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Abstract Using a simple geometric model, we propose a general method for com-
puting the linking number of the DNA embedded in chromatin fibers. The relevance
of the method is reviewed through the single molecule experiments that have been per-
formed in vitro with magnetic tweezers. We compute the linking number of the DNA
in the manifold conformational states of the nucleosome which have been evidenced
in these experiments and discuss the functional dynamics of chromosomes in the light
of these manifold states.
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1 Introduction

According to the “central dogma” of molecular biology, the DNA double helix codes
for the sequence of all proteins in the cell. It also codes for non-messenger (siRNA,
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Fig. 1 Structure of half a
nucleosome. The Super Helix
Locations (SHL) have been
indicated as well as the
nucleosome and DNA radii. The
figure has been obtained starting
from the crystallographic
structure (Davey et al. 2002)

miRNA,...) and ribosomal (rRNA) RNAs. However, in eukaryotic cells, this may
represent as few as 2 % of the DNA sequence. It is then tempting to hypothesize
that the non coding DNA is used by the cell as a template on which a hierarchical
architecture is assembled in order to regulate gene expression. This architecture has
to deal with the mechanical properties of DNA. The latter can be simply described as
a screw, 2 nm in diameter, up to a few meters in length, with a plexiglass-like Young
modulus. Dealing with meters of this screw is a daunting problem since the nucleus
is only 10 μm wide.

In the nucleus of eukaryotic cells the basic units of this complex architecture is a
spool of proteins (histones) on which 147 DNA base pairs (bp) are wrapped in 1.7
turns, thus forming a nucleosome (Fig. 1). Nucleosomes are more or less regularly
spaced on the genome every 200 bp, forming a bead on a string array. Attractive
interactions between nucleosomes fold this array into a fiber about 30 nm in diam-
eter (Wolffe 1998). This fiber is then cross-linked to form loops (Byrd and Corces
2003; Labrador and Corces 2002). Chromosomal loops can enclose one single gene
or a set of genes. When a gene is silenced, the fiber in the loop is condensed and
buried inside the chromosome. When a gene is expressed, the corresponding loop
is translocated to a transcription factory (Cook 1999), consisting of hundreds of dif-
ferent proteins required for DNA transcription and RNA maturation. Among them,
RNA polymerases are devoted to the transcription of DNA into RNA. These enzymes
are loaded on the gene promoter in the initiation step. Then they start to transcribe
DNA into RNA following the double helix groove. During this elongation process the
DNA has to be screwed inside the RNA polymerase embedded in the transcription
factory and the chromatin fiber has to absorb the topological and mechanical con-
straints upstream and downstream from the transcription starting site (Lavelle 2007).
Indeed, when the RNA polymerase progresses along the DNA, the double helix in
front of it becomes overwound (positively supercoiled) whereas the DNA behind

123



DNA topology in chromosomes

it becomes underwound (negalively supercoiled). This effect is usually referred to as
twin-supercoiled-domain (TSD) model, first introduced by Liu & Wang (Lavelle 2007;
Liu and Wang 1987). These authors originally considered the case of prokaryotes;
however, the TSD model has been shown to be potentially relevant for eukaryotes as
well (Giaever and Wang 1988; Ljungman and Hanawalt 1992). Transcription-coupled
negative supercoiling in chromatin has been recently observed even in the presence of
active topoisomerases (Matsumoto and Hirose 2004), supporting the idea that super-
coiling accumulation in vivo may have a functional role and should not be removed. In
a previous work, we suggested e.g. that the relaxation of the supercoiling could be used
to rewind genes inside the RNA-polymerase, up to the promoter, in order to initiate a
new transcription round (Wong et al. 2009). Another hypothesis is that supercoiling
storage, and the concomitant chromatin conformational change, could be used by the
cell as a label to remind that the corresponding gene has already been transcribed.

The other chromosomal transactions, in particular replication, repair and recombi-
nation, all have to deal with such topological constraints. Understanding the dynamics
of the chromosome therefore requires to quantitatively evaluate the linking number of
the DNA in the chromatin fiber.

Topology of DNA is a long standing problem, since Vinograd et al. introduced the
idea that the conformation of DNA both in eukaryotes and prokaryotes is related to
topological quantities (Vinograd et al. 1965) about 50 years ago. The mathematical
definition of the three relevant topological quantities, i.e. the twist T w, the writhe Wr
and the linking number Lk has been stated soon after by (Fuller 1971, 1978).

After these original publications, a rather large amount of work have been made to
study the relationship between twist and writhe for closed and open curves, especially
in relation to torsionally stressed DNA including in presence of binding proteins
(Maggs 2000, 2001; Rossetto and Maggs 2003; Starostin 2005; White and Bauer
1988a,b; White et al. 1986). However, the question of defining the DNA topology in
the context of the chromatin fiber has never been addressed until we have shown that it
is possible to define a twist and a writhe for the 30 nm fiber (Barbi et al. 2005). These
two quantities share the same properties as the twist and the writhe of the DNA double
helix. In particular, their sum Wr f iber + T w f iber is equal to the linking number of the
fiber Lk f iber which is itself equal to the linking number of the DNA up to a constant.
One important question that we addressed in this first work is how to define a linking
number per nucleosome in a regular fiber. In subsequent publications we used this
results to interpret experimental data (Bancaud et al. 2006, 2007; Recouvreux et al.
2011) and to discuss the role of topological constraints in some biological processes
(Bécavin et al. 2010; Lavelle et al. 2011; Mozziconacci et al. 2006; Wong et al. 2007).
The full derivation of the fiber linking number was however not addressed in enough
detail in any of the previous publications. The purpose of the present paper is to give
the complete framework allowing for the calculation of the fiber topological quantities.
In particular, we explicitly derive one convenient expression for the linking number
per nucleosome in a regular fiber. Such definition can be obtained by choosing the
fiber axis as a preferential direction and by defining the DNA writhe with respect
to this special direction. This requires however to overcome the limitations related
to the non-additivity of the writhe, a question that has been extensively discuss by
Fuller (1978), and that we revisit from a slightly different point of view. This first part
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of our paper is organized as follows: we start by introducing the two-angle model used
to describe the fiber structure (Sect. 2). We then calculate the DNA linking number in
the framework of this model (Sect. 3) and we finally propose a fast, alternative method
for this calculation (Sect. 4).

The second part of the paper is devoted to the discussion of some biological ques-
tions and experimental results. We apply indeed our calculations to recent single
molecule experiments performed in vitro with magnetic tweezers (Sect. 5). In this
context, we also take into account the polymorphism of the nucleosome and evaluate
the topological quantities of the various nucleosome conformations. We finally switch
to a more biological perspective (Sect. 6) to propose physically plausible scenarios
for the different steps involved in transcription, focusing on: (1) the chromatin fiber
elongation and unwinding, associated with the translocation towards a transcription
factory during the initiation step, and (2) the absorption of topological constraints
upstream and downstream from the transcription starting site during the elongation
step.

2 The two-angle model

2.1 Definition of the model

DNA parameters We will start by recalling the main characteristics of DNA and
chromatin geometry and by defining the notation used in the following. We note x the
distance between two adjacent base pairs along the DNA axis, h the number of base
pairs in a DNA helix period, and p = xh the corresponding length along the axis,
or double helix pitch. In a relaxed DNA, the distance x equals 0.32 nm, but it can
vary, in particular for DNA under constraint. We denote r the double helix radius and
θ = 2π/h the twist angle between adjacent bps for DNA at rest. Note that only one of
the three variable p, h and θ needs to be assigned. We will indicate with h0, p0 and θ0
the number of base pairs, length and rotation angle for a straight and relaxed DNA in
the classical B form, i.e. without additional torsional or stretching stress (see Table 1
for numerical estimates).

Nucleosome structure Chromatin fibers are formed by a sequence of units called
nucleosomes. Each nucleosome contains a stretch of DNA of Nr ∼200 bp (called
the nucleosome repeat). Among them, nNCP base pairs are wrapped onto a protein
octamer, formed by proteins called histones. This results in a quasi-cylindrical structure
called the nucleosome core particle (NCP). In the NCP, the DNA double helix follows
a solenoidal left-handed helix for roughly 1 3

4 turns, this leading to a superhelical
geometry. We introduce the radius R of the solenoid, roughly equal to the sum of the
octamer radius and the DNA radius, and its pitch P .

The wrapped DNA segment is maintained in its conformation by tight interactions
with the histone proteins at 14 independent minor groove locations, usually referred
to as SHLs (for superhelix locations) ±0.5, ±1.5 · · · ± 6.5 (Luger et al. 1997) (see
Fig. 1). The semi-integer SHL numbers correspond to the crossing in the minor groove,
close to the octamer core (for the superhelix viewed from along its axis). Conversely,
integral SHL numbers correspond to crossings in the major groove.
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Table 1 Definition of the
geometrical parameters used
throughout the paper with their
reference values

a For free B-DNA
b Indicative value, see the main
text for a derivation

Parameter Symbol Value

Distance between adjacent bps x 0.32 nm/bpa

DNA double helix radius r 1 nm

Number of bps in a linker DNA period h

Linker DNA double helix period p

Twist angle in linker DNA θ

Number of bps in a NCP DNA period h′
NCP DNA double helix period p′
Twist angle in NCP DNA θ ′
Number of bps in a DNA helix period at rest h0 10.5 bp/turn

DNA double helix period at rest p0 3.4 nm/turn

Twist angle between adjacent bps at rest θ0 0.60 rad/pb

Nucleosome (histones+dna) radius R 4.18 nm

Nucleosome helix pitch P 2.39 nm

Number of bps in a nucleosome
(repeat length)

Nr 200 bp b

Number of bps in the NCP nNCP

Number of bps in the crystallographic NCP n0
NCP 133 bp b

Total NCP overtwist �twNCP

Dihedral angle between entering and
exiting linkers

α

Angle α in the crystallographic structure α0 0.94 rad

Dihedral angle between neighboring
NCP axis

β

Angle β for relaxed (untwisted)
linkers at α = α0

β0 46.2 rad b

The remaining Nr −nNCP base pairs form a DNA segment, called linker DNA, which
is almost straight and connects two neighboring NCP, this forming the characteristic
“beads on a string” structure of dilute fibers.

