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Phase locking effect and current reversals in deterministic underdamped ratchets

Maria Barbi* and Mario Salerno†

Dipartimento di Scienze Fisiche ‘‘E.R. Caianiello,’’ Universita` di Salerno, Italy
and INFM Unitàdi Salerno, I-84100 Salerno, Italy

~Received 13 March 2000!

We study the transport properties~currents! of deterministic underdamped ratchets in terms of phase locking
dynamics. The occurrence of reverse currents is interpreted in terms of different stability properties of the
periodic rotating orbits and is shown to exist also in the absence of bifurcations from chaos to periodic motion.
We briefly discuss the effects of noise on this phase locked dynamics.

PACS number~s!: 05.45.2a, 05.10.Gg
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I. INTRODUCTION

The dynamics of a Brownian particle in asymmetric pe
odic potentials represents an interesting model for study
the transport properties of nonlinear systems in the prese
of noise. In analogy with the ratchet mechanism conside
by Feynman@1# in discussing the impossibility to extrac
work from thermodynamical equilibrium, these systems
also called ratchets. An interesting feature of the ratc
model is the possibility to use diffusion to convert an
driving signal ~either a multiplicative@2–5# or an additive
@4,6,7# fluctuating term! into a net dc current correspondin
to the unidirectional motion of the particle through the sy
tem ~ratchet effect!. This phenomenon has been observed
a variety of systems@8–10# and has been proposed as t
mechanism underlying the functioning of biological moto
@11–13#. The ratchet effect has also been used to design
experimental devices for physical@10,14–16# as well as bio-
logical @17,18# applications. A crucial role for the occurrenc
of the ratchet effect is played by the asymmetry of the
tential and by the damping; the driving term keeps the s
tem out of equilibrium while the noise seems to play, in t
case of additive forcing, only a secondary role. The pheno
enon can be indeed observed also in absence of noise,
in overdamped deterministic systems@7,19,20# and in under-
damped chaotic ones@21#. This has recently sparked som
interest in the study of deterministic ratchets. In particu
the case of a periodically forced underdamped particle w
finite inertia in a periodic asymmetric potential was recen
considered in Ref.@22#. For this system it was shown tha
there are several parameter ranges for which the particle
move with positive or negative velocity, as well as ranges
which the particle executes chaotic motion. The mechan
by which current reversal takes place was identified as
occurrence of a bifurcation from the chaotic to the perio
regime.

The aim of the present paper is to show that the trans
properties of the underdamped deterministic ratchet can
interpreted in terms of phase locking phenomena, and
reverse currents can be ascribed to different stability pro
ties of the rotating periodic orbits of the system. More p
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cisely, we show that the presence of direct motion, eit
forward or backward, is always achieved when the time
quired for the particle to move from one well of the potent
to another is commensurable with the period of the driv
Moreover, we show that, contrary to what was proposed
Ref. @22#, current reversals can occur also in the absence
bifurcations from chaos to periodic motion.

The paper is organized as follows. In Sec. II we introdu
the model and discuss its physical properties from a gen
point of view. In Sec. III we check our qualitative predic
tions by direct numerical integration. A complete analysis
the system behavior in the whole range of the forcing am
tude is done, and we present evidence of a phase loc
mechanism. Current reversals which do not need any cha
transitions are shown. We then describe the attracting or
of the system in various cases and show how coexisting
bits with positive and negative velocity can give rise to hy
teretic behavior. Finally, we briefly discuss the effects
duced by noise and we draw our conclusions.

II. MODEL

Let us consider the motion of a particle in a spatia
periodic potential with an asymmetric profile, subjected to
time-periodic force and to damping. The equation of motio
in dimensionless variables, is written as

ẍ1bẋ1
dV~x!

dt
5a cos~vt !, ~1!

whereb is the friction coefficient, andv anda, respectively,
are the frequency and amplitude of the driver. To confo
with previous studies, we take the same potential as in R
@22#,

V~x!5C2
1

4p2d
Fsin@2p~x2x0!#1

1

4
sin@4p~x2x0!#G ,

~2!

whereC andx0 are introduced in order to have one potent
minimum in x50 with V(0)50 @Fig. 1~a!# and d
5sin(2pux0u)1

