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Abstract. We introduce a probabilistic model for protein sliding motion along DNA during the search
of a target sequence. The model accounts for possible effects due to sequence-dependent interaction
between the nonspecific DNA and the protein. Hydrogen bonds formed at the target site are used as the
main sequence-dependent interaction between protein and DNA. The resulting dynamical properties
and the possibility of an experimental verification are discussed in details. We show that, while at
large times the process reaches a linear diffusion regime, it initially displays a sub-diffusive behavior.
The sub-diffusive regime can last sufficiently long to be of biological interest.
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1. Introduction

The way by which proteins can find their target sites along a DNA chain represents
a puzzling problem. In many cases, the reaction rate has been demonstrated to be
faster than diffusion controlled [1–4]. Nonspecific sliding along the DNA has been
proposed to be the main mechanism for faster search of the specific site on DNA ([5]
and references herein). Nevertheless, a precise experimental determination of the
statistical law characterizing the diffusive motion of protein along DNA during the
specific site search is presently lacking. It is believed that during the sliding motion,
the activation barrier for the translocation of the protein to continuous nonspecific
positions is high enough to randomize the protein motion through collisions with
the solvent molecules, but appropriately small compared to the thermal energy, in
order to allow the protein to move [6]. This has induced some authors to propose
a model where protein freely slides along DNA under the effect of the thermal
fluctuations without any sequence dependent interaction, i.e., the DNA is seen as
an homogeneous cylinder on which the protein can diffuse until the specific site
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is reached [6–8]. During sliding, however, the protein must be able to distinguish
the specific region from nonspecific DNA so that a recognition mechanism must be
involved. To this regard, the possibility that sliding could imply sequence dependent
protein-DNA interaction is rather reasonable.

The aim of the present paper is to investigate this possibility in the context
of a simple probabilistic model for a protein sliding along DNA, which accounts
for sequence-dependent interaction between the nonspecific DNA and the protein.
The model is based on the idea that the protein needs to “read” the underlying
sequence during sliding in order to test whether special “signals” associated with
the recognition site are present, i.e., a sequence-dependent interaction should be
at work during the search. This means that the DNA sequence can influence the
dynamics of the protein also far from the target region. In this sense the protein
stop at the recognition site should be the extreme effect of a complex dynamics,
i.e., the protein should follow a noise-influenced, sequence-dependent motion that
includes the possibility of slowing down, pauses and stops. From this point of view
the usual assumption of a standard random walk along DNA [2, 9–12] appears
inadequate.

To investigate the possibility of a sequence-dependent diffusion motion of the
protein along the DNA, we define a base sequence energy landscape from which
hopping rates of the protein on the DNA (viewed as a discrete inhomogeneous lat-
tice) can be deduced. The energy landscape is constructed by assuming a sequence
dependent protein-DNA interaction inside the target region and extrapolating it to
nonspecific regions. The diffusive motion of the protein is then studied by Monte-
Carlo simulations of the probabilistic process on the landscape energy both in ab-
sence and in presence of thresholds which define different rules for the hopping
motion. As a result we show that, while at large times the process reaches a lin-
ear diffusion regime, at the initial stage it displays a sub-diffusive behavior. It is
remarkable that the anomalous diffusion regime can last for time large enough to
be observable in single molecule experiments similar to those that have permitted
to visualize sliding for different proteins [5, 12]. Base sequence induced dynamics
along DNA was also considered in [13, 14] in connection with a nonlinear model
of DNA, and in [15] in connection with the RNA-polymerase motion during the
transcription process.

The paper is organized as follows: in Section 1 we introduce a sequence de-
pendent model for protein-DNA nonspecific interaction. An energy landscape with
minima corresponding to the recognition sequence is constructed. We then introduce
four possible models for the protein translocation on DNA by using the sequence
induced energy landscape and its modification as the inclusion of energy thresholds,
which allow to describe different possible reading mechanisms. The rate of translo-
cation to the neighboring sites is constructed from the energy landscapes (for the
different models) by means of the Arrhenius law. In Section 2 we use Monte-Carlo
simulations to study in detail the different dynamical regimes of our models. Fi-
nally, in Section 3 we discuss the limits of our analysis and the possibility to check
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the results with experiments, so as to verify if the inferred mechanism actually
corresponds to the real one. In Section 5 we draw our conclusions.

2. The Model

2.1. PROTEIN-DNA INTERACTION AND SPECIFIC SITE RECOGNITION

For a suitable description of the search dynamics it is crucial to determine which
sequence-dependent interaction is responsible for the specific recognition. This ob-
viously depends on the protein-DNA specific complex and can be obtained, in gen-
eral, from biochemical and crystallographic analysis. Nevertheless, some general
features have been shown to be common to many specific recognition mechanisms.
The probably most important recognition interaction is in fact mediated by a direct
hydrogen bonding between protein amino-acids and special DNA chemical groups,
that are present on the minor and the major groove sides of any base-pair (bp). Due
to the DNA geometry and chemical composition, each different base-pair exposes
on the major groove a different pattern of four chemically active sites (Figure 1)
which can be either hydrogen bond acceptors and donors, or sites where a hydrogen
atom or a methyl group are present [16]. Hydrogen bonding to these groups pro-
vides proteins to a highly specific “lock-and-key” mechanism, able to distinguish
up to the single base-pair. The use of the chemical composition of base-pairs, which
is evidently common to any DNA region, makes this recognition mechanism very
general; the specificity of different proteins arising only from the different bps com-
position of the target DNA sequence. Additional specificity arises from the fact that
usually the protein only made a subset of bonds between all the possible hydrogen
bonds that can be made to its target sequence: the actual number, position and type
of these bonds represent therefore the “footprint pattern” of each specific protein.

