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Abstract

We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that
flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of
Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat
which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-
extension curves of reference experimental studies. Finally, we extend the model to simulations where the control
parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is
particularly challenging theoretically and experimentally.
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Introduction

The mechanical and topological properties of DNA and

protein-DNA assemblies are of primary importance in many

biological processes, including transcription, replication, chroma-

tin organization and remodeling. Since techniques have become

available enabling the manipulation of single-molecules [1,2], a

large amount of experimental data have been accumulated on the

mechanical response of DNA and protein-DNA assemblies under

stretching forces and twisting torsions, in particular from optical

and magnetic tweezers experiments [2–5]. In magnetic tweezers

experiments, a DNA molecule is grafted at one end to a coverslip

and at the other end to a magnetic bead. The bead is trapped in

the magnetic field of a pair of magnets that may be translated, thus

exerting a varying force on the bead. Moreover the pair of

magnets may be rotated at a certain number of turns, thus

constraining the linking number of the DNA molecule. After the

stretching force and the number of turns are applied to the bead,

the only physical variable that can be directly measured is the

DNA extension, i.e. the distance between its two ends. Therefore

the interpretation of the experimental results requires an

important modeling effort, particularly in the more complex cases

where DNA is associated with proteins, as for instance in

chromatin assemblies [6,7]. Although theoretical approaches

may be successful in some cases [8–10], simulations are often

crucial tests of the proposed model validity, when they are not the

unique possible way of dealing with the system complexity.

In this spirit, we aim to develop an efficient tool to manipulate

single-molecules in silico reproducing optical and magnetic

tweezers experiments. This task is challenging since the DNA

model should have precise specifications to reproduce the behavior

of DNA accurately. We need to: (i) model a polymer, i.e. an

articulated chain; (ii) reproduce the effective diameter of DNA

(depending on electrostatic conditions) and, when proteins are

present, have the possibility to model their shape and steric

hindrance; (iii) deal with collisions, especially in order to

reproduce DNA supercoiled structures (plectonemes) and steric

effects in DNA-protein assemblies; (iv) reproduce DNA twisting

and bending elasticities; (v) include statistical mechanics features to

account for temperature and thermal motion. Beside these

essential points, we also wish to simulate the system dynamics,

which may be important in some cases, e.g. when hysteresis is

observed under magnetic tweezers [7] or for in vivo chromosome

dynamics experiments in the cell nucleus [11,12].

This ambitious list of specifications is beyond the reach of

traditional simulation approaches where particles interact through

2-body potentials (as in Molecular Dynamics or Monte Carlo

simulations [13,14] with a given force field). The need to deal with

frozen degrees of freedom in coarse grained modeling may be

addressed through holonomic constraints, as in the SHAKE

algorithm [15,16], where an iterative approach is adopted.

However, collision detection and steric hindrance may only be

accounted for in this scheme by introducing additional steps. More

recently, non iterative algorithms have been developed [17], that

subsequently led to the development of new powerful tools, called

‘‘physics engines’’. These have been designed by the engineering

and robotics communities to reproduce the dynamic behaviour of
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articulated systems of rigid bodies. Physics engines are acquiring

an increasing importance, notably in the fields of computer

graphics and video games, where they are now widely used to

simulate rigid body motion under realistic conditions and in real-

time. Open Dynamics Engine (ODE) is one of the most popular

rigid-body dynamics open source library for robotics simulation

applications [18]. As other physics engines, ODE simulates the

kinematics of articulated systems by using permanent joints that

impose holonomic constraints, instead of bond potentials. The

same method is used to manage collisions: when overlapping

between bodies is detected, a temporary joint is locally created that

reproduces the action of the contact forces, without the need for

explicit permanent 2-body interaction potentials (see section

‘‘Materials and Methods’’ for details on how ODE manages joints

and collisions).

These extremely efficient simulators haven’t, up to now, been

used in statistical mechanics. Although well adapted to mechanical

simulations, physics engines lack coupling to a thermal bath. The

main novelty of our approach is the implementation of Langevin-

Euler equation in the ODE software. Moreover we improve the

simulation efficiency of this Langevin dynamics by extending the

‘‘global thermostat’’ algorithm designed by Bussi and Parinello in

2008 [19] to physics engines. This algorithm allows much faster

yet unbiased sampling of the phase-space. As a first step toward

simulating DNA-protein assemblies, we focus here on bare DNA

and show how to perform in silico single molecule manipulation of

DNA.

Materials and Methods

Introduction to physics engines
In rigid body dynamics simulations run with ODE, the state of a

system consisting of N rigid bodies is described by the positions ri

of their centres of mass, a quaternion representation of their

orientations qi, and their linear and angular velocities vi and vi

respectively. These velocities are collected in the column vector

V~ v1,v1, . . . vN ,vNf gT
. We use the superscript T to denote the

transpose of a vector or a matrix everywhere in this article. The

vector LL~MMVV then collects all linear and angular momenta,

where MM~ m11,I1 . . . mN1,INf g is a 6N|6N block diagonal

matrix whose elements are the mass matrices mi1 and inertia

matrices I i of the N bodies (with 1 the 3|3 identity matrix). The

Newtonian dynamics equation then reads _LL~FF where the

generalized force FF is a vector collecting forces and torques

applied to the system. These forces and torques may be external,

due for example to gravity or magnetic fields, or internal, as a

consequence of the mechanical constraints between the rigid

bodies that make up the system.

Most notably, in articulated systems, as is the case of polymers,

rigid bodies are connected by mechanical joints. A joint is a

relationship that is enforced between two bodies so that they can

have only certain positions and orientations relative to each other,

and ODE provides different types of joints according to the kind of

articulation that has to be implemented, e.g. ball-and-socket,

hinge, slider or universal.

Mathematically a joint imposes some holonomic constraint

between both connected bodies. Such a constraint is an equation

that reads d~0 where d is the distance between both joint

bearings, e.g. the center of the ball of one body and the the center

of the socket of the other one. The constrained distance d is purely

geometrical, depending only on the relative position and

orientation of both jointed bodies. The position and orientation

of each of the N bodies the articulated system is composed of

depend on time t. Therefore the constraints d~0 of the articulated

system can be derived with respect to time to get the kinematic

constraints in the form JJVV~0 where we introduce the jacobian

matrix of constraints JJ (see subsection ‘‘Exact solution for l when

there are no collisions’’ for a detailed example). This velocity-

based description is used in ODE as in most game/physics

engines.

