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Foreword

These are lecture notes for the course “Symmetries and quantum field theory” given at the master 2 “concepts
fondamentaux de la physique, parcours de physique quantique” in Paris. The first version was written by
Jean-Noël Fuchs and was later modified by Matthieu Tissier. It is work in progress and comments are most
welcome.

There are 12 or 13 sessions consisting of a 1.5h lecture and a 1.5h exercise session (under the supervision
of Julien Serreau serreau@apc.in2p3.fr).

Recommended books:
• Textbooks:
The three documents that I most used to prepare these lecture notes are the following.
B. Delamotte, Un soupçon de théorie des groupes: groupe des rotations et groupe de Poincaré [1]
M. Maggiore, A modern introduction to quantum field theory [2]
L.H. Ryder, Quantum field theory [3]
• More advanced:
A. Zee, Quantum field theory in a nutshell [4]
• Less advanced (popular science reading):
A. Zee, Fearful symmetry: the search for beauty in modern physics [5]
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Chapter 1

Introduction

V. Weisskopf: “There are no real one-particle systems in nature, not even few-particle systems. The existence
of virtual pairs and of pair fluctuations show that the days of fixed particle number are over.”

These notes serve as an introduction to relativistic quantum field theory (but they often discuss the
connection to condensed matter physics as well). They start by discussing the symmetries of flat spacetime
(Lorentz and Poincaré groups). Then classical field theory is reviewed in the framework of scalar fields
before quantizing the non-interacting field using canonical quantization. In the last sections we construct
the natural geometrical objects of spacetime, such as scalars, vectors and spinors, which are the building
blocks of the standard model of particle physics. We then describe the quantization procedure for these
fields. The notes end with a short presentation of spontaneous symmetry breaking.

1.1 Requirements

Quantum mechanics including representations of the rotation group and the notion of spin
Special relativity in covariant notation
Analytical mechanics (Lagrangian, action, Euler-Lagrange equations, etc.)
Notions on group theory and representations
Electromagnetism (wave propagation, gauge invariance)

1.2 Why quantum field theory?

1.2.1 Quantum + relativity ⇒ QFT

Wedding of quantum physics and relativity imposes the language of quantum field theory (QFT). Indeed,
quantum mechanics is formulated to describe a fixed number of particles. But this is only possible non-
relativistically. The uncertainty relation ∆E∆t & ~ permits the violation of the energy conservation law (by
an amount ∆E) for a short time (∆t) and relativity theory permits the conversion of energy into matter
(E = mc2 states that the rest energy is given by the mass). Therefore the number of particles (even massive)
can not be fixed: (virtual) particles may appear or disappear out of nothing (vacuum). We therefore need
a theory that permits to create or destroy particles. This is QFT. The change of perspective is that we
now describe a field (such as the electromagnetic field or the electron field) rather than particles and that
particles emerge as excitations of this field upon quantization.

Let us try to describe quantum mechanically a single relativistic massive particle (i.e. an electron, for
example) and show that we run into a difficulty. Because ∆x∆p & ~ and ∆p = ∆E/v with v = ∂E/∂p

and E =
√
p2c2 +m2c4, then ∆E & ~v/∆x. In addition, remaining a single particle on the positive energy

branch of the relativistic dispersion relation E = ±
√
p2c2 +m2c4 means that the energy uncertainty ∆E has
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to be smaller than the mass gap 2mc2. Therefore ∆x & ~v/(2mc2) ∼ ~/(mc), which means that there is a
minimum localization length for a single particle, which is of the order of the Compton wavelength ~/(mc) 1.
If we try to localize a particle better than its Compton wavelength, then its energy becomes uncertain by an
amount larger than the mass gap so that other particles start being involved (those occupying the negative

energy branch in the Dirac sea picture of the vacuum having a negative energy branch E = −
√
p2c2 +m2c4

filled with electrons). And hence, it is impossible to describe a single relativistic particle. Note that quantum
+ relativity also imposes the notion of antiparticles (pictured as a missing electron in the Dirac sea).

The most well-known example of a QFT is that of the electromagnetic field, the quanta of which are the
photons. Photons can be created and destroyed. There is no consistent description of a single photon. The
blackbody radiation is described as an ideal Bose-Einstein gas of massless particles at thermal equilibrium
with a zero chemical potential µ = 0: when T → 0, there are less and less photons on average. Photons are
not conserved, their number is not fixed.

In the present context, QFT is known as relativistic quantum field theory.
Another strong argument which indicates that standard quantum mechanics (based on Shrödinger equa-

tion) is not suited for relativistic is the following. As you well know, in standard quantum mechanics, the
position of a particle is described by an operator (if you measure the position of a particle, you have a
probability to find in between x and x + dx with probability |ψ(x)|2dx, etc...). Time has a very different
status. Time in ordinary quantum mechanics is an external parameter (not an operator!). This clashes with
the basics of special relativity, which states that space and time coordinates should be treated on an equal
footing. There are two ways out. Either you promote time to an operator (but this proved to be not very
fruitful) or you downgrade position coordinates to be parameters (as time). In the second case, what can
you quantize? The answer to this apparent paradox is to use fields. The spacetime coordinates are indeed
parameters and what is quantized is the field itself.

1.2.2 Many-body problem in condensed matter physics

Another familiar example of a QFT can be found in non-relativistic condensed matter physics. Phonons
appear as quanta of the displacement field of a crystal. They can also be destroyed and created. In the context
of condensed matter, QFT is not required but it is frequently used as it is very convenient when dealing with
quantum mechanics of a very large number of degrees of freedom. This is known as the many-body problem.
QFT in the many-body problem is also known as “second quantization” description (meaning occupation
number representation, Fock space, annihilation and creation operators, etc.) in contrast to using standard
quantum mechanics known as “first quantization” description (meaning numbered particles, many-body
wavefunction Ψ(1, ...., N ; t) in configuration space, symmetrization or anti-symmetrization, etc). It means
describing the population of modes instead of describing the behavior of numbered particles. Actually, it is
not restricted to describing non-conserved particles (such as phonons, magnons, etc.) but can be adapted to
describe conserved particles as well (such as electrons in a metal or atoms in a trapped ultracold gas, which
are conserved in a non-relativistic theory).

“Second quantization” is a historical name and a quite confusing one (a better name would be non-
relativistic QFT or condensed matter field theory). It comes from a misinterpretation: classical physics of a
single particle (Newton’s equation or Lagrangian dynamics or Hamiltonian dynamics) would first be quan-
tized into the quantum mechanical description of a single particle (Schrödinger’s equation for a wavefunction
ϕ(~x, t)), and then the wavefunction would itself be quantized again (i.e. second quantized) ϕ(~x, t)→ ϕ̂(~x, t)
to become a quantum field. Do you see what is wrong in the preceding argument? Think about this point, it
is important to grasp. Actually, there is only a single quantization procedure but accompanied by a change
of perspective from a single particle to a field describing all identical particles. What is wrong is that the
field that becomes quantized in a QFT is not a wavefunction (it is not a quantum state describing a single
particle) but rather a field whose excitations are the particles. Once this field is quantized, it becomes an
operator creating or destroying particles at position ~x and time t. A better notation for the quantized field

1For an electron, the Compton wavelength is of the order of 500 fm, i.e. 100 times smaller than the Bohr radius, the typical
size of atoms and 500 times larger than the size of a nucleus.
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number of degrees of freedom classical quantum
finite and discrete classical mechanics quantum mechanics

infinite and continuous classical field theory quantum field theory

Table 1.1: Field theory versus mechanics.

ϕ̂(~x, t) would be â(~x, t) to clearly identify it as a ladder operator (or annihilation operator as for the harmonic
oscillator). The conjugate field â†(~x, t) is also a ladder operator (known as a creation operator). In QFT, as
we will see, the Schrödinger equation for a single electron is reinterpreted as being a classical field equation
describing the field of all electrons, i.e. the electronic field2. Just as Maxwell’s equation is a classical wave
equation describing the electromagnetic field, i.e. the photonic field.

In these lectures, we will mostly focus on relativistic QFT. For more on condensed matter field theory
(i.e. the use of QFT techniques in the context of non-relativistic condensed matter physics), see other
M2 courses such as “Quantum mechanics: second quantization and scattering theory” (first semester) and
“Condensed matter theory” (first semester). We also strongly recommend the book by A. Altland and B.
Simons, Condensed matter field theory [6].

In short, QFT is a convenient/efficient framework to describe a system with many particles that are not
necessarily conserved (they can be created or annihilated).

1.2.3 What is a field?

A field is an object φ defined at each point of space-time

φ(~x, t) (1.1)

where ~x denotes space, t time and φ can be a scalar, a vector, a tensor, a spinor, a matrix or even something
else. More generally, a field is a map from a base manifold3 M (usually space-time) to a target manifold T
(which depends on the nature of the field: scalar, vector, etc.):

φ : M → T

x → φ(x) (1.2)

A field describes an infinite number of degrees of freedom (DoF). For example, if the field is a real scalar
(φ ∈ R) and if space-time is continuous 1 + 1 dimensional, at each point of this 2d manifold, there is a single
degree of freedom. QFT should be clearly contrasted with quantum mechanics, which is restricted to a finite
countable number of degrees of freedom, see Table 1.1.

Fields are also needed to avoid action at a distance, i.e. to mediate forces at finite velocity and respect
locality. For example, the electric interaction between charges is not instantaneous but propagates at the
speed of light. Although, it is often approximated as an instantaneous (non-retarded) Coulomb potential.

1.3 Symmetries as a leitmotiv and guiding principle

Symmetries are all important in physics (P.W. Anderson even wrote that “it is only slightly overstating the
case to say that physics is the study of symmetry” in “More is different”, Science 1972). They constrain the
form of theories (symmetry dictates design). We will use space-time symmetries to construct relativistic field
theories. Symmetries also imply conservation laws (for example, the conservation of energy is a consequence
of invariance under time translation). Even more so in quantum then in classical physics. In addition
to space-time symmetries, there are also less obvious internal symmetries. For example: gauge symmetry

2A tricky question at the heart of the confusion about “second quantization”: how come ~ already appears in Schrödinger’s
equation if it is a classical wave equation?

3A manifold is a topological space that resembles Euclidean space near each point.
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of electromagnetism. Symmetries can be continuous (as rotations) or discrete (as space inversion or time
reversal). The mathematical tools needed to describe symmetries are groups and their representations.

But what is a symmetry? To answer that question precisely, we first need to define a few important
notions.

First, there are transformations, which should be carefully distinguished from symmetries. This is a
change in our description of a system. We adopt the passive viewpoint: the system is left unchanged, only
the description (a frame, for example) is transformed (the active viewpoint would consist in having a single
frame and in applying a transformation to the system). An example is the rotation of a reference frame
used to describe a bicycle. A transformation need not be a symmetry. The bicycle is not invariant under
arbitrary rotation. Still, it is not forbidden to apply a rotation (transformation) to a bicycle.

Second, there is the notion of invariance under a transformation. Something (an object, the state of a
system, etc.) is said to be symmetrical under a transformation (or to admit a transformation as a symmetry)
if it is left unchanged by the transformation. For example, a cube is invariant under certain rotations (but
not all).

Third, one needs to distinguish the symmetry of an object (or of the state of a system) from the symmetry
of a law of physics. In the following, we will be more interested in the symmetry of physical laws than in the
symmetry of an object (except in the last chapter on spontaneous symmetry breaking). If a law of physics
(or a description of a system) is left unchanged by a transformation, then we say that the law exhibits a
symmetry or that the system possesses a symmetry. We will often describe a system by an action S: then,
the system exhibits a symmetry if the action is left invariant by a transformation. For example, 3d space
is thought to be rotationally invariant. In order to respect that invariance, the fundamental laws of physics
(e.g. Newton’s second law) have to be written in a covariant manner (i.e. as an equality between objects

that transform the same under space symmetries, e.g. vectors ~F = m~a). But this does not preclude the
existence of objects (e.g. a cube, a bicycle, etc.) that do not have the full rotational invariance of space.
Not all objects are spheres.

Fourth, when a symmetry is present for a physical law, it does not mean that every state of the system
will feature that symmetry4. Indeed a symmetry can be spontaneously broken: the system may possess the
symmetry but this is not necessarily reflected in its state. For example, translational symmetry of space
may be apparent in the state of an atomic ensemble (when it is in its gaseous or its liquid phase) or may
be spontaneously broken (when it is in its cristalline solid phase). The state of the system may be less
symmetric than the laws of physics.

Eventually, a symmetry can also be explicitly broken. For example, full rotational symmetry of space is
explicitly broken at the surface of earth by the presence of a gravitation field indicating a preferred direction
(vertical direction).

1.4 Natural units, dimensional analysis and orders of magnitude
in high-energy physics

We will use natural units such that ~ = 1 and c = 1. It is a good exercise to put units back in final
expressions. With these units, energy = mass = 1/length = 1/time, which is usually expressed in GeV (1
GeV = 109 eV = 1.6× 10−10 J = 1.8× 10−27 kg, which is the order of magnitude of the proton or neutron
mass). The corresponding length scale is ∼ 0.1 fm = 10−16 m (femtometer or fermi). The typical size of a
nucleus being ∼ 1 fm.

When performing dimensional analysis of physical quantities, we will always be interested in knowing
their “mass dimension”. For example, energy has mass dimension 1, time has mass dimension −1, power
has mass dimension 2, action has mass dimension 0, the Lagrangian density has mass dimension D + 1 (in
D + 1 spacetime), a scalar field has mass dimension D−1

2 , etc.
At this point it would be good to make connection to the natural playground for relativistic QFT, which

is nuclear and subnuclear physics (also called high-energy physics). Unfortunately, we won’t have time to

4Again, it is important to distinguish the symmetry of a law and that of an object (or of the state of a system).
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do that. We therefore only provide what we think is the minimum piece of information. For more details
see the introduction chapter in Maggiore [2] or Ryder [3]. For a pleasant evening reading see the popular
science account by A. Zee [5].

The elementary particles consist mainly of two categories: matter particles or constituents of matter
(fermions) and interaction mediating particles or messengers of interaction (mediating bosons).

The first category splits in leptons (electron, neutrino, etc.: spin 1/2) that do not feel the strong in-
teraction5 and hadrons (proton, neutron, pion, etc.) that do feel the strong interaction. Hadrons further
separate into baryons (proton, neutron, etc.) that are fermions and mesons (pion, etc.) that are bosons6.
The neutrino is almost massless (less than ∼ 1 eV). The electron mass is roughly 0.5 MeV and that of
nucleons (proton or neutron) 1 GeV. Entering the world of nuclear physics happens at the mass scale of the
pion 0.1 GeV which corresponds to a distance of 1 fm (the typical size of a nucleus).

The four fundamental interactions (electromagnetism, gravity, strong and weak) and their main properties
are summarized in Table 1.2. The particles carrying interactions are all bosons. The photon (massless, spin
1, gauge boson) carries the electromagnetic interaction, the intermediate vector bosons W and Z (80 − 90
GeV, spin 1, gauge bosons) carry the weak interaction and the mesons (e.g. the pions, 0.1 GeV) carry the
strong interaction (see also a preceding footnote and the caption of Table 1.2). Gravity is supposed to be
mediated by a massless spin 2 boson called the graviton, although it has never been observed. Classical
gravitational waves have recently been detected by LIGO-Virgo (september 2015). The huge energy scale at
which gravity becomes quantum is expected to be the so called Planck mass

√
~c/G ∼ 1019 GeV (where G

is Newton’s constant of gravity) corresponding to a distance of 10−20 fm. 7

The weak interaction is quite peculiar. It is by far the one with the shortest range: a thousand time
smaller than the size of a nucleus. Apart from gravity, it is the weakest interaction. Also it violates parity
and time-reversal symmetries. And the neutrino only interacts trough the weak interaction (again apart
from its small mass, which means a gravitational interaction).

Eventually, there is a third type of particles – on top of fermions and mediating bosons – with a single
known member: the Higgs (scalar, spin 0) boson. Its peculiarity comes from its being a scalar (rather
than a vector) boson, not mediating an interaction and therefore being closer to being a matter particle.
Its mass (125 GeV) is of the same order as that of the intermediate vector bosons (W and Z). It was
discovered experimentally in 2012. We will encounter this particle at the end of the course, when discussing
spontaneous symmetry breaking. We should also mention that the highest energy currently achieved in
particle accelerators (e.g. the large hadron collider LHC at CERN) is of the order of 1 TeV = 1000 GeV (per
nucleon) corresponding to a distance of ∼ 10−4 fm, i.e. 0.01% of the nucleus size. The current status is the
following: the standard model seems to explain almost every observed phenomena in high-energy physics
(with an extension to include finite neutrinos’ masses) and, at the moment, there are no signs of things such
as super-symmetry or extra particles.

5In addition, the neutrino does not carry an electric charge and is almost massless. Therefore, it essentially only couples to
the weak interaction and is very hard to detect.

6A potentially confusing fact in the above presentation is that mesons (which are composite bosons) appear both as matter
particles (and as such should be fermions) but also as the carriers of the strong interaction at low energy. At a more fundamental
level, the correct theory of strong interaction is quantum chromodynamics. The elementary fermions in this theory are called
quarks (rather than baryons) and interact via the exchange of massless spin 1 gauge bosons called gluons (rather than mesons).
It is only at a phenomenological level that hadrons are formed due to quark and gluon confinement – the strong interaction
being so strong at low energy that free quarks or free gluons have never been seen – leaving baryons (bound states of three
quarks) as “matter fermions” and mesons (quark anti-quark bound states) as ”mediating bosons”. At low energy, the strong
interaction proceeds via the exchange of mesons (e.g. pions) between baryons (e.g. nucleons) as proposed by Yukawa. Baryons
are composite fermions made of three fermions, whereas mesons are composite bosons made of two fermions. This resolve the
apparent contradiction of mesons being constituents of matter and bosons at the same time.