Helical periodicity and NCP overtwisting In the following, we will indicate with h
(resp. h′), p = xh (resp. p′) and θ = 2π/h (resp. θ ′) the DNA geometrical parameters
in the linker (resp. in the NCP). The action of external constraints can twist the linker
DNA, and thus modify its helical periodicity h.

More delicate, the DNA periodicity in the NCP is also influenced by the constraints
imposed by the SHL anchoring points on the DNA. In its crystallographic structure, the
nucleosomal DNA is bound at all the SHL so that its minor groove is perfectly phased
and oriented toward the NCP axis at the entering and exiting points. Nevertheless, the
precise number of wrapped base pairs nNCP can vary depending on the precise DNA
sequence. As a consequence, the helical periodicity h′ in the NCP (sometimes referred
to as the local hlocal parameter) can vary from nucleosome to nucleosome.

Due to the superhelical wrapping around a cylindrical support, the resulting helical
periodicity h′ differs in any case from the intrinsic DNA periodicity as measured
in the laboratory frame (Sivolob and Prunell 2004). In the case of a left-handed
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Fig. 2 The two angle model. a View down the NCP axis ai. b View down the linker direction ti−1. The
angle αi is the angle (ti−1, ai, ti) and βi−1 the angle (ai−1, ti−1, ai) standing for the twist (modulo 2π )
of the DNA linker. We also indicate the DNA radius r , the NCP radius R and pitch P , and the superhelix
azimuthal angle γ

superhelix and in the absence of additional twist in the wrapped DNA, it can be
calculated (Le Bret 1988) and is smaller than the intrinsic helical periodicity; if the
intrinsic helical periodicity equals h0 = 10.5 bp/turn in free DNA, one obtains h′ =
10.35 bp/turn.

In several cases h′ can be experimentally estimated. It corresponds indeed to the
spacing between the most internal regions that are in contact with the surface, or,
equivalently, between the most external regions of each strand. These latter regions
are maximally exposed to external attack, and h′ can e.g. be determined by in situ
digestion with DNase I. The lengths of the single-stranded fragments obtained after
histone extraction, measured by gel electrophoresis, are multiples of h′. Experimental
estimates of h′ spread over a wide range (9.7–11 bp/turn), even if most of them are
between 10.2 and 10.3, the mean of all values being 〈h′〉 = 10.24 bp/turn (Prunell
1998). Interestingly, these values indicate that some amount of overtwisting does
exist in NCPs (h′ < 10.35 bp/turn). This extra-twist in the NCP derives from the
precise number of base pairs included between the most external SHL: if the anchor-
ing point is move to the next DNA base pair on both the ±6.5 SHL, then nNCP
increases by 2 and consequently h′ increases so to keep fixed the entering and exiting
DNA phasing, by screwing an additional DNA length in the NCP. Note that, if the
DNA axis path is conserved, this also implies a decrease of the local inter-basepair
distance x .

The 30 nm fiber In the following, we will describe the fiber geometry by means of
the original two-angle model introduced by Woodcock et al (Woodcock and Dimitrov
2001), which assumes that all linkers are straight. In order to define the fiber geometry,
therefore, one only need to assign two angles per nucleosome, αi and βi (Fig. 2). In
the following, we will often deal with homogeneous fibers. In that case, we will
note αi = α, βi = β. Let us use this simplified notation for the following general
consideration.

The precise definition of α is the angle between the projections of the entering and
exiting linkers onto the plane perpendicular to the axis of the NCP; β is the dihedral
angle between neighboring NCP axis with respect to their connecting linker. In other
words, α is related to the wrapping angle of DNA around NCP (which amounts to
3π +α), while β accounts for the rotation of the next NCP with respect to the previous
one, depending on the linker helical phasing and length.
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The model allows α and β to assume any value in a continuous interval. For real
nucleosomes, the α angle is indeed quatified and assume discrete values depending on
how many SHL anchoring points are formed. A continuous α can somehow account
for the relative flexibility of the structure, induced by a slight linker bending, for
instance as a consequence of the binding of linker histones (proteins known to make
a chromatin fiber more compact by binding, and bending, its linkers). The classical
two-angle model can be adapted to these deformed fiber geometries by slightly varying
the α angle with respect to its canonical discrete values.

The referenceα0 andβ0 An important reference value for α can be obtained from
the X-ray crystallographic data. The best fit of the double helix axis as obtained
by crystallography leads to a superhelix path with a 4.18 nm radius and a 2.39 nm
pitch (Luger et al. 1997). The crystallographic superhelix corresponds thus to 1.65
turns, this covering 126 base pairs (the remaining 10 bp segments at both ends are
essentially straight). As a consequence, the angle α for this reference crystallographic
NCP structure, to which we will refer as α0, amounts to α0 = 1.65 2π − 3π = 0.3 π

or 0.94 rad (54◦).
In this crystallographic configuration all the 14 SHL anchoring points are bound,

this leading to 13 double helix periods in the wrapped DNA. Therefore, the total
number of wrapped base pairs in the crystallographic NCP structure can be derived
from the h′ estimate as n0

NCP = 13 h′ (where the apex indicate that we are considering
the reference α = α0 state. For the mean value 〈h′〉 = 10.24 bp/turn one obtains
n0

NCP � 133 bp.
The angle β depends on the degree of overtwist of the linker (accounted for equiv-

alently by θ or p), but also on the linker length itself. Evidently, the addition at fixedα

of one more base pair in the linker will lead to rotation of the next NCP of θ , this
increasing β of the same amount. Nevertheless, β depends on α in a non trivial way:
the position of the DNA grooves at the exiting point of the previous NCP introduces
indeed a phase to be taken into account. In the following we will deal in fact with the
problem of deriving the correct dependence of β on p. It will be useful to introduce a
reference value β0 for β, corresponding to the the crystallographic NCP structure with
relaxed (untwisted) linkers. As we have seen, in this case α equals α0, and exactly
n0

NCP = 13 h′ bp are wrapped into the NCP. All the anchoring points are bound, so
that the DNA minor groove exactly face the inner NCP core at both the entry and exit
points of each NCP. Thus, no phase shift affect the calculation of the linker twist and
we can write

β0 = (Nr − n0
NCP) θ0 = 2π

(Nr − n0
NCP)

h0
. (1)

By taking e.g. a repeat of Nr = 200 bp as a a reference value, we obtain β0 = 77 θ0 �
14.67 π (or 46.1 rad, corresponding to 7 turns plus about 120◦) Table 2.

2.2 Parameterization of the NCP left-handed helix

In the two-angle model, the repeat is composed of two parts: a superhelical DNA with
solenoidal shape in the NCP, followed by a straight linker DNA, eventually twisted.
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Table 2 NCP parameters for some different NCP configurations(∗)

Parameter Symbol 5S Mean values (∗) Untwisted NCP

Number of bps in a
DNA period
in the NCP

h′ (bp/turn) 10.13 10.24 10.38

DNA double helix
period
in the NCP

p′ (nm/turn) 3.24 3.28 3.32

Twist angle in NCP DNA θ ′ (rad/bp) 0.62 0.61 0.60

Total NCP overtwist �twNCP (turns) 0.32 0.17 0.

Based on the averaged 〈h′〉 given in Prunell (1998)

In order to calculate the contribution of these two parts, we first need to evaluate their
relative length. Given the repeat length Nr , the corresponding total nucleosomal DNA
length is L = Nr x . Let us denote by �(α) the length of DNA wrapped on the octamer
whose wrapping angle is 3π + α. The left-handed solenoid described by the DNA
axis is represented here by the parametric curve

r(σ ) =
(

−R cos

(
2πσ

P

)
, R sin (

2πσ

P
), σ

)
(2)

with σ the arc-length along the NCP axis, 0 ≤ σ ≤ 3π+α
2π

P . Let s be the arc-length
along the solenoidal curve, with ds = | dr

dσ
|dσ . The length of the wrapped DNA can

therefore be calculated as

�(α) =
∫

ds =
3π+α

2π
P∫

0

√(2π R

P

)2 + 1 dσ =
3π+α

2π
P∫

0

√
P2 + 4π4 R2

P
dσ

=
√

4π2 R2 + P2 3π + α

2π
, (3)

while the linker length amounts obviously to L − �(α).
The other important quantity that will be useful for the following calculations is

the is the tortuosity τ of the DNA axis wrapped in the NCP. In order to define it, we
need to introduce first the tangent, normal and binormal vector relative to the DNA
path, defined respectively by

t = dr
dσ

/ ∣∣∣∣ dr
dσ

∣∣∣∣ = P√
4π2 R2 + P2

2π R

P

(
sin

(
2πσ

P

)
, cos

(
2πσ

P

)
, 1

)
, (4)

n = dt
dσ

/ ∣∣∣∣ dt
dσ

∣∣∣∣ =
(

cos

(
2πσ

P

)
,− sin

(
2πσ

P

)
, 0

)
, (5)

b = t ∧ n = P√
4π2 R2 + P2

(
sin

(
2πσ

P

)
, cos

(
2πσ

P

)
,−2π R

P

)
. (6)
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The local torsion τL has been defined by White and Bauer (White and Bauer 1988a,b;
White et al. 1986) by the relation

db
ds

= dσ

ds

db
dσ

= −τLn (7)

that gives, after substitution of Eqs. 4–6

τL = − 2π P

4π2 R2 + P2 . (8)

The tortuosity of the DNA axis wrapped in the NCP corresponds then to the absolute
value of the total torsion T obtained by integrating the local torsion τL over one helical
turn of the DNA axis path. Following White and Bauer in (White and Bauer 1988a,b;
White et al. 1986):

τ = |T | =
∣∣∣∣∣∣

1

2π

�∫
0

τLds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1

2π

P∫
0

− 2π P

4π2 R2 + P2

√
P2 + 4π4 R2

P
dσ

∣∣∣∣∣∣
= P√

4π2 R2 + P2
(9)

3 Calculating the DNA linking number in the fiber

3.1 DNA twist

Although the twist is an extensive quantity, its calculation for DNA in a fiber is rather
subtle. Nevertheless, it can be done at the level of a single nucleosome as a function
of angles αi and βi , without need of considering the whole structure. For this reason,
we will neglect again the index i in most part of this section, for the aim of simplicity.