Other molecular interactions as van der Waals contacts and specific electrostatic
bonds may also occur. From a qualitative point of view, the effect of these dif-
ferent specific bonds on the resulting diffusive dynamics should be, nevertheless,
approximately the same: they only add further contacts with more or less specific
DNA chemical groups. The quantification of the interaction energies involved in
these contacts is instead more difficult to obtain: we will therefore focus, in this
work, only on recognition mechanisms based on specific sets of hydrogen bonds.
We will neglect other interaction which characterize the final specific complex like
flexibility of the DNA [17], major conformational changes [18] or hydrophobic
interaction by amino-acid intercalation in the DNA double helix. We suppose that
these interactions are posterior to the hydrogen network recognition and are not
effective during the protein sliding.

We also assume that, in each position along DNA, the protein “tries” to make the
same set of hydrogen bonds as at the specific site, testing in this way the underlying
sequence. In other words, we assume that the protein makes use, during the search, of
the pattern of active chemicals groups that allows for the best binding to the specific
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Figure 1. The positions of all the possible major groove interacting sites where base-pairs can
make hydrogen bonds (top) and the corresponding base-pair patterns (bottom). Blue and red
disks indicates the hydrogen donor and acceptor DNA groups respectively. White positions
correspond to hydrogen atoms and yellow ones to methyl groups. Each base-pair is associated
with a different 1 × 4 pattern.

Figure 2. A sketch of the DNA interaction sites at the T7 promoter, where hydrogen bonds
with corresponding RNA-polymerase chemical groups are made. Blue and red disks indicate
the hydrogen donor and acceptor DNA groups respectively. On the right, the corresponding 5 ×
4 pattern that T7 RNA-polymerase recognizes. The two half disks in the left part of this figure
and their corresponding positions on the right pattern correspond to a couple of sites that share
a water mediated hydrogen bond [26]. The recognition matrix R is constructed directly from
the sketch. The entries +1, −1, 1

2 , 0 of the matrix correspond, respectively, to donor, acceptor,
shared, and neutral hydrogen bonds.
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site. This hypothesis can be justified on the basis of some known protein-DNA
complex features. The stability of the protein-DNA nonspecific complex is mainly
due to electrostatic interaction with the backbone phosphate of DNA [7] and to
the entropic release of cations [19–21]. Besides these stabilizing factors, sequence-
dependent interaction allows the protein to test the DNA during the target search
[17]. Experimental data on endonuclease EcoRI show that pausing of the protein
during sliding occurs at sites which resemble the specific sequence [22]. Thus, the
nonspecific “reading” should be of the same nature as the specific recognition1.
This suggests that a continuous variation between specific and nonspecific binding
exists [22]. Once the target is reached, the transition from nonspecific to specific
complex can be, eventually, induced by conformational changes of the proteins
[18], these being however not relevant for the search phase. One can thus deduce
that some interaction observed at the specific complex could be already present
during sliding, and might be used in the recognition mechanism.

2.2. SEQUENCE DEPENDENT DIFFUSIVE MODEL

A suitable example of target recognition through a specific set of hydrogen bonds
is given by the case of the bacteriophage T7 RNA polymerase. For this enzyme it is
known [24–27] that the relevant set of sequence-specific recognition bonds between
protein side chains and bases arises in the major groove in correspondence of the
5 bps sequence GAGTC extending from −11 to −7 relatively to the initiation site,
via the formation of hydrogen bonds with the appropriate acceptor or donor chem-
ical groups in the base pairs sides. In modeling the sequence dependent diffusion
of a generic protein along DNA we will assume, for concreteness, the same 5 bp
recognition sequence and the same pattern of hydrogen bonds. In Figure 2 we have
depicted the hydrogen bonds made between the T7 RNA-polymerase and DNA
at the promoter region, as revealed by crystallographic analysis [26]. We remind
that, as already pointed out, the actual interaction can be more complex: it should
include a more detailed pattern of molecular bonds, and eventually other kinds of
interaction depending, e.g., on the protein and DNA three-dimensional structure
and flexibility [17]. Anyway, the qualitative (statistical) features of the resulting
sliding motion do not depend strongly on the detailed nature of the protein-DNA
interaction, as it will emerge from our numerical study.

The concrete way to represent our simplified protein is by the introduction of
a recognition matrix. This matrix should contain the information needed to match
the target sequence, i.e., the pattern of active chemical groups that allows for the
best binding at the 5 bps long promoter. The comparison of this perfect-matching
set of bonds to the actual chemical features of any 5 bps sequence along DNA
will give therefore a certain number of made (matches) and unmade (mismatches)
hydrogen bonds between the DNA and the protein. For convenience, we repre-
sent the recognition pattern directly in terms of its corresponding binding sites on
DNA.
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Formally, the interaction pattern will be defined by denoting by +1, −1, 0
respectively the acceptor, donor, and noninteracting DNA sites. The DNA sequence
is then represented as a list of vectors, . . . bn−1, bn, bn+1, . . . , where

bn =




(1, −1, 1, 0)T for base A

(0, 1, −1, 1)T for base T

(1, 1, −1, 0)T for base G

(0, −1, 1, 1)T for base C

The sequence of vectors bn thus represents exactly the DNA sequence in terms of
its possible chemical bonds on the major groove. The protein interacts, at position
n, with the corresponding sequence of 5 bases, that is therefore represented by a
4 × 5 matrix Dn = (bn, bn+1, bn+2, bn+3, bn+4). The consensus sequence GAGTC
of the considered case corresponds to the matrix

Dn =




1 1 1 0 0
1 −1 1 1 −1

−1 1 −1 −1 1
0 0 0 1 1


 .

By considering the subset of hydrogen bonds actually made by the T7 RNA-
polymerase with this target sequence (see Figure 2 [26]), we can define the following
5 × 4 recognition matrix R(i ; j), corresponding to Figure 2:

R =




1 1 0 0
1 −1 0 0
1 1 0 0
0 1/2 0 0
0 0 1/2 0




.