7Later, we will see that fundamental interactions are described by gauge theories and that carriers of interactions are gauge
bosons. Electromagnetism or quantum electrodynamics (QED) will be seen as a U(1)Q gauge theory (Q is the electric charge).
It is an abelian gauge theory. Electroweak interaction or quantum flavor dynamics (QFD) will be seen as an SU(2)L × U(1)Y
gauge theory (weak isospin and Y is weak hypercharge). It is a non-abelian or Yang-Mills gauge theory. Upon spontaneous
symmetry breaking (Higgs mechanism) SU(2)L×U(1)Y → U(1)Q. Strong interaction or quantum chromodynamics (QCD) will
be seen as a SU(3) gauge theory (the corresponding charge is called color charge). The standard model is built from the gauge
group SU(3)× SU(2)L × U(1)Y . And gravitation can also be seen as some kind of gauge theory where spacetime translations
are gauged into diffeomorphisms? There is also a covariant derivative, and a Levi-Civita connection, etc.
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interaction realm strength (at low energy) range mass of carriers

em atoms, chemical binding weak ( e
2

~c = 1
137 ∼ 10−2) long (∞) 0 (photon)

gravity planets, galaxies, cosmos weakest (10−40 @ 0.1 GeV) long (∞) 0 (graviton?)
strong nuclei, nuclear binding strong (∼ 1 @ 0.1 GeV) short (1 fm) 0.1 GeV (pion)
weak radioactive β decay, nucleosynthesis weaker (10−7 @ 0.1 GeV) shortest (10−3 fm) 100 GeV (W , Z)

Table 1.2: The four fundamental interactions. Interaction range r and mass of the carrier boson m are related
by r ∼ ~/mc ∼ 1/m in natural units (1 fm ↔ 0.2 GeV). At a more fundamental level, strong interactions
are carried by spin 1 massless gauge bosons called gluons. The latter interact very strongly and are confined
such that the resulting effective interaction is carried by massive composite particles (called mesons: pions
being one example, e.g.) and the effective range of nuclear forces is finite despite the mass of gluons being
zero.

1.5 Logic of the course: the menu

Chapter 1: quantum + relativity ⇒ QFT as a necessity (also quantum + many bodies ⇒ QFT as a
convenience)
Chapter 2: space-time symmetries constrain physical theories ⇒ relativistic (classical) field theory
Chapter 3-4: scalar field theoryand its canonical quantization ⇒ QFT
Chapter 5: symmetries and representation
Chapter 6-7: More general field theories, Dirac Field, Electromagnetism.
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Chapter 2

Spacetime and its symmetries

It is expected (and tested to a great accuracy) that the laws which govern our universe are invariant under
translations (in space and in time) as well as rotations and what we now call Lorentz boosts. These boosts
correspond to a change of coordinates corresponding to two observers moving one from another with a
constant velocity. For a long time it was also thought that the laws of physics were invariant under parity
(mirror image) and time inversion but experiments showed that the weak interaction actually break these
symmetries.

Your first introduction to special relativity probably followed the historical development of the field.
Michelson-Morley experiment showed, to the surprise of everyone at that time, that the speed of light was
the same in all reference frames, in contradiction with the classical law of compositions of velocities. From
this experimental fact, you probably deduced the Lorentz transformation, which relate the coordinates of an
event in two reference frames which move at a constant speed one from another. (If one wants to understand
something to relativity, we recommend reading Epstein [10]. For a brief recap, we recommend Feynman [11].
And for a more formal presentation with the covariant notation, we suggest reading Boratav and Kerner
[12].) Here, we will use a faster track, which makes the geometric structure of spacetime more explicit.

2.1 Spacetime and interval

We consider the 3+1 dimensional Minkowskian space-time. A point in spacetime is called an event. Once we
have chosen a reference frame, we can characterize an event by a time coordinate and three space coordinates.
[A typical event in Jussieu campus would be: Friday afternoon (1 time coordinate) tower 23 (these are actually
2 space coordinates), 5th floor (third space cordinate)]. We often merge these 4 coordinates in what we call
a 4-vector, noted xµ, with x0 the time coordinate and xi with i = 1, 2, 3 the three space coordinates. In this
course (and in virtually all the literature), greek indices like µ run from 0 to 3 while latin ones (like i) run
from 1 to 3.

Now consider two points which are close by and call dxµ the difference between the coordinates of the
two events. The interval between these two events is defined to be

ds2 = dt2 − (dx2 + dy2 + dz2). (2.1)

Note that ds2 is not positive in general. If ds2 > 0, the interval is said to be time-like and ds =
√
ds2 is

called the proper time interval. If ds2 < 0, the interval is said to be space-like and
√
|ds2| is called the proper

distance. If ds2 = 0 the interval is said to be light-like (or null). In our units where the speed of light equals
1, the interval between two events on the line of universe of a ray of light is equal to 0 (hence the name).

The set of events with a vanishing interval with respect to a certain event defines the light-cone of this
event. In particular, if we consider two event of the history of a massive particle (whose speed is smaller than
1), the interval is positive. Inside the light cone of an event are other events that can be causally related
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to it (either before in the “past” or after in the “future”). Outside the light cone are events that may be
thought as happening “now” and that are not causally related to the given event.

Figure 2.1: Light cone of a given event (or observer). Taken from https://en.wikipedia.org/wiki/Light cone.

The definition of the interval ds2 resembles closely the distance in usual euclidean space, except for the
minus sign. It is convenient to rewrite it in terms of a metric tensor:

ds2 = ηµνdx
µdxν

where the Einstein convention is used (repeated indices are to be summed over) and where

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = diag(1,−1,−1,−1) (2.2)

2.2 Symmetries of spacetime

In our fast (but admittedly obscure) way of introducing special relativity, we will postulate that physics is
invariant under all changes of coordinates that leave the interval unchanged. All such transformations form
the Poincaré group.

Let us characterize the possible changes of coordinates in more detail. The constraint reads: ηµνdx
′µdx′ν =

ηαβdx
αdxβ . Using the fact that dx′µ = (∂x′µ/∂xσ)dxσ, we obtain ηµν(∂x′µ/∂xσ)(∂x′ν/∂xρ) = ησρ. First,

taking the determinant we see that the Jacobian |det ∂x
′

∂x | = ±1 so that the matrix ∂x′

∂x is invertible. Second,
taking a further derivative, we have ∂α(ηµν∂σx

′µ∂ρx
′ν) = 0 so that Aασρ + Aαρσ = 0 where we defined

Aασρ ≡ ηµν
∂2x′µ

∂xα∂xσ
∂x′ν

∂xρ . Note that A is symmetric under permutation of the first two indices. Permuting
indices we find the three relations: Aασρ+Aαρσ = 0, Aασρ+Aρσα = 0 and Aρσα+Aαρσ = 0. Now, summing

the first two identities and subtracting the last one, we conclude that Aασρ = 0. But since ∂x′

∂x is invertible,
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this implies that ∂x′µ

∂xσ∂xα = 0 so that x′ is a linear function of x. Therefore, we introduce the 4 × 4 matrix
Λµν and the vector aµ such that

x′µ = Λµνx
ν + aµ . (2.3)

By convention Λµν is represented by a matrix for which µ is the row index and ν the column index (note that
this convention for Λ differs from the one we have taken for the metric η for which the associated matrix is
defined by ηµν = diag(1,−1,−1,−1) and not by ηµν).

The constant shift aµ corresponds to a spacetime translation, whereas Λ corresponds to a “spacetime
rotation” (i.e. either to a space rotation, to a change of inertial frame called a Lorentz boost or simply a
boost or to a combination of these). (Λ, a) is an element of the Poincaré group (translations + rotations +
boosts), whereas Λ is an element of the Lorentz group (rotations + boosts)1.

For the moment, we concentrate on the Lorentz group, an element Λ of which acts as x′µ = Λµνx
ν . From

the invariance of the interval, we deduce that

ηαβ = ηµνΛµαΛνβ , (2.4)

Therefore

η = ΛT ηΛ (2.5)

as a matrix identity where η represents the matrix ηµν , while Λ represents the matrix Λµν . This relation
defines (homogeneous) Lorentz transformations.

Equation (2.5) should be seen as a Minkowskian equivalent of the Euclidian relation I = RT IR showing
that rotations are described by orthogonal matrices. Lorentz transformations form a group (show it) called
L. This group is actually made of four disconnected pieces due to the presence of discrete transformations.
This can be understood by observing that detΛ = ±1 (show this). The Lorentz group is therefore divided
in a proper (detΛ = +1, noted L+) and an improper (detΛ = −1, noted L−) part. Similarly, we can show
that (Λ0

0)2 ≥ 1 so that the Lorentz group is divided in a orthochronous part (Λ0
0 ≥ 1, noted L↑) and a

anti-orthochronous part (Λ0
0 ≤ −1, noted L↑). You can show that L↑, L+ and L↑+ are subgroups.

Let us give simple examples of Lorentz transformations to exemplify these discrete operations. Space
inversion is P = diag(1,−1,−1,−1) is improper, orthochronous. Time reversal is T = diag(−1, 1, 1, 1) is
improper anti-ortochronous. Their product is PT = −I is proper, antiorthochronous. These three discrete
transformations P , T and PT are not continuously connected to the identity. P and T change the orientation
of spacetime (just like in 3d Euclidian space, space inversion changes the orientation of space). 2. In the

following, we concentrate on L↑+, which we will loosely call the Lorentz group.
Other transformations of interest are rotations (which leave the time coordinate unchanged) and Lorentz

boosts. Let us give one particular example: you can check that the following choice fulfills the constraint:
Λ0

0 = Λ1
1 = coshφ

Λ2
2 = Λ3

3 = 1

Λ1
0 = Λ0

1 = − sinhφ

all other entries vanish

(2.6)

This change of variables corresponds to an observer O′ using coordinates x′, which travels at a constant
velocity tanhφ with respect to the observer O using coordinates x.

1The Poincaré group is also called the inhomogeneous Lorentz group and the Lorentz group is also known as the homogeneous
Lorentz group.

2The group L is the semi-direct product of L↑+andthediscretegroup{I,P,T,PT}, whichisknownastheKleinfour − groupK4.
As an exercise, write the multiplication table of the group K4 and compare it to that of the group Z2×Z2 where Z2 = {1,−1;×}
or equivalently {0, 1; +}.

12



2.2.1 Covariant and contravariant coordinates

We have found the transformation rules of coordinates under the elements of the Lorentz group. We may
encounter other sets of 4 quantities which transform as the coordinates. These will be called (by definition)
the contravariant components of a 4-vector. Otherwise stated, a 4-vector is by definition an object which
transforms as the coordinates, that is:

A′
µ

= ΛµνA
ν (2.7)

But beware, we may also encounter object that do not transform as the coordinates!
For instance, assume that Aµ are contravariant coordinates of the 4-vector A and consider the four

quantities defined as
Aµ = ηµνA

ν

It is a simple exercise to show that these objects do not transform as contravariant coordinates (show it).
In fact, we call Aµ the covariant coordinates of the 4-vector A. The notations are such that upper indices
indicate contravariant coordinates and lower indices indicate covariant ones. Some tensors have covariant
and contravariant indices (such as the Λ matrices).

The metric tensor enables us to transform the contravariant coordinates to covariant ones (in colloquial
terms, we say that we lowered the index). The opposite operation (raise the index) is done by using the tensor
ηµν , defined to be the inverse of ηµν : ηµνη

νρ = δρµ. This definition ensures that Aµ = ηµνAν , as you can
readily prove. In actual calculations, it is very easy to transform covariant coordinates to contravariant ones.
We just need to change the sign of the space-components of the 4-vectors. For instance, if xµ = {t, x, y, z},
then xµ = {t,−x,−y,−z}.

But how do covariant coordinates transform? A very simple exercise show that A′α = Λ µ
α Aµ where we

have used our convention for lowering and raising indices (Please pay attention to the horizontal position of
the indices!). It is now convenient to rewrite Eq. (2.4) with our convention of raising and lowering indices, as:
ΛαµΛ ν

α = δνµ. This enables us to rewrite the transformation rule for covariant coordinates as: ΛµνA
′
µ = Aν .

This closely resembles the transformation rules of contravariant coordinates, see Eq (2.7), except that the Λ
matrix changes side in the equation!

Let us consider another set of 4 objects of great importance in what follows, the operators ∂
∂xµ . Does it

transform as co- or contra-variant components? To answer this, we use the Leibnitz rule of derivatives:

∂

∂xµ
=
∂x′

ν

∂xµ
∂

∂x′ν
(2.8)

= Λνµ
∂

∂x′ν
(2.9)

We recognise the transformation rules of covariant coordinates. For this reason, we note the derivatives with
a lower index:

∂

∂xµ
= ∂µ

A word on three words: invariant, covariant, contravariant. Invariant means unaffected by a transforma-
tion (e.g. a scalar is invariant under an isometry). Covariant means that something transforms in the same
way as something else. For example a covariant equation is such that both sides of the equality are trans-
formed but that the equality remains true after transformation3. Covariant and contravariants coordinates
are coordinates that transform in a precise way, as described above.

2.3 Scalar, vectors tensors

Suppose that we have two 4-vectors A and B. We can now form new objects out of these. We can look
at AµB

µ = ηµνA
µBν . How does this quantity transform under Lorentz? You can convince yourself that it

3For example, an equality between two vectors ~a = ~b is covariant, whereas an equality between a triplet of scalars (a, b, c)

and a vector ~d = (dx, dy , dz) is not and is generally wrong, even if it may be true in a particular frame. It is seen to be wrong
in a rotation as (a, b, c) is invariant but not (dx, dy , dz)→ (d′x, d

′
y , d
′
z) = R(dx, dy , dz), where R is a rotation matrix.
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actually does not transform! Such quantities, which take the same value in all reference frames are called
scalars. We can also build Cµν = AµBν . The transformation rule of this set of 16 numbers transform as:
T ′µν = ΛµαΛνβT

αβ . Ths characterizes the transformation of a rank-2 tensor with two covariant indices. More

generally, we sometimes need to consider tensors with p contravariant and q covariant indices: D
µ1···µp

ν1···νq
which transforms as:

D
′µ1···µp

ν1···νq = Λµ1
α1
· · ·ΛµpαpΛ β1

ν1 · · ·Λ
βq
νq D

α1···αp
β1···βq

There is a last object to be introduced, for completeness. Indeed, very much as the metric tesor η is the
same in all reference frame, there exists a rank-four tensor which is invariant. It is totally antisymmetric rank
4 tensor εαβγδ such that ε0123 = +1 (also known as the Levi-Civita symbol). As an exercise, show that it is
invariant under Lorentz transformations.4 There is an important difference between the Levi-Civita symbol
with 3 and 4 indices. Indeed, with three indices, εijk = +1 if and only if (ijk) is an even permutation of (123)
(i.e. if it is obtained from an even number of transposition of (123)). This is the same as saying that (ijk) is
a circular permutation of (123). With four indices, εµνρσ = +1 iff (µνρσ) is an even permutation of (0123).
But this is not the same as saying that (µνρσ) is a circular permutation of (0123). As a counter-example,
show that ε3012 = −1: even if (3012) is a circular permutation of (0123), it is an odd permutation of (0123).
Pay also attention to the fact that εµνρσ ≡ ηµαηνβηργησδεαβγδ and the product of four η’s gives −1. In other
words εµνρσ = −εµνρσ.

4This is actually true for the proper part of the Lorentz group L↑+. Improper transformation lead to a change of sign. This
means that ε is a pseudo-tensor.
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Chapter 3

Classical fields, symmetries and
conservation laws

A. Zee: “Einstein’s legacy: Symmetry dictates design.”

The idea now is to use our knowledge of spacetime symmetries to build relativistic classical field theories.
We will see that a field theory is conveniently specified by giving its action S =

∫
d4xL in terms of its

Lagrangian density L. To require that a field theory has a certain symmetry (for example Poincaré symmetry)
amounts to designing an action that is invariant under Poincaré transformations. In others words, the
action should be a Poincaré-scalar. The Lagrangian density should therefore be a Lorentz-scalar and should
not explictly depend on the spacetime coordinate x (in order to have translational invariance). Then the
corresponding action (and therefore the field theory) will be invariant under Poincaré transformations, i.e.
automatically incorporate the physical facts that space is isotropic, homogeneous, that there is no prefered
time origin, that relative motion is undetectable (relativity principle), etc.1

3.1 Lagrangian formalism

For this section, it would be good to have analytical mechanics fresh in your mind. The essential forward
step here is to go from analytical mechanics of a discrete and finite number of degrees of freedom to that of
fields.

3.1.1 Action and Lagrangian

To learn relativistic field theory, we will most often use the simplest example of a real scalar field φ(xµ).
Therefore φ ∈ R and φ(x) → φ′(x′)=̂φ(x) under a Lorentz transformation. When we want to be slightly
more general, we will take a field with internal indices φI(x

µ), where I = 1, ..., NI . Here, internal index
means that this index does not bear a space-time structure: φ′I(x

′)=̂φI(x) The action

S[φ] =

∫
dt L =

∫
R

d4x L (3.1)

is a functional of the field φ, which is written in terms of the Lagrangian L or of the Lagrangian density L.
The integral is over a very large portion R of Minkowski spacetime M (eventually, all of it). A functional is
a machine that eats a function (not just a number) and gives a number as an output. It should clearly be
distinguished from a function2.

1Well, things are slightly more complex. There are examples where the action is not invariant but the physical laws are...
We will talk about that later but, fortunately, We won’t encounter such cases in the cases of interest for us.

2Indeed S[φ] depends on the whole function φ and not just on the value of the function φ at a single given point x.
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To exemplify the construction, we will deal explicitly with the simplest field theory, which describes the
dynamics of a single field (with no internal index), described by the following lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ). (3.2)

If one insists on staying quadratic (free field) then V (φ) ∝ φ2: L = 1
2∂µφ∂

µφ − 1
2m

2φ2. At this point m2

is just the name of a constant that is real but could be positive or negative (later m will be interpreted as
a mass). We will motivate this form below (observe for the moment that the Lagrangian density is a scalar
under Lorentz transformation and translations).

3.1.2 Equations of motion

The equations of motion of the field are obtained from the principle of least action (Hamilton): the action
should be stationary δS = 0 when we make a small variation of the field δφI(x) ≡ φ′I(x) − φI(x) 3. Note
the position of the prime and x is a short notation for xµ. Later we will need to introduce another type
of variation ∆φI(x) ≡ φ′I(x

′) − φI(x) that should not be confused with δφI(x). When φI(x) → φ′I(x) the
action varies from S[φI(x)] → S[φ′I(x)] = S[φI(x)] + δS. The principle of least action imposes that δS = 0
when computed with a field that fulfills the equations of motion.

In many physical applications, the lagrangian density depends only on the field and its first derivatives:
L = L(φ, ∂µφ), and not of higher derivatives. In this case, δS =

∫
R
d4x[L(φ′I , ∂µφ

′
I) − L(φI , ∂µφI)] =∫

R
d4x

[
∂L
∂φI

δφI + ∂L
∂(∂µφI)∂µδφI

]
+O(δφ2). Integration by part4 allows us to express the integrand in terms

of δφI only and we obtain δS =
∫
R
d4x

[
∂L
∂φI
− ∂µ( ∂L

∂(∂µφI) )
]
δφI . By definition5, the functional derivative of

the action is the prefactor of δφI in the integrand, that is δS
δφI

= ∂L
∂φI
− ∂µ( ∂L

∂(∂µφI) ). When it vanishes, we

find the Euler-Lagrange (EL) equations of motion:

∂L
∂φI
− ∂µ

(
∂L

∂(∂µφI)

)
= 0 (3.4)

A solution of this equation is called a classical field φcl
I .