1
4 sin(4pux0u). To understand the mechanis

underlying the ratchet effect, it is convenient to analyze
system in its phase space. In the unperturbed case~i.e., b
1988 ©2000 The American Physical Society
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50, a50) the phase space is similar to that of a sim
pendulum, with separatrices dividing oscillating and rotat
orbits as depicted in Fig. 1~b!. When damping is introduced
the Hamiltonian character of the system is lost, and traje
ries starting from different initial conditions fall down in th
potential minima. Points (n,0) in the phase space are in th
case the only attractors of the corresponding dissipative
tem. Just as for the simple pendulum, the periodic driv
will introduce chaos into the system via homoclinic splittin
and transverse intersections of the separatrices, at parti
parameter values. Stationary motion can also exist on spe
orbits which realize balance conditions between dissipa
and gained energy. The qualitative behavior of the sys
can be described as follows. Whena is much smaller thanb,
we can expect that small closed orbits near minima can
stable with periods commensurable with the period of
driver Tv52p/v. These motions will have zero average v
locity and therefore zero current~i.e., no direct motion, eithe
forward or backward!. In the opposite case of very largea,
the particle will also follow the forcing, this leading again
zero current. In the intermediate regime, chaos canno
ignored and the situation becomes more complicated.
pending on the set of parameters, rotating orbits of the
perturbed system, corresponding to motions with positive
negative velocity, respectively, can give rise to attractors
repellers, which will contribute to the setup of either period
or chaotic motion. In the first case a net current is expec
while in the second case erratic compositions of backw
and forward motion~without net transport! should arise@22#.
From a physical point of view, currents should be expec
when the time required for the particle to move from o
well of the potential to another becomes commensura
with the period of the driver, i.e., when the particle moti
becomes locked to the external driver. In this case, the m
velocity of the particle should stay constant for all parame
g
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values for which the locked solution is stable~locking
range!, and should be given by

^v&5
m

n

Tpot

Tv
5

m

n

v

2p
Tpot5

m

n
vv , nPN,mPZ, ~3!

whereTpot is the spatial period of the potential~note that in
our caseTpot51), and we callvv the fundamental locking
velocity induced by the driver. Current reversals should
pear in connection with stability changes of the rotating
bits in the superior and inferior part of the phase space.
shall check these predictions in the next section by dir
numerical integration.

III. NUMERICAL RESULTS

To investigate the behavior of the system, we have m
bifurcation diagrams by a stroboscopic recording of the fi
derivative ẋ at subsequent crossing of the Poincare´ section.
An analogous plot reported in@22# refers to the windowa
P(0.075,0.086). Correspondingly, we obtain the plot of F
2, on a larger parameter range,aP(0.06,0.12). Parametersv
and b are fixed to the values used by Ref.@22#, v
50.67, b50.1, in order to allow direct comparison of th
results. For each value of the parameter, after an initial tr
sient, we record 400 valuesẋ(tP) at timestP5nPTv , where
nP is an integer. Periodic orbits of periodkTv (kPN) cor-
respond tok crossing points at Poincare´ section, and there-
fore to k values of ẋ at the correspondinga. A complete
analysis of the whole range of interest is depicted in Fig
where we present bifurcation diagrams for different interv
of the forcing amplitudea. Figure 3~a! refers to the smalla
range, while the other three plots cover, with a decreas
e
nd to
FIG. 1. ~a! The periodic potentialV(x) used, with parametersx0520.19, C50.0173 as in Ref.@22#. ~b! The phase space of th
unperturbed system, i.e., system~1! with a50, b50. A series of closed and rotating orbits are shown. Dashed grid lines correspo
potential maxima. All variables are dimensionless.
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FIG. 2. Bifurcation diagram~lower graph!
and mean velocity~upper graph! in the range of
the forcing parameteraP(0.06,0.12), including
the interval discussed in Ref.@22#. The other sys-
tem parameters areb50.1 and v50.67. Grid
lines in the velocity plot correspond to multiple
of half the driver-induced locking velocity, which
is vv>0.107 with our choice of parameters. A
variables here and in the following graphs a
dimensionless.

FIG. 3. Bifurcation diagrams~lower graphs!
and mean velocity plots~upper graphs! in four
different ranges of the forcing parametera, which
complete the region shown in Fig. 2 to cover th
whole range of interest. Same settings as
Fig. 2 are used. The considered intervals a
~a! aP(0,0.06); ~b! aP(0.12,0.24); ~c! a
P(0.24,0.9);~d! aP(0.9,8).
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FIG. 3. (Continued).
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level of precision, the range from the last value of Fig. 2
to largea values. In the upper part of each plot of Fig. 2 a
Fig. 3, we give the corresponding mean velocity^v& as a
function ofa. The velocity is time-averaged over 300 forcin
periods, with a time step ofTv/1000.

