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Phase locking effect and current reversals in deterministic underdamped ratchets
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We study the transport propertiéurrents of deterministic underdamped ratchets in terms of phase locking
dynamics. The occurrence of reverse currents is interpreted in terms of different stability properties of the
periodic rotating orbits and is shown to exist also in the absence of bifurcations from chaos to periodic motion.
We briefly discuss the effects of noise on this phase locked dynamics.
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[. INTRODUCTION cisely, we show that the presence of direct motion, either
forward or backward, is always achieved when the time re-
The dynamics of a Brownian particle in asymmetric peri-quired for the particle to move from one well of the potential
odic potentials represents an interesting model for studying® another is commensurable with the period of the driver.
the transport properties of nonlinear systems in the presenddoreover, we show that, contrary to what was proposed in
of noise. In analogy with the ratchet mechanism considere®ef. [22], current reversals can occur also in the absence of
by Feynman[1] in discussing the impossibility to extract bifurcations from chaos to periodic motion.
work from thermodynamical equilibrium, these systems are The paper is organized as follows. In Sec. Il we introduce
also called ratchets. An interesting feature of the ratchethe model and discuss its physical properties from a general
model is the possibility to use diffusion to convert an acpoint of view. In Sec. Ill we check our qualitative predic-
driving signal (either a multiplicative[2—5] or an additive tions by direct numerical integration. A complete analysis of
[4,6,7) fluctuating term into a net dc current corresponding the system behavior in the whole range of the forcing ampli-
to the unidirectional motion of the particle through the sys-tude is done, and we present evidence of a phase locking
tem (ratchet effedt This phenomenon has been observed inmechanism. Current reversals which do not need any chaotic
a variety of system$8—10] and has been proposed as thetransitions are shown. We then describe the attracting orbits
mechanism underlying the functioning of biological motorsOf the system in various cases and show how coexisting or-
[11-13. The ratchet effect has also been used to design neWits with positive and negative velocity can give rise to hys-
experimental devices for physiddl0,14—16 as well as bio-  teretic behavior. Finally, we briefly discuss the effects in-
logical[17,18 applications. A crucial role for the occurrence duced by noise and we draw our conclusions.
of the ratchet effect is played by the asymmetry of the po-
tential and by the damping; the driving term keeps the sys- Il. MODEL
tem out of equilibrium while the noise seems to play, in the ) ) ) ) )
case of additive forcing, only a secondary role. The phenom- L&t us consider the motion of a particle in a spatially
enon can be indeed observed also in absence of noise, bdtRriodic potential with an asymmetric profile, subjected to a
in overdamped deterministic systefi’s19,2q and in under-  ime-periodic force and to damping. The equation of motion,
damped chaotic ond®1]. This has recently sparked some N dimensionless variables, is written as
interest in the study of deterministic ratchets. In particular,
the case of a periodically forced underdamped particle with X+ bx-+ dV(x)
finite inertia in a periodic asymmetric potential was recently dt
considered in Ref[22]. For this system it was shown that
there are several parameter ranges for which the particle cashereb is the friction coefficient, and anda, respectively,
move with positive or negative velocity, as well as ranges forare the frequency and amplitude of the driver. To conform
which the particle executes chaotic motion. The mechanisrnvith previous studies, we take the same potential as in Ref.
by which current reversal takes place was identified as th&22],
occurrence of a bifurcation from the chaotic to the periodic
regime. 1 . 1
The aim of the present paper is to show that the transport V(¥)=C— 425 sin2m(X—Xo) ]+ 7 sinl4m(X—Xo)] |,
properties of the underdamped deterministic ratchet can be ©
interpreted in terms of phase locking phenomena, and the
reverse currents can be ascribed to different stability proper-
ties of the rotating periodic orbits of the system. More pre-whereC andx, are introduced in order to have one potential
minimum in x=0 with V(0)=0 [Fig. 1(@] and §
=sin(2mxy|)+ 3 sin(4mixo). To understand the mechanism
*Email address: barbi@sa.infn.it underlying the ratchet effect, it is convenient to analyze the
TEmail address: salerno@sa.infn.it system in its phase space. In the unperturbed ¢ase b