As an example, take L = 1
2∂αφ∂

αφ− m2

2 φ
2−U(φ), where U(φ) is a polynomial in φ with powers greater

than 2: U(φ) = aφ3 + bφ4 + .... Show that the EL equation is (∂µ∂
µ +m2)φ = −dUdφ = −3aφ2 + 4bφ3 + ....

A first thing to note is that this equation is linear in φ if U = 0. The operator ∂µ∂
µ is often called the

d’Alembertian operator and denoted by a square � or by ∂2. If U = 0, one obtains the so-called Klein-
Gordon (KG) equation (� + m2)φ(xµ) = 0. If in addition m = 0, then one obtains the d’Alembert wave
equation �φ = 0 familiar from the study of waves on a string, sound waves and light waves. It describes
the propagation of a wave at the velocity of light c = 1. A solution of the KG equation as a propagating

wave φ(xµ) = φ0e
−ikµxµ = φ0e

−iωtei
~k·~x, where kµ = (k0,~k) = (ω,~k), is easily found by Fourier transform

and yields the following dispersion relation ω2 = ~k2 +m2 of relativistic flavor.

3One should think of xµ here as an index labelling degrees of freedom. Just like j in qj labels the number of degrees of
freedom in classical mechanics. In other words φ(xµ) is something like q(j). At each xµ, there is a finite number NI of degrees
of freedom. What we want to vary is φI not xµ. Hence δφI(x) = φ′I(x)− φI(x) and not φ′I(x′)− φI(x).

4We have assumed that boundary terms vanish. Indeed, using Gauss’ theorem
∫
R d

4x∂µ
(

∂L
∂(∂µφI )

δφI

)
=∫

∂R d
3Sµ

∂L
∂(∂µφI )

δφI = 0 if δφI = 0 at the boundary ∂R of R.
5The Taylor expansion of a functional reads:

S[φ(x) + δφ(x)] = S[φ(x)] +

∫
d4x

δS

δφ(x)
δφ(x) +

1

2

∫
d4x

∫
d4x′

δ2S

δφ(x)δφ(x′)
δφ(x)δφ(x′) + . . . (3.3)

This gives a practical definition of the successive derivatives of a functional.
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3.1.3 Conjugate field and Hamiltonian

Given a field φI(x) (i.e. the equivalent of a position q in classical mechanics), the canonically conjugate field
ΠI(x) (i.e. the equivalent of a momentum p = ∂L/∂q̇) is defined by

ΠφI (x) = ΠI(x) ≡ ∂L
∂φ̇I(x)

(3.5)

where φ̇I ≡ ∂tφI . The Hamiltonian density (often simply called Hamiltonian) is

H = ΠI(x)φ̇I(x)− L (3.6)

and should be expressed in terms of φI and ΠI rather than φI and φ̇I (this is easy to remember as H(q, p) =
pq̇−L(q, q̇)). The Hamiltonian (not density here) is H =

∫
d3xH. Indeed in a Legendre transform L[φI , φ̇I ]

becomes H[φI ,Π
I ] =

∫
d3xΠI φ̇I−L[φI , φ̇I ]. With our favorite example, L = 1

2∂µφ∂
µφ−V (φ), the conjugate

field Π = φ̇ and H = 1
2Π2 + 1

2 (~∇φ)2 + V (φ). The Hamiltonian

H =

∫
d3x

[
1

2
Π2 +

1

2
(~∇φ)2 + V (φ)

]
(3.7)

is the sum of kinetic energy, elastic energy and potential energy, in this order.

3.2 Scalar fields and the Klein-Gordon equation

3.2.1 Real scalar field

One of the simplest Lagrangian for a real scalar field φ(x) ∈ R is

L =
1

2
(∂µφ)(∂µφ)− m2

2
φ2 =

1

2
(∂0φ)2 − 1

2
(∂iφ)2 − m2

2
φ2 (3.8)

The corresponding EL equation of motion is

(∂µ∂
µ +m2)φ = (�+m2)φ = 0 (3.9)

which is known as the Klein-Gordon (KG) equation 6. As we have invariance under space and time transla-

tion, we can look for a solution in the form of a plane wave φ(xµ) = φ(0)e−ik
µxµ = φ(0)ei

~k·~x−iωt. Injecting
this ansatz in the KG equation, we find that

ω2 = ~k2 +m2 i.e. ω = ±ωk with ωk ≡
√
~k2 +m2 (3.10)

This dispersion relation should be familiar from relativistic mechanics except that it pertains to wave quan-
tities (ω and ~k) instead of particle quantities (E and ~p). Therefore m is here a gap or a zero momentum
frequency ω0 = m and not yet a mass. Maybe ~ is playing a role in this correspondance? The answer will
be found in the next chapter.

There is an internal and global symmetry of this Lagrangian. It is given by the discrete transformation
φ → −φ. This is known as a Z2 or Ising symmetry. Because this symmetry is discrete and not continuous,

6It was actually first discovered in 1926 by Schrödinger as a relativistic version of what is now known as the Schrödinger
equation. It was then rediscovered by Klein, Gordon and Fock in 1926. It was first considered as a relativistic and quantum
equation describing the motion of a single electron rather than as a field equation. It suffers from two major problems as an
equation of quantum mechanics: probability density that is not always positive and negative energy states. Also as an equation
describing a single electron it does not include spin and gives energy levels for the hydrogen atom that are not in agreement
with experiments. This is why it was discarded by Schrödinger who later realized that the non-relativistic limit was much better
behaved.
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it can not be made infinitesimal and does not result in a conserved Noether current. In the next section, we
will study a complex (rather than real) scalar field that has a more interesting internal symmetry than Z2.

A general solution of the KG equation can be found as a mode expansion thanks to the Fourier transform:

φ(x) =
∫

d4k
(2π)4 e

−ik·xφ(k). Injecting in the KG we find that k2 = m2 and therefore k0 = ±ωk (k0 = ω).

Therefore a general solution can be written as φ(x) =
∫

d4k
(2π)4 e

−ik·xϕ(k)δ(k2−m2)2πe−ikx. But δ(k2−m2) =

δ((k0−ωk)(k0 +ωk)) = 1
2ωk

[δ(k0−ωk) + δ(k0 +ωk)] using the fact that δ(f(x)) =
∑
j

1
|f ′(xj)|δ(x−xj) where

xj are all the roots of f , i.e. f(xj) = 0. Then φ(x) =
∫

d3k
(2π)32ωk

[ϕ(ωk,~k)e−iωkt+i
~k·~x +ϕ(−ωk,~k)eiωkt+i

~k·~x] =∫
d3k

(2π)32ωk

[
ϕ(k)e−ik·x + ϕ(−k)eik·x

]
k0=ωk

where in the last expression it is understood that k0 is not inde-

pendent of ~k but is actually equal to ωk. We now use the fact that the field is real φ(x)∗ = φ(x) which means

that
∫

d3k
(2π)32ωk

[
ϕ(k)∗eik·x + ϕ(−k)∗e−ik·x

]
=
∫

d3k
(2π)32ωk

[
ϕ(k)e−ik·x + ϕ(−k)eik·x

]
so that ϕ(−k) = ϕ(k)∗.

Therefore φ(x) =
∫

d3k
(2π)32ωk

[
ϕ(k)e−ik·x + ϕ(k)∗eik·x

]
. The usual notation is to call a(k) ≡ ϕ(k) so that the

mode expansion reads

φ(x) =

∫
d3k

(2π)32ωk

[
a(k)e−ik·x + a(k)∗eik·x

]
=

∫
k

[a(k)e−ik·x + c.c.] (3.11)

where we introduced the short hand notation
∫
k
≡
∫

d3k
(2π)32ωk

.

Here are a few remarks on the above expression:
- The a(k)’s are just the expansion coefficients of φ(x) on the plane wave basis.

- The function a(k), despite its name, depends only on ~k and not separatly on k0 which is fixed to k0 = ωk.

- d3k
(2π)32ωk

is a Lorentz invariant integration measure as it comes from
∫

d4k
(2π)3 δ(k

2 −m2) which is obviously

invariant (show it by computing the Jacobian of the change of variable kµ → k′µ = Λµνk
ν where Λ is any

Lorentz transform) but d3k is not.
- Note that we have made no hypothesis on the sign of the energy, although in the end everything only
depends on k0 = ωk ≥ 0. Indeed e−iωkt (positive energies) and eiωkt (negative energies) are both present in
(3.11).

3.2.2 Complex scalar field

The field φ is now assumed to be complex. The (free) Lagrangian is taken as

L = (∂µφ)∗(∂µφ)−m2φ∗φ (3.12)

This theory is also equivalent to that of two real fields with a special symmetry relating them. Indeed let
φ = (φ1 + iφ2)/

√
2 and φ∗ = (φ1 − iφ2)/

√
2, which is just a decomposition of the complex field into its real

and imaginary parts (φ1 and φ2 ∈ R). Check that:

L =
1

2
(∂µφ1)(∂µφ1)− m2

2
φ2

1 +
1

2
(∂µφ2)(∂µφ2)− m2

2
φ2

2 . (3.13)

The special symmetry is related to having a single coefficient m2 = m2
1 = m2

2 instead of two m2
1 6= m2

2.
The independent degrees of freedom are φ1 and φ2, but one often does as if φ and φ∗ could be taken as

independent. The EL equations of motion are (check it in two different ways):

(�+m2)φ = 0 and (�+m2)φ∗ = 0 . (3.14)

We now study the above-mentioned special symmetry. It is a transformation φ(x) → φ′(x) = e−iχφ(x)
that leaves the action (actually the Lagrangian density) invariant. Here χ is a phase, which is independent
of the spacetime point x. It is therefore a global (not local) symmetry. In addition it mixes the two internal
components of the complex field. It is therefore an internal symmetry. As e−iχ ∈ U(1), it is called a global
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internal U(1) symmetry. U(1) is an abelian Lie group (it has a single generator) and U(1) ≈ SO(2). The
transformation can be thought of as either a global phase change for the complex scalar field φ (notation
U(1)) or as a global rotation in the (φ1, φ2) plane around a perpendicular axis (notation SO(2)). Show that
the Lagrangian is invariant under the above U(1) transformation.

3.3 Symmetries and conservation laws

What are symmetries? Let us take the example of invariance under translations. We can state that trans-
lations are symmetries if performing an experiment in different positions leads to the same results. In
particular, assume that ~r(t) represents the trajectory of an object in free fall in the gravitational field of
earth, then invariance under translation states that ~r(t) +~a should also be an acceptable trajectory. In this
sense, a symmetry enables to transform a solution of the equations of motions into another solution.

The lagrangian approach is particularly well suited to encode symmetries. As we shall see in a moment,
imposing a symmetry is easily done by choosing an action which is invariant under the symmetry transfor-
mation considered. Indeed, suppose that the action is invariant under some transformation, which means it
takes the same value after transforming the trajectory: S[~r] = S[~r′]. Then, if ~rc is an extremum of S, so is
~r′c!

7

This construction holds true for trajectories of particles as for fields. In what follows, we will build actions
which are invariant under Poncaré group. To do so, we should write lagrangian densities with no explicit
dependence in xµ in order to ensure invariance under translation. Moreover, we impose Lorentz invariance,
at the level of a scalar field, by contracting co- and contra-variant indices as described in the previous section.

We will see that continuous and global symmetries of the action imply conservation laws. This is a
fundamental result that was obtained by Emmy Noether around 1918.

3.3.1 Symmetries of the action

We start again from an action functional S[φI(x
µ)] where I = 1, ..., NI labels the components of the field

whatever their origin
We consider a transformation that acts as

φI(x) → φ′I(x) = φI(x) + ∆φI(x) (3.15)

We now make the transformation continuous and infinitesimal. We assume that it depends onNa independent
real, infinitesimal, parameters εa (labelled by a = 1, ..., Na, where Na is the number of generators of the
group of transformations):

φI(x) → φ′I(x) = φI(x) + εaFI,a (3.16)

If εa does not depend on xµ, the symmetry is said to be global. If εa(x) 6= const. does depend on the
spacetime event, the symmetry is said to be local. An internal symmetry is such that F only depends on
the field, not of its derivatives.

3.3.2 Noether’s theorem

We first present an elegant but somewhat tricky proof (apparently due to Steven Weinberg). It proceeds in
five steps:

Step 1: Suppose the action is invariant under a global (εa = const.) transformation such as (3.16) (i.e.
continuous and infinitesimal).

7Note that if the action is symmetric, the proof ensures that the transformed trajectory is also an extremum. It may happen
that the action is modified by a transformation, even though the transformation relates two acceptable trajectories. This is in
particular the case if the transformation of the action is proportional to the equations of motion.
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Step 2: Now, consider the same transformation (3.16) but with εa(x) 6= cst. The transformation is no
longer a symmetry and the action is therefore modified by this transformation:

∆S =

∫
d4x εa(k)Ka 6= 0 (3.17)

However, if we choose a constant εa, we really work with a symmetry an the variation of the action vanishes.
This means that Eq. (3.17) has a very particular form: It is a functional of ε which must vanish for constant
ε. The only way to fulfill this constraint is that K is a divergence. Therefore, Eq. (3.17) rewrites:

∆S = −
∫
d4x εa(k)∂µJ

µ
a (3.18)

(the sign is purely conventional.)
Step 3: we are now evaluating the previous equation in a field configuration which fulfills the equations

of motion. Recall that the variational principle tells us that, in a solution of the field equation, any variation
of the field leads to no variation of the action (at leading order in δφ). But the transformation φI →
φI + εa(x)FI,a is itself a variation of the field (It is not the most general field transformation, of course).
This implies that, when the equations of motions are fulfilled, Eq. (3.18) vanishes for any εa(x). Otherwise
stated,

∂µJ
µ
a = 0 (3.19)

To summarize, we have found that for each generator (labelled by a) of a global and continuous symmetry
group, there is a divergenceless current Jµa (x). Equation (3.19) should be familiar from the continuity

equation, e.g. local charge conservation in electromagnetism ∂µJ
µ = ∂tρ+ ~∇ · ~J = 0 where Jµ = (ρ, ~J), ρ is

the electric charge density and ~J the electric current density.
The quantity

Qa ≡
∫
d3xJ0

a(t, ~x) (3.20)

is called a (Noether) charge. It is also said to be conserved (meaning time-independent here) because when
integrated over most of space Rs

dQa
dt

=

∫
Rs

d3x∂0J
0
a(x) = −

∫
Rs

d3x∂iJ
i
a(x) = −

∫
∂Rs

d2SiJ
i
a(x) = 0, (3.21)

where we used Gauss’ theorem and the fact that the field (and therefore the current) vanishes sufficiently
fast at the boundary ∂Rs. This is now a global statement. For each generator of the continuous and global
symmetry group, there is a quantity that when computed for the whole space (universe?) is a constant
in time. Remember electric charge conservation: Q =

∫
d3xρ is supposed to be a constant in the entire

universe.

3.3.3 Some generalization

This section may be skipped in a first lecture. We discuss here the point raised in Footnote 1. We recall that
a symmetry in classical mechanics corresponds to a transformation of coordinates which maps a solution of
the equations of motion to another solution. A simple way of generating a symmetric theory is to use an
action which is invariant under the transformation. But could we have a system which is symmetric without
being described by a symmetric action? THe answer is yes. Consider a particle whose action is given by
S =

∫
dt(q̇− q̇ log q̇). The minimization of the action imposes the equation of motion q̈ log q̇ = 0 whose most

general solution is q̈ = 0. The action describes a particle at a constant speed, whose solutions are clearly
invariant under the transformations q(t) → q′(t) = q(t) + a + vt. a corresponds to a translation and v to
a change of reference frame. Let us make an infinitesimal transformation with a = 0 and v infinitesimal.
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The variation of the action is δS = v
∫
dt log q̇ which is clearly nonzero. We therefore have an example of a

system whose trajectories have a symmetry but whose action is not.
To clarify this apparent paradox, let us upgrade the infinitesimal parameter to a function: v → v(t). The

variation of the action writes δS = −
∫
dt v(t)t q̈q̇ . This is clearly nonzero in general. We observe however

that it does vanish when we impose the equation of motion q̈ = 0. We can then follow the proof of Noether’s
theorem and conclude that the conserved charge associated with the change of reference frame is indeed
conserved.

In general, if the variation of the action under a change of coordinates is proportional to the equations
of motion, this is sufficient to ensure that the system is invariant under this transformation and that a
conserved charge can be built.

Another (more interesting) example is the one of a particle moving in the (xy) plane, in the presence of a
constant magnetic field pointing in the z direction. The action is given by S =

∫
dt[ 1

2 (ẋ2 + ẏ2 + ω
2 (ẋy− ẏx)].

The lagrangian explicitly depends on the position and therefore the invariance under translation is not
obvious. You can check for yourself that, upgrading the infinitesimal translation to a function, ai → ai(x),
the variation of the action vanishes when we impose the equation of motion. You can therefore deduce that
there is a conserved Noether charge, that you can compute explicitly.

3.3.4 Examples

To get more familiar with Noether currents, we consider a few concrete examples.

Internal global symmetry

Consider a field theory with two real fields φ1 and φ1, with a Lagrangian density:

L =
1

2
∂µ~φ · ∂µ~φ− V (~φ2) (3.22)

which is invariant under the transformation:

φ1(x)→ φ1(x) + εφ2(x) (3.23)

φ2(x)→ φ2(x)− εφ1(x) (3.24)

(3.25)

which we can also write as:
φI(x)→ φI(x) + εεIJφJ(x) (3.26)

(sorry for the notations... εIJ is the 2-dimensional Levi-Civita tensor and ε is the small parameter of the
transformation...) There is one conserved current, which reads:

Jµ = φ1∂µφ2 − φ2∂µφ1 (3.27)

Check that this is indeed divergenceless when we impose the equations of motion.