So, mechanical joints exert reaction forces and torques on the

joint bearings. These internal mechanical constraints can be

collected into a generalized constraint force FF c which, by virtue of

the principle of virtual work FFT
c VV~0, reads FF c~JJ T l where l is

a vector of Lagrange multipliers that precisely accounts for the

reaction forces and torques coming from the joint bearings [16].

The Newtonian dynamics equation therefore reads _LL~FF ezFF c

where FF e and FF c stand for the external and internal contributions

to the generalized force respectively. As the constraint force reads

FF c~J T l, the Newtonian dynamics equation becomes an

equation for l in the form: _LL~FF ezJJ T l.

Solving this equation for l should moreover satisfy the

holonomic constraints d~0 at every timestep t. However the

discretization used in the numerical calculation results in errors on

d so that d(t) is generally not equal to 0. Then, in order to have

d(tzDt)~0 at the next timestep, the kinematic constraint JJVV
should be adapted accordingly. Indeed d(tzDt)~d(t)z
JJ (t)VV(tzDt)Dt according to the Euler semi-implicit integration

scheme which is used in velocity-based algorithms. Hence

JJ (t)VV(tzDt)~{
d(t)

Dt
. But then this implies that the kinematic

constraint is not equal to zero at time tzDt, i.e.

JJ (tzDt)VV(tzDt)=0, so that the joint bearings will continue to

move apart afterwards. In order to keep both d and JJVV close to

zero at every timestep, ODE introduces an error reduction

parameter kerp in the kinematic equation JJ (t)VV(tzDt)~

{kerp
d(t)

Dt
[18]. This parameter has to be adjusted to some

optimal value between 0 (no correction at all) and 1 (complete

correction of d in one timestep). However setting kerp~1 is not

recommended since, as said above, this would imply that the joint

bearings will continue to move apart afterwards with maximal

velocities. ODE recommends values between 0:1 and 0:8.

Author Summary

Video game techniques are designed to simulate rigid
body dynamics of macroscopic bodies, e.g. characters or
vehicles, in a realistic manner. However they are not able
to deal with temperature effects, hence they are not able
to deal with molecules. In order to extend these powerful
techniques to molecular modeling, we implement here
Langevin Dynamics in an open source library called Open
Dynamics Engine. Moreover we add a ‘‘global thermostat’’
to this Langevin Dynamics, which accelerates the simula-
tion sampling by two orders of magnitude. With these
radically new simulation techniques, we prove that we can
accurately reproduce single-molecule manipulation exper-
iments in silico, in particular force-extension as well as
rotation-extension curves of reference experimental stud-
ies. The method developed here represents an unparal-
leled tool for the study of more complex single molecule
manipulation experiments, notably when DNA interacts
with proteins. Furthermore the simulation technique that
we propose here has all the functionalities required to
tackle the nuclear organization of chromosomes at every
length scale, from DNA to whole nuclei.

Simulating DNA with Physics Engines
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In addition to kerp, ODE introduces a second ingredient to

soften the rigid constraints by allowing the violation of the

constraint equation by an amount proportional to the restoring

force l. More explicitly, a ‘‘constraint force mixing’’ diagonal

matrix KKcfm~kcfml is defined, such that JJ (t)VV(tzDt)~

{
kerp

Dt
d(t){kcfml(t) (implicit integration) [18]. This is equivalent

to introducing a spring-damper system (spring constant of
kerp

Dtkcfm

and damping constant of
1{kerp

kcfm

) with implicit integrator between

the joint bearings; this can be understood as analogous to a bead-

spring model. Nevertheless there is a major difference between

this effective spring and a regular spring: the term {kerp
d tð Þ
Dt

constrains the velocity whereas a regular spring constrains the

acceleration. As a result, no energy is stored in this effective spring,

at odds with a regular spring which stores an averaged energy kBT
(see below subsection ‘‘Preliminary tests of validity and perfor-

mance of the global thermostat’’ along with the histograms of

energy in Figure 1).

In particular, ODE uses a powerful software called libccd [20] to

detect collisions between two convex shapes. Whenever overlap-

ping is detected between two rigid bodies, ODE attaches a

temporary joint between them called a ‘‘contact joint’’. Defining

vector c1 (resp. c2) that connects the center of mass of body 1 (resp.

2) to the contact point and denoting n the common normal to both

bodies at the contact point (directed from 2 to 1), the kinematic

constraint imposed by the contact joint would read

nT v1zv16c1ð Þ{nT v2zv26c2ð Þ~0 in the perfect case when

the holonomic constraint imposed by the contact joint reads

exactly d~0. However, in practice d is not equal to 0 because of

discretization errors, hence the kinematic constraint imposed by

the contact joint actually reads:

JJ tð ÞVV tzDtð Þ~

{
kerp

Dt
nT r1zc1{r2{c2ð Þ
� �

tð Þ{kcfm nT l
� �

tð Þ
ð1Þ

with

JJ~ nT {nT c61 nT nT c62
� �

ð2Þ

lT n§0 ð3Þ

The right hand side of Eq.(1) deals with the already existing

overlapping of the two bodies in contact at time t when collision is

first detected, or with their residual overlapping while the contact

joint exists.

By inserting the constraint force FF c~JJ T l into the equation of

motion _LLLL~FF and taking the first-order discretisation of this equa-

tion, one can easily get the following expression to be solved for l:

JJMM{1JJ Tz
kcfm

Dt

� �
l~

{
kerp

Dt2
d{JJ VV

Dt
zMM{1 FF e{ _MMMMVV

� �� � ð4Þ

This equation is of the form Al~B. Importantly, the addition

of the term
kcfm

Dt
to each diagonal term of the matrix JJMM{1JJ T

provides a symmetric positive definite matrix AA, thus greatly

increasing the solution accuracy of Eq.(4). From this equation, the

vector l of Lagrange multipliers, hence the constraint force FF c,

can be determined. Then the motion solver (semi-implicit Euler

integrator) gives the new positions and orientations of the

articulated bodies at time tzDt. It is advantageous to choose

the Exponential Map parametrization [21] for the quaternion

integration.