The calculation of the nucleosome twist presented here follows approximatively
White and Bauer’s derivation and use the results presented in their work (White and
Bauer 1988a,b; White et al. 1986). Let us denote by H the curve in space describes by
one DNA strand, and by C the DNA axis trajectory. In order to apply the White–Fuller
theorem to DNA in the fiber, one should therefore calculate the twist of H about C.
The sum of this quantity and of the writhe of the DNA axis C gives the topological
invariant linking number.

Nucleosomal twist and NCP overtwist Following again White and Bauer, and using
the notation introduced before, it is then easy to express the two twist contributions as
follows:

twlinker = L − �(α)

p
= Nr − nNCP

h
(10)

twNCP = �(α)

p′ − τ
3π + α

2π
= nNCP

h′ − τ
3π + α

2π
(11)
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The right side expressions in term of base pair numbers are more convenient in our
case, because of the fact that x , the proportionality parameter between h and p, can
vary in the overtwisted NCP.

In both twist amounts, the main contribution simply accounts for the number of
turns one DNA strand makes about the double helix axis. Note that, for α = α0, the
contribution to the NCP twist always amounts exactly to n0

NCP/h′ = 13, because there
are 13 double helix periods in the wrapped DNA. In order to obtain an expression for
any α we will assume that the DNA twist is uniform inside the NCP and write

twNCP = 13
nNCP

n0
NCP

− τ
3π + α

2π
(12)

The additional term for the NCP twist arises from the fact that the DNA axis is not
straight. This contribution corresponds to the twist of the NCP straight axis about the
DNA helix axis (White and Bauer 1988a,b; White et al. 1986), or, in other words, to
the twist induced by the shape of the DNA axis path on a untwisted (Frenet) ribbon
following the same path. It is accounted for by the tortuosity parameter, and its negative
sign derives from the left-handedness of the NCP helix.

It can be useful to determine an expression for the overtwist of a particular nucle-
osome to compare it with experimental data. In general, the experimental result can
be expressed in terms of the overall NCP overtwisting �twNCP, i.e. the difference
between the twist of the wrapped DNA (taken at α = α0) and the twist of a straight
and relaxed DNA stretch of same length. From Eq. 11 one gets

� twNCP = 13 − n0
NCP

h0
− τ

3π + α0

2π
(13)

(see Table 1 for reference values). We stress again that, given the crystallographic
form of the considered NCP, � twNCP is a constant, which only depends on the exact
number n0

NCP of base pairs between the two external SHL at α = α0.

Relation between β and the twist
The total twist of a nucleosome is therefore given by the sum of the two contributions

Eqs. 10 and 11. In order to introduce an explicit twist dependence on β, we will
calculate tw and β as a function of the wrapped base pairs nNCP, then recombine the
two expressions.

Let us start with the simpler case when α = α0. From Eqs. 10 and 11 we get
immediately, for a given linker period h,

tw(α0, h) = (Nr − n0
NCP)

1

h
+ 13 − τ

3π + α0

2π
(14)

where we had explicitly indicated the dependence on α and p. As already noticed for
β0, the angle β is simply expressed at α = α0 in terms of the linker length as

β(α0, h) = (Nr − n0
NCP)

2π

h
(mod 2π). (15)
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Therefore, at α = α0 we can write

tw(α0, h) = β(α0, p)

2π
+ 13 − τ

3π + α0

2π
(mod 2π). (16)

It is possible to get rid of the (modulo 2π ) limitation in the previous expression if
β(α0, p) is close enough to β0. In this case, we have at a time

(Nr − n0
NCP)

2π

h
= β(α0, h) + 2kπ and (17)

(Nr − n0
NCP)

2π

h0
= β0 + 2kπ (18)

with the same k.
After a little algebra, this leads to

tw(α0, h) = β(α0, h) − β0

2π
+ � twNCP + Nr

h0
(19)

where � twNCP is given by Eq. 13 and Nr/h0 represents the twist of a free DNA
segment of equal length.

We need now to address the general case of α �= α0. The question is how the twist
tw and β angle will vary if DNA is further wrapped, or unwrapped.

For aim of clarity, we start by considering the case of a double helix wrapped on
a cylinder without tortuosity, i.e. wrapped on a perfect circular path, with τ = 0.
In this case the variation dβ/2π equals the variation of twist d tw, as we will now
demonstrate. If no additional twist exists in the NCP, the angle β is always equal to
the rotation angle around the linker axis leading the contact reference frame in �(α) to
coincide to the reference frame in L . The wrapping of a DNA length d� will simply
rotate the contact frame from the position � to � + d� around the NCP axis. This
transformation induces a rotation of the (� + d�, L) linker segment around the NCP
axis too, and therefore it does not modify the angle β. Nevertheless, in presence of an
additional NCP twist, i.e. when h �= h′ and p �= p′, the segment (�, � + d�) change
its twist rate while wrapped, this leading to a rotation of the next par of the linker and
therefore to a variation of β of

dβ

2π
=

(
1

p′ − 1

p

)
d� =

(
1

h′ − 1

h

)
dnNCP. (20)

If τ = 0, this is exactly equal to the twist variation: dβ/2π = d tw. Let now consider
the current case where the double helix wraps following a left-handed helical path and
the tortuosity τ is therefore nonzero. The twist variation should thus account for the
tortuosity effect and we simply get

d tw =
(

1

h′ − 1

h

)
dnNCP − τ

2π
dα. (21)
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On the other hand, the variation dβ is not affected by the left-handed tortuosity, so that
we obtain

d tw = dβ

2π
− τ

2π
dα. (22)

To understand why β is unchanged, it could be useful to refer to the case of a ribbon
wrapping onto a cylinder following a left-handed helical path. As long as the helical
path is regular, the extremities of the ribbon stay oriented exactly in the same way
with respect to the cylinder axis when wrapped. In the same way, wrapping DNA onto
a NCP does not affect by itself the orientation β of the next NCP with respect to the
axis of the previous one. At given p, only the variation of twist rate between the NCP
and the linker (h �= h′) influences the value of β while α is changed.

By integrating Eq. 22 we get

tw(α, β) = β

2π
− τ

2π
(3π + α) + C , (23)

To get the integration constant C we calculate Eq. 23 at α = α0 and compare the result
to Eq. 19. This leads to C = � twNCP − β0/2π + Nr/h0 + τ(3π + α)/2π , and we
finally get the expected expression of the nucleosome twist as a function of α and β:

tw(α, β) = β − β0

2π
− τ

α − α0

2π
+ � twNCP + Nr

h0
. (24)

Note that the previous result is immediately generalized to the case of local αi �= α

and βi �= β, simply by replacing α and β in Eq. 24.

Relaxed linker constraint If DNA linkers are too short with respect to the twist per-
sistence length, then they cannot absorb a relevant amount of twist because of the too
high energy cost. Therefore, one can be interested in being able to change the fiber
parameters in such a way that the linker twist is always zero. This constraint is of
course simply expressed by the condition h = h0. In terms of β, we find from Eqs. 1
and 20 that one should chose the relaxed β angle following the relation

βrelaxed = β0 + 2π

(
1

h′ − 1

h0

)
[nNCP − n0

NCP]. (25)

Relative twist In general biological applications it is usual to refer to a relative DNA
twist, i.e. to calculate the difference between the total twist tw and a reference twist
tw0, which corresponds to the twist of a straight and relaxed B-DNA of the same
length. In our case, the reference nucleosomal value can be written as

tw0 = Nr

h0
(26)

i.e. as the last term in Eq. 24. The relative twist is directly obtained as
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� tw(α, β) = tw(α, β) − tw0. (27)

We can now come back to the case of an extended fiber containing N nucleosomes,
not necessarily identical. As previously mentioned, the twist is an extensive quantity:
therefore, the total relative fiber twist is simply the sum of all the nucleosome twists.
If αi and βi are the two-angle model parameters characterizing the i-th nucleosome,
then, using Eq. 24, the total relative twist of DNA in the fiber is:

� T w =
N∑

i=1

(
βi − β0

2π
− τ

αi − α0

2π
+ � twNCP

)
. (28)

3.2 DNA writhe

Generalities about writhe calculation Let us denote r(s) any closed curve with curvi-
linear coordinate s ∈ [0, L]. As a measure of the curling of the curve in space, writhe
essentially depends on its unit tangent vector, t(s) ∝ dr

ds (s). The computation of the
writhe for a closed curve r(s) of length L and tangent vector t(s) is already a rather
complicated task. It is generally evaluated through a double integral according to a
method based on Gauss theorem, whose reads

Wr = 1

4π

L∫
0

L∫
0

(r(s1) − r(s2)) · (t(s1) − t(s2))

|r(s1) − r(s2)|3 ds1ds2. (29)

The Gauss integral can be efficiently integrated numerically. Nevertheless, we will
use here the alternative method introduced by Fuller (Fuller 1978), which has the
advantage of a direct geometrical interpretation and of a more straightforward gen-
eralization to open curves (Starostin 2005). We will show how the Fuller approach
can be developed, for the case of composed, quasi-periodic curves as those of inter-
est here, so to obtain an effective scale separation that simplifies the calculation
considerably.

Consider again the unit vector tangent to the curve, t(s). The tangent vector vertex,
T (s), lies on the unit sphere and, as s varies from 0 to L , it describes on this sphere a
closed curve, called tangent indicatrix (Maggs 2000, 2001). Note in particular that a
straight segment in space corresponds to a fixed point on the sphere, and that a local
bent is represented by a geodesic arc connecting the entering and the exiting tangent
vectors at the bending point (Maggs 2000, 2001). Fuller’s first theorem states that the
writhe of the curve r(s) can be calculated from to the signed area A enclosed by the
tangent indicatrix T (s), namely Wr = A/2π − 1 (mod 2). The congruence modulo 2
represents a first difficulty for a complete writhe calculation. Anyway, Fuller’s second
theorem (Fuller 1978) permits to get rid of this congruence, if one calculates the writhe
difference between two closed curves, r1(s) and r2(s), under a set of hypotheses that
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we will discuss in a while. This difference can be expressed as a single integral, which
has the form

�Wr = 1

2π

L∫
0

t1(s) ∧ t2(s)

1 + t1(s) · t2(s)

d

ds
(t1(s) + t2(s))ds (30)

Some attention has to be payed in applying this formula. The hypotheses of the theo-
rem impose indeed that one of the curves can be obtained from the other by a continuous
deformation in space such that (1) at any point along the curve and at any moment dur-
ing the transformation, the tangent vector should not assume opposite direction with
respect to any other intermediate state, (2) the curve is non-self-intersecting all along
the transformation, and (3) the tangent to the curve varies continuously during the
transformation. We will come back to these hypotheses and discuss the applicability
of the theorem to our case in Sect. 3.4.