The factors 1/2 have been introduced in order to reproduce the shared hydrogen
bond evaluated, in a first approximation, as half hydrogen bonds everywhere along
the chain (see Figure 2). Note that the same kind of model can be defined for any
other sliding protein using the same recognition mechanism to fit its target sequence,
provided that the specific set of bonds is experimentally determined. DNA will be
represented exactly in the same way, while the recognition matrix should change (in
composition and length) according to the set of bonds characteristic to the specific
protein-target interaction.

Once represented in such a way the recognition pattern and the DNA sequence,
we need to introduce a suitable definition of the interaction energy. To this respect,
we remark that each match will stabilize the complex, while mismatches will act
as to destabilize the protein, which will tend therefore to move away from the
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“wrong” positions [6, 7]. For each position n along the chain we can therefore
define an energy E(n), simply by counting the number of matches and mismatches,
and adding a corresponding negative or positive amount of energy, respectively
(empty sites in the recognition pattern do not contribute to the energy).

With the notation previously introduced, the interaction energy can be written
simply as

E(n) = −ε tr(R · Dn) (1)

where the dot · denotes the usual matrix multiplication and tr is the trace. Absolute
minima correspond to the complete matching and thus to the recognition sequence
GAGTC. Each positive or negative contribution to the energy, ε, corresponds to a
hydrogen bond energy.

Note that the mobility of proteins dramatically depends on ε/kB T . Since there
are no direct measurements of the interaction energies during sliding and it is
difficult to make an estimate of the involved hydrogen bond strength, we shall use
ε/kB T as a free parameter. The resulting energy E(n) defines an irregular landscape
on which the protein can move as discussed in the next subsection.

2.3. DIFFERENT TRANSLOCATION MECHANISMS

The actual mechanism allowing for the shift of the set of hydrogen bonds from one
position along the DNA to the next one is unfortunately unknown. In order to account
for the possible effect of different translocation mechanisms, we introduce in the
following four versions of the model, corresponding to different possible physical
features of the fundamental step in the protein motion. The various possibilities are
related to the presence and nature of an activation barrier separating one position
from the next one. The length of hydrogen bonds (up to 3.5 Å in DNA-protein
interaction [28]) can roughly reach the same order of magnitude as the distance
between base pairs (3.4 Å). Therefore, the protein may eventually shift directly
from one position to the next one without activation energy for the one step process.
Nevertheless, it is also possible that the protein has to disrupt partially or completely
the hydrogen bonds on one site before moving to the next: in this case one has to
take into account the additional activation barrier that has to be overcome by the
protein in order to move. We will therefore analyze the effect of energy barriers of
different heights (models I to III, see below).

Furthermore, it is possible to imagine more complex scenarios. For instance, the
protein could have internal flexibility allowing for conformational changes, even-
tually depending on the local degree of stability. This could allow for an additional
modulation of the protein affinity for different DNA sequences. As a first attempt
to investigate the possible effect of similar mechanisms, we will include in our
model an effective modification in the protein-DNA interaction energy for regions
with a low degree of homology. More precisely, following the suggestion of von
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Hippel et al. [7], we will assume that, in positions where too many mismatches
are found, the protein should undergo a conformational change from a “reading”
mode to a “sliding” mode in which no hydrogen bonds are made and the interaction
energy becomes independent of the sequence. We remark that in the sliding mode
the protein is weakly bound to DNA and its dynamics is driven by the hydrody-
namic forces of the viscous media surrounding the DNA (see below, model IV).
This leads therefore to a “two-states model,” for which, if the total energy E( n)
is over a threshold Et , the system passes to a different state of constant energy Esl

where the protein can freely slide. We have to stress that we are modeling here
the possible interaction modulation, induced by the internal protein flexibility, in a
very schematic way: we just modify the energy landscape in correspondence to the
unfavorable positions, without any detail on the real kinetic and activation barrier of
the protein conformational change itself. The investigation of this simplified model
is, anyway, just aimed to get a first insight on the possible relevance of local energy
modulation effects on the resulting protein motion.

In order to investigate the differences in the protein dynamics induced by
these different scenarios, we define and analyze four different models, sketched
in Figure 3 and listed hereafter. Each different model results in a redefinition of the
effective energy barrier �En→n′ , with n′ = n ± 1, initially defined simply on the
basis of the local number of mismatches.

I) no-threshold model (Figure 3, I ): hydrogen bonds can directly translate from
one position to another without being destroyed. In this case the energy

Figure 3. A schematic picture of the four considered variants of the model. On the horizontal
axis, we represent a few (30) positions along DNA. Correspondingly we sketch the interaction
energy E varying between its minimum (Em) and its maximum (EM ) values. The interaction
energy evaluated on the T7 DNA present similar rapid oscillations between different levels.
The dotted lines indicate the threshold level Et , set to EM for model II, to an intermediate
value for model III and IV. In the case of model IV, all energy levels above the threshold are
redefined to a common value Esl (dashed line).
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difference �En→n′ from n to n′ = n ± 1 is simply the difference of the
two energy levels as defined in Equation (1). Furthermore, �En→n′ will be
set to zero if E(n′) − E(n) is negative, in the usual way, in order to allow a
coherent definition of the transition rates. We define therefore:

�En→n′ = max[E(n′) − E(n), 0]. (2)

II) maximal-threshold model (Figure 3, II ): in order to reach an adjacent site, the
protein must destroy all bonds and pass through a state of “total mismatch.”
In this case the energy barrier only depends on the energy E(n) and on the
threshold level EM = max[E(n)], and we get:

�En→n′ = EM − E(n). (3)

III) intermediate-threshold model (Figure 3, III ): in order to reach a next site, the
protein must destroy all bonds passing through an intermediate “zero” state
defined by a threshold energy Et . The energy barrier will therefore depend on
the neighboring energy E(n′) only if this is larger than the threshold energy
Et . Formally this reads

�En→n′ = max[Et − E(n), E(n′) − E(n), 0]. (4)

Models I and II are actually the two limiting cases of model III when the
threshold is set to the minimum and maximum values of the potential energy,
respectively. These three models could therefore be considered as three cases
of a unique model, just dependent on the choice of the energy threshold. We
will anyway refer to these three cases as to models I , II and III in the following,
for convenience. Note that in the general case of an intermediate threshold, the
previous model gives already two different regimes for the protein, because
the energy profile is qualitatively different in regions where E( n) is greater or
lower than Et .