Figure 1. Boltzmann statistics test. The distribution of kinetic energy
P(E) of a DNA molecule of length L~1 mm at thermal equilibrium is
plotted as a function of the dimensionless kinetic energy bE for both
global (left panel) and local (right panel) thermostats. The DNA molecule
is composed of N~300 rigid cylinders of radius r~2 nm and l~3:34 nm.
The other parameters of the simulation are given in Table 1. According to
Eq. (33) the number of degrees of freedom is dof ~6N{nc with nc~3N
the number of non-redundant holonomic constraints (3 per ball-and
socket joint, hence dof ~900). The factor C(n{1) ensures the
normalization of P(E) (C is the Euler Gamma function).
doi:10.1371/journal.pcbi.1003456.g001

Simulating DNA with Physics Engines
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Solving constraints
In general Eq.(4) has to be solved numerically and ODE has two

algorithms to do so, one based on the Successive-Over-Relaxation

(SOR) method [22] and the other based on the Linear

Complementary Problem (LCP) [23]. LCP time complexity is of

order m3 and space complexity (memory) of order m2 where m is

the number of constraint rows [18]; whereas SOR time complexity

is of order mNSOR where NSOR is the number of successive-over-

relaxation and space complexity of order m [18]. Both algorithms

have equivalent performances when m~
ffiffiffiffiffiffiffiffiffiffiffiffi
NSOR

p
. But in general

LCP is more accurate, although much more time consuming, than

SOR. We compared these two algorithms for a chain of length

N~300 without noticing significant differences in the errors on d
(error on the colocalization of joint bearings). In order to save

computational time, we preferentially run the SOR method with a

value of vSOR~1:7 for the relaxation factor and NSOR~100.

These values are different from the default values in ODE and

work well for a linear chain of rigid bodies connected with ball-

and-socket joints. But in some cases, the SOR method does not

converge and we then switch to the LCP method, which always

converges. However in the case when there are no collisions

between the rigid bodies the articulated system is composed of, we

were able to derive an exact solution for l (see next subsection).

Therefore we solve Eq.(4) according to the following scheme:

1. if there are no collisions at time t, we use the exact solution for

l,

2. if some collisions are detected, then we run the SOR method

and check for the accuracy of the solution. More specifically

the solution is accepted if Elz
kerp

Dtkcfm

dz
1

kcfm

JJVV tzDtð ÞE=
ElEv10{4,

3. i f Elz
kerp

Dtkcfm

dz
1

kcfm

JJVV tzDtð ÞE=ElEw10{4 then the

simulation step is restarted with the LCP method.

Exact solution for l when there are no collisions
For the sake of clarity, let us first consider the example of four

rigid cylinders of length l each connected with ball-and-socket

joints at the extremities ri+
l

2
ti with the first one anchored to

some fixed point, taken as the origin of the coordinates. The vector

ti is the tangent to the cylinder i. The jacobian matrix JJ
associated with this system is tridiagonal when there are no

collisions, in which case it reads:

JJ~

{1 {
l

2
t61 0 0 0 0 0 0

1 {
l

2
t61 {1 {

l

2
t62 0 0 0 0

0 0 1 {
l

2
t62 {1 {

l

2
t63 0 0

0 0 0 0 1 {
l

2
t63 {1 {

l

2
t64

0BBBBBBBBBB@

1CCCCCCCCCCA
ð5Þ

For each cylinder, the antisymmetric matrix t6 is associated

with the cross product t6 and has the property t6T~{t6:

t6~

0 {tz ty

tz 0 {tx

{ty tx 0

0B@
1CA ð6Þ

The transpose Jacobian matrix JJ T and mass matrix MM are

given by:

JJ T~

{1 1 0 0

l

2
t61

l

2
t61 0 0

0 {1 1 0

0
l

2
t62

l

2
t62 0

0 0 {1 1

0 0
l

2
t63

l

2
t63

0 0 0 {1

0 0 0
l

2
t64

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

MM~

m1 0 0 0 0 0 0 0

0 I1 0 0 0 0 0 0

0 0 m2 0 0 0 0 0

0 0 0 I2 0 0 0 0

0 0 0 0 m3 0 0 0

0 0 0 0 0 I3 0 0

0 0 0 0 0 0 m4 0

0 0 0 0 0 0 0 I4

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

ð7Þ

Then we get:

MM{1JJ T~

{m{1
1 m{1

1 0 0

l

2
I{1

1 t61
l

2
I{1

1 t61 0 0

0 {m{1
2 m{1

2 0

0
l

2
I{1

2 t62
l

2
I{1

2 t62 0

0 0 {m{1
3 m{1

3

0 0
l

2
I{1

3 t63
l

2
I{1

3 t63

0 0 0 {m{1
4

0 0 0
l

2
I{1

4 t64

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

ð8Þ

and we deduce the final result for the symmetric matrix

HH~JJMM{1JJ T :

HH~

1
m1

{TT 6

1 { 1
m1

{TT 6

1 0 0

{ 1
m1

{TT 6

1
1

m1
{TT 6

1 z 1
m2

{TT 6

2 { 1
m2

{TT 6

2 0

0 { 1
m2

{TT 6

2
1

m2
{TT 6

2 z 1
m3

{TT 6

3 { 1
m3

{T 6

3

0 0 { 1
m3

{TT 6

3
1

m3
{TT 6

3 z 1
m4

{TT 6

4

0BBBBBBB@

1CCCCCCCA
ð9Þ

where we define the matrix TT 6

i ~
l2

4
t6i I{1

i t6i . We then write TT 6

i

in the associated principal axis body frame as TT 6?
i :

(9)

Simulating DNA with Physics Engines
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TT 6?
i ~{

l2

4I?i\

1 0 0

0 1 0

0 0 0

0B@
1CA ð10Þ

The vector l collects the Lagrange multipliers associated to

each joint respectively l~lT
1ƒiƒ4. The equation HHl~X gives us

a system of coupled equations on li. Note that ODE solves in one

time all the constraints of this articulated system. This is not the

case with the SHAKE algorithm where an unconstrained step is

first performed, before correcting the positions and orientations

iteratively to get the constraints satisfied eventually. The term

JJMM{1FF e from Eq.(4) is given by:

{1 {
l

2
t61 0 0 0 0 0 0

1 {
l

2
t61 {1 {

l

2
t62 0 0 0 0

0 0 1 {
l

2
t62 {1 {

l

2
t63 0 0

0 0 0 0 1 {
l

2
t63 {1 {

l

2
t64

0BBBBBBBBBBB@

1CCCCCCCCCCCA

f1
m1

C1\
I?
1\

z
C1E
I?
1E

f2
m2

C2\
I?
2\

z
C2E
I?
2E

f3
m3

C3\
I?
3\

z
C3E
I?
3E

f4
m

C4\
I?
4\

z
C4E
I?
4E

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

~

{
f1
m

{ l

2I?1\
t16C1\

f1
m

{ l

2I?1\
t16C1\{

f2
m

{ l

2I?2\
t26C2\

f2
m

{
l

2I?2\
t26C2\{

f3

m
{

l

2I?3\
t36C3\

f3
m

{
l

2I?3\
t36C3\{

f4

m
{

l

2I?4\
t46C4\

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð11Þ

where we write C\~ CT m
� �

mz CT emm� �emm and CE~ CT t
� �

t. We

can then write the constraint forces and torques FF c~JJ T l

l2{l1

l

2
t16 l1zl2ð Þ

l3{l2

l

2
t26 l2zl3ð Þ

l4{l3

l

2
t36 l3zl4ð Þ

{l4

l

2
t46l4

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

~

{1 1 0 0
l

2
t61

l

2
t61 0 0

0 {1 1 0

0
l

2
t62

l

2
t62 0

0 0 {1 1

0 0
l

2
t63

l

2
t63

0 0 0 {1

0 0 0
l

2
t64

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

l1

l2

l3

l4

0BBB@
1CCCA ð12Þ

We can now generalise the previous example to the case of a

linear chain of N rigid cylinders connected with ball-and-socket

joints with the first one anchored to the ground. We denote HH the

matrix JJMM{1JJ Tz
kcfmI

Dt
with the following properties:

HH11~
1

m1
{TT 6

1 z
kcfmI

Dt
ð13Þ

HHii~
1

mi{1
{TT 6

i{1z
1

mi

{TT 6

i z
kcfmI

Dt
iw1 ð14Þ

HHiiz1~{
1

mi

{TT 6

i and HHiiz1~HHiz1i ð15Þ

HHij~0 j{ij jw1 ð16Þ

Using the following decomposition LLDDLLT for the matrix H
where L is a block lower matrix with block identity matrix on the

diagonal and where DD is the block diagonal matrix it is easy to

show that LLij~0 for j{ij jw1. From these we get the following

equations:

DD1~HH11 ð17Þ

LLiz1i~DD{1
i HHiz1i ð18Þ

DDi~HHii{LLiz1iDDiLLT
iz1i iw1 ð19Þ

In order to solve the linear system of equations Hl~X we

define l0~DDLT l and solve the problem Ll0~X in an iterative

way:

l1’~X1 ð20Þ

li’~X i{LLii{1li{1
0 iw1 ð21Þ

and we get the final solution for l by solving the problem

l0~DDLT l:

lN~DD{1
N lN ’ ð22Þ

li~DD{1
i li’{LLiz1iliz1 ivN ð23Þ

The method explained here is the exact solution of the problem

HHl~X where no collisions are present in the system. With this

exact resolution the simulation is faster than the SOR algorithm

(NSOR~100 and vSOR~1:7) with a gain of 4.

Simulating DNA molecules under magnetic tweezers
To model a DNA molecule, we build a linear chain of rigid

cylinders of length l~3:34 nm each, corresponding to 10 base

pairs (10 bp), which amounts to the double helix pitch. We

(11)

Simulating DNA with Physics Engines
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connect the cylinders to each other by ball-and-socket joints. The

radius of the cylinders is set according to the salt buffer

concentration of the experimental data we compare with. Indeed,

since the DNA molecule is highly negatively charged, DNA-DNA

electrostatic repulsion affects the double helix response in single

molecule experiments [9,24–27]. This effect can be easily and

implicitly included in simulations and theoretical models by

introducing an effective DNA radius r~r0zrel where r0 is the

crystallographic radius of the DNA double helix and rel accounts

for the DNA-DNA electrostatic repulsion [28–31]. It turns out that

rel may be set equal to the Debye length ld of the salt buffer

solution. As ld~10=
ffiffiffi
c
p

with c the salt concentration given in

mmol and ld in nm, we set the effective radius to r~2 nm in

100 mmol monovalent salt buffer for comparison with the

reference experimental data of Mosconi et al [32]. Alternatively

we use an effective radius r~4 nm to fit the experimental data

obtained in 10 mmol monovalent salt buffer by Smith et al [1].

We performed all our in silico single molecule experiments with a

DNA molecule of contour length L~1 mm. The corresponding

number of DNA cylinders in the chain is therefore N~300. The

DNA molecule is anchored, at one end, to a planar surface

(mimicking the microscope coverslip), and at the other end, to a

rotatable bead (mimicking the magnetic bead). We set the bead

radius to L=2p in order to prevent the DNA from looping around

it. At both ends of the DNA chain, the rigid cylinders are tangent

to their attachment surface.

The final problem that remains to be addressed is how to obtain

a correct definition of the bending and twisting behavior of DNA.

We have solved this problem by a special choice of the connecting

joints and by introducing appropriate restoring torques reacting to

the bending and twisting deformations. This has been done based

on the bending and twisting energies that are defined according to

the usual expressions bEb~gb 1{cos hð Þ and bEt~gtw
2=2

respectively. The rigidity constants gb and gt are related to the

bending and twisting persistence lengths p and t respectively,

through the following equations:

L gbð Þ~Scos hT ð24Þ

Scos hT~
2p{l

2pzl
ð25Þ

gt~t=l ð26Þ

where L is the Langevin function (see supplementary Text S1).

The bending angle h[ 0,p½ ½ and twisting angle w[ {p,p½ � are

related to the standard Euler transformation ZXZ and are given

by

cos h~tT
1 t2 ð27Þ

1ztT
1 t2

� �
cos w~mT

2 m1z~mmT
2 ~mm1 ð28Þ

1ztT
1 t2

� �
sin w~mT

2 ~mm1{~mmT
2 m1 ð29Þ

where ti is the tangent vector of cylinder i, mi a vector normal to ti

and ~mmi~ti6mi. These three vectors are the principal axis of

cylinder i.

We finally get the following expression for the global restoring

torque between two connected DNA segments (see supplementary

Text S1 for the complete derivation of this equation):

bCbzt~gbt16t2z
gtw

1zcos h
t1zt2ð Þ: ð30Þ

We recall that, for DNA, estimates of the bending persistence

length give p~50 nm for 10{500 mmol salt buffer (see Refs.

[1,33–35]); whereas estimates of the twisting persistence length

give t~95 nm for 10{100 mmol salt buffer [9,32]. According to

the size l~3:34 nm of the unit cylinder we find gb~15:5 and

gt~28:4.