Provided these conditions, it is possible to show that the integral to be calculated
corresponds geometrically to the area S swept out by the unique shortest geodesic
arc from the running point T1(s) to the running point T2(s) on the unit sphere (Fuller
1978). The writhe difference of Eq. 30 simply amounts therefore to S/2π .

It is useful to note that, if one of the curves can be chosen as a straight line, then
its tangent vector defines an unique point C on the sphere. In this case, the difference
of writhes is given by the area swept out by the unique shortest geodesic arc from
the fixed point C to the running point T (s). Of course, the direction of the straight
line (the point C) can be chosen arbitrarily to some extent, provided that the theorem
hypotheses are not violated.

Further difficulties arises for the calculation of the writhe of an open curve. Except
for the case when the initial and final tangent vectors t(0) and t(L) coincide, the calcu-
lation is rather subtle. We follow the procedure outlined by Maggs (Maggs 2000, 2001)
to obtain a consistent measure for the writhe by closing the open tangent indicatrix
with a geodesic arc.

Writhe of a straight regular fiber The chromatin fiber a quite regular structure com-
posed by almost identical repetitive nucleosomes. It would therefore be helpful if one
could calculate its writhe from the writhes of the individual units. However, the writhe
is known to be non-extensive and, as shown by Starostin (Starostin 2002)1, the total
writhe of a curve is given by the sum of the writhes of its parts plus the surface of the
spherical polygon composed by the set of geodesics (Fig. 3) closing each part. How-
ever, as shown by Fuller (Fuller 1978), under some hypotheses (that reflect those of the
second Fuller theorem discussed above) the writhe of a given curve can be expressed
as the writhe of a reference curve plus a sum of locally determined writhe differences,

1 The 2002 work of Starostin has been published in 2005 (Starostin 2005), but the preprint version contains
more material than its published version, and in particular a whole section devoted to the writhe additivity,
to which we refer in our paper.
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Fig. 3 A schematic view of the writhe calculation for an open curve. The curved line on the sphere represents
the tangent indicatrix of the corresponding open curve in space, the initial and final tangent vector vertexes
going from point A to point C . The curve writhe is calculated by closing it with the geodesic AC . If the
curve is separated into two parts, then the writhe (times 2π ) can be calculated as the sum of the surfaces
of the two parts, each closed by an indicatrix (dark grey areas) plus the surface of the spherical triangle
formed by the three geodesics AB, BC , C A. Note that all the surfaces are signed: positive if the border
curve is followed anti-clockwise, negative if it is followed clockwise. The overall surface for the case in
figure is therefore the area enclosed by the tangent indicatrix ABC and the geodesic C A, as expected

each of which expresses the effect of altering a single section of the reference curve.
In the following, we will derive an expression for the DNA writhe per nucleosomes
by following an original procedure, based on the Starostin approach. The final result
is in agreement with the mentioned Fuller theorem and allows to the calculation of the
DNA linking number in a fiber as the sum of the linking number of the fiber “carrying”
structure plus the nucleosomes contributions.

In the case of a chromatin fiber, the DNA indicatrix T (s) can be naturally divided
into N parts, namely the N nucleosomes, in correspondence to ti = t(si ), the direc-
tion of the (straight) linker i . Denote by Ti the point on the unit sphere that corre-
sponds to ti . The total writhe of the DNA in the fiber is then given, accordingly to
Starostin (2005), by the following addition rule:

Wr =
N∑

i=1

wrNCP(αi ) + ST0T1...TN

2π
. (31)

Here, wrNCP(αi ) is the writhe of the i-th nucleosome whose indicatrix had been
closed by a geodesic, while ST0T1...TN /2π is the area enclosed in the spherical polygon
of vertices T0, T1 . . . TN , and represents the writhe of the “carrying” structure formed
by the sequence of linkers. In the following, we will refer to this structure as to the linker
skeleton. Striking speaking, the previous formula is only valid modulo 1. Nevertheless,
if wrNCP(αi ) can be calculated exactly and ST0T1...TN < 2π , the writhe results to be
a continuous function of i . In absence of self intersections, it is therefore possible to
use Eq. 31 to get the exact writhe of the curve (Starostin 2005). We will now discuss
separately the two terms of Eq. 31.

The single nucleosome writhe wrNCP(αi ) should be calculated as the surface
enclosed by the restriction of the tangent indicatrix between Ti−1 and Ti and the
closing geodesic Ti−1Ti . The calculation is easily carried out as it reduces to the
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writhe of a left-handed helix segment. For a nucleosome of a given entry-exit angle
αi , given the radius R and the pitch P , one gets2

wrNCP(αi ) = 1

π

[
arctan

(
τ tan

(
3π + αi

2

))
− τ

3π + αi

2

]

+round

(
3π + αi

2π

)
, (32)

where round(x) is the nearest integer to x . The term round(3π + αi/2π) in Eq. 32
accounts for the integer part of the twist, i.e. for the full number of turns made by the
DNA axis around the NCP. Note that wrNCP(αi ) only depends on αi .

Let us proceed to a simple verification of the validity of Eq. 32. When the wrapping
angle 3π+αi is set to 2π , one obtains wrNCP(αi ) = 1−τ with τ = P/

√
P2 + 4π2 R2.

This correctly amounts, as expected, to 2π−1 times the surface of the spherical segment
delimited by the circle described by T (s), i.e. the “parallel” identified by the superhelix
azimuthal angle γ , with tan (γ ) = P/(2π R), and τ = sin (γ ).

An alternative expression for the nucleosome writhe arises from a different calcu-
lation of the corresponding surface. This surface can be evaluated indeed by taking
a fraction (3π + αi )/2π of the spherical segment area, and by completing it by the
surface of the spherical triangle identified by the entry and exit linker tangent vectors
and by the NCP axis. Following this procedure, one can write

wrNCP(αi ) = (1 − τ)
3π + αi

2π
+ STi−1Ti ,Ai

2π
. (33)

The area of the spherical triangle Ti−1T1 Ai could then be calculated by the usual
procedure: the signed area of a spherical triangle ABC (unit vectors a, b, c) has
absolute value equal to the sum of the angles ( � ABC + � BC A + � C AB − π) and
sign given by sgn((a ∧ b) · c):

SABC = sgn((a ∧ b) · c) (� ABC + � BC A + � C AB − π). (34)

The second term ST0T1...TN in Eq. 32 is the non-extensive contribution, given
by the signed area of the spherical polygon connecting all points Ti that correspond
to the linker directions. Nevertheless, it should be very useful, at this point, to “remove”
the non-extensivity by an appropriate partition of this area. In principle, ST0T1...TN can
be computed as the sum of the areas of the spherical triangles T0Ti−1Ti (1 < i ≤ N ).
We observed moreover that, once chosen an arbitrary point C on the unit sphere
(corresponding to some unit vector c), the area ST0T1...TN can also be written as

ST0T1...TN =
N∑

i=1

SCTi−1Ti + SCTN T0 , (35)

2 Compare with Eq. 16 in Starostin (2005). Incidentally, we point out an error in the round term of that
formula, that should be rewritten as +round(aL/2π).
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CTi−1Ti being the spherical triangles formed by the three geodesics joining points
C , Ti−1 and Ti . This partition allows a natural decomposition of the writhe into sin-
gle nucleosome contributions: up to a boundary term SCTN T0/2π , the writhe can be
expressed as

Wr =
N∑

i=1

wri |C , (36)

where we define the writhe wri |C of nucleosome i with respect to point C as

wri |C = wrNCP(αi ) + SCTi−1Ti

2π
. (37)

To summarize, the introduction of a reference point C and an appropriate redefinition
of the writhe of each nucleosome with respect to this point allow us to express the
total writhe as an extensive quantity.

Moreover, the introduction of this reference point allows a further and important
simplification. Up to now, the spherical triangle contributions SCTi−1Ti differ from
each other. Let consider, as the simplest case, a straight, perfectly regular fiber, with
all the angles αi (respectively, βi ) equal to a common value α (respectively, β). Even
in this case, wri |C varies from nucleosome to nucleosome, in spite of the fact that
wrNCP(αi ) are the same for all nucleosomes. Nonetheless, there exists a special point,
C = F , defined by the director of the fiber axis, for which

SFTi−1Ti = S(α, β) ∀i. (38)

For this particular choice, then, we can define an effective writhe per nucleosome,
wr(α, β) such that

wri |F = wr(α, β) = wrNCP(α) + S(α, β)

2π
(39)

and Wr =
N∑

i=1

wri |F = N wr(α, β). (40)

We reiterate that the effective writhe per nucleosome wr(α, β) is not the bare writhe
of one individual nucleosome, the difference being the surface of the spherical triangle
FT0T1.

The particular choice of the reference point F3 leads thus to an expression for the
writhe which is not only additive, but also provides identical contributions for each
nucleosome. This supplies, at the same time, a consistent definition of the writhe per
nucleosome, a quantity which is independent of the fiber length N and is usually
referred to in the biological literature. The result, summarized by Eqs. 39 and 40, is

3 We note that the same viewpoint F was introduced by Crick (1976).
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also very useful from a practical point of view: it allows for the calculation the DNA
writhe in a fiber without need of integration or sum.

3.3 Writhe of a bent fiber

We will show now how the previous definitions can be extended to this more general
case of a smoothly bent fiber, with angles αi and βi slightly varying around their mean
values ᾱ and β̄. In Sect. 3.5, we will derive a corresponding linking number. We will
see how a separation of scale naturally arises from the generalization to bent fibers,
leading in turn to introduce a consistent definition for the writhe and twist of the fiber
itself.