Spacetime translations

How should we modify a field under a translation? We concentrate on a single field. the translated field φ′

at point xµ is equal to the original field at point (x+ a)µ

φ′(x) = φ(x+ a) (3.28)

Taking infinitesimal translation (here aµ plays the rôle of εa in our general discussion), then

φ′(x) = φ(x) + aµ∂µφ(x). (3.29)
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(check that this is indeed a symmetry of the Klein-Gordon action (3.1)). You can work out the Noether
curent for yourself. Note that there are 4 Noether currents because we can translate in any spacetime
direction. The current is therefore a rank-2 tensor, which reads:

θµν = ∂µφ∂νφ− ηµνL (3.30)

The conserved charges are

P ν =

∫
d3xθ0ν (3.31)

correspond to energy and momentum of the field. The energy part is particularly interesting to write:

P 0 =

∫
d3x

1

2
(φ̇)2 +

1

2
(~∇φ)2 +

1

2
m2φ2 (3.32)

This corresponds exactly to the hamiltonian of the Klein-Gordon field.

Lorentz transformations

Here, for simplicity, we restrict to a scalar field. A Lorentz transformation acts as x′µ = Λµνx
ν ≈ xµ+ωµνx

ν

and φ′(x′) = φ(x) (scalar field). Therefore, here Fa = 0 and we have a little bit of work to identify Aµa ,
where a labels the generators of the Lorentz group. For an infinitesimal transformation, we have shown
that Λµν = δµν + ωµν . Therefore δxµ = xσω

µσ = δµρxσω
ρσ from which we identify εa as ωρσ and Aµa

as δµρxσ. Remember that ωρσ = −ωσρ is antisymmetric and therefore a = (ρσ) only takes 6 different

values (01,02,03,12,13,23). Because of antisymmetry, we can also write δxµ = 1
2 (δµρxσ − δµσxρ)ω

ρσ and

Aµ(ρσ) = 1
2 (δµρxσ − δµσxρ) (the notation meaning that this tensor is antisymmetric with respect to its last

two indices Aµρσ = −Aµσρ). The Noether current is then Jµ(ρσ) = θµνA
ν
(ρσ) = − 1

2 (θµνxρ − θµρxσ). The

divergenceless current can therefore be taken as

Mµ(ρσ) = xρθµσ − xσθµρ (3.33)

with ∂µMµ(ρσ) = 0. As Mµρσ = −Mµσρ, there are 6 independent divergenceless currents and hence 6
conserved charges

Mρσ =

∫
d3xM0ρσ =

∫
d3x(xρθ0σ − xσθ0ρ) (3.34)

such that dMρσ/dt = 0. These charges are the angular momentum

M ij = −i
∫
d3xΠ[xi(−i∂j)− xj(−i∂i)]φ, (3.35)

where Lij = xi(−i∂j)−xj(−i∂i) is the angular momentum operator (generator of rotations)8, and a vectorial

quantity ~G with no definite name and related to boosts generators (how?):

Gi = M0i =

∫
d3x(xiθ00 − x0θ0i) =

∫
d3x[Hxi − tΠ∂iφ] . (3.36)

In other words ~G = −t ~P +
∫
d3x~xH. The conservation of this last quantity is perhaps less familiar then that

of angular momentum or energy or linear momentum. Let us give an example in the simplest possible case of
one-dimensional relativistic mechanics of a massive particle: the energy is conserved and H = E =

√
p2 +m2

(as c = 1). The Hamilton equations of motion are ṗ = −∂xH = 0 and ẋ = ∂pH = p/E = v is a constant.

Then G = Ex−pt is indeed a conserved quantity as Ġ = d
dt (Ex−tp) = Eẋ−p = E p

E −p = 0. This conserved
quantity is related to the uniform motion of the center of mass. Indeed, if at t = 0 the particle is in x = x0

8M ij is an anti-symmetric tensor and therefore contains 3 independent entries, which is equivalent to an axial vector usually
called the angular momentum ~M .
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then the conservation law is G = Ex− pt = Ex0 = const. which means that x− p
E t = x− vt = x0 = const.

The conserved quantity is unusual as it explicitly depends on time (it is also unusual in having no clear
name...). In the non-relativistic limit v = p/E � 1, a Lorentz boost becomes a Galilean boosts, the energy
E ≈ m and the conserved quantity is G = mx−pt. The conservation law is usually written as x−vt = const.
See the discussion on the conservation law of the center of mass in §8 of Ref. [14].

Let us now show that invariance under the Poincaré group implies that the energy-momentum tensor
has to be a symmetric tensor. Invariance under Lorentz transformations implies that ∂µMµνρ = 0 =
∂µ(θµσxρ−θµρxσ) = θµσ∂µx

ρ−θµρ∂µxσ, where we used that ∂µθ
µν = 0 as a consequence of invariance under

spacetime translations. Given that ∂µx
ν = δνµ, we obtain that 0 = θρσ − θσρ, qed. See the symmetrization

procedure from θµν to Tµν discussed above.
Remark (to be skipped in a first reading): another reason for wanting an energy-momentum tensor that

is symmetric Tµν = T νµ comes from general relativity. General relativity is basically the double statement
that (1) energy-momentum curves space-time (Einstein field equations) and (2) that in the absence of forces
(gravity being considered not as a force here), particles follow geodesics in this curved space-time (equation
of geodesics). The first equation reads:

Rµν − 1

2
Rgµν = −8πG

c4
Tµν (3.37)

where gµν is the metric for curved space-time (it replaces ηµν defined for flat space-time) and the quantities
Rµν and R are curvatures of space-time defined from the metric tensor9. The above equation states that
space-time curvature (left hand side) is proportional to the energy-momentum tensor (right hand side).
The proportionality constant depends on Newton’s gravitation constant G and on the velocity of light c.
It turns out that the left hand side is (by construction) symmetric with respect to its two indices µ, ν.
Therefore the energy-momentum tensor also has to be symmetric. Actually, when studying field theory in
curved spacetime, the definition of the energy-momentum tensor becomes that it equals the variation of the
action10 with respect to the metric:

Tµν = − 2√
−det gµν

δS

δgµν
∝ δS

δgµν
(3.38)

See for example page 78 in Zee [4]. Again, this last definition makes it obvious that the energy-momentum
tensor has to be symmetric in µν.

As a summary of this section: the Poincaré group has 10 generators, which implies 10 conserved charges
and the corresponding divergenceless currents. Invariance under time translation gives the conservation of
energy H, invariance under space translations gives the conservation of momentum ~P . Overall ∂µT

µν =
0. Invariance under Lorentz transformations give 6 other conserved charges: space rotations implies the
conservation of angular momentum ~M (related to the rotation generator ~L); Lorentz boosts implies the

conservation of ~G (related to boosts generators ~K), known as the conservation of the center of mass. Overall
∂µMµρσ = 0.

As a word of caution, we note that the conserved quantities are strongly related to the corresponding
generators (and are often called by the same name!) but should still be carefully distinguished from them.
For example, the energy of the field H =

∫
d3xH = −i

∫
d3xΠ(i∂t)φ−L is different from the time translation

operator i∂t. Or the momentum of the field ~P is different from the momentum operator (generator of space

translations) −i~∇. This difference is similar to the one that exists between the total momentum of a gas

9More precisely Rλµνκ = ∂νΓλµκ−∂κΓλµν + ΓσµκΓλνσ −ΓσµνΓλκσ is the Riemann curvature tensor defined in terms of Christoffel

symbols Γλµν = 1
2
gλρ(∂νgρµ+∂µgρν−∂ρgµν), Rµν ≡ Rλµλν is the Ricci curvature tensor and R ≡ Rµνgµν is the scalar curvature.

With hindsight and after studying the electromagnetic field, you will recognize that the Christoffel symbol is essentially a
connection just as the 4-vector gauge potential Aµ and that the Riemann curvature tensor is essentially a curvature just as the
electromagnetic field strength Fµν = ∂µAν − ∂νAµ. For more details, see A. Zee [4] chapter VIII.1, page 419.

10This action S being that for a field in a curved spacetime excluding the gravitational field itself that has its own action Sg .
In plain words the total action should be Stot = S + Sg and here we only vary S with respect to the metric gµν and not Stot.
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of particles [a.k.a. the many-body momentum and equivalent to ~P = −i
∫
d3xΠ(−i~∇)φ] and the individual

momenta [a.k.a. the single-particle momenta and equivalent to eigenvalues of −i~∇].

The next sections are about building field theories that respect the spacetime symmetries described above.
The strategy is to write actions that are Lorentz invariants so that the EL equations of motion obtained by
minimizing the action will automatically be covariant. We will study first the scalar (Klein-Gordon) fields.
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Chapter 4

Canonical quantization of scalar fields

In this chapter, we will turn the classical field theories discussed previously into quantum field theories. For
that, we will use the machinery of “canonical quantization” (and not the alternative machinery of “path
integral quantization”, for example). The idea is to identify pairs of canonically conjugate variables (such as
q and p) in the classical field theory and then to impose that their (equal-time) commutator is non-vanishing
and proportional to i~ (i.e. [q̂, p̂] = i~). It is the usual idea of replacing a Poisson bracket {q, p}PB = 1
with a commutator (i~)−1[q̂, p̂] = 1, which turns c-numbers (i.e. commuting numbers q, p) into q-numbers
(i.e. operators q̂, p̂)1. Canonical quantization relies on the Hamiltonian formulation of classical field theory,
whereas path integral quantization relies on the Lagrangian formulation. Canonical quantization is not
explicitly covariant as time plays a special role in the Hamilton formalism.

We deal exclusively with the Klein-Gordon field for the time being...

4.1 Real scalar fields

[see Ryder [3], pages 129-139 and Maggiore [2], pages 83-88]

4.1.1 Quantum field

We consider a real scalar field φ(x) with Lagrangian L = 1
2 (∂φ)2 − m2

2 φ
2. The variable φ(x) is associated

to its conjugate Π(x) ≡ ∂L
∂(∂0φ(x)) = ∂0φ(x). The Hamiltonian is H =

∫
d3x 1

2

(
Π(x)2 + (~∇φ)2 +m2φ2

)
. For

each point ~x of space, we have a generalized coordinate φ(x) = φ(t, ~x) (you should think of it as q~x(t) with
~x labeling the degrees of freedom) and a generalized conjugate momentum Π(x) = Π(t, ~x) (think of it as
p~x(t)). We now impose the following equal-time commutation relations (ETCR):

[φ(t, ~x),Π(t, ~x′)] = i~δ(~x− ~x′)

and
[φ(t, ~x), φ(t, ~x′)] = [Π(t, ~x),Π(t, ~x′)] = 0 (4.1)

Note that the above ETCR are not manifestly Lorentz covariant as t plays a special role. Note also that
~ → 0 just affects the first commutator. Once every commutator vanishes, we are back to a classical field
theory. From now on, we will use units such that ~ = 1 on top of c = 1.

The consequence of imposing ETCR is that the classical field φ(x) has been promoted to a quantum field,
i.e. to an operator (and called a quantum field operator). We don’t write hats on φ (for simplicity), but we

1We are used to distinguish commuting numbers (ordinary numbers, c-numbers, classical numbers) from operators (q-
numbers, quantum numbers), which usually do not commute. A third even stranger category is anti-commuting numbers
(called Grassmann variables): these are not operators but numbers, but they anticommute rather than commute as ordinary
numbers do. They are useful in the path integral quantization of fermionic fields.
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mean it! The quantum field φ(x) is a hermitian operator φ†(x) = φ(x) because the classical field was real. It
is an operator in the Heisenberg representation φ(t, ~x) with an explicit time-dependence. It is therefore very
different from a wavefunction or a quantum state (a ket)2. The EL equation of motion (� + m2)φ(x) = 0
is now re-interpreted as a Heisenberg equation of motion3 for the time-dependent operator φ(t, ~x). In the
Heisenberg picture φ(t, ~x) = eiHtφ(0, ~x)e−iHt and therefore ∂tφ(x) = −i[φ(x), H].
Exercise: From φ̇ = −i[φ,H], φ̈ = −i[φ̇,H] and [φ(t, ~x), φ̇(t, ~x′)] = iδ(~x− ~x′), show that (�+m2)φ(x) = 0.

We recall the mode expansion of a classical free and real scalar field

φ(x) =

∫
k

(
a(k)e−ik·x + a∗(k)eik·x

)
(4.2)

where it is understood that in the above expression kµ = (k0,~k) with k0 = ωk ≡
√
~k2 +m2 and the

shorthand notation
∫
k
≡
∫

d3k
(2π)32ωk

. At this point a(k) is just the name of the coefficient of the Fourier

expansion of a field φ(x) satisfying the massive KG equation (� + m2)φ = 0. Because of quantization, the
mode expansion of the quantum field now reads

φ(x) =

∫
k

(
a(k)e−ik·x + a†(k)eik·x

)
(4.3)

and a(k) and a†(k) become operators as well (but non-hermitian as the classical a(k) is a complex and not
a real number). For the conjugate field operator

Π(x) = ∂0φ(x) =

∫
k

(−iωk)
(
a(k)e−ik·x − a†(k)eik·x

)
(4.4)

Check that the ETCR of φ and Π imply that

[a(k), a†(k′)] = 2ωk(2π)3δ(~k − ~k′) (4.5)

and
[a(k), a(k′)] = 0 = [a†(k), a†(k′)] (4.6)

This starts to smell like the algebra of annihilation and creation operators (i.e. [a, a†] = 1, [a, a] = 0 = [a†, a†])
familiar from the quantum mechanical harmonic oscillator. Hence the name a(k) for the coefficients in the
mode expansion of the field φ(x).

4.1.2 Particle interpretation and Fock space

In order to construct the Fock space and to strengthen the analogy with the harmonic oscillator, it is easier
to work with a finite spatial volume V = L3 and periodic boundary conditions. Therefore∫

d3k

(2π)3
→ 1

V

∑
~k

and (2π)3δ(~k − ~k′)→ V δ~k,~k′ (4.7)

with ~k = 2π
L (nx, ny, nz) where nj ∈ Z. Let a~k ≡

1√
2ωkV

a(k) so that φ(x) =
∑
~k

1√
V 2ωk

(
a~ke
−ik·x + h.c.

)
instead of (4.3). Then the commutation relations for the a~k operators read

[a~k, a
†
~k′

] = δ~k,~k′ and [a~k, a~k′ ] = 0 = [a†~k
, a†~k′

] (4.8)

Now, we really have a clear analogy with annihilation and creation operators of the harmonic oscillator,
except that we have one such harmonic oscillator (one such mode) for each ~k.

2In particular, it is not a wavefunction that has been quantized a second time. It is not a quantum wavefunction with a
hat on top. Hence, the dislike with the terminology of “second quantization”. Much better would be “occupation number
representation” or “annihilation/creation formalism”.

3Remember that, in quantum mechanics, an operator A in the usual (Schrödinger) picture – for simplicity, we assume that
it does not explicitly depend on time – becomes A(t) ≡ eiHtAe−iHt in the Heisenberg picture and satisfies the Heisenberg
equation of motion Ȧ(t) = −i[A(t), H].
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Detour by the 1D quantum harmonic oscillator

The 1D quantum mechanical harmonic oscillator has a Hamiltonian H = p2

2m +
mω2

0q
2

2 with [q, p] = i~ where

q is the position and p the canonically conjugated momentum. One usually defines a ≡ q+ip√
2

and a† = q−ip√
2

(in units such that the characteristic length
√

~
mω0

= 1 and ~ = 1), which satisfy the following algebra

[a, a†] = 1 and [a, a] = 0 = [a†, a†] as a consequence of [q, p] = i and [q, q] = 0 = [p, p]. The Hamiltonian
is then rewritten as H = ω0

2 (a†a + aa†) = ω0(a†a + 1
2 ). We know that [a, a†] = 1 implies that n = a†a is

the number operator. Indeed, call |n = 0〉 = |vac〉 the vacuum state (i.e. the groundstate of the harmonic
oscillator, H|0〉 = ω0

2 |0〉), which is defined by a|0〉 = 0. Then [n, a] = −a and [n, a†] = a† such that
[n, a†]|0〉 = a†|0〉, which means that n(a†|0〉) = 1(a†|0〉). In other words a†|0〉 ∝ |n = 1〉. We can choose
a†|0〉 = |n = 1〉, which shows that a† is a creation operator for an excitation quantum of the harmonic
oscillator. Continuing this construction, we arrive at

a|n〉 =
√
n|n− 1〉 , a†|n〉 =

√
n+ 1|n+ 1〉 and a†a|n〉 = n|n〉 (4.9)

which confirms that n = a†a is the number operator (its eigenvalues are in N), a† is a creation operator (it
creates a single excitation of the harmonic oscillator) and a is an annihilation operator (it destroys a single
excitation of the harmonic oscillator). The Hilbert space of states for the harmonic oscillator4 can be thought
of as a Fock space5 for excitation quanta (i.e. particles that you may call phonons): the number of excitations
quanta is not fixed and an orthonormal basis is {|n〉, n ∈ N}. Because the number of excitation quanta that
can be accommodated in this single mode is not bounded, we also know that we are dealing with bosons. In
the case of a single harmonic oscillator, the particles (i.e. the excitation quanta) have no dispersion relation
(here, the phonons are located at one point in space and can not move) and are characterized by a single
frequency ω0.

Here, we would like to make a connection with quantum statistics as seen in lectures on statistical
mechanics. The statistics for such phonons is the Bose-Einstein statistics at zero chemical potential (also
known as Planck’s distribution). In the groundstate, there are no phonons and when the temperature
increases, the number of phonons increases. The number of phonons is not conserved. We are obviously not
describing matter particles. One should have in mind the two equivalent descriptions: either a single massive
particle in a harmonic oscillator (Hilbert space of a single 1D particle) or an ideal gas of non-conserved bosons
which are the excitation quanta of the harmonic oscillator (Fock space for 0D excitation quanta). In the
first picture, we are doing quantum mechanics of a single particle in 1D space. In the second picture, we are
doing QFT of a 0D field (an infinite number of degrees of freedom but all at the same spatial position).

Remark: In non-relativistic quantum mechanics of identical particles (many-body physics), the idea of
working with number representation (i.e. with occupation numbers of different modes) is known as second
quantization formalism. It is an alternative to first quantization formalism in which particles carry labels
(i.e. particles are numbered), are assigned to specific single-particle states and the many-body wavefunction
is then symmetrized (for bosons) or antisymmetrized (for fermions). Here we have a very simple example,
with a unique 1D massive particle in a harmonic oscillator, which can be either described by a wavefunction
such as 〈q|1 : χn〉 (1: meaning the particle number 1) or alternatively described by the occupation number
nω0

= a†a of its single mode of frequency ω0 given a wavefunction such as 〈q|nω0
= n〉. The two kets are

indeed equal |1 : χn〉 = |nω0 = n〉 but the first refers to a single massive particle in 1D and the second to a
0D ensemble of n excitation quanta (phonons).