Langevin dynamics and global thermostat
implementation

Although well adapted to mechanical simulations, ODE lacks

coupling to a thermal bath. As physics engines impose to deal with

dynamics equations including inertial terms, in particular for

computing constraint forces (collected in F c), we need to turn to

some implementation of stochastic isothermal molecular dynamics

Figure 2. Global thermostat efficiency test. Complementary autocorrelation function 1{CRR(S?t) of the end-to-end distance of a DNA
molecule simulated with the global Langevin thermostat (black) compared with the same function simulated with the local Langevin thermostat
(red). S?t is the dimensionless lag-time with S? the thermostat coupling frequency. The DNA molecule is composed of N~300 rigid cylinders of
radius r~2 nm and l~3:34 nm. The other parameters of the simulation are given in Table 1. Cylinders are connected by ball-and-socket joints. The
chain ends are free to diffuse here.
doi:10.1371/journal.pcbi.1003456.g002
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in order to thermalize the system: isothermal to simulate the system

at constant temperature, stochastic to ensure ergodicity. The

corresponding algorithms are all related to Langevin dynamics

and can be cast into local and global thermostats. In local

thermostats, such as standard Langevin dynamics, a correction

force including both a frictional term and a stochastic term is

exerted on each particle to drive the system to the canonical

distribution at a prescribed temperature. Global schemes of

Langevin dynamics are designed to minimize the perturbation

introduced by the thermostat on the Hamiltonian trajectory (so

called ‘‘disturbance’’ as defined originally in [36]), hence on the

dynamical properties, such as autocorrelation functions, and

related quantities, such as diffusion coefficients. In these globally

applied thermostats the stochastic term of the correction force

acting on each particle is proportional to the momentum of that

particle. Two main global algorithms have been designed so far: (a)

Stochastic Velocity Rescaling methods, most notably the ‘‘global

thermostat’’ introduced by Bussi and Parrinello [19], (b) the Nosé-

Hoover Langevin thermostat [37]. Here we first show how to

implement Langevin-Euler equation in the ODE software. More-

over we show that the global thermostat introduced by Bussi and

Parrinello is so remarkably adapted to this implementation that it

improves quite significantly the sampling efficiency with respect to

local Langevin dynamics (by two orders of magnitude in typical

situations), while preserving the time-dependent properties such as

autocorrelation functions. The sampling efficiency is defined as

usual as the number of independent configurations generated

during the time necessary to reach thermal equilibrium.

To begin with, we add to the ‘‘mechanical’’ forces FF an

additional, thermal contribution G~{SLzJ _WW containing a

frictional term {SL and a random force vector J _WW. S is the

matrix of the coupling frequencies to the thermostat, J the matrix

of white noise amplitudes and _WW a generalized vector of

normalized and independent Wiener processes. J and S are

related through the fluctuation-dissipation theorem, which reads

here

bJ?2
ii ~2M?

iiS
?
ii ð31Þ

where b~1=kBT with T the temperature of the thermal bath and

where the superscript ? denotes that the matrices J and S are

chosen to be diagonal in the principal axis body frame (where the

matrix MM is diagonal by definition). For simplicity, we choose to

fix all the S?ii to a common frequency S?. Note that (S?){1 is the

relaxation time of the thermostat, i.e. the autocorrelation time of

the kinetic energy (see supplementary Figure S1).

We then improve the sampling efficiency of this Langevin

dynamics by extending the ‘‘global thermostat’’ algorithm

designed by Bussi and Parinello in 2008 [10] to physics engines.

This algorithm allows faster yet correct sampling of the phase

space in the canonical ensemble. However, it is designed for the

translational degrees of freedom only. In order to apply it to an

articulated rigid body system, we therefore have to extend it to the

rotational degrees of freedom and adapt it to the ODE software.

To this aim, we replace the traditional Langevin-Euler correction

Table 1. Main set of parameters used for the DNA model and for the numerical simulations.

Entity Parameter Typical value Definition

DNA
parameters

r 2 nm DNA cylinder effective
radius in 100 mmol salt

4 nm DNA cylinder effective
radius in 10 mmol salt

l 3:34 nm DNA cylinders length
(10 basepairs)

N 300 number of DNA cylinders

(corresp. to a contour
length L~1 mm)

p 50 nm bending persistence length
in 10{100 mmol salt

t 95 nm twisting persistence length
in 10{100 mmol salt

gb 15:5 bending rigidity constant

(corresp. to bending persistence length : p~50 nm)

gt 28.4 twisting rigidity constant

(corresp. to twisting persistence length : t~95 nm)

m0 1.162 10{22 kg mass of each DNA cylinder
(10 basepairs)

Time units t0 1.7660 10{10 s natural system time unit t0~l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT

p
Simulation parameters Dt 0.000592 t0 simulation time step

S? 10 t{1
0

thermostat coupling frequency

kerp 0.8 ODE error reduction parameter

kcfm 10{9t0=m0 ODE constraint force mixing parameter (hard)

vSOR 1:7 SOR relaxation factor

NSOR 100 number of successive-over-relaxations

doi:10.1371/journal.pcbi.1003456.t001
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force (local thermostat) G by a corresponding global version ~GG,

which reads

~GG~S?
SET

E
1{

1

2bSET

� �
{1

� �
Lz

ffiffiffiffiffiffiffi
S?

bE

s
_ LL ð32Þ

Eq.(32) shows that ~GG is proportional to LL, so that the stochastic

force and torque globally associated with the thermostat is in the

same direction as LL. Hence, a free particle, i.e. a particle not

connected to any other particle, will move on a straight line

between two collisions. Note that, nevertheless, the particle will

undergo Brownian motion along this straight trajectory. The

global version of the Langevin dynamics minimizes the distur-

bance induced by the thermostat on the Hamiltonian trajectory

(equal to ~GGTMM{1 ~GG according to its definition in Ref. [19], but

extended here to the rotational degrees of freedom), nevertheless

retaining the same thermalization speed as usual Langevin

dynamics (see supplementary Figure S1).

When used in the framework of a velocity-based algorithm such

as ODE, the global thermostat presents a remarkable advantage.