=acoq wt), (1)
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=0, a=0) the phase space is similar to that of a simplevalues for which the locked solution is stabltocking
pendulum, with separatrices dividing oscillating and rotatingrange, and should be given by
orbits as depicted in Fig.(t). When damping is introduced,

the Hamiltonian character of the system is lost, and trajecto- T m o m
ries starting from different initial conditions fall down in the (v)=— 2 T =—v,,
potential minima. Pointsr(,0) in the phase space are in this nT, n2m P n
case the only attractors of the corresponding dissipative sys-

tem. Just as for the simple pendulum, the periodic drivingNhereT
will introduce chaos into the system via homoclinic splitting our cas
and transverse intersections of the separatrices, at particul
parameter values. Stationary motion can also exist on speciE

orbits which realize balance conditions between dissipategli< i the superior and inferior part of the phase space. We

and gained energy. The qualitati\{e behavior of the SYStepal check these predictions in the next section by direct
can be described as follows. Wharis much smaller thab, numerical integration

we can expect that small closed orbits near minima can be
stable with periods commensurable with the period of the
driver T ,= 27/ w. These motions will have zero average ve- lIl. NUMERICAL RESULTS

locity and therefore zero currefite., no direct motion, either To investigate the behavior of the system, we have made
fﬁrward_olr ba.<|:|kvxllar11 IIT thehopfpos]te ca;?e IOf very large  pjfurcation diagrams by a stroboscopic recording of the first
the particle will also follow the forcing, this leading again to derivativex at subsequent crossing of the Poincaeetion.

zero current. In the intermediate regime, chaos cannot b n analogous plot reported if22] refers to the windova
ignored and the situation becomes more complicated. De- (0.075,0.086). Correspondingly, we obtain the plot of Fi
pending on the set of parameters, rotating orbits of the uns Lo - ' P gy, P 9.
. : X I, 2, on a larger parameter ranges (0.06,0.12). Parametets
perturbed system, corresponding to motions with positive of nd b are fixed to the values used by ReR2]
negative velocity, respectively, can give rise to attractors oﬁ - ) . y Réled], o
repellers, which will contribute to the setup of either periodic_0'67’ b=0.1, in order to allow direct companso_n_(_)f the
or chaotic motion. In the first case a net current is expectec{?smts' For each value of.the parameter, after an initial tran-
while in the second case erratic compositions of backwargient, we record 400 valuegtp) at timestp=npT,,, where
and forward motior{without net transpoytshould aris¢22]. ~ Np is an integer. Periodic orbits of periddr, (ke N) cor-
From a physical point of view, currents should be expected®Spond tok crossing points at Poincasection, and there-
when the time required for the particle to move from onefore to k values ofx at the corresponding. A complete
well of the potential to another becomes commensurabl@analysis of the whole range of interest is depicted in Fig. 3,
with the period of the driver, i.e., when the particle motion where we present bifurcation diagrams for different intervals
becomes locked to the external driver. In this case, the meadf the forcing amplitudea. Figure 3a) refers to the smalh

velocity of the particle should stay constant for all parameterange, while the other three plots cover, with a decreasing

(a)

neN,meZ, (3)

pot IS the spatial period of the potentialote that in
€Tpo=1), and we calb, the fundamental locking
locity induced by the driver. Current reversals should ap-
ar in connection with stability changes of the rotating or-

V(x)
0.03 —

0.02 —

0.01 —

‘ ‘ =
T T

0.00

FIG. 1. (@) The periodic potentiaM(x) used, with parameters,=—0.19, C=0.0173 as in Ref[22]. (b) The phase space of the
unperturbed system, i.e., systdfy) with a=0, b=0. A series of closed and rotating orbits are shown. Dashed grid lines correspond to
potential maxima. All variables are dimensionless.
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FIG. 2. Bifurcation diagram(lower graph
and mean velocitfupper graphin the range of
the forcing parametea e (0.06,0.12), including
the interval discussed in R¢R2]. The other sys-
tem parameters arb=0.1 and w=0.67. Grid
lines in the velocity plot correspond to multiples
of half the driver-induced locking velocity, which
is v,=0.107 with our choice of parameters. All
variables here and in the following graphs are
dimensionless.