4This is actually not H = {|q〉, q ∈ R} as localized states far from the minimum q = 0 of the harmonic potential are not

allowed. It is a smaller Hilbert space H = {|χn〉, n ∈ N} if we call χn(q) = 〈q|n〉 ∝ Hn(q)e−q
2/2 the eigen-wavefunctions, where

Hn are the Hermite polynomials and H|χn〉 = (n+ 1/2)ω0|χn〉.
5The Fock space is F = ⊕∞n=1En where En is a one-dimensional Hilbert space generated by |n〉. One has that H = F .
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Back to quantum field theory

Going back to the quantized scalar field, show that the Hamiltonian can be rewritten as

H =

∫
d3x

1

2

(
(∂0φ)2 + (~∇φ)2 +m2φ2

)
=
∑
~k

ωk
2

(
a†~k
a~k + a~ka

†
~k

)
=
∑
~k

ωk

(
a†~k
a~k +

1

2

)
(4.10)

This looks like a sum of independent harmonic oscillators (one for each ~k) and each with its own frequency
ωk. We also see that, despite the fact that the massive KG equations gives a dispersion relation ω = ±ωk
with positive and negative branches, the energy of the field is always positive6. Indeed, the expectation value
of the Hamiltonian operator in any state is

〈H〉 =
∑
~k

ωk

(
〈a†~ka~k〉+

1

2

)
≥
∑
~k

ωk
2
> 0 (4.11)

as 〈a†~ka~k〉 ≥ 0.

The Fock space is constructed by analogy with the harmonic oscillator. For each mode ~k of frequency
ωk, there is a pair of creation/annihilation operators a†~k

and a~k such that n~k = a†~k
a~k is the occupation

number operator in that mode. The operator N =
∑
~k n~k gives the total number of excitation quanta (i.e.

the total number of particles) contained in the field. The vacuum state is defined as being annihilated by

all annihilation operators a~k|vac〉 = 0, ∀~k: in other words, the vacuum contains no particles (no excitation

quanta). A single particle state is |~k〉 = |N~k = 1〉 = a†~k
|vac〉. Show that it is an energy eigenstate with

energy ωk above that of the vacuum.

4.1.3 Vacuum energy and normal ordering

The vacuum energy is obtained from H|vac〉 = (
∑
~k
ωk
2 )|vac〉. The energy 〈vac|H|vac〉 =

∑
~k
ωk
2 is infinite7.

It comes from the zero-point motion of each mode. This absolute energy is unobservable (but energy
differences are: see the exercise sheet on the Casimir effect). It is usually subtracted by redefining the zero
of energy as being the energy of the vacuum state8. Then

H ≡ H − 〈vac|H|vac〉 =
∑
~k

ωka
†
~k
a~k (4.12)

Another way to look at the same issue is to realize that when going from the classical to the quantum
theory, there is an ambiguity. Indeed, take a complex field φ: when in the classical theory one has φ∗φ =
φφ∗ = |φ|2 in the Hamiltonian density, should it be quantized as φ†φ or φφ† or 1

2 (φ†φ + φφ†) or fφ†φ +
(1− f)φφ† with f an arbitrary number between 0 and 1? We therefore fix the following prescription known
as normal ordering (and symbolized by a pair of colons A →: A :): upon quantization, the field operators
have to be normal ordered, i.e. creation operators are to be moved to the left of annihilation operators

6Discuss this point in more details with the remark of J.Y. Ollitrault. There is a choice behind the way the mode expansion
is interpreted which leads to positive energy. Note also that, contrary to the Dirac interpretation of the Dirac equation, we did
not need to invoke the Pauli principle to fill the negative energy states and have a lower bound for energy. This is good news
because Dirac’s argument would not work for bosons. Here the formalism of quantum field theory allows one to obtain a total
energy that is positive despite the fact that it is built out of modes that have positive and negative energy branches.

7Even the energy density is infinite as 1
V

∑
~k
ωk
2

=
∫

d3k
(2π)3

ωk
2
∼
∫ Λ
0 dkk2ωk ∼

∫ Λ dkk3 ∼ Λ4 diverges when the UV cutoff

Λ→∞. The UV cutoff Λ ∼ 1/a is related to the short distance structure of space (where a is an artificial lattice spacing) and
was here introduced in order to show the nature of the divergence. Don’t mix it with the large distance L box that controls the
IR behavior, i.e. the large distance behavior.

8Is this without physical consequence? Even in the presence of gravitation? What about the gravitational constant and the
expansion of the universe?
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(while preserving the order among creation operators and separately also among annihilation operators).
The quantum Hamiltonian is then

H =

∫
d3x

1

2
:
(

(∂0φ)2 + (~∇φ)2 +m2φ2
)

: =
∑
~k

ωk
2

:
(
a†~k
a~k + a~ka

†
~k

)
: =
∑
~k

ωka
†
~k
a~k (4.13)

which is equivalent to removing the vacuum energy. Now H|vac〉 = 0. A precise definition of normal ordering
is that

: a(k1)a†(k2) : = a†(k2)a(k1) and : a(k1)a(k2)a(k3)†a(k4) : = a(k3)†a(k1)a(k2)a(k4) (4.14)

The 3-momentum is classically ~P = −i
∫
d3xΠ(−i~∇)φ (remember that this is just the Noether charge

associated to the space translation symmetry). After quantization, it becomes

~P = −i
∫
d3x : Π(−i~∇)φ :=

∑
~k

~k

2
:
(
a†~k
a~k + a~ka

†
~k

)
:=
∑
~k

~ka†~k
a~k (4.15)

so that the vacuum has zero momentum ~P |vac〉 = 0.

Note that there is the 3-momentum operator −i~∇, which is the space translation generator. And there
is the 3-momentum of the whole field ~P , which upon canonical quantization also becomes an operator. The
first is an operator in the sense that it acts on the field seen as a function (it is a gradient). Whereas
the second is a many-body operator (it concerns the whole gas of particles): it acts in Fock space. In the
language of second quantization, the first would be called a single-particle operator (acting in the Hilbert
space for a single-particle) and the second a many-body operator (acting in Fock space).

4.1.4 Fock space and Bose-Einstein statistics

A single particle state is |~k〉 = |n~k = 1〉 = a†~k
|vac〉. It is indeed an eigenvector of the number operator N with

eigenvalue 1. It is also an eigenvector of H with eigenvalue ωk (after normal ordering) and an eigenvector

of ~P with eigenvalue ~k (after normal ordering). Notice that particles (i.e. field excitation quanta) only have
positive energy despite the fact that the dispersion relation has positive and negative energy branches.

A multi-particle state is |~k1, ...,~kn〉 = a†~k1
....a†~kn

|vac〉. It is an eigenvector ofN with eigenvalue n, an energy

eigenvector with eigenvalue ωk1 + ...+ ωkn and a 3-momentum eigenvector with eigenvalue ~k1 + ...+ ~kn.

Because of [a†~k
, a†~k′

] = 0, the multiparticle state |~k1, ...,~kn〉 = a†~k1
....a†~kn

|vac〉 is symmetric under any

exchange of particle, which means that the particles (excitation quanta of the scalar field) are bosons. There
is actually a general connection between the fact that an integer spin field (here scalar field means spin 0) is
quantized with commutators and the fact that the excitation quanta obey Bose-Einstein statistics.

Making a connection to statistical mechanics, the average occupation of a mode ~k in an equilibrium state
at temperature T (often simply called a thermal state) is given by

n~k ≡ 〈a
†
~k
a~k〉T =

1

eωk/T − 1
(4.16)

which is the Planck occupation factor (i.e. the Bose-Einstein distribution at zero chemical potential)9. The
number of particles is not conserved: it changes with temperature. Indeed, the total number of particles is
〈N〉T =

∑
~k

1
eωk/T−1

, which goes as T 3 →∞ when T � m and as m3e−m/T → 0 when T � m.

9We are taking units such that Boltzmann’s constant kB = 1 in addition to ~ = 1 and c = 1. All these fundamental constants
are merely conversion factors that can safely be taken to be equal to 1 (kB from energy to temperature, c from length to time,
~ from energy to frequency or from momentum to wavevector) unlike coupling strengths (as the electric charge unit e or the
gravitation constant G), which are also fundamental constants but of a different nature. They are actually not constants (cf.
renormalization group and the flow of “coupling constants”) and their value has a meaning (the fine structure constant, which

is essentially e2 as α = e2

~c = e2 ≈ 1
137
� 1, can obviously not be taken to equal one).
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4.1.5 Summary on canonical quantization

Canonical quantization is the usual way of going from classical to quantum mechanics by turning Poisson
brackets into commutators, here extended from mechanics to fields. One has to identify a field and its
conjugate field and then to impose equal-time commutation relations. The field becomes a quantum operator.
Other operators defined from the field (often bilinears in the fields such as the energy, the momentum, the
angular momentum, etc.) have to be normal ordered in order to be unambiguously defined upon quantization.
This procedure of normal ordering also removes unobservable infinites (such as the vacuum energy).

4.2 Complex scalar field and anti-particles

It is worth considering the complex scalar field φ(x) as it brings an essential novelty compared to the real
field. The novelty is related to its U(1) internal symmetry. The Lagrangian is L = (∂µφ)∗(∂µφ) −m2φ∗φ,
with φ∗(x) 6= φ(x). The conjugate field is now Π = ∂0φ

∗. We impose ETCR, which have the same expression
as before (exercise by writing all of them). Upon quantization the conjugate field Π = ∂0φ

†.
The mode expansion is slightly different from the case of the real scalar field as one does not impose

φ†(x) = φ(x). Therefore

φ(x) =

∫
k

(
a(k)e−ik·x + b†(k)eik·x

)
(4.17)

where as usual kµ = (ωk,~k) here. The coefficient a(k) and b†(k) are both related to the field φ(x). Actually,
they are related to its Fourier transform ϕ(k) by a(k) ≡ ϕ(k) and b†(k) ≡ ϕ(−k). We introduced the
notation b because here ϕ†(−k) (i.e. b(k)) is different from ϕ(k) (i.e. a(k)). In other words, a corresponds
to plane waves at positive energy and b to plane waves at negative energy. And in the case of a complex
field, the two are not identical, meaning that b†(k) = a(−k) 6= a†(k).

On the a(k) and b(k) operators, the ETCR become

[a(k), a†(k′)] = 2ωk(2π)2δ(~k − ~k′) = [b(k), b†(k′)] (4.18)

and all other commutators vanish. This last point is important, it concerns commutators involving a and
a, those involving a† and a† but also those involving a and b. Don’t consider these vanishing commutators
as a triviality, otherwise you will face big difficulties when discussing fermions later. Remember also that in
these commutators k0 is always equal to ωk.

Upon normal ordering, the Hamiltonian becomes

H =

∫
d3x :

(
∂0φ
∗∂0φ+ ~∇φ∗ · ~∇φ+m2φ∗φ

)
:=
∑
~k

ωk(a†~k
a~k+b†~k

b~k) =

∫
k

ωk(a(k)†a(k)+b(k)†b(k)) (4.19)

(without normal ordering, the vacuum energy would be
∑
~k ωk) and the 3-momentum becomes

~P =
∑
~k

~k(a†~k
a~k + b†~k

b~k) =

∫
k

~k(a†(k)a(k) + b†(k)b(k)) (4.20)

The total number operator is

N =
∑
~k

(a†~k
a~k + b†~k

b~k) =

∫
k

(a†(k)a(k) + b†(k)b(k)) = Na +Nb (4.21)

With these operators, we can again construct a Fock space. The novelty is that we have two types of
particles, because for each ~k we have two modes with the same frequency ωk (i.e. with the same mass m).
We have two pairs of creation/annihilation operators i.e. a†/a and b†/b. The vacuum is defined as being

annihilated by all a~k and all b~k. It has H|vac〉 = 0, ~P |vac〉 = 0 and N |vac〉 = 0.
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Because the complex field has twice as many degrees of freedom as the real scalar field, it was expected
that there would be twice as many modes. The two species of particles that appear are both quanta of the
same field φ and have the same mass as a consequence of the U(1) symmetry. What distinguishes them?
Remember that associated to the U(1) global internal symmetry, there is a classically conserved current
Jµ = i(φ∗∂µφ−φ∂µφ∗). The corresponding classical charge is Q =

∫
d3x(iφ∗∂0φ+c.c.). Upon quantization,

it becomes

Q =

∫
d3x : (iφ†∂0φ+ h.c.) :=

∑
~k

:
(
a†~k
a~k − b~kb

†
~k

)
:=
∑
~k

(
a†~k
a~k − b

†
~k
b~k

)
=

∫
k

(a†(k)a(k)− b†(k)b(k)) = Na −Nb (4.22)

At this moment charge simply means difference in number of a-type and b-type particles, which is an
integer. The vacuum is uncharged Q|vac〉 = 0 thanks to normal ordering. A single a-type particle has

a charge Q|na,~k = 1〉 = Qa†~k
|vac〉 = +1|na,~k = 1〉, whereas a single b-type particle state has a charge

Q|nb,~k = 1〉 = Qb†~k
|vac〉 = −1|nb,~k = 1〉. Therefore the two types of particles are distinguished by their

charge being +1 (a-type) or −1 (b-type). Type a is actually called a particle and type b is called an
antiparticle. They are distinguished by their charge. And the total charge counts the total number of +
charge minus the total number of − charges.

4.3 Microcausality

So far, we have concentrated on equal time commutation relation. We now want to consider the commutator
of operators at different times. Let us first consider the commutator [φ(x), φ†(y)] where x − y is spacelike.
By using the commutation relations of the annihilation and creation operators, we fnd:

[φ(x), φ†(y)] = D(x− y)−D?(x− y)

with

D(x) =

∫
k

e−ikx

We recall that in these equations, the temporal part of the 4-vector k is k0 = ωk.
To go further, we should make a change of variables in the previous equation. More explicitly, we

will consider the new variable of integration k′x = cosh ηkx + sinh ηωk, ky and ky being unchanged. A

simple algebra shows that ωk′ = cosh ηωk + sinh ηkx. All in all, (ωk,~k) transforms as a 4-vector under our
change of variables. Moreover, d3k/ωk = d3k′/ωk′ . This means that the measure is invariant under Lorentz
transformation. This should not come as a surprise because the measure was introduced in a covariant way,
as d4kδ(k2 −m2)...

If we perform this change of variables in the integral defining D above, we realize that it boils down to
performing a Lorentz transformations of its coordinates. The function does not depend on coordinates but
only on x2! as a consequence, the function for spacelike interval x− y boils down to the case x0 = y0. But
the equal time commutator vanishes. We conclude that [φ(x), φ†(y)] = 0. Deriving the previous equation
with respect to the time components x0 and/or y0, we also find that [φ(x),Π(y)] = [Π(x),Π(y)] = 0, etc.

This property has important physical consequences! Recall that operators which commute have a special
status in quantum mechanics. As you well know, if A and B do not commute, then a measure of A may
influence the result of the measure of B. The fact that fields at events which are spacelike commute means
that a measure of the field at one event cannot modify its measure at the other event. This generalizes
to all local observables which are built from the fields and its derivatives. We conclude that a measure
performed in a region of specetime cannot influence another measure performed out of the light cone of the
first experiment. This is how causality enters into the game in quantum field theory.
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4.4 Correlations in the vacuum

We conclude this chapter by some more physical observations in our theory. In quantum mechanics, as you
well know, we can compute averages of some operators in a given state. We concentrate here on the vacuum
properties and first look at

〈0|φ(x)φ†(y)|0〉 = D(x− y) (4.23)

where we have used the fact that the operators a and b annihilate the vacuum. We can interpret this equation
by saying that the field φ†(y) creates a particle of type a, which is annihilated by φ(x). If the interval between
the two events is spacelike, we can make a Lorentz transformation such that x0 = y0. For distant points, we
find that the correlations decrease exponentially:

D(x) ∼ e−mx if x is spacelike and large.

Reciprocally, if the interval is timelike, we perform a Lorentz transformation such that ~x = ~y. For distant
times, we the correlations oscillates very fast:

D(x) ∼ eimt if x is timelike and large.

Reciprocally, the correlation
〈0|φ†(y)φ(x)|0〉 = D?(x− y) (4.24)

can be interpreted as follows: a b excitation is created by the field φ(x), which is annihilated by φ†(y). The
fact that the commutator [φ(x), φ†(y)] vanishes results from a cancellation of contributions from the a and
b particles. For this to happen, it is important that the a and b particles have the same mass. A model
where the masses of a and b are different would not be causal. This implies that, in order to have causality
in the theory, we need to have particles and associated antiparticles at the same time. The case of the real
Klein-Gordon field is too simple in this sense because the particles have no charge and are therefore their
own antiparticles!
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Chapter 5

Space-time symmetries and
geometrical objects

A. Zee: “The issue of symmetry is whether different observers perceive the same structure of physical reality.”

The aim of the present chapter is to study symmetries of 3+1 dimensional space-time using group theory
and representations. This will allow us to identify natural objects, that have well defined transformation
properties in space-time (just as scalars, vectors, etc. are natural objects of 3d space). There is little physics
in this chapter (except for the structure of spacetime) and the focus is mainly on group theory as a way to
recognize well behaved geometrical objects. We start with a familiar example – that of the rotations of 3d
space – in order to recall important concepts of group theory as applied to the study of symmetries (such as
Lie group, Lie algebra, linear representations, etc).