This is because, in this case the global Langevin contribution ~GG is

decoupled from the constraint forces, in the sense that it cancels

out in the equations for FF c. More precisely, with our definition of
~GG (see Eq.(32)), the contribution JJMM{1 ~GG to the term JJMM{1FF in

Eq.(4) is always zero. In other words, ~GG not only minimizes the

disturbance of the Hamiltonian trajectory ~GGTMM{1 ~GG, but also does

not disturb the generalized constraint force FF c. Both effects

cooperate to achieve a dramatic acceleration of the simulation

sampling, that is, in the case of our model, approximately 100
times faster than with the local thermostat (see below ‘‘Preliminary

tests of validity and performance of the global thermostat’’ and

Figure 2). Importantly this acceleration is compatible with the

correct computation of dynamical properties, such as autocorre-

lation functions.

Parameter settings of our implementation of ODE
In all DNA simulations presented in this article, we choose the

length of the cylinders as the unit length l0~l, the mass of the

cylinders as the unit mass m0~m and the unit of thermal agitation

kBT as the unit of energy E0~kBT , from which we deduce the

unit of time t0~l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=E0

p
. The complete set of parameters of

our simulations is given in Table 1. We also choose to deal

collisions with a restitution coefficient equal to 1 without surface

friction. Hence, when two rigid bodies collide, the constraint force

l imposed by the contact joint that temporarily connects them is

directed along their common normal n at the contact point. We

finally choose an error reduction parameter kerp~0:8 and a

constraint force mixing parameter kcfm~10{9 t0

m0
.

Results/Discussion

Preliminary tests of validity and performance of the
global thermostat

We start to validate our methodology by simulating a DNA

molecule without any constraint applied on the bead (neither

stretching nor twisting). To this aim, we first check the

equipartition theorem. When the system is at thermal equilibrium,

its temperature is related to the kinetic energy through the

equation

2SET~SLLTMM{1LLT~ 6N{ncð ÞkBT ð33Þ

where nc is the number of non-redundant holonomic constraints.

This relation is standard since 6N{nc is just the number of

degrees of freedom (dof) of the system. Moreover the distribution

of the kinetic energy of the system at thermal equilibrium follows a

Boltzmann law and therefore reads:

P(E)~
(bE)n exp {bEð Þ

C(n{1)
ð34Þ

with n~dof =2{1. We checked this relation for a DNA molecule

of length L~1 mm coupled to the two different Langevin

thermostats, local and global respectively. The resulting histograms

are shown in Figure 1, confirming that: (i) the kinetic energy is

correctly sampled at thermal equilibrium with both thermostats, (ii)

there is indeed no energy stored in the joints, although these have

been softened by effective springs (see above the error reduction

parameter kerp in subsection ‘‘Introduction to physics engines’’).

We then quantified the simulation sampling efficiency by means

of the autocorrelation function CRR(t)~SR(tzt)R(t)T=(2Lp) of

the end-to-end distance R of a DNA molecule of length L~1 mm

coupled to the two different Langevin thermostats, local and global

respectively. Here the average is performed over the time t and t
denotes the lag-time of the autocorrelation function. A demon-

stration of the performance of the global thermostat in terms of

relaxation rapidity is given in Figure 2. Fitting the exponential

Figure 3. Comparison to force-extension curves. Red circles:
dimensionless stretching force bfp as a function of the mean relative
extension e~Sz0T=L. Here the radius of the cylinders is r~4 nm
corresponding to the 10 mmol monovalent salt buffer used in [1]. The
other parameters of the simulation are given in Table 1. For
comparison, the black solid line reproduces the analytical Worm-Like-
Chain force-extension approximation formula [35]. Black triangles
correspond to a numerical fit of the exact Worm-Like-Chain model
[34] with the same persistence length p~50 nm. Blue crosses: we also
show simulations in the limit case l~2p, with no torsional rigidity
(gt~0) and no collisions, and compare it to the theoretical force-
extension curve of a Freely-Jointed-Chain (FJC, blue solid line). The
statistical error bars on the simulation points are all smaller than the
symbol size.
doi:10.1371/journal.pcbi.1003456.g003
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decrease of both relaxation curves shows that with use of the global

thermostat we reach the saturation value at S?t~104 whereas this

value is reached at S?t~106 in the case of the local thermostat,

thus resulting in an acceleration factor of about 100 for this system

composed of N~300 articulated rigid bodies. Note that the

dimensionless lag-time S?t is equal to (S?t0)(Dt=t0)(t=Dt)^
0:006 nstep (see Table 1), with nstep~t=Dt the corresponding

number of time steps. Then a typical run using the global thermostat

is of the order of tens of millions of time steps, whereas it is of the

order of billions of time steps with usual Langevin dynamics. A

striking illustration of the sampling acceleration provided by the

global thermostat is also given in supplementary Video S1.

We also compute the tangent-tangent correlation function StT
i tjT

along the polymer with both local and global thermostats. No

significant deviations were found between both thermostats. Results

obtained with the global thermostat are plotted in supplementary

Figure S2 along with the corresponding theoretical curves.

A simple calculation shows that the tangent-tangent correlation

function decreases as exp({Dj{iDl=p), from which one can

calculate the average bending Scos hT. With the DNA persistence

length p~50 nm, this quantity amounts to 0:9355, to be

compared to the result from a fit of the simulation curves, giving

Scos hTsim~0:9359. The same comparison can be done for the

twist angle (with t~95 nm), for which the simulation average

Sw2Tsim~0:0352 matches the theoretical value 0:0352. These

comparisons show that our simulation results are in very good

agreement with the analytical formulae, thus validating (i) our

implementation of the bending and twisting rigidities and (ii) the

correct sampling of the DNA conformation space by means of the

global Langevin thermostat.

Comparison with the experimental DNA stretching
response

We then simulate reference force-extension curves, both

theoretical and experimental. We thus perform simulations at

given stretching force fe along the z-axis (normal to the DNA

anchor surface), and without torsional constraints on the magnetic

bead. In order to fit the experimental data obtained by Smith et al

[1] in 10 monovalent salt buffer, we set here the DNA radius (i.e.

the radius of the unit cylinders) to r~4 nm. The resulting force-

extension curve is given in Figure 3 where we plot (red circles) the

dimensionless stretching force bfp as a function of the dimension-

less mean relative extension e~Sz0T=L. Here Sz0T denotes the

mean DNA extension, i.e. the mean distance between the bead

and the anchor surface, at zero torsional constraint. For

comparison, we also plot (black solid line) the analytical Worm-

Like-Chain (WLC) interpolation fitting curve proposed by

Bouchiat et al [35] as well as the numerical solution of the

WLC model (black triangles) obtained by Marko and Siggia with

the same persistence length p~50 nm [34]. The simulation

reproduces pretty well the WLC behavior, thus validating our

implementation of the DNA bending rigidity. Note that, at low

Figure 4. Comparison to experimental extension-rotation curves. Mean relative extension e~SzsT=L as a function of the imposed overtwist
s for different stretching forces f in the range of 0:35{1:80 pN. We superimpose on to the simulation results (symbols) the experimental results from
[32] (lines). The statistical error bars on the simulation points are smaller than the symbol size.
doi:10.1371/journal.pcbi.1003456.g004
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forces, the extension saturates at a value greater than zero because

of the impenetrable ground and magnetic bead that both confine

the DNA molecule. This effect is more pronounced than in the

experimental curve [1] because the ratio of the bead radius to the

DNA length is higher in our simulations.