We start by noting that, for a generic fiber, a local fiber axis Fi can be defined
for each i as the axis of a straight fiber characterized by constant angles α = αi

and β = βi , and containing ith nucleosome. It is therefore still possible to define an
effective nucleosome writhe as

wr(αi , βi ) = wri |Fi = wrNCP(αi ) + SFi Ti−1Ti

2π
. (41)

In contrast with the case of a regular fiber (Eq. 40), the total writhe is no more the sum
of the contributions wr(αi , βi ). Indeed, the surface of the spherical polygon T0T1...TN

indeed does not simply amounts to the sum of the spherical triangles Fi Ti Ti+1 defined
with respect to points Fi . We can anyway introduce again an external point C , and
write the spherical polygon surface as a sum of spherical triangles areas. The total
writhe finally reads

Wr =
N∑

i=1

wr(αi , βi ) +
N−1∑
i=1

SFi Ti Fi+1

2π
+

N−1∑
i=1

SC Fi Fi+1

2π
(42)

up to the boundary term SC FN F0 +SFN TN T0 F0 . Equation 42 generalizes the calculation
of the relative writhe to the case of an irregular fiber. In Sect. 3.6 we will be able to
give a geometrical meaning to the two additional terms in this equation. Note that
these terms vanish as Fi → F ∀i , i.e. for a straight fiber. In this case, Eqs. 41 and 42
coincide with 39 and 40, respectively.

3.4 Fuller theorem applicability and some precisions

Let us now come back to a more technical point. In the derivation of Eqs. 39 and 40,
we used areas on the unit sphere to calculate writhe. We are indeed in the frame of
the second Fuller’s theorem. In order to validate a posteriori our result for the straight
fiber, we have then to check if the Fuller’s theorem hypotheses are valid in this case.

The second Fuller’s theorem is supposed to give the writhe difference between two
states: we start therefore by defining, as a reference state, a straight DNA parallel to
the fiber axis, and we try to continuously modify it to obtain the final DNA path in the
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fiber. The first step of the transformation will be the bending of our DNA line to form a
sequence of straight segments oriented as the fiber linkers, i.e. forming the “carrying”
linker skeleton structure. Now, it is possible to show that all the possible regular linker
skeleton structures that can be obtained in the framework of the two-angle model are of
solenoidal shape (Ben-Haïm et al. 2001), where the fiber axis direction f (of vertex F)
is the direction of the growing helix. The linker directions Ti and the fiber direction F
then always belong to the same hemisphere. The transformation from the initial state
to this intermediate configuration is therefore possible without infringing the theorem
hypotheses: that tangent vector t(s) never happens to be oppositely directed to its
direction at any other transformation step, ∀s, without self-intersections all along the
transformation, and with the tangent to the curve varying continuously4.

The second intermediate step is the addition of small segments parallel to the fiber
axis at the location of each nucleosome. Again, this can be done in the framework
of the Fuller’s hypotheses due to the helical orientation of the linkers. The second
reference structure has therefore all linkers parallel to their final direction and all the
NCP DNAs replaced by straight DNA segments parallel to the fiber axis. Note that,
on the unit sphere, this leads to a polygon of zero surface, because all odd vertices
coincide with F . The writhe of this intermediate step is therefore zero, as that of the
initial straight DNA.

To obtain the complete fiber, we have now to replace each of the NCP segments by
the corresponding DNA path in the nucleosome. This can be done in two further steps:
first, by a distortion of the straigth segments into NCP helices whose axis is parallel
to the fiber axis ; then by rotating them to obtain their final orientation.

Now, NCP DNAs are also described by helices: the first distortion is therefore
allowed, since the NCP tangent vector describes a growing curve. The rotation step
may, instead, induce some violation of the theorem hypotheses. Note however that, in
the spirit of the approach outlined by Fuller (1978), the theorem only has to be respected
“locally”, since what is evaluated here is a writhe difference between a referring and
a final state and nucleosomes may be “treated” sequentially. The point is therefore to
ensure that during the rotation of one nucleosome to its final orientation, the tangent
vector to any of his points never happens to be oppositely directed to the fiber axis.
This is in fact ensured, with one single exception, by a geometrical properties of the
fibers. The NCP exhibits indeed pseudo twofold symmetry. The axis of symmetry
lies in the plane of the nucleosome disk (perpendicular to the superhelical axis), and
is called the dyad axis. In a fiber, the dyad axis is always perpendicular to the fiber
axis (Ben-Haïm et al. 2001). Therefore, the tangent vector always have a non-zero
component along the dyad axis, that is orthogonal to the fiber axis, with the exception
of the two points where the DNA path intersect the dyad axis. These two points are the
closest and farthest points on DNA with respect to the fiber axis, and are the unique
points where the tangent vector can be opposite with respect to the fiber axis. But this
only happens for a particular fiber structure, with almost horizontal nucleosomes axis.
With the exception of this pathological case, the required condition is verified.

4 The fact that in the skeleton structure the tangent vector presents discontinuous points may appear as a
limitation to the application of the theorem, but this problem may be easily solved by defining a correct
limiting procedure (Starostin 2005)
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Fig. 4 A schematic view of the writhe calculation for a nucleosome in a regular fiber. Scales and length
have been arbitrarily chosen for the sake of clarity. The curve represents the tangent indicatrix of DNA in
the fiber. Point Ti represent the vertex of the ith linker tangent vector. The circular part correspond to the
indicatrix of the DNA wrapping around the nucleosome. The point F is the direction of the fiber axis. The
surface S(α, β) of Eq. 38 corresponds to the spherical triangle FTi Ti+1. If the nucleosome axis A is taken
into account, the writhe per nucleosome wr(α, β) of Eq. 39 is thus given by 2π times the sum of the dark
grey and light grey areas in the figure

Havind started from the straight fiber axis, we then finally obtain the actual DNA
path in the fiber. Since the intermediate state has zero writhe, the final writhe is calcu-
lated as the sum of the writhes of all the nucleosomes with respect to their reference
(intermediate) state, which coincides with the fiber axis, as in the definition of the
writhe per nucleosome of Eq. 39 and as shown in Fig. 4.

We can conclude that Fuller’s second theorem applies, and the quantity Wr in Eq. 40
correctly gives the difference in writhe between the DNA in the given fiber and that of a
straight DNA, parallel to the fiber axis. This straight DNA will represent our referring
state. It is interesting to note that a further rotation in space of the reference straight
DNA again give no variation in writhe. This is also the reason why, in our derivation
of the total fiber writhe, any arbitrary point C (never opposite to linker directions) can
be used, in principle. It is easy to show by geometrical considerations that the choice
of the reference point only effects the boundary terms in Eq. 36.

3.5 The DNA linking number and the fiber twist

An expression for the DNA linking number According to our definitions, the linking
number of a straight unconstrained DNA of total length Ltot is Lk0 = Ntot/h0, i.e. it
just amounts to its natural twist. It is therefore straightforward to consider the relative
linking number of DNA in the fiber, Lk − Lk0. By using Eqs. 28 and 42 we get the
following expression for the relative DNA linking number

�Lk = Lk − Lk0 =
N∑

i=1

[
wr(αi , βi ) + βi − β0i (αi )

2π
− τ

αi − α0

2π
+ � twNCP

]

+
N−1∑
i=1

[SFi Ti Fi+1

2π
+ SC Fi Fi+1

2π

]
. (43)
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The expression of �Lk can be putted in a simpler form by noting that the results
of the preceding paragraphs allow the definition of a relative DNA linking number of
the i th nucleosome as

� lk(αi , βi ) = � tw(αi , βi ) + wr(αi , βi ) , (44)

where � tw(αi , βi ) comes from by Eqs. 24 and 27 and �wr(αi , βi ) = wr(αi , βi ) is
given Eq. 41.

We can therefore write the relative linking number of DNA in the fiber as

�Lk =
N∑

i=1

� lk(αi , βi ) +
N−1∑
i=1

SFi Ti Fi+1

2π
+

N−1∑
i=1

SC Fi Fi+1

2π
, (45)

where � lk(αi , βi ) is the relative linking number of nucleosome i calculated with
respect of the local fiber axis, and the latter sum two latter sums account for the fiber
axis variations.

3.6 From DNA to fiber topology

It is interesting to look for the topological meaning of the additional terms in Eq. 45.
A comparison with Eq. 35 shows that the very last term has exactly the same structure
of the skeleton contribution to the writhe, with linker directions Ti replaced by local
fiber axis directions Fi . Therefore, this term is nothing but the writhe of the fiber axis
with respect to the fixed point C , i.e. to a straight fiber. We will call it the fiber writhe
and denote it as WrF:

WrF =
N−1∑
i=1

SC Fi Fi+1

2π
. (46)

We can therefore identify �Lk with the linking number of the fiber itself, LkF. Hence,
the remaining terms in Eq. 45 must correspond to the twist of the fiber around its axis,

T wF =
N∑

i=1

� lk(αi , βi ) +
N−1∑
i=1

SFi Ti Fi+1

2π
, (47)

in order to satisfy the White–Fuller theorem at the level of the fiber, LkF = WrF +
T wF.

The fiber twist thus contains two terms. The first one amount to the sum of the DNA
linking number of the ith nucleosome lk(αi , βi ), i.e. the nucleosome lk contributions
“as if” it was inserted in the straight fiber of given αi and βi . Interestingly, this first
contribution can be interpreted therefore as a local fiber twist, similar to what discussed
for the DNA twist in the NCP. This suggests that the second term contribution to
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T wF may be associated to the fiber tortuosity. Indeed, the tortuosity τ is obtained by
integrating the local torsion τL = db/ds over the helical curve (Eq. 9).

We stress that the previous definition of the fiber topological quantities has an
important meaning either in vitro and in vivo. In magnetic tweezers micromanipulation
experiments, a fiber is fixed at both ends, to the glass support and the magnetic bead
respectively. The fiber linking number is then modified by rotating the beads of a
given number of turns. The fiber rearrangement should thus be compatible with the
imposed torsion. In living cells, on the contrary, transitions between compacted and
decompacted chromatin loops are observed. These loops are likely to be clamped at
their ends: in this case, fiber rearrangements should thus modify the fiber length at
constant linking number. It is therefore tempting to consider the fiber as a continuous
rod, so to define its twist and writhe in this standard frame. Nevertheless, the chromatin
fiber is a deformable object with internal degrees of freedom. The formal expressions
46 and 47 show how complicated a correct definition of the fiber writhe and twist is.