The general behavior of the system, depicted in Figs
and 3, corresponds to the predictions of the preceding
tion. One of the relevant features of these plots is, as
mentioned in@22#, the presence of a wide series of curre
reversals in a large interval of the parameter, with regu
and chaotic regions. Chaotic orbits appear arounda50.75
and can be found up to values of about 2. For larger val
of a, a regular, periodic motion witĥv&50 dominates. In
the opposite limit, i.e., for values ofa tending to zero (a
,0.06), the particle displays again regular motion with p
riodicity Tv and mean velocitŷv&50. In the intermediate
range, alternate periodic orbits with periodicityTv , 2Tv ,
3Tv , 4Tv , and 8Tv can be easily recognized~see, for in-
stance, regions neara50.12, 0.18, 0.86, 0.081, and 0.08
2
c-
o

t
r

s

-

respectively!. In these regular regions, the mean velocity
the particle agrees with Eq.~3!, i.e., we have a constan
velocity locked to valueŝv&/vv50, 61/2, 61, 62, and
even 1/4~neara50.08) and 3~neara50.3). Note that in
contrast with our results, the current shown in Fig. 2 of R
@22# is not constant in the phase locking regions. This
probably due to the method of computing averages. A
having computed, as we did, time averages, the author
Ref. @22# also performed an average on initial condition
This procedure is useful in the presence of noise, but in
deterministic case it is unnecessary. Furthermore, it
mask the phase locking effect by mixing orbits originati
from initial conditions which correspond to different attra
tors basins: as we will see, in fact, such coexisting attrac
exist, and correspond to different locked velocities.

For what concerns specifically current reversals, let
now consider more in detail the regionaP(0.14,0.18)@Fig.
3~b!#. In this region we observe two subsequent revers
from ^v&5vv to ^v&522vv and back,without chaotic
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FIG. 4. Some attracting orbits of the system~1! in the casesa50.03 @~a!, open circles#; 0.07 @~a!, full diamonds#; a50.164@~b!, open
circles#; 0.29@~b!, full diamonds#. Underlying unperturbed phase-space structure is shown on the back for comparison. Some orbits
partially shown for readability. Variables are dimensionless.
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transition. The bifurcation paths leading to these reversals
not produce in fact any chaotic orbit but just period doubli
without reaching chaos, as it can also be seen from the r
lar behavior of the average velocity. The same can be
served, e.g., in the regionaP(0.85,0.87), where a switch
from two period-3Tv orbits, with velocity6vv , takes place
even without period doubling.

In order to check our predictions about the role of clos
and rotating trajectories in the system behavior, we show
Fig. 4 some of the typical attracting orbits of the system
the casesa50.03,0.07@Fig. 4~a!# and a50.164,0.29@Fig.
4~b!# obtained by letting particles evolve starting from d
ferent initial conditions. As suggested in the preceding s
tion, we find that nonzero velocities correspond to orb
which can be roughly described as a composition of p
o
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which are near the closed orbits of the unperturbed sys
and parts close to the external ones~they are more and more
deformed as the value of the parametera increases!. External
paths allow the particle to jump to neighboring wells. F
small values ofa ~as, e.g., fora50.03), only internal orbits
are stabilized, while for increasing values of the parame
particles spend an increasing amount of time near the ex
nal paths. Each time that the particle goes near externa
bits, it jumps forward of backward and moves one or mo
potential steps. Ata50.07, the particle can jump only onc
each two periods, so that its periodicity will be of 2Tv and
its velocity of vv/2. For larger values ofa, the particle can
jump more than one step, thus increasing velocity. Inter
ingly, at a50.07 we observecontemporaneouslythe pres-
ence of this moving orbit with a periodic closed orbit wi
al
ty
-

er-
all
the
g

FIG. 5. Bifurcation diagram~lower graph!
and mean velocity~upper graph! obtained by first
increasing the driving amplitudea from 0.14 to
0.18 and then decreasing it back to the initi
value. Typical hysteresis is evident in the veloci
behavior. Correspondingly, the bifurcation dia
gram shows the contemporary presence of diff
ent stable orbits, as discussed in the text. Sm
arrows superimposed on both graphs indicate
direction of the amplitude variation: increasin
for full arrows, decreasing for open ones.
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FIG. 6. Effects of the addition to the model o
a noise term withD51027. The considered in-
terval isaP(0.08,0.12). Mean velocity and bifur
cation plot for the caseD50 are also shown for
comparison~blue line and dots!.
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zero velocity. This means that, for some values of the forc
amplitude, different attractors can coexist@21# and one ex-
pects this to be true also forforward andbackwardtrajecto-
ries at particular values of the bifurcation parameter.

