phenomena induced by the s
harmonic driver we considercÞ0 in Eq. ~2! and focus, for
simplicity, on the largest current step in Fig. 1~solid curve!
corresponding approximately to the rangeaP(0.062,0.076)
@29#.

Let us start first with the case of zero noise and z
relative phase between the two drivers. The stabilization
06621
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fect in this case is seen from the enlargement of the s
computed forc50.001, c50.002, c50.003, andc50.004
as reported by the broken curves of Fig. 1~the curves with
increasing values ofc were vertically shifted to avoid over
lapping!. In the inset of the figure the step width as a fun
tion of c is also reported. With Eq.~2! invariant under the
transformationc→2c, t→t12p/v, the dependence fo
smallc is expected to be parabolic. This is indeed rather w
consistent with results shown in the inset of Fig. 1. As e
pected from Ref.@26#, the subharmonic signal tends to su
press the chaos present in the system, and atc50.004 the
chaotic region neara50.078, visible in thec50 case, dis-
appears completely. At higher values ofc, the situation be-
comes more involved~steps can ‘‘break’’ and instabilities
arise! due to the more complicated structure of the pha
space of the two-drivers system~in these cases however th
subharmonic is not anymore a small perturbation!.

Let us now introduce noise in the system but still with t
relative phasef fixed to zero. We choose a noise intens
D51026, corresponding, in the dimensional parame
space, to approximatively thermal noise at room tempera
for a system with massm;200 k amu;3.3310222kg, spac-
ing L;8 nm, and a potential barrier of 8 kT@24#.

In Fig. 2 we present the results of the application of t
same external driving forces considered in the determini
case to a population of 50 particles in presence of noise.
have introduced again a vertical shift for each curve for
aim of readability of the picture~the mean velocity is now
averaged also over all particles,Š^v& t‹N!. At D51026 and
c50 ~Fig. 2, solid line!, almost all the steps in the sam
range of Fig. 1 disappear; nevertheless, the largest on
preserved and still corresponds to a constant velocityV/2.

FIG. 1. Mean velocity as a function of the internal drive amp
tude a for the system~2! in absence of noise (D50) and forf
50. The solid line refers to the casec50 where there is no sub
harmonic signal. The other curves correspond to the casec
50.001, 0.002, 0.003, 0.004: we have shifted each of them ve
cally in order to distinguish them more easily. Note how the app
cation of subharmonics with increasing amplitudes tends to enla
the main step in current, suppressing the chaotic region arouna
50.080. Inset: Width of the main step in the displayed curves a
function of the subharmonic amplitudec. All plotted variables are
in dimensionless units.
2-2
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Note that the step width is considerably reduced in the p
ence of noise. Even in this case, however, the stabiliza
effect of the subharmonic signal results with evidence. T
step-in current is more and more enlarged by the applica
of the external forcing with increasing amplitudes. In t
inset of Fig. 2 the step width as a function ofc is also re-
ported. We see that, in contrast to the inset of Fig. 1,
dependence is close to be linear, due to the breaking of
c→2c, t→t12p/v symmetry induced by the noise.

From these results we see that the region of the inte
parameter space for which a stable direct current is obse
can be significantly enlarged by the application of a we
subharmonic field, in phase with the internal driver, both
absence and in presence of noise. Moreover, we observe
the stabilization effect is always associated with a supp
sion of the deterministic chaos.

III. PHASE DEPENDENCE

In natural systems, such as biological motors, the phas
the internal driver is an unknown parameter so thatf be-
comes difficult~if not impossible! to control. Furthermore, a
population of many of such motors should correspond t
set of model particles with random phases, their inter
drivers being, in principle, not synchronized. It is therefo
interesting to study the effect of the phasef on the stabili-
zation. Since the noise leads to a smoothing of the cur
steps with a reduction of their widths, we shall concentr
only on the deterministic (D50) case.

To this end we shall study the effect of the phasef for
some fixed values of the internal and external driver am
tude. The external driver is fixed toc50.004 in all cases
Letting the system evolve according to Eq.~2! for each dif-
ferent value off in ~0, 2p!, we obtain for different values o
a the mean velocity as a function off. Results for some