5.1 Rotation group

5.1.1 O(3) and SO(3) groups

This is intended to be a warm up section with the aim of reviewing basic notions of groups and representations.
We consider the 3d Euclidian space. The group of isometries (i.e. transformations preserving distances
dl2 = dx2 + dy2 + dz2) of this space is the O(3) group (here we do not consider translations), which is

also that of orthogonal real 3 × 3 matrices. Let us see that. Let ~r′ = R~r such that ~r′ · ~r′ = ~r · ~r defines a
rotation R for a position vector ~r. The matrix R is 3×3 and encodes a linear transformation. For simplicity,
we will also write it as r′ = Rr. Then r′T r′ = (Rr)TRr = rT r so that rTRTRr = rT r for all vector r.
Therefore RTR = 1, which shows that R is an orthogonal matrix. In addition by its definition as a rotation
matrix ~r′ = R~r it is obvious that it is a real matrix. Therefore R ∈ O(3). Let us see that O(3) has a group
structure1. (i) If R ∈ O(3) and R′ ∈ O(3), (RR′)T (RR′) = R′TRTRR′ = R′TR′ = 1 so that RR′ ∈ O(3):
closure. (ii) If R ∈ O(3) then RT ∈ O(3) and RTR = RRT = 1 so that R−1 = RT : the inverse of R
belongs to O(3). (iii) The unit 3 × 3 matrix I is a neutral element as IR = RI = R (for simplicity we
will often write 1 instead of I). (iv) R(R′R”) = (RR′)R” (associativity). Therefore O(3) is a group. It is

1In a pragmatic view, a group is a set G of elements g equiped with a composition law, the properties of which are specified
by a multiplication table. For example the group Z2 = {1,−1;×} contains two elements (1,−1) and has a composition law

denoted by × that obeys the following multiplication table
× 1 −1
1 1 −1
−1 −1 1

. Alternatively, the same group can also be written

{0, 1; +} with a multiplication table that reads
+ 0 1
0 0 1
1 1 0

. Its elements are the integers modulo 2 justifying its name Z2.
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non-abelian (or non-commutative) as in general RR′ 6= R′R, which is a well known property of matrices.
As det(RTR) = 1 = (detR)2 and detR is real so that detR = ±1. SO(3) (special orthogonal group) is a
subgroup made of detR = 1 matrices (show it). The subset of O(3) made of detR = −1 matrices is not a

subgroup (why?). SO(3) is the group of proper rotations. It contains the identity I =

 1 0 0
0 1 0
0 0 1

 but

not the space inversion2 P =

 −1 0 0
0 −1 0
0 0 −1

. R ∈ SO(3) a priori depends on 32 = 9 real elements but

RTR = 1 means that RkiRkj = δij (summation over repeated indices implied), which gives 6 independent
conditions (because the two equations RkiRkj = 0 when i 6= j and RkjRki = 0 are the same) so that in
the end there are only 3 independent (real) parameters 3. The group is therefore continuous and the three
parameters can be taken as 3 angles: 2 angles to specify a direction in 3D space (an axis) and a last angle
to specify the amount of rotation around that axis. When the elements of the group depend in a continuous
and differentiable way on a set of real parameters, the group is called a Lie group. The parameter space of
the SO(3) Lie group is 3-dimensional and made of 3 angles.

Any element of O(3) can be obtained as the product of an element of SO(3) with either the identity I
or the space inversion P 4. SO(3) is the part of O(3) that is continuously connected to the identity. In the
following we concentrate on SO(3).

Generators of rotations and Lie algebra

To be concrete, we now build the rotation matrix Rz(ψ) for a rotation of angle ψ around the z axis in

the passive viewpoint (there is a single vector and two different frames). We consider a fixed vector ~V and

describe it in two orthonormal frames {~ex, ~ey, ~ez} and {~e′x, ~e′y, ~e′z}. In the first frame ~V = Vi~ei and in the

second ~V = V ′i
~e′i (summation over repeated indices). The second frame is rotated with respect to the first

one around the z axis. As ~e′x = cosψ~ex + sinψ~ey, ~e′y = cosψ~ey − sinψ~ex and ~e′z = ~ez, we obtain that the

coordinates of the vector ~V transform as V ′x
V ′y
V ′z

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 Vx
Vy
Vz

 = Rz(ψ)

 Vx
Vy
Vz

 (5.1)

It is important to realize that basis vectors do not transform as vectors. In the present passive viewpoint,
vectors do not transform at all ~V ′ = ~V , unlike their coordinates and basis vectors, which both transform in
the same way. Indeed  ~e′x

~e′y
~e′z

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ~ex
~ey
~ez

 (5.2)

2Space inversion and parity are not exactly the same thing. Space inversion or point reflection means that ~r = (x, y, z) →
−~r = (−x,−y,−z). Parity means that the direction of space is inverted, which can be realized by reverting either one – as in
(x, y, z)→ (−x, y, z) – or three – as in (x, y, z)→ (−x,−y,−z) – components of a vector. Therefore parity needs to be clearly
defined. In 3 space dimensions, one usually takes parity to be the same as space inversion ~r = (x, y, z) → −~r = (−x,−y,−z).
But the general definition of parity is that of the change of sign of a single component. Physically, it corresponds to a mirror
reflection. For example, in 2 space dimensions, one should carefully distinguish space inversion – (x, y) → (−x,−y) – from
parity – either (x, y) → (−x, y) or (x, y) → (x,−y). Indeed, in 2 space dimensions, space inversion is equivalent to a rotation
by π around an axis perpendicular to the xy plane and does not revert the direction of space. Whereas parity does revert the
direction of space. Parity should have detP = −1.

3The fact that the determinant be +1 rather than −1 allows one to choose a sign but does not lead to an extra independent
linear equation that would reduce the number of independent parameters.

4The zeroth homotopy group Π0(V ) of a manifold V is the set of connected components. We have Π0(O(3)) = Z2 and
Π0(SO(3)) = 0.
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In an infinitesimal rotation ψ → 0, Rz(ψ) ≈

 1 ψ 0
−ψ 1 0
0 0 1

 = 1 + iψJz with Jz =

 0 −i 0
i 0 0
0 0 0

 =

−i ddψRz(ψ)|ψ→0, which is called the generator of rotations around the z axis. For a finite rotation Rz(ψ) =

limN→∞ [Rz(ψ/N)]
N

= limN→∞(1 + iJzψ/N)N = eiψJz .

As an exercise, show that for a rotation of angle ψ around x, one obtainsRx(ψ) =

 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 =

eiψJx with the generator Jx =

 0 0 0
0 0 −i
0 i 0

. And for a rotation around y, Ry(ψ) =

 cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 =

eiψJy with the generator Jy =

 0 0 i
0 0 0
−i 0 0

.

In the end, there are as many generator (Jx, Jy, Jz) as independent continuous parameters of the Lie

group. The generators are hermitian matrices J†i = Ji with i = 1, 2, 3 for x, y, z. You can check that,
(Ji)jk = −iεijk where i indicates the generator (either J1 = Jx or J2 = Jy or J3 = Jz), j is the row index
and k the column index of the matrix. And εijk is the fully antisymmetric tensor such that ε123 = +1 (as
an exercise show that only 6 out of its 27 elements are non-zero and try to represent this tensor as a “3D
matrix”). The generators do not commute but satisfy the following commutation relation [Jx, Jy] = iJz or
more generally

[Ji, Jj ] = iεijkJk (5.3)

where εijk.
This structure enables us to build what is called a Lie algebra. We consider the set of matrices obtained by

multiplying the commutators by some real number: θiJi. This set is a vector space (summing to elements, or
multiplying an element by a real number, we remain in this set). We have one more operation at our disposal:
taking two elements m1 and m2 in the vector space, we can obtain a third by applying the commutator.
This last property upgrades our vector space to a Lie algebra. In order to distinguish the Lie group SO(3)
from its algebra, the latter is usually written so(3).

A general proper rotation5 can be written as

R~n(ψ) = R(~ψ) = eiψ~n·
~J , (5.5)

where the unit vector ~n – with coordinates (sin θ cosφ, sin θ sinφ, cos θ) where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

– defines the rotation axis and ψ the rotation angle (sometimes with the notation ~ψ = ψ~n). Note that
this is not the same as eiψnxJxeiψnyJyeiψnzJz (to convince yourself, think of the Baker-Campbell-Haussdorff
formula for the product of exponentials of two operators that do not commute:
eXeY = eX+Y+ 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]+[Y,[Y,X]])+... 6= eX+Y ).

Parameter space and the topology of SO(3)

Because R~n(ψ + π) = R−~n(π − ψ) (show it), the rotation angle is such that 0 ≤ ψ ≤ π and not 0 ≤ ψ ≤ 2π.
The three real parameters needed to specify a proper rotation are therefore (ψ, θ, φ) to be taken in the
parameter space [0, π] × [0, π] × [0, 2π]. A Lie group can also be seen as a differentiable manifold, that can

5A general formula due to B. Olinde Rodrigues is (here we are momentarily using the active viewpoint)

~x′ = R~n(ψ)~x = cosψ ~x+ (1− cosψ)(~x · ~n)~n+ sinψ(~n× ~x) (5.4)

where ~x = ~x‖ + ~x⊥ = (~x · ~n)~n + [~x − (~x · ~n)~n] and ~x′ = ~x‖ + cosψ ~x⊥ + sinψ (~n × ~x⊥). Note that ~n = ~x‖/x‖, ~x⊥/x⊥ and
~n × ~x⊥/x⊥ form a direct orthonormal basis. The Rodrigues formula clearly shows that the rotation matrix only depends on

cosψ and sinψ (and not on cos ψ
2

and sin ψ
2

for example: this will play an important role later). In other words, ψ only matters
modulo 2π. As an exercise, write explicitly the rotation matrix for a general rotation parametrized by (ψ, θ, φ).
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be characterized topologically. The parameters of the Lie group live in a parameter space which is roughly
a ball (i.e. a filled sphere S2 in R3) of radius π when ψ is interpreted as a radial coordinate and (θ, φ) as
spherical coordinates. It can also be seen as a kind of S3 sphere in R4, but see below. The Lie group SO(3)
is said to be compact as [0, π] × [0, π] × [0, 2π] is compact (as it is a closed and bounded interval of R3).
It is connected as the parameter space is made of a single piece. Let’s take a closer look at what happens
on the surface of this ball of radius π. As R~n(π) = R−~n(π) (corresponding to ψ = 0 in the above equation
R~n(ψ + π) = R−~n(π − ψ)) for any unit vector ~n, antipodal points on the surface of the ball have to be
identified. Then this parameter space is not simply connected. Actually, it is doubly connected: there are
two homotopy classes (two classes of closed paths that can not be continuously deformed into one another).
One class uses the identification of opposite points on the surface of the ball (paths in this class can not be
smoothly contracted to a null path), the other does not (paths in this second class can be smoothly deformed
to the null path, i.e. the identity). The fundamental group of SO(3) is therefore Z2, which is usually written
as Π1(SO(3)) = Z2. SO(3) as a topological manifold is similar to the projective space RP 3, which is the
3-sphere S3 with antipodal points identified. This is usually written as SO(3) ≈ RP 3 ≈ S3/Z2.

Figure 5.1: This picture illustrates the topology of the SO(3) manifold. It is roughly a ball (a filled sphere
S2) of radius π, but antipodal points on the surface of the sphere (such as P and P’) have to be identified.
There are therefore two homotopy classes (i.e. the fundamental homotopy group Π1(SO(3)) = Z2). Image
taken from http://physics.stackexchange.com/questions/76096/lie-groups-and-group-extensions.

For more information on homotopy groups and basic notions of topology, you can consult Ryder [3]
(section on “Topology of the vacuum: the Bohm-Aharonov effect”) or Altland and Simons [6] (section 9.2 on
homotopy groups in chapter 9 “Topology”) or J. Sethna [7] (section “IV. Classify the topological defects”)
or Nakahara [8]. We will essentially need the homotopy groups of the sphere [9]. You should understand
statements such as Π1(S1) = Z (winding number), Π1(S2) = 0, Π2(S2) = Z (wrapping number), etc.

5.1.2 Representations of SO(3)

First, we review a few results from representation theory. A group can be thought of as an abstract object6

(G, ·) made of a set G of elements g and a composition law (symbolized by the dot ·) with closure, inverse,
neutral element and associativity. Now, we would like to know how a group of transformations acts on
physical quantities. We therefore introduce linear7 representations of this group. Let’s take a physical
object with n components (for example the electric field with 3 components). A representation built in this
representation space (or base space) is such that for each g ∈ G there is an n × n matrix T (g) acting on
physical quantities such that T (g1g2) = T (g1)T (g2). In other words:

T : G → V (5.6)

g → T (g) (5.7)

where V is a linear (vector) space called the representation space and T (g) is a matrix (if V is of finite dimen-
sion) or a linear operator (if V is infinite dimensional). A representation such that T (g1g2) = T (g1)T (g2) is

6Here, by calling the group an abstract object, we want to emphasize that having constructed SO(3) from 3 × 3 matrices,
we should now forget this construction and think of this group as an abstract group. Its elements are no longer matrices but
abstract elements that obey a certain “multiplication table”.

7Why do we restrict ourselves to linear representations? See [1] for some ideas about this question.
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called a faithful representation, whereas one such that T (g1g2) = eiφ(g1,g2)T (g1)T (g2) is called a projective
representation (or a representation up to a phase).

An irreducible representation is such that it contains no non-trivial subspace of V which is left invariant
by all T (g). Otherwise, a representation is said to be reducible. For example, for SO(3) a quadruplet

(a, Vx, Vy, Vz) made of a scalar a and a vector ~V defines a reducible representation. For a compact group such
as SO(3), we can restrict ourselves to irreducible representations which are unitary and of finite dimension
(see [1] encadrés I and III). Then T (g) are unitary matrices (i.e. T (g)−1 = T (g)†) and the corresponding
generators are hermitian. For a non-compact group, there are no unitary representations of finite dimension
(apart from the trivial one).

A representation of the Lie group can be obtained from a representation of its Lie algebra. As in the case
of the SO(3) group, it is convenient to refer to the Lie algebra associated with a Lie group G by the lower
case symbol g. The strategy is as follows. suppose we find 3 matrices ji which fulfill the same commutation
relations as the Ji: [ji, jj ] = iεijkjk. Note that these matrices need not be 3× 3. We then build the function

Tn̂(θ) = eiθjin̂i

by analogy with the exponential formula used to represent the rotation matrix associated with a ψ angle
around the direction n̂. This gives us a representation of the rotation group. This can be shown by using
the Baker-Campbell-Hausdorff formula, that we quote again

eXeY = eX+Y+ 1
2 [X,Y ]+ 1

12 [X,[X,Y ]]+ 1
12 [Y,[Y,X]]+···

where the dots involve more and more commutators. Let us apply this formula to the rotation matrices

Rn̂(θ).Rm̂(ψ) = eiθniJieiψmiJi (5.8)

= eiJi(θni+ψmi+
1
2 θψεijknimj+··· ) (5.9)

= eiJiτli (5.10)

= Rl̂(τ) (5.11)

This formula formally gives us the multiplication table of two rotation matrices and although it is difficult
to determine explicitly the angle τ and direction l̂ resulting from the product of two rotations, we know at
least how to define these quantities.

Let us repeat the discussion with the T ’s. Actually, since the commutation relations for the j and the J
are the same, we can readily write that:

Tn̂(θ).Tm̂(ψ) = Tl̂(τ)

where τ and l̂ are exactly those already computed! This concludes our proof that indeed T is a representation
of the rotation group.

The conclusion is that finding a representation of the group boils down to finding a set of 3 matrices with
the right commutation relations, which is much more simple!8.

There is however a piece of information that may be lost in this procedure. On the one hand, the Lie

group SO(3) made of elements R~n(ψ) = eiψ~n·
~J has a global structure (for example, we also discussed it

as a topological manifold being doubly connected). On the other hand, the Lie algebra so(3) defined by
[Ji, Jj ] = iεijkJk only reflects the local structure of the group SO(3) close to the identity I but not its global
structure9.

We now concentrate on irreducible representations of the Lie algebra so(3). We already said that these
representations are unitary and of finite dimension.

8Modulo the fact that two groups (e.g. SO(3) and SU(2)) can have the same algebra but different faithful representations.
In addition, this statement turns out to be true only for compact groups. See below.

9We will soon see that SU(2) is a different group from SO(3) – the former is simply connected Π1(SU(2)) = 0, while the
latter is doubly connected Π1(SO(3)) = Z2 – but it has the same Lie algebra su(2) = so(3).
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Dimension 1

Let us start by trying to construct a representation of dimension 1. [Ji, Jj ] = iεijkJk can be satisfied by 1×1

matrices Ji = 0 so that R(~ψ) = ei
~ψ· ~J = 1. This is the scalar (or trivial) representation. A scalar quantity s

transforms indeed as s′ = 1s = s.

Dimension 3

We already found a representation of dimension 3 when first constructing the rotation group. The generators
are 3× 3 matrices such that (Ji)jk = −iεijk. This is the vector (or fundamental or defining) representation
of SO(3). Hence, for us a vector is now a triplet of numbers (Vx, Vy, Vz) that transforms under a rotation

according to

 V ′x
V ′y
V ′z

 = ei
~ψ· ~J

 Vx
Vy
Vz

 where ei
~ψ· ~J is a 3 × 3 matrix here. Remember that a triplet of

numbers that has no specified transformation property under spatial rotations is just a triplet of numbers,
not a vector.

Dimension 2

M. Atiyah: “No one fully understands spinors. Their algebra is formally understood but their general signif-
icance is mysterious. In some sense they describe the “square root” of geometry and, just as understanding
the square root of −1 took centuries, the same might be true of spinors.”

Let us now try to find a two dimensional representation of the Lie algebra. Pauli matrices are 2 × 2
hermitian matrices that do satisfy the so(3) algebra (up to a a factor 2, see below). We recall that σ1 =

σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
and σ3 = σz =

(
1 0
0 −1

)
are the three Pauli matrices. Check

that indeed [σi/2, σj/2] = iεijkσk/2. Another property of Pauli matrices is that they anticommute. Show
that σiσj = δij + iεijkσk and {σi, σj} = 2δij (this last property defines a Clifford algebra, which we will
encounter again when discussing the Dirac equation). The corresponding rotation matrix is

U(~ψ) = ei
~ψ·~σ/2 = cos

ψ

2
σ0 + i sin

ψ

2
~n · ~σ (5.12)

where ~ψ = ψ~n and σ0 = I is here the 2 × 2 unit matrix and σi/2 are the generators for the representation

of dimension 2. Note that, unlike R(~ψ) in the representation of dimension 3, U(~ψ) depends on cos ψ2 and

sin ψ
2 , rather than on cosψ and sinψ. The matrix U(~ψ) is a 2×2 complex matrix that depends on three real

parameters (ψ,~n(θ, φ)). In addition U(~ψ)†U(~ψ) = 1 and detU(~ψ) = +1, which means that U(~ψ) ∈ SU(2)
the group of special (det= +1) unitary matrices.