Finally, to account for the possibility of two regimes of the protein-DNA
interaction associated with a protein conformational change, we propose a
fourth model as follows:

IV) two-regimes model (Figure 3, IV): a threshold energy Et separates “reading”
regions, where the energy is E(n) < Et , from “sliding” regions, where no
hydrogen bonds are made and the protein can freely diffuse on a flat energy
landscape, E(n) = Esl. Below the threshold, the barrier Et still affects the
translocation as in case of model III. For simplicity, we will fix the value of
Esl to EM = max[E(n)]. In this case, one can redefine the energy as

E(n) =
{

E(n) if E(n) < Et

Esl if E(n) ≥ Et
(5)

and �En→n′ results to be defined as in case III, Equation (4).
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Note that our model IV interpolates between straight sequence-dependent walk
(model I) and the biological model of the specific site search by protein proposed
by von Hippel in [6, 7]. The scenario suggested by von Hippel relies indeed on
the idea that the specific interaction is “switched off” by a conformational change
if too many mismatches are present. In that picture, the protein is more often
in a “sliding” mode, where the specific hydrogen bond interaction is inactive. A
quantitative description of this mechanism can be obtained by the introduction of
our model IV, where the varying threshold level Et accounts for the degree of
homology which leads to the supposed protein conformational change.

To introduce dynamics we describe the motion of a protein along DNA as a
Markov process on a discrete chain with sites representing consecutive DNA base
pairs. A protein is represented by a particle on the chain which can hop to its nearest
neighboring sites with rates

rn→n′ = 1

2τ
× exp (−�En→n′/kB T ) ; n′ = n ± 1. (6)

The Markovian process assumption (Eq. (6)) implies loss of memory about previous
evolution during a single translocation step. This can be justified if the typical energy
dissipation during translocation is much higher than the thermal energy kB T . This
is indeed the case as shown in the appendix. Notice also that the meaning of the rates
defined in Eq. (6) is two-fold. From one side, when the energy barriers between
sites are small (�E � kB T ), the protein does no feel the underlying potential and
diffuses “freely” along the DNA helix subjected to purely hydrodynamic forces
due to the viscous medium surrounding the DNA. In the case of the lac repressor,
Schurr [29] has estimated an upper limit for the diffusion constant as Dlac =
4.5 10−9 cm2/s, by modeling the protein as a hard ball of radius alac spiraling along
the double helix. To estimate the diffusion constant for a generic protein, one can
rescale the result of Schurr accounting for the difference in sizes between the protein
and the lac repressor, as D = Dlac(alac/a)3. Thus, to cover the distance � = 3.4 Å
corresponding to one base pair step, a time τ = �2/(2D) is needed (for the T7 RNAP
this time is equal to ≈10−7s). In the Markov process (6) this time corresponds to
the typical time t needed for the translocation to the nearest site in absence of the
potential, t = 1/(2rn→n′) = τ . Thus τ in (6) can be viewed as the time the protein
needs to cover a distance of one bp along DNA due to hydrodynamic forces. On the
other hand, when the protein is strongly bound to DNA, i.e. for deep potential wells
(�En→n′ � kB T ), it must overcome the barrier to move, and the other process,
driven by hydrodynamic forces, becomes negligible. Notice that the contributions
of both processes are included in the definition of the rates in Eq. (6).

3. Results: Recognition Efficiency and Anomalous Diffusion

In this section we will study, through Monte-Carlo simulations, the dynamical be-
havior of the model sliding protein previously defined. We will use in the following
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Figure 4. Energy level distribution (models I to III), obtained by averaging on the whole T7
DNA. A Gaussian fit of the resulting histogram (dashed line) is superimposed for comparison.
Inset: The corresponding distribution for model IV (Et = 0).

the T7 DNA as testing sequence. An energy landscape can be defined on the base
of this sequence according to the rules (1) or (5). The distribution of the energy
levels obtained for models I to III and for model IV is shown in Figure 4.

The first important check of the four models is related to their affinity to the
target region. Theoretically, one can easily estimate the stationary distribution of a
population of proteins on the four different model landscapes as

ρ∞(n) ∝ e−E(n)/kB T . (7)

As usual, the stationary distribution only depends on the site energy, and not on
differences and thresholds. Consequently, models I to III have the same distribution,
whereas the redefinition of energy in model IV leads to a substantially different
result. Eq. (7) straightforwardly implies that the recognition sites, which have the
lower energy, will be in average the most populated.

In order to verify that this is indeed obtained in a dynamical context, we sim-
ulated numerically the time evolution of models I to IV taking a uniform distri-
bution of independent proteins on a DNA region of 1000 bps as initial condition.
Note that the assumption of an uniform initial distribution is statistically equiva-
lent to considering the probability evolution of a single protein binding to DNA
at random site. The simulation is performed on the first 3000 base-pairs of the
T7 genome, which contains two recognition sequences GAGTC, at positions 1126
and 1435.