FIG. 2. Mean velocity, averaged on a set of 50 particles, a
function of the internal drive amplitudea for the system~2! in
presence of noise (D51026) and forf50. The solid line refers to
the casec50. The other curves correspond to the casec50.001,
0.002, 0.003, 0.004: we have shifted each of them vertically
order to distinguish them more easily. Inset: Width of the main s
in the displayed curves as a function of the subharmonic amplit
c. All plotted variables are in dimensionless units.
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interesting values ofa are shown in Fig. 3. The first thre
values of the internal driver of Fig. 3, i.e.,a
50.077,0.078,0.079, all correspond to points on the curr
step~see Fig. 1, dotted line!. The effect of the subharmoni
driver results to be indeed phase dependent. While the m
velocity atf50 is V/2 in all three cases, the stabilization o
the corresponding orbit arises only in some ranges of
parameterf. When the internal and external drivers are a
proximately around phasep/2 or 3p/2, it can happen that the
subharmonic tends to destabilize the system to a chaotic
bit, as fora50.077; in other cases, it tends instead to sta
lize a symmetrical orbit with opposite velocity2V/2, as for
a50.078. The stabilization regions, however, are domin
with respect to the chaotic ones. This is a consequence o
coexistence of different regular orbits at a time@24# so that
when one orbit destabilizes, another orbit~with different cur-
rent! becomes available for transport~the chaos is only be-
tween one one stable motion and another!. This is very simi-
lar to what is described in Ref.@27# on the stabilization of the
phase locking dynamics of long-Josephson junctions.

For other values of the parameter range, many differ
regular orbits can be stabilized for different values of t
phase, as in the case ofa50.079. Note that in this case th
particle motion is regular almost everywhere. Neverthele
an average of the mean velocity over all different values
the phase for values asa50.078 anda50.079 will give
almost zero, because of the mixing up of orbits with oppos
velocities. This has important consequences in the case o
ensemble of particles with random phases, as discussed
low. The last case shown in Fig. 3,a50.097, corresponds to
the second end of the whole interval considered in Fig
~this region is chaotic forc50!. Interestingly, while in the
in-phase case the subharmonic driver has no effects on
chaos, for some values of the phase~again nearf5p/2 and
3p/2! the subharmonic field can induce the stabilization
regular orbits with mean velocities2V and2V/4. From this
we can conclude that a weak subharmonic perturbationwith
an appropriate phasewith respect to the internal driver ca
induce phase locking in parameter regions where only c

a

n
p
e

FIG. 3. Mean velocity as a function of the phasef for four
different values of the internal driver~a50.077, 0.078, 0.079, and
0.097! with c50.04 andD50. Plotted variables are in dimension
less units.
2-3
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MARIA BARBI AND MARIO SALERNO PHYSICAL REVIEW E 63 066212
otic motion is present for the unperturbed system. The ap
cation of an external subharmonic driver has therefore
evant phase-dependent effects on the ratchet dynamics.

In order to consider the phase-averaged effect of a w
subharmonic signal on a set of particles, we have perform
the same analysis of Fig. 2 but introducing a random ph
f i for each particlei 51,N. We used in this case a popula
tion of 200 particles,c50.004, andD50. Results are shown
in Fig. 4. The results obtained in the casesf i50, c50 and
f i50, c50.004 are also shown for comparison. Accordi
to Fig. 4, the phase averaging causes a reduction of the m
velocity in the main-locked window, and the plateau is,
this case, poorly defined. Note that although the width of
step is reduced with respect to the correspondingf50 case
~dots!, it is still slightly larger than the one in absence
subharmonic~open squares!.

We also remark that the averaged mean velocity show
Fig. 4 could lead to misleading conclusions. Indeed, the v

FIG. 4. Mean velocity, averages on a set of 200 particles w
random phasesf i , as a function ofa, for c50.004~solid line!. The
f50 mean velocity for the casesc50 ~open squares! and C
50.004~small dots! are shown for comparison. The dashed line
the average over the particles of the absolute value of the m
velocity, Šu^v& i u‹N . Plotted variables are in dimensionless units.
x
r-
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ues where the averaged mean velocity drops to zero see
coincide with the chaotic region of the unperturbed syst
arounda50.078. One could then be tempted to conclu
that the chaotic orbits are actually preserved in average, w
no relevant stabilization effect. This, however, is not the c
as one can see by calculating in the same range of param
the average of the mean velocityabsolute value, Šu^v& tu‹N .
The result is shown in the same Fig. 4, as a dashed line.
absolute value of the velocity is clearly well above zero
all values ofa, and we can conclude that the zero average
the velocity is due to the mixing of orbits with positive an
negative velocities~and not to the presence of chaotic orb
with zero mean velocity!. We finally remark that the averag
on the phase leads to a lowering of the mean velocity, wit
deviation of the current step from a straight segment, t
being a consequence of the mixing of orbits with differe
velocities stabilized by different phases.

IV. CONCLUSIONS
In this paper we have studied the stabilization effects o

weak subharmonic field on the phase-locked dynamics o
ratchet system. We found that, for fluctuating-force ratche
the application of an external subharmonic driver suppres
chaos and stabilizes regular orbits over larger ranges of
internal driver amplitude. This phenomenon strongly d
pends on the relative phase of the internal and external d
ers that can then be used as a control parameter in the s
lization of a particular ratchet motion.

It would be interesting to apply these ideas to real exp
mental devices such as, for example, ratchet particle sep
tors @10,11#.
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