The SU(2) Lie group is different from SO(3). It has the same local structure (i.e. the same Lie algebra)
as SO(3) but a different global structure. Indeed, for each element of SO(3), there are actually two elements

of SU(2). Let’s see that. Consider ~ψ = ψ~n and ~ψ = ψ~n = (ψ + 2π)~n. Then U(~ψ) = ei
~ψ·~σ/2 = cos

ψ

2 +

i sin
ψ

2 ~n · ~σ = −ei ~ψ·~σ/2 = −U(~ψ), whereas R(~ψ) = ei
~ψ· ~J = ei

~ψ· ~J = R(~ψ). This is a consequence of eiψ = eiψ

and eiψ/2 = −eiψ/2. The parameter space of SU(2) is (ψ, θ, φ) ∈ [0, 2π] × [0, π] × [0, 2π] as U~n(ψ + 2π) =
−U~n(ψ) = U−~n(2π − ψ) (compare with the discussion of R~n(ψ)). This parameter space is twice as large
as that of SO(3): for each element R~n(ψ) of SO(3) defined by the triplet (ψ, θ, φ) ∈ [0, π] × [0, π] × [0, 2π],
there are two distinct elements U~n(ψ) and U~n(ψ + 2π) = −U~n(ψ) of SU(2) corresponding to the triplets of
parameters (ψ, θ, φ) and (ψ + 2π, θ, φ) ≡ (2π − ψ, π − θ, φ+ π). In summary ±U ∈ SU(2)↔ R ∈ SO(3).

As a manifold SU(2) ≈ S3 which is compact and simply connected (i.e. the fundamental homotopy
group Π1(S3) = 0)10. SU(2) is known as the universal cover of SO(3) which is written as SO(3) = SU(2).

10To see that directly, note that a generic SU(2) matrix can be written U =

(
a b
−b∗ a∗

)
where a and b are complex
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The representation we have just found is a faithful representation of SU(2) but not of SO(3). Let’s see that
it is actually a projective representation of SO(3). Take the following two elements of G = SO(3): g1 = Rz(π)
and g2 = Rz(π), then g1 · g2 = Rz(2π) = I = e but U(g1)U(g2) = eiπσz/2eiπσz/2 = eiπσz = −I = −U(e)
where e is the neutral element of the group. Here the phase in T (g1)T (g2) = eiφ(g1,g2)T (g1g2) is π.

This representation is called the spinor (or fundamental or defining) representation of SU(2). Note how
by allowing projective representations, we have moved from the study of the group SO(3) to that of another
group, SU(2). Objects that transform according to this representation are called spinors. They are doublets
of complex numbers (z1, z2) that transform according to(

z′1
z′2

)
= ei

~ψ·~σ/2
(
z1

z2

)
= U(~ψ)

(
z1

z2

)
(5.13)

Just like any triplet of numbers is not a vector, any doublet is not a spinor. A characteristic feature of a
spinor is that it gets a minus sign in a rotation of 2π and only comes back to itself after a 4π rotation.
Classical objects that show such a behavior can be constructed with a belt or scissors or a glass of water
(show some of the tricks in the classroom: plate, Dirac’s string or belt, Balinese cup, etc.). Note how in
the present discussion of representations of the rotation group, spinors appear as geometrical objects that a
priori have nothing to do with quantum physics. Spinors were actually discovered by the mathematician Élie
Cartan in 1913 when studying linear representations of groups, before they appeared in quantum mechanics
with Wolfgang Pauli in 1927. The connection between spinors and quantum mechanics comes from allowing
for the presence of representations up to a phase.

Tensor product

Tensor products allow one to construct representations of higher dimension from representations of smaller
dimension. Let’s study a concrete example: that of the tensor product of two vectors (i.e. two representations

of spin 1). Let ~V be a vector, i.e. its coordinates transform as V ′i = RijVj with R = ei
~ψ· ~J . Let Tij be an

array of 9 numbers. If it transforms as T ′ij = RikRjlTjl, then it is said to be a rank 2 tensor. For example,
Tij = ViVj . This defines a reducible representation of SO(3) of dimension 9. From your knowledge of
the composition of angular momentum in quantum mechanics11, you know that composing two spin 1 (i.e.
vectors) gives rise to a spin 0 (i.e. scalar), a spin 1 and a spin 2. In terms of dimensions of the representations,
this is usually written as 3⊗3 = 1⊕3⊕5, which means that the tensor product of two vector representations
is reducible and decomposes into the direct sum of 3 irreducibles representations (irreps): one of dimension
1 (spin 0, scalar, trace of the tensor), one of dimension 3 (spin 1, vector, antisymmetric part of the tensor)
and one of dimension 5 (spin 2, traceless symmetric part of the tensor).

Another example is the composition of two spin 1/2 representations: 2 ⊗ 2 = 1 ⊕ 3. It is a reducible
4-dimensional representation that splits into a one-dimensional (spin 0) irrep and a three-dimensional (spin
1) irrep. We can continue this game and compose a spin 1/2 with a spin 1: 2⊗ 3 = 2⊕ 4. It is a reducible
six-dimensional representation that splits into a two-dimensional irrep (spin 1/2) and a four-dimensional
irrep (spin 3/2). Repeating this procedure, we can obtain all the irreps of SU(2).

Casimir operator

A Casimir is an operator that commutes with all generators of the Lie group. In each irrep, it is proportional
to the identity (Schur’s lemma). Its eigenvalues are used to label the irrep. For the so(3) = su(2) algebra,
~J2 = JiJi is the only Casimir operator. Check that [ ~J2, Ji] = 0 and that ~J2 = j(j + 1)I in the jth irrep of
SU(2). An irrep of SU(2) (or of SO(3)) is therefore labeled by its spin j.

numbers such that |a|2 + |b|2 = 1 (indeed UU† = 1 and detU = +1). Writing a = x + iy and b = z + it, we see that
x2 + y2 + z2 + t2 = 1 which is the definition of a sphere S3 of radius 1 in R4. This shows that SU(2) ≈ S3. As a side remark,

note that a general U(2) matrix can be written U = eiχeiψ~n·~σ/2 = eiχ[cos ψ
2

+ i sin ψ
2
~n · ~σ] = eiχ[γ0 + i~γ · ~σ] where γ0 and

(γx, γy , γz) all ∈ R such that γ2
0 + ~γ2 = 1. First, one recognizes the above four real numbers such that the sum of their square

equals one. Second, one sees that U(2) ≈ U(1)× SU(2) where eiχ is the U(1) phase.
11When composing a spin j1 with a spin j2, one obtains all the spins in between |j1 − j2| and j1 + j2.
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Summary

All irreducible representations (faithful or projective) of SO(3) can be found as faithful irreps of SU(2). Irreps
of SU(2) are labelled by a half integer j = 0, 1/2, 1, 3/2, ..., which is known as the spin of the representation.
The dimension of the representation is 2j + 1.
j = 0: spin 0, scalar, dimension = 1
j = 1/2: spin 1/2, spinor, dimension = 2
j = 1: spin 1, vector, dimension = 3
j = 3/2: spin 3/2, dimension = 4
j = 2: spin 2, traceless symmetric rank 2 tensor, dimension = 5
....
Faithful representations of SO(3) are that of integer spin j ∈ N. Projective representations of SO(3) are
that of 1

2+ integer spin j = 1/2, 3/2, ....
Remark: from the above construction, keep in mind the difference between a rank 2 tensor and a spin

2. The former corresponds to 9 numbers and induces a reducible representation that splits into the direct
sum of three irreps: its trace is a scalar (spin 0), its antisymmetric part is a vector (spin 1) and its traceless
symmetric part is a spin 2. T = trT

3 I +A+ S where Aij = (Tij − Tji)/2 and Sij = (Tij + Tji)/2− trT
3 .

Space inversion (parity)

Space inversion P does not belong to SO(3) but to O(3). It further distinguishes between a true and a pseudo-

scalar or between a true (or polar) and a pseudo- (or axial) vector. Let ~V be a true vector. Under P it

transforms as Vi → −Vi. With two vectors ~V and ~W , we can make the scalar product ~V · ~W which transforms
as ViWi → (−Vi)(−Wi) = ViWi, which defines a true scalar. We can also consider the cross product ~V × ~W
which transforms as εijkVjWk → εijk(−Vj)(−Wk) = εijkVjWk, which is therefore not a true vector but a

pseudo-vector. The mixed product (~V × ~W ) · ~U of three vectors transforms as εijkVjWkUi → −εijkVjWkUi,
which is a pseudo-scalar.

If one is interested in going further in this direction of refining the classification of “vectors”, I suggest
reading J. Hlinka, Phys. Rev. Lett. 113, 165502 (2014) (see arXiv:1312.0548), who considers the direct
product of SO(3) and {I, P, T, PT} (where P is the space inversion and T the time reversal operator) to build
8 types of directional quantities (polar vector, axial vector, nematic director, etc.) and 4 scalar quantities
(time-even scalar, time-even pseudo-scalar, time-odd scalar, time-odd pseudo-scalar).

Question: studying the projective representations of O(3) (i.e. SO(3) and parity P ), is it possible to
discover the existence of two types of spinors (left-chiral spinors and right-chiral spinors)? These two types

of spinors are discussed in the next section and appear as projective irreps of L↑+.

5.1.3 Lorentz algebra

The Lorentz group is a Lie group. It is somewhat similar to SO(4) – the group of rotations in a 4-dimensional
Euclidian space. The latter has 6 independent rotations (in the planes x0x1, x0x2, x0x3, x1x2, x1x3 and
x2x3) and therefore 6 generators. Another way to see it is to realize that a 4 × 4 real matrix has 16 real
parameters but that the defining condition ΛT ηΛ = η gives 10 independent constraints leaving 6 independent
parameters. An important difference with SO(4), that will reveal crucial when contrsucting representations,
is that the Lorentz group, which also has 6 generators, is non-compact.

Lorentz boost

To be more concrete, we now construct specific Lorentz transformations in order to obtain the generators
and their algebra. Among the 6 independent transformations, there are 3 space rotations in the planes xy,
xz and yz and 3 boosts (changes of inertial frame) in the planes tx, ty and tz. As the rotations are similar
to the ones studied in SO(3), we focus on a boost in the tx plane. This is a transformation x′ = Λx such
that y′ = y, z′ = z and only t and x mixes. In addition, we know that Λ is linear so that t′ and x′ are
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linear combinations of t and x. We also know that the transformation preserves intervals (isometry) so
that t′2 − x′2 = t2 − x2. In addition det Λ = +1 (proper) and Λ0

0 ≥ 1 (orthochronous)12. One finds that
x′µ = Λµνx

ν reads 
t′

x′

y′

z′

 =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1




t
x
y
z

 (5.14)

which is parametrized by a single quantity called the rapidity φ. An important point is that φ ∈ R is
unbounded and not closed (unlike rotations which are parametrized by an angle ψ ∈ [0, π]). The rapidity
φ is not an angle. Therefore the Lorentz group is non-compact. Physically, this transformation describes
a boost along the x direction with a velocity v = tanhφ. We characterize it by ~φ = φ~ex. We have
x′ = coshφx − sinhφt so that the origin of the primed frame at x′ = 0 moves such that x = tanhφ × t
showing that the velocity is indeed tanhφ 13. To make the connection with standard notations of special
relativity, note that coshφ = γ = 1/

√
1− v2 14 and sinhφ = γv = v/

√
1− v2. In the non-relativistic limit

v/c = tanhφ ≈ φ � 1, we find that

(
ct′

x′

)
≈
(

1 −v/c
−v/c 1

)(
ct
x

)
i.e. t′ ≈ t − vx/c2 ≈ t and

x′ ≈ x−vt as expected for a Galilean boost (time is absolute t′ = t and velocities simply add x′/t = x/t−v).

Generators

We can now obtain the boost generator Kx from

Kx ≡ −i
dΛ

dφ
|φ=0 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 (5.15)

which is anti-hermitian K†x = −Kx
15. Similarly, one can work out the boosts in the y and z directions and

obtain the corresponding generators:

Ky =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 and Kz =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 (5.16)

The three rotation generators are already known from our study of SO(3) (excluding the first row and
column of the following 4× 4 matrices, you should recognize the 3× 3 submatrices (Ji)jk = −iεijk):

Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 and Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (5.17)

12An alternative way is so search for a matrix Λµν =


a b 0 0
c d 0 0
0 0 1 0
0 0 0 1

 such that ΛT ηΛ = η.

13If one takes ~v = v~ex as the parameters defining the boost, then v ∈]− 1, 1[ which is bounded but not closed and hence not
compact. Physically, it means that it is not possible to go in an inertial frame moving at the velocity of light |v| = 1 compared
to another inertial frame.

14The parameter γ = 1/
√

1− v2 is the usual factor describing time dilatation – a moving clock runs slower – and length
contraction in the direction of motion.

15In the literature, you will also find definitions such that the generator is hermitian, having absorbed an i factor.
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One has K†i = −Ki and J†i = Ji. The parameter space of the Lorentz group is made of 3 rapidities and 3
angles16 such that (φx, φy, φz, θx, θy, θz) ∈ R3× [0, π]3. The parameter space is non-compact (it is unbounded
and not closed).

Lorentz algebra

The Lie algebra L of the Lorentz group L can be obtained from computing the commutators of the generators.
Check that [Jx, Jy] = iJz, [Jx,Ky] = iKz and [Kx,Ky] = −iJz. The Lorentz algebra is therefore17[

J i, Jj
]

= iεijkJk (5.18)[
J i,Kj

]
= iεijkKk (5.19)[

Ki,Kj
]

= −iεijkJk (5.20)

The first equation means that rotation generators form a closed sub-algebra (which we recognize as so(3)).
The second line means that the triplet (Kx,Ky,Kz) transforms as a vector (here meaning a 3-vector, a vector
under space rotations). Therefore the first equation also means that the triplet (Jx, Jy, Jz) itself transforms

as a vector. Hence the notations ~K and ~J . The third equation is more subtle: it means that boosts do not
form a closed sub-algebra. The fact that the commutator of two boosts is related to a rotation in the third
space direction is at the origin of the Thomas precession effect. This is a relativistic effect.

An infinitesimal Lorentz transformation parametrized by (~φ→ 0, ~θ → 0) is therefore Λ = 1+i~φ· ~K+i~θ · ~J .
Using the usual trick limN→∞(1 + x/N)N = eN , we find for a finite transformation that18

Λ = exp
(
i~φ · ~K + i~θ · ~J

)
. (5.21)

Covariant notation

It may be disturbing that the equation Λ = 1 + i~φ · ~K + i~θ · ~J is not written itself in a covariant fashion
(indeed ~φ · ~K is the scalar product in 3d Euclidian space, therefore ~φ · ~K is a 3-scalar but not a 4-scalar).
For an infinitesimal Lorentz transformation (i.e. close to the identity), we can write Λµν ≈ δµν + ωµν .

Comparing ωµν with Λ − 1 = i~φ · ~K + i~θ · ~J , we find that ωµν =


0 −φ1 −φ2 −φ3

−φ1 0 θ3 −θ2

−φ2 −θ3 0 θ1

−φ3 θ2 −θ1 0

 so that

ωµν ≡ ηµσω
σ
ν =


0 −φ1 −φ2 −φ3

φ1 0 −θ3 θ2

φ2 θ3 0 −θ1

φ3 −θ2 θ1 0

 = −ωνµ. This antisymmetric rank 2 tensor contains the 6

parameters specifying a generic Lorentz transformation. We define Jσρ such that Λ = 1− iωσρJσρ/2 when
ωσρ → 0. It can be chosen to be antisymmetric as well because any symmetric part would vanish in the
contraction with the antisymmetric tensor ωσρ. This antisymmetric tensor Jσρ contains the 6 generators.
By equating the two different expressions for Λ, we find that −iωσρ(Jσρ)µν/2 = ωµν where σρ labels the

16From now on, we call θ the angle giving the magnitude of rotation. It used to be called ψ.
17With J1 = Jx, J2 = Jy , etc. Note that when using latin indices i, j, ... = 1, 2, 3, it means that we restrict to space rather

than spacetime. In 3d space the metric is Euclidian. There is therefore, in that case, no reason in making a difference between
upstairs and downstairs indices. When writing εijkJk, the summation over repeated indices is implied.

18Actually, this is not entirely true in the case of a non-compact group. The issue is that exponentiating the generators,
one does not recover all of the elements of the group. All elements might be recovered as products of such exponentials (?).
Matthieu Tissier has a nice counter-example involving the non compact Lie group SL(2,C), which is the group of 2×2 complex

matrices with det = +1. The matrix

(
−1 0
1 −1

)
belongs to SL(2,C) but can not be written as an exponential. However

it can be written as the product of two matrices

(
−1 0
0 −1

)(
1 0
−1 1

)
that each can be written as an exponential

eiπσz ei(σy+iσx)/2. Check that by using the Baker-Campbell-Hausdorff formula.
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generators and µ is the row index and ν the column index in the matrix representation. In other words,
each Jσρ with fixed σρ is itself a 4× 4 matrix. One can show that (Jσρ)µν = i(ησµδρν − ηρµδσν ), which is the
3 + 1 version of (Ji)jk = −iεijk. Let’s have a closer look at the 6 generators hidden in Jσρ. Among the 16
entries of Jσρ only 6 are independent because of antisymmetry. Check that Ki = J0i and J i = εijkJjk/2,
i.e. J0i = Ki and Jij = εijkJ

k. Therefore

Jσρ =


0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

 (5.22)

In covariant notation, the Lorentz algebra reads:

[Jµν , Jρσ] = i (−ηµρJνσ − ηνσJµρ + ηνρJµσ + ηµσJνρ) (5.23)

and an element of the Lorentz group is Λ = e−i
ωµν
2 Jµν (see however, the preceding footnote).

5.1.4 Representations of the Lorentz group

Following a strategy similar to that used for the rotation group, we construct representations of the Lie
algebra to obtain that of the group. We first rewrite the Lorentz algebra by defining ~N± ≡ ( ~J ± i ~K)/2 such

that ~N†± = ~N±. Now, the algebra reads [
N i

+, N
j
+

]
= iεijkNk

+ (5.24)[
N i
−, N

j
−

]
= iεijkNk

− (5.25)[
N i

+, N
j
−

]
= 0 (5.26)

which means that it splits in two decoupled su(2) algebras, i.e. L = su(2) ⊕ su(2). Therefore irreps of L
can be obtained as irreps of su(2)⊕ su(2). The latter are labelled by (j+, j−) with j± = 0, 1/2, 1, ... and are

of dimension (2j+ + 1)(2j− + 1). ~N2
± are the two Casimir operators: they are proportional to the identity

in each irrep. In (j+, j−), ~N2
+ = j+(j+ + 1)I and ~N2

− = j−(j− + 1)I. From their definition, we also know

that ~J = ~N+ + ~N− and ~K = −i( ~N+ − ~N−). The rotation generator ~J is therefore the sum of two angular

momenta ~N+ and ~N−. From the familiar composition law of angular momentum applied to ~J = ~N+ + ~N−,

we know that the spin j corresponding to ~J2 goes in unit steps from |j+ − j−| to |j+ + j−|.
In the general case, the generators N±i act on an object with two indices, say ψab where the first index

is summed with the indices of N+ and the second with the indices of N−. As a consequence, for the
representation (j+, j−), the indices a and b run from 1 to (2j+ + 1) and from 1 to (2j− + 1) respectively.
Therefore, the J and K are in general objects with 4 indices! If j+ = 0 or j− = 0, the situation simplifies
because one of the indices actually takes just one value and we are endowed not to write it.