After a sufficiently long time, the protein distribution ρ(n) spreads out, as shown
in the inset of Figure 5, and shows a series of peaks corresponding to the sites with
larger occupancy. Where the border effects can be neglected, this distribution tends
to its equilibrium limit; this is shown in Figure 5, where we plot a portion of
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Figure 5. A central portion of the protein distribution ρ(n) for model I after an integration
time of 106 integration steps, obtained by averaging over 3 × 104 particles initially uniformly
distributed in the interval [1000; 2000] (solid line). The analytical equilibrium distribution
ρ∞(n), (dotted line) is shown for comparison. Here ε/kB T = 0.5. Inset: the whole distribution
at the same time. In both plots, the arrows indicate the location of the recognition sequences
GAGTC (sites 1126 and 1435).

the distribution obtained after 106 time steps for model I , together with ρ∞. As
expected, the larger peaks correspond to energy minima, i.e., to the location of
the two recognition sequences GAGTC present in this DNA region. For all the
models I to III the final distribution is similar, with the two highest peaks exactly in
correspondence to the two recognition sequences, this confirming that the energy
landscape defined on the basis of the pattern matching actually guides the protein
to the target recognition sequences.

Note that, in case of model IV , the distribution of levels is different, this obvi-
ously implying a different shape for ρ∞(n). In particular, the case of a sufficiently
low threshold energy is reflected on an asymptotic distribution with rarer, larger
peaks on a very low constant background (data not shown).

We now investigate the dynamical behavior of the four models, and check if
there are some relevant deviations from random walk, induced by the sequence
sensitivity. For large enough values of ε/kB T , some positions along DNA could
trap proteins for long time, this implying that, at small and intermediate time,
diffusion could be substantially different than for a pure random walk. In order to
estimate this effect, we calculate the mean square displacement for the protein:

〈�n2〉 = 〈�n2(t)〉 =
n∑

i=1

(ni (t) − ni (0))2. (8)

We average over N = 9 103 independent particles, initially distributed uniformly
in the DNA region [1000, 2000]. This procedure therefore includes both average on
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Figure 6. Diffusion behavior of model I for different values of ε/kB T . From the upper curve
to the bottom: ε/kB T = 0, 0.3, 0.6, 0.9, 1.2, 1.5. Note the log-log scale: a linear diffusion
〈�n2〉 ∝ t corresponds in this graph to the straight lines of unit slope ( solid lines), while
slopes lower than 1 correspond to 〈�n2〉 = A tb, with b < 1. The time is measured in units
of τ ≈ 10−7 seconds, see the discussion after Eq.(6), and the distance is measured in base pair
steps (1bps ≈ 3.4 Å). So, the unit on the horizontal axis correspond to 10−7 seconds, and on
the vertical axis to ≈ 11.6∗10−16 cm2. A (dashed) line of slope 0.3 is reported for comparison.

a large number of particles and on a large set of initial conditions. For simplicity,
in the following we shall set τ = 1 in (6), i.e., the elapsed time will be measured
in the units of τ .

Starting from model I, we investigate the dependence of the diffusive behav-
ior on ε/kBT. Results are shown in Figure 6. In the limit of ε/kB T = 0, i.e.,
in the case of a flat potential (or T = ∞), the diffusion is of course normal,
with D = 1/2 and 〈�n2(t)〉 = t , so that the corresponding curve is a straight
line of slope 1 in the log-log plot (upper curve on Figure 6). For larger values
of ε/kBT (smaller temperatures compared with the energy fluctuations), the dy-
namics of the model shows at short time large deviations from the normal diffu-
sion: in these finite temperature cases, the motion is initially sub-diffusive, with,
locally,

〈�n2〉 = A tb, b < 1. (9)

The exponent b increases monotonically with time toward its asymptotic value
1. The initial deviation (1 − b) and the crossover to b = 1 both increase with
ε/kB T = 0. This behavior does not depend on the choice of the initial condition
and it is not a transient induced by some t = 0 properties: we have verified indeed
that qualitatively the same time dependence is reproduced after an initial transient
time of 104, 105 or 106 time steps. As expected, once the normal diffusion regime
is reached, different temperatures correspond to different diffusion constants D
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(in the log-log representation, 2D corresponds to the vertical offset of the lines of
slope 1, according to the relation log 〈�n2〉 = log 2D + log t).

It is evident from Figure 6 that the overall behavior observed for model I can
be fitted neither with a linear law f (t) = 2Dt (a line of slope one on the log-log
graph), nor with a single f (t) = Atb law (a slope b line). The same is true, as we
will see, for the other models as long as the parameter ε/kB T is large enough. To
be more quantitative, one can try to fit with these two laws the whole set of data
and check the standard deviation of the fit σ = 1

N

√∑
(〈�n2〉 − f (t)), N being the

number of degrees of freedom. For model I e.g., with ε/kB T = 1, we obtain for
both laws a value of σ larger than 100, and the fit hypotheses should be rejected,
as expected.

Plots of Figure 6 also give a measure of the slowing down in the target search
induced by the sequence-dependent interaction. Indeed, in the log-log plot the hori-
zontal offset between different curves, at a given �n2, corresponds to the logarithm
of the ratio between the time needed to cross the corresponding displacement �n
for different choices of ε/kBT. Therefore, if �n is a typical distance to target, the
horizontal offset just gives the slowing factor induced by sub-diffusion with respect
to normal diffusion. Referring to Figure 6, we can conclude that, if the distance
to target is larger than 100 bps (so that �n2 > 104), then the time to reach the
target should be reduced with respect to standard diffusion roughly by a factor 10
for the case ε/kB T = 0.6, or by a factor 100 for ε/kB T = 0.9. Furthermore, this
slowing factor does not depend on �n, provided that it is large enough to con-
sider the asymptotic regime. In this hypothesis, it is possible to obtain an analytical
estimation of the slowing factor [30].

We will now extend the diffusion analysis to the other versions of the model,
introduced in Section 1. Resulting curves for models I to IV and for ε/kB T = 1
are presented on Figure 7. As for model I, in all cases we observe a sub-diffusive
regime at short times due to the trapping effect of the rough energy landscape.

The initial values of b, fitted in the time range (0, 100) through the function Atb,
are the following for the first three models:

I : b = 0.49 ± 1%

II : b = 0.61 ± 1%

III : b = 0.56 ± 1%.