FIG. 3. Bifurcation diagramglower graphy
and mean velocity plotsupper graphsin four
different ranges of the forcing paramegemwhich
complete the region shown in Fig. 2 to cover the
whole range of interest. Same settings as in
Fig. 2 are used. The considered intervals are
(& ae(0,0.06); (b) ae(0.12,0.24); (c) a
€(0.24,0.9);(d) a=(0.9,8).
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FIG. 3. (Continued).
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level of precision, the range from the last value of Fig. 2 uprespectively. In these regular regions, the mean velocity of
to largea values. In the upper part of each plot of Fig. 2 andthe particle agrees with Ed3), i.e., we have a constant
Fig. 3, we give the corresponding mean velodity) as a  velocity locked to valuegv)/v,=0, £1/2, =1, =2, and
function ofa. The velocity is time-averaged over 300 forcing even 1/4(neara=0.08) and 3(neara=0.3). Note that in
periods, with a time step of ,/1000. contrast with our results, the current shown in Fig. 2 of Ref.
The general behavior of the system, depicted in Figs. 222] is not constant in the phase locking regions. This is
and 3, corresponds to the predictions of the preceding segrobably due to the method of computing averages. After
tion. One of the relevant features of these plots is, as alshaving computed, as we did, time averages, the authors of
mentioned in[22], the presence of a wide series of currentRef. [22] also performed an average on initial conditions.
reversals in a large interval of the parameter, with regulamhis procedure is useful in the presence of noise, but in the
and chaotic regions. Chaotic orbits appear aroard.75  deterministic case it is unnecessary. Furthermore, it can
and can be found up to values of about 2. For larger valuemask the phase locking effect by mixing orbits originating
of a, a regular, periodic motion witkw)=0 dominates. In  from initial conditions which correspond to different attrac-
the opposite limit, i.e., for values dai tending to zero &  tors basins: as we will see, in fact, such coexisting attractors
<0.06), the particle displays again regular motion with pe-exist, and correspond to different locked velocities.
riodicity T,, and mean velocitfv)=0. In the intermediate For what concerns specifically current reversals, let us
range, alternate periodic orbits with periodicity,, 2T,, now consider more in detail the regiare (0.14,0.18)[Fig.
3T,, 4T,, and 8, can be easily recognizedee, for in-  3(b)]. In this region we observe two subsequent reversals,
stance, regions near=0.12, 0.18, 0.86, 0.081, and 0.085, from (v)=v, to (v)=-2v, and back,without chaotic
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FIG. 4. Some attracting orbits of the systéi in the cases=0.03[(a), open circle§ 0.07[(a), full diamondg; a=0.164[(b), open
circles]; 0.29[(b), full diamondg. Underlying unperturbed phase-space structure is shown on the back for comparison. Some orbits are only
partially shown for readability. Variables are dimensionless.

transition The bifurcation paths leading to these reversals davhich are near the closed orbits of the unperturbed system
not produce in fact any chaotic orbit but just period doublingand parts close to the external orig®ey are more and more
without reaching chaos, as it can also be seen from the regaleformed as the value of the parameténcreases External
lar behavior of the average velocity. The same can be obpaths allow the particle to jump to neighboring wells. For
served, e.g., in the regioac (0.85,0.87), where a switch small values ofa (as, e.g., fom=0.03), only internal orbits
from two period-3 , orbits, with velocity=v,, takes place are stabilized, while for increasing values of the parameter,
even without period doubling. particles spend an increasing amount of time near the exter-
In order to check our predictions about the role of closedhal paths. Each time that the particle goes near external or-
and rotating trajectories in the system behavior, we show ibits, it jumps forward of backward and moves one or more
Fig. 4 some of the typical attracting orbits of the system inpotential steps. Aa=0.07, the particle can jump only once
the casesa=0.03,0.07[Fig. 4@] and a=0.164,0.29[Fig. = each two periods, so that its periodicity will be of 2 and
4(b)] obtained by letting particles evolve starting from dif- its velocity ofv /2. For larger values od, the particle can
ferent initial conditions. As suggested in the preceding secjump more than one step, thus increasing velocity. Interest-
tion, we find that nonzero velocities correspond to orbitsingly, at a=0.07 we observeontemporaneouslthe pres-
which can be roughly described as a composition of partence of this moving orbit with a periodic closed orbit with
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| FIG. 5. Bifurcation diagram(lower graph