In Figure 3, we also show the results obtained in the limit case

l~2p, for which gb~0 (see Eqs.(24–25)), and when there are no

collisions. In this case we expect to observe a Freely-Jointed-Chain

response (with N~10 segments of 300 bp each). The analytical

force-extension relation for FJC is given by the well-known

expression as a Langevin function L 2bfpð Þ and it is also

reproduced in Figure 3. Again, the simulation results are in very

good agreement with the theoretical formula.

Comparison with the experimental DNA torsional
response

More interestingly, magnetic tweezers also allow the application

of a torsional strain on a single DNA molecule at constant

stretching force. This torsional strain is equal to the number of

turns of the magnetic bead around the z-axis due to the rotation of

the magnets. The number of turns of the bead is also equal to

DLk, the variation of the linking number of the DNA double helix

with respect to the intrinsic twist of the DNA double helix

Lk0~L=h0 with h0~3:57 nm the pitch of the DNA. And we

define as usual the DNA relative overtwist as s~DLk=Lk0.

Simulations at constant strain (fixed overtwist). We

simulate the rotation-extension behaviour of our DNA model by

imposing the bead rotation and compare to experimental data

from [32], where the mean relative extension e~SzsT=L is given

for different stretching forces as a function of the fixed relative

overtwist s (Figure 4). An example of the simulated dynamics at a

stretching force f ~0:74 pN and DLk~15 is shown in supple-

mentary Video S2. Again excellent agreement is observed between

the experimental bell-shape curves (also called ‘‘hat curves’’) and

the simulated curves. We went further to check the validity of the

DNA radius which is set here to r~2 nm according to the 100
monovalent salt buffer used in these experiments. To this aim we

refer to a series of papers by Neukirch and co–workers [9,24,25]

where they showed that the linear part of the ‘‘hat curves’’ can be

expressed as a function of the supercoiling radius r, the

superhelical angle h and the ratio p
t

of the twisting and bending

persistence lengths, as

SzsT
Sz0T

~1z
p

t

1

cos 2h
{1

� �
{

4pr

H sin 2h
s: ð35Þ

where r and h depend on the force applied on the bead.

The comparison between the experimental estimations of the

three parameters r, h, and 4pr=(H sin 2h) deduced from [32] and

the corresponding results from our simulations are given as

Figure 5. Torque computation. Twisting torque C as a function of the average overtwist SsT for stretching forces f ~0:74, 0:91 and 1:13 pN.
Symbols are the simulation results. Horizontal lines show the values of the critical torques estimated from the experimental results at the
corresponding stretching forces [32]. Oblique black dotted line: experimental results in the pure extended state (low SsT). Oblique blue dotted line:
asymptotic behavior of the twisting torque as a function of the simulated average overtwist in the pure plectonemic state (high SsT):
C SsTð Þ~kBT (2p=h0)T SsT{sp

� �
with T~49:60+0:77 nm and sp^0:0610+0:001; h0~3:57 nm is the pitch of the DNA double helix.

doi:10.1371/journal.pcbi.1003456.g005
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functions of the applied force in the three supplementary Figures

S3, S4, S5. The good agreement observed validates the value

applied to the effective DNA radius r~2 nm in 100 mmol

monovalent salt buffer.

Simulations at constant stress (fixed torque). In the

characteristic rotation-extension ‘‘hat curves’’ the DNA extension

decreases linearly as a function of s once it reaches a critical point

where the resulting applied torque crosses a critical buckling value

Cc. This linear decrease corresponds to the formation of

plectonemes: any additional turn beyond the buckling transition

is absorbed into the growing plectoneme without changes in the

torque [10]. As standard magnetic tweezers cannot measure

torques, the buckling torque can be only indirectly deduced by

integrating the change of the molecule extension with respect to

the applied force [32,38]. However, new set ups have recently

been proposed that enforce a torque and allow its measurement:

one of them uses an angular optical trap [39–41], another one a

magnetic nanorod coupled to a magnetic bead [42] and a third

one a soft magnetic tweezer [43]. These innovative experiments

confirm that the torque stays constant during the plectoneme

formation, and allow the investigation of the dependence of Cc on

the applied stretching force.

Our technique also allows us to simulate the DNA response

when both the stretching force f and the twisting torque C are

imposed, while the number of turns of the magnetic bead Lk is

free to evolve. In this case we compute the average overtwist SsT

for fixed values of the twisting torque C. Figure 5 shows C SsTð Þ
for three different values of the external force. A clear transition

from ‘‘pure extended’’ DNA (left part of the curves) to ‘‘pure

plectonemic’’ DNA (right part) is observed at (almost) constant

critical torque Cc. In the pure extended state, simulations and

experimental results [32] are in very good agreement. In this

regime C SsTð Þ is linear and the corresponding slope agrees with

theoretical predictions [10]. The estimations of the critical torque

obtained in [32] by integrating the change in the molecule

extension are reported as horizontal lines in Figure 5. Our

simulation correctly reproduces these values, including the

dependence of Cc on the stretching force f throughout the whole

range of salt concentrations explored (data not shown).

Note that we sporadically obtained two plectonemes in the same

DNA molecule during some simulation runs. Moreover we also

observed that plectonemes diffuse along the DNA molecule when

the global thermostat is started up (see supplementary Video S1).

Interestingly, both features - multiplectonemes and plectoneme

diffusion - have been recently observed experimentally [44] and

theoretically explained [45]. Note that nevertheless these obser-

vations have been obtained with a 21-kb DNA molecule, hence

with a much longer molecule than in our simulations (3-kb). This

may explain why we did not observe the ‘‘multiplectoneme phase’’

described in ([45]).