A check of the standard deviation for the three fits always gives α < 0.06, this
implying a very good agreement with the assumed power law in the considered
time interval.

Let us remark that, in principle, the obtained anomalous diffusion could be
due to some particular spatial correlation properties of the underlying potential.
Nevertheless, we have checked that it is only due to the roughness of the landscape,
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doing the same experiment on an artificial base sequence, completely random. In the
conditions described by model I, for instance, and in the same fit range, we obtained
b = 0.52 ± 1%, and a curve similar to the real DNA case (data not shown).

We then studied the behavior of the short time sub-diffusive exponent b as a
function of Et for model III with varying threshold (i.e., including model I and II).
The results are shown on Figure 8. For threshold lower that a critical value of about
−3ε the system displays almost no sensitivity to the threshold level. Indeed, this is

Figure 7. Mean square deviation 〈�n2〉 for the four different models, with ε/kB T = 1 and
Et = 0, in the log-log representation. Symbols refer respectively to: open circles, model I;
triangles, model II; diamonds, model III; squares, model IV (Et = 0). The straight lines
correspond to the fit in the last part of the graphs (t ∈ [6 106, 107]). For the definition of the
units, refer to Figure 6. Inset: the same curves in a linear representation in the short time regime
(symbols have the same meaning).

Figure 8. Behavior of the exponent b as fitted in the short time regime t ∈ (0, 100) as a function
of the threshold energy Et for model III. The vertical line corresponds to max[E(n)] = 5ε.
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due to the fact that it is necessary to have not only a site n with E(n) < Et , but at
least two neighboring sites should be below the threshold in order to feel its effect
(see Eq. (4)). The probability of finding two adjacent sites below the threshold is
too low if Et ≤ −3ε, thus explaining the observed insensitivity. Interestingly, the
exponent b becomes a non-monotonic and very sensitive function of Et for larger
values of Et . The effect of the threshold in this intermediate regime is in fact two-
fold: from one side, it induces an additional damping on many low energy sites;
from the other, it makes (a fraction of) these same sites “blind” to the energies of
their neighbors (the translocation barriers only will depend on E(n) and Et ). The
complex balance between the two contributions induces the high instability of the
fit results displayed in Figure 8. As the threshold increases above the maximum
level (Et = 5ε), the disorder of the underlying energy landscape becomes less
and less important, and the system tends to recover a standard diffusive behavior
strongly damped, i.e., with b → 1 and A → 0.

Now let us consider the large time limit. The asymptotic diffusion constant
depends on the model choice. A linear fit of the large time regime of 〈�n2〉 of
Figure 7 has been done in order to estimate the average diffusion constant D, in
the random walk approximation where 〈�n2〉 = 2Dt . Besides, we checked that
an effective linear behavior is reached in the corresponding time range by fitting
again with a function 〈�n2〉 = A tb and verifying that b is close to unity. The
resulting diffusion constants D and the exponents b for the four models at large
time (t ∈ [6, 106, 107]) are given, for Et = 0, respectively by:

I : 2D = 4.1 10−3 ± 1% b = 0.93 ± 1%

II : 2D = 0.23 10−3 ± 2% b = 0.86 ± 1%

III : 2D = 4.0 10−3 ± 1% b = 0.91 ± 1%

IV : 2D = 0.32 10−3 ± 1% b = 0.85 ± 1%.

(10)

The corresponding fits are the straight lines in Figure 7. We notice that the values
of b obtained in this time interval are still smaller than their asymptotic limit of
1. The linear fits are therefore, in these last cases, less good, also due to the much
larger time interval used: the 〈�n2〉 behavior is indeed still changing during this
time toward its asymptotic regime.

The differences in the equilibrium diffusion constant between different models
are explicitly related to the activation barrier in the four cases: the higher is the
threshold to overcome in order to move one step, the lower is the diffusion constant.
Note that in the case of model IV the boundaries between flat and rough regions act
as energy barriers of amplitude ≈ Esl: these barriers appear to affect the motion at
large times more strongly than the threshold Et , this resulting in a diffusion constant
closer to that of model II than to that of model III.

We have analyzed the dependence on Et also for the asymptotic diffusion con-
stant D. Figure 9 shows2 the dependence of D on Et in model III. Again, almost no
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Figure 9. Behavior of the coefficient 2D as fitted in the large time regime t ∈ (8 105, 106) as
a function of the threshold energy Et for model III. The level max[E(n)] = 5ε is represented
by a vertical line. D is measured in the units of (bps)2/τ ≈ 11.6 ∗ 10−9 cm2/seconds.

Figure 10. Time behavior of 〈�n2〉 for model IV, in the cases Et = −4 (fullsquares), Et = −2
(circles), Et = 0 (full triangles), Et = 2 (diamonds), and with ε/kB T = 1. For the definition
of the units, refer to Figure 6. Two straight lines of slope 1 are shown for comparison.

sensitivity to the threshold level is observed below a critical value, approximatively
Et = −3ε. Roughly, between this value and Et = 0, we observe a transition to
a regime of strong sensitivity (Et > 0), where the damping effect induced by the
threshold is much more enhanced. The diffusion constant decreases rapidly above
the maximal energy (EM = 5ε, vertical line), as intuitively expected.

We shall now discuss in detail model IV, since it displays, with respect to the
others, a more complicated behavior. Note that, in principle, model IV can be put
exactly in the same scheme as the other models, once the underlying potential
E(n) is redefined according to Eq. (5). Nevertheless, this redefinition of the energy
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landscape leads to substantially different features. As can be observed in Figure 10,
during an initial time interval the protein diffuses more rapidly, even if still sub-
diffusively, with initially a larger effective diffusion constant. The initial speeding up
of the dynamics becomes more pronounced as the value of the threshold decreases,
i.e., as the energy redefinition involves an increasing number of sites. This effect can
be explained by considering how the potential landscape is changed for model IV.
Among the particles, uniformly distributed at time zero over a large region of the
sequence, all those that are initially on flat regions of energy Esl will start diffusing
freely with diffusion constant equal to 1, until they fall down in one E < Et region.
These particles contribute initially to the diffusion with a large term, thus making
it increase. After an initial transient, however, most of the particles will be almost
trapped in the potential wells, and the effective diffusion coefficient will decrease
accordingly.