However, at least for the case of a straight fiber, simple topological considerations
suggest that the previous expressions should coincide with an intuitive definition of
the fiber twist and writhe. For instance, an intuitive definition of the fiber twist can be
given, at least for the case on a straight fiber. In this case, it should correspond to the
rotation angle of the fiber “top” with respect to the fiber “bottom”: one can consider
for instance the rotation of the last linker with respect to the first one, once projected
on the plane perpendicular to the fiber axis. For a curved fiber, it is instead the writhe
of the fiber axis which is easier defined, at least formally; on the contrary, it is more
delicate to obtain an intuitive but correct definition of the fiber twist. Our expressions
46 and 47 allows for a compromise between intuition and accuracy. They lead when
possible to results that can easily compared with the overall behavior of the fiber.

4 A fast method for the calculation of fiber linking number variations

4.1 Decimal part of a fiber linking number

The linking number of a given fiber is a number roughly of the order of the number of
nucleosomes and should be calculated as described in the previous section. Neverthe-
less, if one is only interested in the decimal part of this quantity, an alternative, faster
calculation can be performed. Moreover, this calculation applies to any open DNA
chain, following a given geometry in space, and therefore can be useful in studying
very inhomogeneous fibers as e.g. fibers with an arbitrary variable spacing between
nucleosomes.

Consider such an open DNA chain arranged in space following a given geometry
and possibly twisted. The curve described by the DNA axis is r(s) with s the arc-
length along the DNA. The tangent vector t(s) is defined as in Eq. 4, and follows
the tangent indicatrix on the unit sphere. If t(s) is discontinuous in some points, the
vertices corresponding to the two limit vectors will be closed by a geodesic arc. Note
that the DNA path r(s) is only needed in order to define the normal and binormal
vectors, defined in Eqs. 5 and 6. The normal vector n(s) in particular allows to define
an intrinsic ribbon following the DNA path r(s), and called the Frenet ribbon, a special

123



DNA topology in chromosomes

ribbon whose normal coincide with the principal normal vector to the curve. The DNA
ribbon, intended as the ribbon whose normal is e.g. directed from the DNA axis toward
the minor groove (or any other equivalent choice), does not coincide with the Frenet
one, and is generally much more twisted due to the DNA helical shape. Let us indicate
the DNA normal vector as x(s).

Let us indicate the Frenet ribbon, defined by r(s), t(s) and n(s), by R0,L . We
will start by closing it by a Frenet ribbon Rc

L ,0 build in such a way that its tangent
vector follows the geodesic between t(L) and t(0). The tangent vector to Rc

L ,0 is
therefore always on a plane, and the writhe of the closing ribbon is therefore zero.
Moreover, its twist also vanish because the twist of a planar Frenet ribbon is always
zero. Nevertheless, a contribution to the twist of the closed ribbon R0,L ∪ Rc

L ,0 arise
from the two connections at s = 0 and s = L . At these positions, the normal to the
closed Frenet ribbon is discontinuous: the derivative of the tangent vector is different
if calculated along R0,L or along Rc

L ,0. Let us indicate by n+(0), n−(L) the normal
vectors on the R0,L side and n+(L), n−(0) those on the Rc

L ,0 side. The connection
between the two ribbons involves therefore a local twist contribution that amount to

T wc =
� (

n−(0), n+(0)
)

2π
+

� (
n−(L), n+(L)

)
2π

(48)

where � (
v, w

)
represents the signed angle between vectors v and w This is the unique

contribution of the closing ribbon to the overall linking number of the closed ribbon
R0,L ∪ Rc

L ,0: Lkc = T wc. On the other hand, the linking number is an integer, as for
any closed curve. As a consequence, we get for the linking number LkFrenet of the
DNA Frenet ribbon R0,L

LkFrenet = integer − T wc (49)

The writhe contribution to the Frenet linking number LkFrenet exactly equals the
DNA writhe Wr , as it only depends on the geometrical path in space. On the contrary,
LkFrenet evidently does not account for the actual DNA twist T w. Indeed, the Frenet
normal vector does not coincide with the real DNA normal, as we have seen. In order
to correctly calculate the open DNA linking number, we therefore need to calculate
its twist, i.e. how the DNA normal x(s) rotate with respect to the Frenet local frame
defined by n(s). This quantity is obviously difficult to calculate, but its decimal part is
simply given by the relative position of the x(s) and n(s) vectors at the ending points
s = 0 and L . The exceeding twist �T w of the open DNA with respect to the Frenet
ribbon thus reads

�T w = integer +
� (

x(0), n+(0)
)

2π
+

� (
n−(L), x(L)

)
2π

(50)

= Lk − LkFrenet

All together, Eqs. 48, 49 and 50 allow the following expression for the linking
number Lk of the open DNA:
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Lk = integer +
� (

x(0), n−(0)
)

2π
+

� (
n+(L), x(L)

)
2π

(51)

where we have performed the difference between angles in Equation 50 and 48.
The previous formula enables us to calculate very simply the linking number of a

fiber or any other DNA arrangement modulo an integer. Of course, the method does not
allow for the calculation of the twist and writhe contributions separately. Nevertheless,
it can be useful in several cases. One first application is e.g. an independent calculation
of the NCP overtwisting of a crystallographic DNA. For this aim it is sufficient to
consider the DNA path inside the NCP, built the corresponding Frenet ribbon and
close it by a second Frenet ribbon as we just explained. At the entering and exiting
points, the DNA minor groove is always oriented toward the NCP axis, and we know
that the DNA twist around the Frenet ribbon amounts to 13 turns, which corresponds
to the integer in Eq. 50. On the other hand, the writhe wrNCP can in this case explicitly
calculated (see Eq. 32). For α = α0 we obtain wrNCP = −1.794. From the DNA
linking number expression 51 one can therefore deduce the NCP twist as

twNCP(α0) = integer +
� (

x(0), n−(0)
)

2π
+

� (
n+(L), x(L)

)
2π

− wrNCP. (52)

This expression allows to check the previous formula for the twist of the NCP Eq. 11
and represents an interesting alternative for its calculation.

4.2 Progressive calculation of a linking number variation

A second, important advantage of the calculation of the linking number decimal part
just introduced is the possibility of considering very distorted fibers through a progres-
sive calculation. Starting from a regular fiber whose linking number can be exactly
calculated, one can indeed modify it slowly toward a different configuration, and
calculate, step by step, a linking number variation δLk by mean of Eq. 51. If the
modification step is small enough to make the linking number variation always less
than 1, thus δLk can be integrated and the linking number of the final configuration
obtained. Interestingly, the detailed geometry of the deformed fibers could be ignored,
and only the position of the reference DNA normal and Frenet normal vectors at the
entering and exiting points are needed. This is particularly adapted to the study of fiber
micromanipulation experiments (see the next section).

4.3 Calculation of the linking number of a fiber without information on the linker
path

A final remark concerning the linking number calculation concerns the case where the
precise arrangement in space of NCPs in a given fiber is known, but the linker paths
are not. This case is practically relevant since the NCP arrangement can be obtained
experimentally, for instance by electron microscopy, by imaging highly compact fibers
reconstructed in vitro (Robinson et al. 2006). However, the obtained images do not
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give any information on the positions of linkers DNA and the modelling of the whole
fiber architecture still represents a debated problem (Ball 2008; Wong et al. 2007).
Interestingly, for the calculation of the fiber linking number, the exact arrangement of
linkers inside the fiber does not matter! Imagine indeed to start with the “real” fiber
geometry and to deform (bent, kink or twist) linkers, without cutting them and by
keeping the NCP in their initial position. The fiber extremities will not move, and the
transformation is therefore performed at constant linking number. The linking number
of the fiber thus only depend on how the NCP are positioned in space (and on how
they are ordered along the fiber) but not on the precise path of the linkers. A proper
choice of α and β, reproducing the NCP arrangement, is therefore sufficient in order
to correctly evaluate the fiber topology.

5 NCP plasticity: the four nucleosome states

In this section, we illustrate one direct application of the previous theretical derivation
to the interpretation and fitting of experimental data. The results have been obtained
in close collaboration with the experimental group of J.L. Viovy. Our contribution in
modeling the fiber structure and quantifying its relevant features allowed us to interpret
the results and propose new mechanisms

5.1 The nucleosome plasticity as revealed by magnetic tweezers

In 2006, Bancaud et al. obtained the first magnetic tweezers manipulation of single
chromatin fibers, and showed that chromatin can accommodate surprisingly large
amount of torsional stress, either negative or positive, without much change in its
extension (Bancaud et al. 2006, 2007; Recouvreux et al. 2011). In these two studies,
nucleosome arrays were reconstituted on 2 × 18 tandem repeats of the 208 bp 5S
nucleosome positioning sequence. They were subsequently ligated at each end to a
naked DNA spacer labeled appropriately for attachment of one end of the construct
to the coated bottom of the flow cell and of the other end to a paramagnetic bead. The
rotation of the paramagnetic bead exerts some torsion on the attached fiber. The fiber
torsional behavior is described, at a given force, by its extension-to-rotation curve. The
torsional response of naked DNA is characterized by a bell-shaped curve where the
two quasi-linear compactions on either side correspond to the formation of positive
(resp. negative) plectonemes upon introduction of positive (resp. negative) rotation.