The increase of the average overtwist SsT observed at the

critical torque in Figure 5 corresponds to the formation of

Figure 6. Buckling behavior. Buckling instability with stretching force of f ~0:74 pN and six different torques 9:0,9:5,9:6,9:7,9:8,9:9 pN:nm. (Blue)
DNA relative extension. (Red) DNA overtwist. DNA relative extension and overtwist are monitored as a function of the number of simulation steps. All
these recordings have been obtained after thermal equilibrium has been reached.
doi:10.1371/journal.pcbi.1003456.g006
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plectonemes, until the entire DNA molecule is supercoiled. We

explored this critical regime by recording, at given f and C, the

time evolution of both the molecule length and overtwist. When

the critical torque is approached, a clear buckling instability

appears, with DNA fluctuating between the pure extended state,

characterized by a small supercoiling and a large extension, and a

pure plectonemic state, with opposite characteristics [10] (Figure

6). Note the anticorrelation between supercoiling and extension.

Beyond the buckling torque, DNA is in the pure plectonemic

state, and an increasing torque will tighten the molecule

supercoiling. Interestingly, while experimental results [32] do not

provide measurements of the average overtwist SsT in this pure

plectonemic state, our simulations allow to explore this regime. An

example of the simulated dynamics at a stretching force

f ~0:74 pN and twisting torque C~15 pN:nm is shown in

supplementary Video S3. We observe that our simulation results

deviate from Marko’s theoretical prediction according to which

C SsTð Þ~kBT tplecto (2p=h0)SsT, with tplecto the twist persistence

length of the plectoneme and h0 the pitch of the DNA double helix

[10]. Instead we get an affine law which may be cast in a similar

form: C SsTð Þ~kBT (2p=h0)T SsT{sp

� �
with T~49:60+

0:77 nm and sp^0:0610+0:001. The presence of the reference

value sp seems rather natural since this is the overtwist above

which the system enters the pure plectonemic state. The meaning

of the T length is an open question, but we notice that its value is

close to the DNA bending persistence length p.

Concluding remarks
The method developed here can conveniently describe all

physiological situations involving DNA positive supercoiling,

which are of main importance for DNA transcription or

replication. One limitation of the modeling developed so far is

that extensive modifications of the double helix structure are not

accounted for, e.g. base pair opening that occurs when negative

supercoiling is applied (DNA denaturation), or the S-DNA

transition observed at extremely high force, or the P-DNA

transition under very positive torque. Nevertheless this method-

ology gives an unparalleled opportunity to study more complex

biological systems, such as protein-DNA complexes: in particular,

we are currently addressing the modeling of magnetic tweezers

response of chromatin fibres [7], by associating our in silico DNA

model with a rigid body representation of the histone octamer.

More recently, in vivo experiments also enable the measurement of

the dynamics of chromosome loci in the cell nucleus [11,12,46].

Supporting Information

Figure S1 Autocorrelation function of the kinetic energy

CEE(S?t) (symbols) of a polymer of size L~1 mm and persistence

length p~50 nm and for three different cylinder lengths: l~3:34
(circles), l~6:68 (triangles) and l~10:02 nm (crosses). We

compare the theoretical exponential model exp {Dj{iDl=pð Þ for

the tangent-tangent correlation to our simulation results (blue

lines).

(TIF)

Figure S2 Average tangent-tangent correlation StT
i tjT (symbols)

for a polymer of size L~1 mm and persistence length p~50 nm
and for three different cylinder lengths: l~3:34 (circles), l~6:68
(triangles) and l~10:02 nm (crosses). We compare the theoretical

exponential model exp {Dj{iDl=pð Þ for the tangent-tangent

correlation to our simulation results (blue lines).

(TIFF)

Figure S3 Supercoiling radius r estimation from simulation results

(black circles) and from experimental results [32] (red triangles).

(TIFF)

Figure S4 Helical angle estimation h from simulation results

(black circles) and from experimental results [32] (red triangles).

(TIFF)

Figure S5 Slope estimation 4pr=(H sin 2h) from simulation

results (black circles) and from experimental results [32] (red triangles).

(TIFF)

Text S1 In this appendix we address the problem of how to

obtain a correct and computationally efficient definition of the

bending and twisting rigidities for a polymer in general and a

DNA molecule in particular.

(PDF)

Video S1 Illustration of the sampling efficiency of global versus

local thermostat. This 1 min 23 s video records the simulated

dynamics of a DNA molecule manipulated by magnetic tweezers

after thermal equilibrium has been reached. The stretching force is

f ~0:74pN and the number of turns of the bead is fixed to

DLk~15. From 0 to 20 s the simulation is run with Langevin local

thermostat. Then the global thermostat is started up at 21 s and

run until 41 s, strikingly accelerating the dynamics of the DNA

molecule. Moreover the plectoneme starts to diffuse along the

DNA molecule. Then the local thermostat is run again from 42 s

to 1 min 02 s, resulting in a dramatic slowing down of the

dynamics. And finally the global thermostat is started up again at

1 min 03 s and run until the end of the video at 1 min 23 s. The

DNA molecule is composed of N~300 rigid cylinders of radius

r~2 nm and l~3:34 nm. The other parameters of the simulation

are given in Table 1. This video is also available at http://vimeo.

com/51918121.

(AVI)

Video S2 Simulated dynamics of a DNA molecule manipulated

by magnetic tweezers with a stretching force f ~0:74 pN and fixed

number of turns of the bead DLk~15. This dynamics is

performed with the global thermostat after thermal equilibrium

has been reached. Note the diffusion of the plectoneme all along

the DNA molecule. The DNA molecule is composed of N~300
rigid cylinders of radius r~2 nm and l~3:34 nm. The other

parameters of the simulation are given in Table 1. This video is

also available at http://vimeo.com/51918378.

(AVI)

Video S3 Simulated dynamics of a DNA molecule manipulated

by magnetic tweezers with a stretching force f ~0:74 pN and fixed

twisting torque C~15 pN:nm. Global thermostat is used all over

the simulation. At initial time the number of turns of the bead is

zero and the torque starts to be applied to the bead (the rotation of

the bead can be followed thanks to the small orange tag on the

sphere). Because the applied torque (C~15 pN:nm) is well above

the buckling torque (Cc^10 pN:nm), the DNA molecule is in the

pure plectonemic state at the end of the simulation. The DNA

molecule is composed of N~300 rigid cylinders of radius r~2 nm
and l~3:34 nm. The other parameters of the simulation are given

in Table 1. This video is also available at http://vimeo.com/

51918151.

(AVI)
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