More precisely, the trapping effect will depend on the value of Esl, set to max
[E(n)] in our calculations. If Esl is big enough, most of the particles will be trapped
in E(n) < Et regions, with activation barriers and only a small probability to escape
again toward the flat plateaus. Therefore, in the long time regime, the system will
be essentially in the same state as model III, but mostly localized in some finite
regions. In other words, the particular equilibrium conditions introduced in model
IV are indeed such that one particle needs to spend a large amount of energy (and,
therefore, of time) before reaching a high level plateau, but once reached, it can
move much faster to the next favorable site. An analytical derivation of the main
dynamical quantities as functions of the model parameters discussed in this section
will be presented elsewhere [30].

4. Discussion

All the results presented in this work can be checked by a comparison with detailed
experimental data. Biochemical experiments have demonstrated diffusion along
DNA for several types of enzymes: lac repressor [31], restriction endonuclease
(EcoRI [32, 33, 22], EcoRV [34, 35]), methyl transferase (EcoRI [4]). Experiments
leading to a rather precise determination of the E. Coli RNA-polymerase position
along DNA at different times during the promoter search have also appeared
[8–11]. No evidence have been presented for T7 RNA-polymerase sliding, but
single molecule experiments on this protein are underway in several laboratories
[36–38]. These series of experiments will give rapidly, and for the first time, the
possibility to estimate the detailed features of protein diffusive motion. As we have
shown, a dynamical model which includes both the affinity for the specific site
together with the possibility of sliding, leads to a nontrivial sequence dependent
dynamics. It is thus important to verify if these effects can actually be observed
experimentally.

The sliding distance for RNA-polymerases have been kinetically evaluated in
different experiments around 350–1000 bps [5]. Other enzymes also seem to slide



AMODEL OF SEQUENCE-DEPENDENT PROTEIN DIFFUSION ALONG DNA 221

along the DNA covering a short distance of about 300 bps before being released in
solution [12]. In this space scale, the anomalous diffusion behavior is predominant
for our model. Obviously, the model is too simplified to account for the whole
possible interaction occurring i.e. in the case of the multimeric E. Coli RNA-
polymerase, for which subunit β, β ′ and σ contact the DNA during promoter search
and recognition [39], or in the case of lac repressor, which can bind simultaneously
to two DNA regions [40].

Nevertheless, it is interesting, in particular, to compare our results with the recent
scanning force microscope (SFM) experiment, performed by Guthold et al. [11].
The experiment allows for a direct observation of one E. Coli RNA-polymerase
sliding back and forth on a single DNA chain partially adsorbed on a mica surface,
although with some technical limitations (the average lifetime of the nonspecific
complex is more than hundred times larger than what measured in solution, proba-
bly due to the two-dimensional constraint). The statistical properties of the observed
diffusive motion have been fitted by the law 〈�x2〉 = 2Dt , in order to confirm the
general assumption that RNA-polymerase moves randomly along DNA ([11], Fig-
ure 2). Quantitatively, however, in the observed displacement ranges (less than 200
base-pairs), the corresponding data seem to deviate from a pure diffusive motion.
This may be due to the experimental constraints and to the limited number of RNA-
polymerase sliding trajectories (about 30, with 9 values each). On the other hand,
a rough fit of numerical data from Figure 2 of [11] with a power law of the type
Atb, gives b ∼ 0.5 ± 15%. We obtain a standard deviation σ for this fit of about 4,
to be compared with σ ≈ 8 obtained by fitting with a standard 〈�x2〉 = 2D t law.
Interestingly, the value of σ for the power law fit can be reduced further (to about 2)
if the last point in Figure 2 of [11] is neglected, while it stays practically constant for
the normal law fit. We observe that this last point accounts for the detachment of the
polymerase from the DNA by setting its position at the end of the DNA chain, which
seems a somehow improper statement. If therefore this last data can be reasonably
neglected, the anomalous diffusion fit results particularly better than the standard
one. It is very interesting to note that these data seem much more compatible with
a sub-diffusive behavior than with normal diffusion, as it is usually assumed. This
first experiment allowing for a direct visualization of a RNA-polymerase sliding
motion gives therefore, from our point of view, intriguing and encouraging results.

We remark that the dynamical features described here depend crucially on the
choice of the model parameters: the ratio ε/kB T , the value of the energy threshold
Et , and, in the case of model IV , the energy of the plateaus Esl. As a first check,
we can try to compare our rough estimation of the power exponent we extrapolate
from the results in [11] with the behavior of the model as a function of ε/kB T . The
value of about 0.5 very roughly corresponds to ε/kB T ≈ 1 for all values of Et ,
this confirming that the parameter choice made in the most part of our simulations
could be indeed of the right order of magnitude.

Further experimental investigations, devoted to the detailed determination of
the nonspecific interaction, are necessary to improve the model. The version of
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the model which is compatible with the sliding dynamics of single molecule ex-
periments should emerge from the comparison with the experimental data, using
the model parameters as fitting parameters. In practice, the complicated diffusive
behavior of the model will allow us to compare theory and experiments by means
of more than one dynamical observable. For the case of model IV, where the ad-
ditional model parameter Esl is needed, the presence of a new short time specific
feature could also be used in the fit of the experimental results.