. R e and mean velocityupper graphobtained by first

/ N TOOh increasing the driving amplituda from 0.14 to

v M N 0.18 and then decreasing it back to the initial
: value. Typical hysteresis is evident in the velocity
’ . behavior. Correspondingly, the bifurcation dia-
> 7 v gram shows the contemporary presence of differ-
ent stable orbits, as discussed in the text. Small
0.0 —| . ; arrows superimposed on both graphs indicate the
) direction of the amplitude variation: increasing
i for full arrows, decreasing for open ones.
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FIG. 6. Effects of the addition to the model of
a noise term withD=10"". The considered in-
terval isae (0.08,0.12). Mean velocity and bifur-
cation plot for the cas® =0 are also shown for
comparison(blue line and dots
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a

zero velocity. This means that, for some values of the forcingsponding mean velocity plot, obtained for intensify

amplitude, different attractors can coexj&il] and one ex- =10 ", in Fig. 6. Mean velocity for the cas®@=0 is also
pects this to be true also féorward andbackwardtrajecto-  shown in blue color for comparison. Noise leads to a broad-
ries at particular values of the bifurcation parameter. ening of the bifurcation pattern, with a little influence on the

This is actually what we observe, for instance, &t average velocity. Indeed, larger locked regions appear to be
=0.164 and aa=0.29, as shown Fig.(8). In the first case, preserved with no relevant change in width, while smaller
the forward motion is due to a periodic orbit which tums gnes show a decreasing stability. By increasing noise inten-
around the unperturbed minima and goes to the next well ijty, - staple orbits are more and more perturbed, until they
one periodT,,, so that the resulting velocity is,, ; the back-  pecome completely indistinguishable from stochastic mo-
ward m(_)tlon has _Iarger velocity 2v ar_1d S'FI” corresponds tion. At D=10", we found that in the same range of Fig. 6
toa p_erlod'-l'w orbit, but where .the_pe}rtmle Jumps two wells almost all the periodic regions disappeared; nevertheless, one
at a time. The case af=0.29 is similar, with forward ve- still gets locking in the last, largest ona%0.115), which

locity 3v,, and backward-v,,, and again perlc_)(]'w. Fr_o_m still corresponds to a constant velocity. We remark that a
these results we can thus deduce that chaotic transitions are

not needed for current reversals: instead, one could switcﬁ]Olse |nten_5|tyD—1O in model (1) corresponds, 9., to
directly from positive to negative velocity with a small thermal noise at room te[nlgerature fpr a system with mass
change of the parameter, and even by simply forcing thé“NZO,O k a.m.u.~3.3>< 10 -9 spacingL.~8 nm,.and a
particle to fall down on different attractors by changing its Potential barrier of &T, as it can be evaluated by inverting
initial conditions. the transformation used if22] back to dimensional vari-
The fact that different attractors can coexist in some reables. These are the typical orders of magnitude for the case
gion of the parameter space implies hysteretic phenomen&f kinesin[4].
To see hysteresis, we have performed bifurcation patterns in
both directions, i.e., by first increasing and then decreasing
the bifurcation parametex. This was done for three regions,
namelya e (0.055,0.075), i.e., in correspondence to the first
period doubling observeésee Fig. 2, a<(0.14,0.18), of ) ) )
Fig. 3(b), where current reversals have been identified; and N this paper we have considered the ratchet effect in de-
in the region considered in R4R2], i.e.,ae (0.074,0.086). terministic underdamped systems with asymmetric potentials
In the last case, where a period doubling route to chaos takexd periodic forcing. We showed that the occurrence of a net
place, we do not observe any hysteresis, while it can b&otion in the system is always related to phase locked dy-
clearly observed in the other two cases. Bifurcation andiamics. The phenomenon of current reversals was described
mean velocity plots corresponding to the interval (0.14,0.18)and ascribed to different stability properties of the perturbed
are reported in Fig. 5, from which we see that hysteresigotating orbits of the system. We showed that, in contrast
affects also the mean velocity behavior and its origin is re-with previous results, current reversals can happen also in the
lated to the presence of coexisting orbits, as, e.g., in thabsence of chaos-to-order transitions. Hysteretic current re-
region (0.140,0.155). versals were also found and their occurrence was related to
In closing this section, we shall briefly discuss the effectshe coexistence of different periodic attractors. We also in-
induced by noise on the deterministic ratchet effect. To thivvestigated the role of noise on the deterministic dynamics.
end we added a stochastic terr2D &(t) to the right-hand We found that noise has no positive effects on the stabiliza-
side of Eq.(1), whereé&(t) is white noise and is the noise tion of periodic orbits of the locked regions, i.e., on the set-
intensity. We show one bifurcation diagram and the correting up of direct or inverse current in the system. It is, how-

IV. CONCLUSIONS
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