This is actually what we observe, for instance, ata
50.164 and ata50.29, as shown Fig. 4~b!. In the first case,
the forward motion is due to a periodic orbit which tur
around the unperturbed minima and goes to the next we
one periodTv , so that the resulting velocity isvv ; the back-
ward motion has larger velocity22vv and still corresponds
to a period-Tv orbit, but where the particle jumps two wel
at a time. The case ofa50.29 is similar, with forward ve-
locity 3vv and backward2vv , and again periodTv . From
these results we can thus deduce that chaotic transition
not needed for current reversals: instead, one could sw
directly from positive to negative velocity with a sma
change of the parameter, and even by simply forcing
particle to fall down on different attractors by changing
initial conditions.

The fact that different attractors can coexist in some
gion of the parameter space implies hysteretic phenom
To see hysteresis, we have performed bifurcation pattern
both directions, i.e., by first increasing and then decreas
the bifurcation parametera. This was done for three region
namelyaP(0.055,0.075), i.e., in correspondence to the fi
period doubling observed~see Fig. 2!; aP(0.14,0.18), of
Fig. 3~b!, where current reversals have been identified; a
in the region considered in Ref.@22#, i.e., aP(0.074,0.086).
In the last case, where a period doubling route to chaos ta
place, we do not observe any hysteresis, while it can
clearly observed in the other two cases. Bifurcation a
mean velocity plots corresponding to the interval (0.14,0.
are reported in Fig. 5, from which we see that hystere
affects also the mean velocity behavior and its origin is
lated to the presence of coexisting orbits, as, e.g., in
region (0.140,0.155).

In closing this section, we shall briefly discuss the effe
induced by noise on the deterministic ratchet effect. To t
end we added a stochastic term12Dj(t) to the right-hand
side of Eq.~1!, wherej(t) is white noise andD is the noise
intensity. We show one bifurcation diagram and the cor
g
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sponding mean velocity plot, obtained for intensityD
51027, in Fig. 6. Mean velocity for the caseD50 is also
shown in blue color for comparison. Noise leads to a bro
ening of the bifurcation pattern, with a little influence on th
average velocity. Indeed, larger locked regions appear to
preserved with no relevant change in width, while smal
ones show a decreasing stability. By increasing noise in
sity, stable orbits are more and more perturbed, until th
become completely indistinguishable from stochastic m
tion. At D51026, we found that in the same range of Fig.
almost all the periodic regions disappeared; nevertheless,
still gets locking in the last, largest one (a>0.115), which
still corresponds to a constant velocity. We remark tha
noise intensityD51026 in model ~1! corresponds, e.g., to
thermal noise at room temperature for a system with m
m;200 k a.m.u.;3.3310219 g, spacingL;8 nm, and a
potential barrier of 8kT, as it can be evaluated by invertin
the transformation used in@22# back to dimensional vari-
ables. These are the typical orders of magnitude for the c
of kinesin @4#.

IV. CONCLUSIONS

In this paper we have considered the ratchet effect in
terministic underdamped systems with asymmetric potent
and periodic forcing. We showed that the occurrence of a
motion in the system is always related to phase locked
namics. The phenomenon of current reversals was descr
and ascribed to different stability properties of the perturb
rotating orbits of the system. We showed that, in contr
with previous results, current reversals can happen also in
absence of chaos-to-order transitions. Hysteretic current
versals were also found and their occurrence was relate
the coexistence of different periodic attractors. We also
vestigated the role of noise on the deterministic dynam
We found that noise has no positive effects on the stabil
tion of periodic orbits of the locked regions, i.e., on the s
ting up of direct or inverse current in the system. It is, ho
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ever, quite important that deterministic phase locked ratc
dynamics can survive even at high levels of noise intens
It is precisely the robustness of this phenomenon wh
makes the ratchet effect an interesting possible mechan
by which biological systems can take advantage of no
environments to produce net motion.
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