From a biological point of view, the four models offer a framework for defining
the pertinent parameters to optimize the target search. For all models, the specific
interaction energy ε between protein and DNA is crucial and should be close to
kB T in order to allow the protein to move. This adjustment of the interaction energy
can be achieved by varying the distance and angle of the hydrogen bonds during
sliding or including the effect of the solvent. Perhaps, the more interesting model
from a biological point of view is model IV, since it allows for a better control of
the diffusion pattern, and consequently for the corresponding biological function.
An exact balance has to be found in biological system between the reading and
sliding mode. Et , Esl, and ε/kBT have to be optimized for the biological purpose
which will be physically reflected by the protein-DNA interaction and by the DNA
sequence.

Finally, it is important to keep in mind that the recognition mechanism through
hydrogen bonds considered here does not allow for a complete identification of
the target sites. For the considered case of the T 7 genome, e.g., the recognition
sequence GAGTC (or its complementary sequence) appears more than 90 times;
however, only 10 of them actually belongs to real promoters. T7 RNA-polymerase
recognizes, in fact, a longer sequence, that extends from −17 to +6 relatively to
the initiation site and consists of two functional domains [41]. Not all these 23
bps have the same importance in the recognition mechanism [42, 27]. Anyway,
it is evident that other “signals” must cooperate with the direct core recognition
mechanism in order to allow the polymerase to find its target. The weak sequence
TAATA (positions −13 to −17), for instance, also interacts with RNA-polymerase
through the minor groove [26]. A sensitivity to this minor groove region should
probably be included. In this sense, our model can represent a first attempt toward
a detailed description of the T7 RNA-polymerase dynamics during the promoter
search. The model can also be reformulated for the case of other enzymes by
a detailed introduction of their sequence-dependent interaction with nonspecific
DNA. We believe that the main idea of the model, which is the link between base
sequence and protein dynamics, will be valid in general. Indeed, as far as a sequence
dependence is considered, the protein will always interact with DNA through an
effective potential with a fluctuating profile. This potential should be induced for
different proteins by different kinds of interaction. Its roughness by itself, however,
will always generate anomalous diffusion features as those described in this paper.
The generality of the subdiffusive behavior is indeed confirmed by the fact that
similar results are obtained starting with an artificial random DNA sequence (see
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Section 2); furthermore, even completely different diffusion models give analogous
qualitative results, provided that a local trapping mechanism is introduced [30].

5. Conclusions

In this paper we have proposed a simple model for the protein sliding motion along
DNA, which includes a sequence dependent interaction. Four possible variations
of the model were included by considering slightly different translocation proba-
bilities, i.e., by the presence of a varying activation barrier Et (leading to models I
to III ), and eventually by distinguishing “reading” regions from “sliding” regions,
where no hydrogen bonds are made so that the protein can freely diffuse on an
effective constant potential (model IV).

A numerical study of the diffusion properties of the four versions of the model
shows that a normal diffusion regime is only achieved after some time. We have
shown that all the four models are characterized at shorter times by a sub-diffusive
behavior. A rough estimation of the slowing factor induced by the sequence depen-
dence for different values of the energy parameter can be easily obtained. This result
is of particular interest because, as we have discussed, the anomalous diffusion is
observed in a range that corresponds approximately to the experimentally observed
characteristic distance covered by proteins during sliding [5]. The physical reasons
underlying the different diffusion behavior have been discussed.

Nowadays the existing nano-technologies and single molecule techniques al-
low for constraining and manipulating single biological objects. The present paper
represents a first step toward theoretical picture where some of the resulting ex-
perimental results could be analyzed and connected with the known functional
properties of the corresponding biological systems. It is important to keep in mind,
anyway, that the in vivo dynamics of the corresponding biological processes occurs
in a high density environment, in presence of very complex spatial structures and
of water molecules mainly bound and structured [43]. What we usually call the
diffusive motion of proteins inside the cell is likely to be instead a motion strongly
depending on a complex set of environmental trapping sites, as in the case con-
sidered here. Also in this respect, the approach proposed in this paper may have a
larger range of application.
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Notes

1. Also note that, for the case of CRP protein, nonspecific binding have been proposed to mimic the
specific, c-Amp-dependent binding [23], this confirming the hypothesis of a continuity between
nonspecific and specific recognition interaction.

2. For technical reasons, we display data resulting from the fit in the range (8 105, 106), i.e., in a

region where the parameter b has not yet reached unity. The curve of Figure 9 represents therefore

only a qualitative analysis and shows some small discrepancy with data given in Eq. (10).

Appendix. Markovian Assumption and the Hopping Rates

By following the approach of Schurr [29], it is possible to obtain an estimate of the energy dissipated
per unit step just by the effect of friction hydrodynamical forces. Schurr includes in its description
the effect of the helical trajectory actually followed by a protein sliding along the DNA major groove;
using the Stokes–Einstein relation, he then obtains for the one dimensional diffusion constant the
estimation

D1 = kT

fef
, (11)

depending on an effective friction parameter, fef = F/v. The diffusion constant for sliding particles
is known to be approximately of the order of D1 = 10−13 m2/s. Note then that fef is related to the
energy dissipation rate over unit distance, by the following rule:

�E

�x
= F = kT

D1
× v ≈ kT 1013 s/m2 × v. (12)

The speed v (within the single step translocation) is v = �/τ, with τ ≈ 10−7s and � = 3.4 10−10 m
the inter base-pair distance: one can thus easily derive that

�E

�x
≈ 1013 × 107 kT � ≈ 10

kT

�
. (13)

This means that the protein looses all its kinetic energy (of the order of kT) before having reached
the first neighboring position. This implies that the memory is lost too, or in other words, that the
particle velocity decorrelates in less than one step.

For this reason we choose to describe the protein diffusion along DNA as a discrete Markov
process. Once having established this first assumption, we have to address the question of how to
define the forward and backward hopping rates. At this stage, the dislocation process can be described
as a chemical reaction of the type

Prot · DNAn + DNAn′ → DNAn + Prot · DNAn′ ;

for what one can reasonably use a speed constant k as usually given in biochemistry handbooks,

k = A exp(−�G/RT ) (s−1), (14)

or, equivalently, the hopping rates as defined in our work.
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