Compared to its naked DNA template, the chromatin fiber is shorter and the cen-
ter of rotation of its extension-to-rotation curve is shifted towards negative values.
This shift is the expected consequence of the absorption of approximately one neg-
ative superhelical turn per nucleosome. The observed shortening of about 50 nm,
(i.e., 150 bp) per nucleosome results from DNA wrapping around the histone core.
Moreover, compared to naked DNA of the same length, the fiber in the elastic regime
appears to be much more torsionally flexible: it can absorb large amounts of torsion
without much shortening (Bancaud et al. 2006). This large torsional resilience can be
explained by taking into account three different nucleosome states, previously identi-
fied in minicircles studies (De Lucia et al. 1999; Sivolob et al. 2003), and characterized
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Fig. 5 Schematic view of the
four states of the nucleosome.
See main text for details

by a different pathway for the entering and exiting linker DNAs (Fig. 4). While the
negatively crossed state correspond to the standard crystallographic structure, with
straight linker DNAs following the direction of the entering and exiting tangent to the
nucleosome superhelix, in the positively crossed state the two DNAs slightly bind to
cross each other in a positive way. Finally, in the open state, both +6.5 and −6.5 SHLs
unbind and the linker DNAs do not cross any more. As will be detailed in the next
section, the precise contribution to the fiber linking number of these different states
is different, this being the key to interpret the observed fiber resilience. The three
conformations have indeed different free energies, but their stability also depends on
the applied torque: the application of a positive (resp. negative) torque to the fiber
will indeed favor the states with the most positive (resp. negative) linking number per
nucleosome, and the resulting nucleosome dynamic equilibrium between the differ-
ent conformational states acts as a topological buffer, absorbing the additional torsion
thanks to the rearrangement of the internal nucleosome structure (Bancaud et al. 2006).

More unexpected, chromatin fibers display a hysteretic behavior when submitted to
extensive positive supercoiling (Bancaud et al. 2007). This hysteresis was interpreted
as a consequence of the trapping of positive turns in individual nucleosomes through
their transition to an altered form, called reversome (Bancaud et al. 2007) (for reverse
nucleosome, see Fig. 5) or R-octasome (Zlatanova et al. 2009). The altered form should
be metastable in order to explain the presence of hysteresis, and has to be stabilized
by the application of a large positive torque. Moreover, the reversome must contribute
to the fiber linking number with a large positive value, in order to explain the trapping
of positive turns. The structure of this altered nucleosome is a priory not known, but
we proposed a plausible structire based on suitable simulations, as we will describe
in the next section.

5.2 The linking number of the four nucleosome states

The negatively crossed and open states NCPs therefore exist in four different geome-
tries. Among them, the negatively crossed and open states simply correspond to two
particular choices of the two-model α parameters. Indeed, α = α0 = 0.94 rad (54◦).
reproduces the crystallographic configuration where all the 14 SHL anchoring points
are bound (see Sect. 2.1). The negatively crossed NCP coincides with this structure if
straight linkers are added by prolonging the natural direction of entering and exiting
DNA. The open state corresponds instead to the case where the two external SHL are
broken, again with straight linkers. In this case, only 12 SHL anchoring points are
bound, this leading to 11 double helix periods in the wrapped DNA. This leads to the
value αopen � −0.65 rad (−37◦), corresponding to a wrapping of about 1.4 turns. The
linking number of open and negatively crossed nucleosomes in homogeneous fibers
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can be therefore simply determined by applying the previous results (Expression 44)
to these particular values of the α parameter and a β angle corresponding to a relaxed
linker DNA. The calculation gives Lkneg = −1.4, Lkopen = −0.4, in quite good
agreement with the values determined by minicircle studies (De Lucia et al. 1999;
Sivolob et al. 2003), of −1.4 and −0.7, respectively.

The positively crossed state The calculation of the topological quantities for the pos-
itively crossed state of the nucleosome is more complicated, since it involves curved
linkers. In this torsion-induced structure each linker is constrained and bent in the
opposite direction with respect to the nucleosomal DNA super-helix sense. The two
linkers therefore pass one under the other, and are kept in this distorted conformation
by the steric interaction that prevents them to cross each other.

The possibility of having bent linkers is not accounted for by the two angle model.
We thus modified the model in order to evaluate the linking number of a positively
crossed nucleosome. A simple way of doing this is by introducing symmetric DNA
kinks at the entry and exit points, then adding straight linkers. The kinks should be
adapted as to make the two linker DNAs cross positively. The kink angle γ is therefore
set in such a way that the entering and exiting linkers “touch” each other, in order to
take into account the steric interaction that keep the positively crossed NCP in its
bend conformation. In other words, for a given α, the vectors tangent to DNA at the
entry and exiting points are rotated with respect to a rotation axis which is orthogonal
to their initial orientation and to the NCP axis. The rotation angle γ is calculated to
make that the minimal distance between the two linker axes equal to twice the DNA
diameter. Such a procedure allows us to obtain positively crossed linkers with the
introduction of a single additional degree of freedom, which can furthermore be fixed
by the condition of contact between linkers.

In practice, the addition of two symmetric kinks in the linkers can easily be intro-
duced in the calculation of the DNA writhe. A kink in a straight DNA corresponds
to a discontinuity in its tangent vector, and is therefore associated with a geodesic on
the unit sphere. The tangent path on the sphere is such that the entry and exit tangents
are no more coincident and that an intermediate point, corresponding to the linker
direction, appears between them. This path is sketched in Fig. 6.

The calculation of the writhe is then extended to the positively crossed nucleosome
by including two more spherical triangle areas to the standard calculation. Moreover,
an additional twist term should be taken into account when DNA is locally kinked.
Using the α and γ parameters to fit the experimental data from magnetic tweezers
allow to fix their values with a reasonable precision. In the case of the results of
Bancaud et al. (2006), with a repeat length of 208 bp, we have chosen α = 30◦ and
γ = −10◦, this leading (using Expression 44) to Lkpos = −0.2 (to be compared to
−0.4 as obtained in minicircle studies (De Lucia et al. 1999; Sivolob et al. 2003)].

The reversome The observation of an hysteresis cycle of the extension-to-rotation
curve when the fiber is strongly positively supercoiled led to the assumption that the
nucleosome undergoes an important structural change. The new structure has to trap a
part of the torsional constraint, and to release it once the applied torque is reduced. An
analysis of the difference in the linking number per nucleosome between the onward

123



M. Barbi et al.

Fig. 6 A schematic view of the writhe calculation for a positively crossed nucleosome in a regular fiber.
With respect to the negatively crossed state, the entering and exiting tangent vectors vertexes Tin and Tout
are distinct from the linker tangent vector vertexes Ti and Ti+1. The indicatrix has therefore a more complex
path, composed by the geodesic Ti Tin , the circular path corresponding to the wrapping of DNA around the
nucleosome, then the geodesic Tout Ti+1. When calculated with respect to the fiber axis F , the writhe is
therefore proportional to the sum of signed area of the black, dark grey and light grey parts

Fig. 7 Fit (blue solid line) of the experimental extension-to-rotation data obtained by Bancaud and co-
workers (same of Fig. 5B in Bancaud et al. (2007)): the onward curve (dark red points) is obtained by
applying an increasing torsion, the backward curve (light green points) by relaxing back the fiber by
rotating its extremity in the opposite way. As for the case of a free DNA (Strick et al. 1998) the almost linear
part of the onward curve corresponds to the region where the fiber wraps on itself forming plectonemes; on
the corresponding linear part in the backward curve, plectonemes are unwound (Bancaud et al. 2006). In
these regions the nucleosome distribution among the different states are supposed to remain constant, with
only standard nucleosomes for the onward curve and only reversomes for the backward one. Therefore, the
difference in the number of turns between the two linear parts allows to the estimation of the difference in
linking number between the nucleosome and the reversome (Bancaud et al. 2006) (color figure online)

and backward curves (see Fig. 7) reveals that the difference in linking number between
the “standard” and new conformations is of about 2 turns.

In the initial conformation, the “standard” nucleosome is a mixed population of the
three states (negatively crossed, open and positively crossed), whose relative weights
depend on the applied torque and can be determined at each point on the hystere-
sis curve by fitting the fiber extension (see Recouvreux 2011 for further details). By
this procedure we obtained an averaged value of the “standard” nucleosome link-
ing number of about −1 turn. Hence, the linking number achieved by the altered
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nucleosome is close to +11 turn (more precisely, we get about 0.9 turns). This value
is close to the linking number that has been calculated for the right-handed tetrasome,
i.e. the particle formed by the most internal two (H3–H4) dimers once removed the
H2A–H2B ones. Such tetrasomes are known indeed to fluctuate between “pseudo-
mirror-symmetrical” left- and right-handed chiral conformations of nearly equal and
opposite Lk [−0.7 and +0.6 for 5S DNA sequences (Sivolob and Prunell 2004)]. Based
on this conformational change of the tetrasome, we proposed for the altered form of the
reversome an almost “mirror-inversed” structure, obtained through a chiral inversion
of the nucleosome and implying the breaking of internal bonds (called the docking
domains) between the dimers H2a–H2B and the tetramer (H3–H4)2 (Bancaud et al.
2007). The proposed structure remains largely speculative and we do not have any
direct information on its geometry, but it is compatible with the experimental results.
In this case, we are indeed in an inverse situation: magnetic tweezers manipulations
give us an estimation of the reversome linking number, but no direct information on
its molecular structure.

As a first attempt to have quantitative estimates of the quantities involved, we then
built a simple model of the reversome as chiral symmetric of the standard nucleosome
(Fig. 5). The best fit of the experimental data for the case of 208 bp repeat leads us
to choose an α angle for the reversome configuration of 30◦. In this case, the linking
number contribution per nucleosome is 0.85. This naive model of the reversome struc-
ture matches quite remarkably the all-atom structure that we obtained alternatively by
inverse kinematics (Bancaud et al. 2007; Zlatanova et al. 2009). Moreover, geometri-
cal and topological parameters of this tentative structure can be calculated and used to
fit the experimental extension-to-rotation curve. The goodness of the fit may be seen
as a confirmation of the chosen structural model.

5.3 The fit of the experimental data

Homogeneous and non homogeneous fibers The interpretation and fitting procedure
that we applied to the experimental results uses a statistical mechanics approach
accounting for the evolution of the four state populations as a function of the applied
torque, hence of the rotation applied to the fiber extremity. The fiber conformation
at a given step of the experiment is a disordered mixture of nucleosome states in
thermodynamic equilibrium. The linking number calculation that we developed so far
for homogeneous fibers has to be extended to heterogeneous fibers. For this purpose,
we use a mean field approximation, by means of which we can compute the linking
number of heterogeneous fibers as the sum of the linking numbers per nucleosome
over the set of nucleosome states in the fiber. This mean field procedure amounts to
use the same value for the linking number per nucleosome as in a homogeneous fiber.
See Refs. (Bancaud et al. 2006, 2007; Recouvreux et al. 2011) for further details.

The linking number dependence on the applied torque Finally, it is interesting to
note that, since the experimental setup implies the application of an increasing torque
to the fiber, the DNA torsion varies all along the extension-to-rotation curve. As a
consequence, the geometrical parameter β varies accordingly: it is therefore important
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to take into account the variation of the linking number of all the different states as β

is modified. This can be easily done by the calculation method previously described,
leading to a linking number per nucleosome which is a function of the applied torque.
In practice, for the configurations intervening in the described experiments, this effect
is only relevant for the reversome, whose linking number dependence on the applied
couple can be reasonably approximated by a linear function. For all the other states,
instead, the linking number is approximately constant in the range of the applied
torques.

Obtained fit Figure 7 presents the resulting fit of the experimental data obtained by
Bancaud and co-workers on a fiber containing 30 nucleosomes. We have obtained by
the same procedure similar fits for the data obtained by Recouvreux et al. (see Fig. 4 in
Recouvreux et al. 2011), where more details on the fitting procedure are also given.)

The good performances obtained in fitting the data show that this mean field
approach (i.e. thermodynamic averaging of the nucleosome states before summing
their contribution to the fiber linking number) is in good agreement with the exact cal-
culation (i.e. thermodynamic averaging after summing the contribution of the nucle-
osome states to the fiber linking number). We wish to stress that the fit of the exper-
imental curve is particularly sensitive to the “extremal” fiber configurations, where
the nucleosomes are almost all either in the negatively crossed, or positively crossed,
or reversome states. The exact conformation of the intermediate states is less crucial
in determining the curve behavior. Our approximation method becomes more appro-
priate for these more homogeneous configurations, this explaining at least in part the
success of our fitting procedure.

To summarize, in this section we have shown how our calculations of the topo-
logical properties of nucleosomes in fibers can be applied (or extended) to the three
different nucleosome conformations observed in minicircle studies (De Lucia et al.
1999; Sivolob et al. 2003). Moreover, they can be useful in testing the plausibility of
new speculative nucleosome structures, as for the case of the reversome. A careful
characterization of all these structures is indeed necessary in order to interpret experi-
mental results that, as in the case of magnetic tweezers, only allow for the measurement
of indirect and averaged quantities.

6 Physiological implications

We wish to conclude by illustrating the above calculations with two examples of appli-
cations of biological interest. In both cases, our conclusions are quite speculative, but
suggest physically plausible mechanisms that could be relevant in different biological
situations.

6.1 Fiber condensation at constant linking number

A first problem that can be addressed is how the DNA can be highly condensed in
chromatin. From the point of view of the fiber, this packing can be achieved in two
ways: a high packing ratio of DNA in the chromatin fiber and/or a winding pattern

123



DNA topology in chromosomes

Fig. 8 Compaction (from left to right) of a fiber at constant linking number in the framework of the standard
two angle model. The final state is a “two-start helix” and is approximately the most compact structure that
can be obtained by the standard two-angle model. Note that the number of nucleosomes of the compact
fiber is larger than for the other two structures

of the fiber itself. In the context of a chromatin loop, however, the fiber is anchored
at both ends by cross-linking protein complexes such as insulators, and the DNA
linking number has therefore to be kept constant during those two conformational
changes. Modeling the geometrical and topological properties of the chromatin fiber
gives insights into how the decondensation processes can occur with the imposed
constraint. Our calculation allows to propose two plausible scenarios of elongation
and unwinding at constant linking number.

Starting from the homogeneous two angle model, a first level of compaction can
be obtained by shortening the fiber in a homogeneous way by continuously varying
the angles α and β (Fig. 8). In order to study the effect of such variations, we have
obtained a chart displaying both the compaction and the linking number per nucle-
osome (Eq. 45) of regular fibers as functions of α and β for a given repeat length
(Barbi et al. 2005). We have then considered the possible paths leading from decon-
densed to condensed fibers with a minor or negligible variation of the linking number.
We have found that, starting from a decondensed beads-on-a-string-like state (see
Fig. 8, left), the angle α of all the nucleosomes can be uniformly decreased while the
angle β is slightly modified (compatibly with the DNA twist persistence length), in
such a way that the DNA linking number is kept constant and the fiber compaction
increases up to about 6 nucleosomes per 10 nm (Barbi et al. 2005). This leads close
to the most compact fiber that can be obtained in the two-angle model, and which
is formed by the wrapping of two columns of stacked nucleosomes one around each
other (Fig. 8, right). Linker DNAs are found in the center of the fiber and are cross-
linking those two columns. It was therefore named as the “two-start helix” or the
“cross-linker structure”. This structure has been already reported in several experi-
mental studies such as crystallography, neutron scattering and electron-microscopy
(Routh and Sandin 2008; Schalch et al. 2005; Williams et al. 1986). The obtained
compaction level corresponds to the one found for isolated fibers in vitro (Williams
et al. 1986) and may be assumed to be relevant in vivo during interphase. In this sce-
nario, the compaction/decompaction of a compact fiber is achieved at constant linking
number and almost without DNA twisting, so to avoid any coiling or entangling of
the fiber.

The compact fiber of Fig. 8 can be further condensed by changing its axis trajectory
in order to form a coiled structure. However, if the fiber coiling should be performed
at constant linking number, a structural rearrangement of the internal fiber geometry is
needed in order to compensate the fiber writhe. We have proposed (Mozziconacci et al.
2006) that an internal structural change of the nucleosome, which we named “gaping”,
could solve this problem. The gaping structural change corresponds to detaching two
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Fig. 9 Models of nucleosome and fiber before gaping (on the left) and after gaping (on the right). Top Three
consecutive nucleosomes in a fiber. The gaping process induces the perfect stacking of two neighboring
nucleosomes. Center side view of the chromatin fiber. The DNA of the top nucleosome has been highlighted
in cyan. Bottom Models of chromatin loop before and after gaping. Depending on the geometry of the
chromosome network, loops can either coil into solenoids (upper figure) or plectonemes (lower figure)

histone dimers from each other, leading to an opening of the nucleosome in the manner
of a gaping oyster (Fig. 9). If this opening is accompanied by a twist of 2 bp per linker,
the external faces of neighboring nucleosomes come into close contact, so to interact
and to stabilize the fiber. To medel this conformational change of the nucleosome we
added a third angle, corresponding to the gaaping angle, to the two angle model. The
calculation carried in this context have been obtained using the fast method described in
Sect. 4 and gives a change in the fiber Lk, induced by the gaping of all the nucleosomes,
of about 7 turns per 1,000 nucleosomes, i.e. approximately a fiber loop. Hence, in order
to preserve its global linking number, the compact fiber has to be writhed at an inverse
rate of about −7 turns per loop. This compensatory writhe can either result in a toroidal
or a plectonemic supercoiling (Fig. 9). Remarkably, the changes in the writhe evaluated
for the two conformations in Fig. 9 perfectly match the twist induced by the gaping
of all nucleosomes within the loop. Nucleosome gaping may thus not only compact
the fiber, but may also be the driving mechanism for supercoiling the fiber loop in a
condensed higher-order structure.

6.2 The fiber can accomodate transcription-induced topological constraints

The second question that we can address to illustrate the use of the method described
in this paper is the problem of how transcription can be achieved in the context of chro-
matin. We discussed this problem in details in Bécavin et al. (2010). DNA transcription
induces important topological constraints on the fiber. In fact, the DNA double helix
should rotate through the RNA-polymerase, in order to allow this enzyme to open,
read and copy one of the two strands.

Once the gene promoter has been located to a transcription factory, RNA-
polymerases are loaded onto the gene. Transcription elongation leads to an
accumulation of DNA positive supercoiling upstream and negative supercoiling down-
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Fig. 10 Schematic
representation of the progress of
a reversome front (blue, on the
right) along a compact fiber of
nucleosomes, induced by the
advancing RNAP (red square
and rectangle). The two ends of
the fiber are supposed to be
clamped in a loop, as frequently
observed in cells (color figure
online)

stream from the elongation site, while the RNA-polymerase progresses at a speed of
about 2 turns per second (Uptain et al. 1997). The negative supercoiling can be simply
absorbed by denaturing DNA. The positive supercoiling on the other hand has to be
absorbed by a change in the fiber twist and/or writhe. This positive supercoiling is
produced at the impressive rate of one turn per 10 base pairs (one helical period), end
cannot therefore be absorbed locally. An efficient manner to absorb this constraint
may be to reverse all nucleosomes in the upstream fiber into reversomes. Since the
linking number of the standard nucleosome is on average about −1 turn and that of
the reversome +1 turn, about two turns can be absorbed for each nucleosome. Let us
take an example to illustrate this point. In the human β-globin gene cluster, a fiber
of about 100 nucleosomes (representing the distance between the transcription site
and the loop end) can absorb approximately 200 turns corresponding to a transcrip-
tion length of about 2 kbp, the approximative length of a β-globin gene (Wong et al.
2009).

The degree of compaction of the fiber may play here an important role. “Condensed”
fibers (with more than 0.5 nucleosome per nm along the fiber) are expected to have
a regular structure, since it is favoured energetically by stacking interactions between
nucleosomes. It has been shownthat a small amount of nucleosome positioning is
enough to get a regular structure in vitro (Weidemann et al. 2003). Accordingly, we
shall consider the regular structure of chromatin fiber established in a previous work
as the generic setting (Wong et al. 2007). In this model, nucleosomes faces are stacked
producing a strong steric hindrance. Steric hindrance between nucleosomes, in turn,
enforces a domino effect where nucleosomes are subjected to the applied torque one
by one, while in the case of a decondensed fiber transitions to reversomes will arise
at random all along the fiber. A schematic picture of this reversome progressing wave
is given in (Fig. 10).

Although this scenario remains for the moment only a speculative suggestion, recent
experimental results (Petesch and Lis 2008) showed a wave of destabilization of nucle-
osomes, which grows very rapidly along the fiber, about 10 times faster than the motion
of the RNA polymerase. These observations can be interpreted in the frame of our
hypothesis as a reversome wave cleaning the way so that transcription elongation can
proceed (Zlatanova and Victor 2009).
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