Representation (j+, j−) = (0, 0)

This is the 4-scalar representation. It has dimension 1, ~J = 0, ~K = 0. It is also a 3-scalar under rotations
as j = 0.

Representation (1/2, 0)

This representation has dimension 2 and behaves as a spinor under rotations as j = 1/2. Here ~N+ = ~σ/2

and ~N− = 0 so that ~J = ~σ/2 and ~K = −i~σ/2. Therefore ΛL = ei
~φ· ~K+i~θ· ~J = e~σ/2·(i

~θ+~φ). Doublets of complex
numbers ψL that transform in such a representation are called left-handed Weyl spinors. The transformation
law is ψ′L = ΛLψL.
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Representation (0, 1/2)

This representation has dimension 2 and also behaves as a spinor under rotations as j = 1/2. However it is

inequivalent to the previous representation as we will see. Here ~N+ = 0 and ~N− = ~σ/2 so that ~J = ~σ/2 and
~K = i~σ/2. Therefore ΛR = ei

~φ· ~K+i~θ· ~J = e~σ/2·(i
~θ−~φ). Doublets of complex numbers ψR that transform in

such a representation are called right-handed Weyl spinors (in the old literature, left and right spinors are
also called dotted and undotted spinors). The transformation law is ψ′R = ΛRψR.

Left and right spinors both behave as spinors (j = 1/2) under rotations but behave differently under
boosts. The two representations are inequivalent because one can not find a 2 × 2 matrix S (a similarity
matrix) such that ΛR = SΛLS

−1 (this being the definition of equivalent representations).

Actually σ2Λ∗Lσ2 = ΛR. The proof goes as follows. First σ2(e~σ/2·(i
~θ+~φ))∗σ2 = σ2e

~σ∗·(−i~θ+~φ)/2σ2. Then
one uses the general matrix formula

BeAB−1 = B

∞∑
n=0

An

n!
B−1 = 1 +BAB−1 +

BA(B−1B)AB−1

2!
+ ... = eBAB

−1

(5.27)

to show that σ2e
~σ∗·(−i~θ+~φ)/2σ2 = eσ2~σ

∗σ2·(−i~θ+~φ)/2. Finally, using σ2σ
∗
1,3σ2 = σ2σ1,3σ2 = −σ1,3 and

σ2σ
∗
2σ2 = σ2(−σ2)σ2 = −σ2, we see that σ2~σ

∗σ2 = −~σ, which completes the proof as ΛR = e~σ/2·(i
~θ−~φ).

In other words σ2K where K is the operation of complex conjugation (it takes the complex conjugate of
everything to its right) would be a candidate for S except that σ2K is an anti-unitary operator and the
latter can not be represented by a matrix19.

Also ΛL and ΛR do not belong to L↑+: they are complex 2 × 2 matrices with det = +1, but they

are not unitary. Indeed Λ†LΛL = e~σ·
~φ 6= 1. This non-unitarity can be traced back to the fact that L↑+

is non-compact, i.e. to the existence of boosts which are described by anti-hermitian generators so that

(ei
~φ· ~K)† = ei

~φ· ~K 6= e−i
~φ· ~K . Rather, ΛL and ΛR belong to the group SL(2,C) (the special linear group of

complex matrices of size 2× 2). The latter is the covering group of L↑+ – noted as SL(2,C) = L↑+ – and the

Weyl spinors realize projective (and not faithful) representations of L↑+ (similarly to the relation between

SO(3) and SU(2): SU(2) = SO(3)).

Representation (1/2, 0)⊕ (0, 1/2)

What is the effect of space inversion P on the Weyl spinors? ~J → ~J is a pseudo-vector, whereas ~K → − ~K
is a true vector. This can be checked from PJ iP = J i and PKiP = −Ki 20. Therefore ~N± → ~N∓.
This shows that the irreps (1/2, 0) and (0, 1/2) are exchanged under parity so that a left spinor becomes
a right spinor and vice-versa. Let us therefore glue a left and a right Weyl spinor into a quadruplet ψ =(
ψL
ψR

)
known as a bispinor or Dirac spinor (here written in the so-called chiral basis). It has four complex

components. It realizes a 4-dimensional reducible (and projective) representation of SO+(3, 1) – that’s the
meaning of (1/2, 0) ⊕ (0, 1/2) – and an irreducible (and projective) representation when parity is added.

A Dirac spinor transforms as

(
ψ′L
ψ′R

)
=

(
ΛL 0
0 ΛR

)(
ψL
ψR

)
, which we write ψ′ = S(Λ)ψ, under a

19Indeed K is not a linear operator and can therefore not be represented by a matrix. It is actually an anti-linear operator.
The most famous example of such an operator is the quantum mechanical time reversal operator T which is anti-unitary (as
shown by Wigner in 1932). It acts (in Hilbert space) on a superposition of quantum states as T (a|ψ〉 + b|χ〉) = a∗|ψ〉 + b∗|χ〉
and satisfies T †T = TT † = 1 and T 2 = 1 or −1. It is usually written as the product of a unitary (and linear) operator U and
the complex conjugation operator K: T = UK. For a brief introduction to the time-reversal operator see pages 99-100 in [4].

20Is it clear in the present context why the generators should transform as Ji → PJiP † under parity? This is the transfor-
mation law for a matrix A → A′ = SAS−1 and here the role of S is played by P = P † = P−1. Intuitively, the generator ~J is
an angular momentum and we know that the orbital angular momentum ~L = ~x × ~P (see the section on field representations)

is a pseudo-vector because position ~x and momentum ~P are true vectors. Also ~K = t ~P − E~x as we will see in the section on
field representations: therefore ~K → − ~K under parity, as a true vector.
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Lorentz transformation. And as

(
ψ′L
ψ′R

)
=

(
0 I
I 0

)(
ψL
ψR

)
, which we write ψ′ = γ0ψ, under a parity

transformation. We introduce the notation ψ ≡ ψ†γ0 called the conjugate of a Dirac spinor. The reason for
this is that ψψ is a Lorentz scalar (prove it), whereas ψ†ψ is not. This peculiarity can again be traced back
to having ηµν as a metric instead of δµν .

Representation (1/2, 1/2)

This representation has dimension 4. It is the defining or fundamental or 4-vector representation of the
Lorentz group. It is actually the representation we have obtained in constructing the Lorentz group, when
working with 4×4 matrices (section called Lorentz algebra). The contravariant coordinates Aµ of a 4-vector
A transforms as A′µ = ΛµνA

ν . It can be shown that a 4-vector under the Lorentz group splits into a scalar
and a 3-vector under the rotation group (for details, see Maggiore [2] page 28).

It is important to realize that although a Dirac spinor is a quadruplet (it has 4 components), it is not a
Lorentz 4-vector. Indeed the transformation law ψ′ = S(Λ)ψ is different from x′µ = Λµνx

ν .

Tensor representations

The 4-vector representation is the fundamental representation of the Lorentz group (but not of its cover-
ing group SL(2,C)). From it, we can play the game of obtaining larger representations by using tensor
products. Let’s do a useful case: the tensor product of two 4-vector representations. A rank 2 tensor
Tµν = AµBν transforms as T ′µν = ΛµρΛ

ν
σT

ρσ (by definition) under a Lorentz transformation. This realizes
a 16-dimensional representation. However, it is reducible. Indeed if T ρσ is antisymmetric then T ′µν as
well. Similarly if T ρσ is symmetric then T ′µν is also symmetric. Therefore the 16-dimensional representa-
tion splits into a 6-dimensional antisymmetric representation Aµν = (Tµν − T νµ)/2 and a 10-dimensional
symmetric representation Sµν = (Tµν + T νµ)/2. But the trace of the tensor trT = ηµνT

µν = ηµνS
µν is a

scalar: indeed trT = ηµνS
µν → ηµνS

′µν = ηµνΛµρΛ
ν
σS

ρσ = ηρσS
ρσ is Lorentz-invariant. Therfore the 10-

dimensional representation is also reducible into a 1-dimensional (scalar trT = ηµνS
µν) and a 9-dimensional

(traceless symmetric rank 2 tensor Sµν −ηµνtrT/4) representations. This can be summarized by saying that
4⊗4 = 1⊕6⊕9, i.e. the rank 2 tensor representation decomposes into 3 irreducible representations: a scalar
(the trace), an antisymmetric part and a traceless symmetric part. For more details, see Maggiore [2] page
20.

A particular symmetric rank 2 tensor is the metric tensor ηµν . It has a specific property: under a Lorentz
transformation ηµν → η′µν = Λ ρ

µ Λ σ
ν ηρσ = ηµν by virtue of equation (2.4), i.e. ηρσ = ηαβΛαρΛ

β
σ, which

defines Lorentz transformations, and the fact that ΛµρΛ
ρ
ν = δµν . The metric tensor has the same expression

in every frame: it is called an invariant tensor.

5.2 Poincaré group and field representations

After having studied the homogeneous Lorentz group consisting of rotations and boosts, we want to study
the inhomogeneous Lorentz group also known as the Poincaré group. In addition to rotations and boosts,
this group contains translations in spacetime. There are 4 extra generators corresponding to the three
translations in space and to time translation. Therefore the Poincaré group has 10 generators.

An element of the group is noted g = (Λ, a) such that x′µ = Λµνx
ν + aµ. Show that the composition law

is (Λ̃, ã)(Λ, a) = (Λ̃Λ, Λ̃a + ã). Show that Lorentz transformations (Λ, 0) form a subgroup, i.e. L and that
spacetime translations (I, a) constitute a subgroup usually called R1,3. The Poincaré group is then seen as
the semi-direct product of these two subgroups: SO+(3, 1)× R1,3.

5.2.1 Spacetime translations and field representations

The aim is now to find the 10 generators of the Poincaré group. As we already know the 6 generators of the
Lorentz group, we will concentrate on the 4 generators of the spacetime translation group. The parameter
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space for the latter is R4, which is not compact. It turns out that a representation of the spacetime
translations can therefore only be found using fields (i.e. functions of spacetime) rather than multiplets with
a discrete and finite number of components21. In other words, spacetime translations will be represented by
operators (such as gradients) and not by matrices. Consider the translation (I, a) acting as x′µ = xµ+aµ on
coordinates. What is its action on a spacetime function φ(x) 22? It is simply φ′(x′) = φ(x). Indeed, in the
passive viewpoint, the point of spacetime at which the field φ is evaluated is unchanged only its coordinates
are changed from x to x′ by the transformation. In other words, every field behaves as a “scalar” under a
spacetime translation. In an infinitesimal translation, φ(xµ) = φ′(x′µ) = φ′(xµ+aµ) ≈ φ′(xµ)+aν∂νφ

′(xµ) ≈
φ′(xµ) + aν∂νφ(xµ) when aµ → 0. Therefore φ′(x) ≈ φ(x) − aν∂νφ(x) = [1 − aν∂ν ]φ(x), from which the

generators are obtained as usual from −id[1−aν∂ν ]
daν |aν=0 = i∂ν . The generators of translations are usually

called
Pν ≡ i∂ν (5.28)

and there are indeed four of them. A finite translation is represented by φ′(x) = eia
νPνφ(x). Because

∂µ∂ν = ∂ν∂µ, the algebra of translation generators is trivial [Pµ, Pν ] = 0 and the translation group is

abelian23. Later, we will recognize P 0 = i∂t as the Hamiltonian operator, ~P = −i~∇ as the momentum
operator and therefore Pµ = (P 0, ~P ) as the 4-momentum operator.

An important point to understand is that in a field representation we are comparing φ′(x) with φ(x) rather
than with φ′(x′). To make the discussion more general, consider a field of a more complex nature having
internal degrees of freedom: φI(x) with I = 1, ..., NI labeling internal degrees of freedom. For example, the
field could be a 4-vector (then NI = 4) or a Weyl spinor (then NI = 2) or a Dirac spinor (then NI = 4) etc.
If we were comparing φI(x) with φ′I(x′) we would be studying a fixed point (or event) of spacetime (in the
passive viewpoint, the event is fixed but its coordinates are changing from xµ to x′µ) and how the NI degrees
of freedom φI are mixed by the transformation. In the case of a field which is itself a scalar (NI = 1), the field
is invariant, there is a single degree of freedom and therefore φ′(x′) = φ(x). In a more general case of a field
with NI > 1, the internal components are mixed in a transformation φ′I(x′) = [S(g)]IJφ

J(x) where g is an
element of the Poincaré group and S(g) is a NI ×NI matrix. Doing this, there would be no interest of using
fields φI(x) rather than similar objects φI without the dependence on spacetime coordinates. Therefore,
what we are now doing is to compare φ′I(x) with φI(x) i.e. comparing the transformed field at another point
of spacetime (having the same coordinates in two different frames) with the original field at the original point
of spacetime. Because we are going from one event to another, there is now an infinite number of degrees
of freedom involved (even if NI = 1). And hence, the field representation is of infinite dimension. See the
corresponding discussion on page 30 of Maggiore [2].

5.2.2 Lorentz transformation of a scalar field

Here we want to study how a Lorentz transformation (Λ, 0) acts on fields. Let’s first consider a scalar field
(i.e. a field that is itself a scalar rather than a vector or a spinor). One has φ′(x′) = φ(x), as before and
by definition of a scalar field, except that now x′µ = Λµνx

ν instead of x′µ = xµ + aµ. In an infinitesimal
transformation x′µ ≈ xµ + ωµνx

ν (when discussing the Lorentz group, we saw that Λµν ≈ δµν + ωµν),
therefore φ′(x′µ) ≈ φ′(xµ) + ωρνx

ν∂ρφ
′(xµ) ≈ φ′(xµ) + ωρνx

ν∂ρφ(xµ). Using φ′(x′) = φ(x), we obtain
φ′(x) ≈ φ(x) − ωρνx

ν∂ρφ(x) = [1 − ωρνxν∂ρ]φ(x). As ωρν = −ωνρ is antisymmetric, we can keep only
the antisymmetric part of xν∂ρ. Therefore φ′(x) ≈ [1 − ωρν(xν∂ρ − xρ∂ν)/2]φ(x). This is similar to x′µ ≈
xµ − i

2ωρσ(Jρσ)µνx
ν , and we can read the generators from the previous expression

Lνρ ≡ xνi∂ρ − xρi∂ν = xνPρ − xρPν . (5.29)

Later, we will identify Lij as the (extrinsic or orbital) angular momentum operator. For a finite transforma-
tion, we have φ′(x) = exp

(
−iωµν2 Lµν

)
φ(x). From its definition, Lµν is antisymmetric Lµν = −Lνµ and there-

21Under translations, objects such as scalars, 4-vectors, spinors, etc. are all left unchanged. That’s the reason why we have
to search for different type of objects to build representations of the spacetime translation group.

22For shortness, we write φ(x) instead of φ(t, x, y, z) or φ(xµ).
23All irreducible representations of an abelian group are one-dimensional.
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fore contains only 6 independent entries corresponding to the 6 generators (3 boosts: Ki = L0i = x0P i−xiP 0

i.e. ~K = t ~P −H~x and 3 rotations: Li = εijkLjk/2 i.e. ~L = ~x× ~P ) of the Lorentz group.

5.2.3 Poincaré algebra

We are now in position to obtain the complete Poincaré algebra. We already know the spacetime translation
algebra

[Pµ, P ν ] = 0 (5.30)

and also the Lorentz algebra (see the section on the Lorentz group)

[Lµν , Lρσ] = i (−ηµρLνσ − ηνσLµρ + ηνρLµσ + ηµσLνρ) (5.31)

What remains to be computed is the commutator of Pµ and Lρσ: [Pµ, Lρσ]φ(x) = i∂µ(xρi∂σ−xσi∂ρ)φ(x)−
(xρi∂σ − xσi∂ρ)i∂µφ(x) = i(ηµρPσ − ηµσP ρ)φ(x). Therefore

[Pµ, Lρσ] = i(ηµρPσ − ηµσP ρ) (5.32)

which tells us that Pµ behaves as a 4-vector under Lorentz transformations. These three equations constitute
the Poincaré algebra written in covariant notation. It can also be more explicitly written as[

Li, Lj
]

= iεijkLk,
[
Li,Kj

]
= iεijkKk,

[
Li, P j

]
= iεijkP k (5.33)[

Ki,Kj
]

= −iεijkLk,
[
P i, P j

]
= 0,

[
Ki, P j

]
= iP 0δij (5.34)[

Li, P 0
]

= 0,
[
P i, P 0

]
= 0,

[
P 0, P 0

]
= 0,

[
Ki, P 0

]
= iP i (5.35)

with Li = εijkLjk/2 and Ki = L0i.

5.2.4 Lorentz transformation of a 4-vector field

Let us consider a more involved situation with a field with internal indices φI(x), where I = 1, ..., NI . Under a
Lorentz transformation g = (Λ, 0), both xµ and φI are transformed: x′µ = Λµνx

ν and φ′I(x′) = [S(g)]IJφ
J(x)

where S(g) is an NI ×NI matrix (for example if φI is a left Weyl spinor, NI = 2 and S(g) = ΛL; if φI is a
scalar, NI = 1 and S(g) = 1). The question we ask is: how is φ′I(x) related to φI(x)?

To be more concrete, we consider the example of a 4-vector field φµ(x) (here the internal index I is
called µ and NI = 4). In an infinitesimal transformation, φ′µ(x′) = Λµνφ

ν(x) ≈ φµ(x) + ωµνφ
ν(x) (i.e.

[S(g)]µν = Λµν here) where x′µ ≈ xµ + ωµνx
ν . Here Λµν = [exp (−iωρσSρσ/2)]µν ≈ δµν + ωµν where

[Sρσ]µν = i(ηρµδσν − ησµδρν) (note that Sρσ was previously called Jρσ). Doing a Taylor expansion, we find
φ′ρ(xµ+ωµνx

ν) ≈ φ′ρ(xµ) +ωµνx
ν∂µφ

ρ(xµ). But φ′ρ(x′µ) ≈ φρ(xµ) +ωρνφ
ν(xµ) so that φ′ρ(xµ) ≈ φρ(xµ) +

ωρνφ
ν(xµ)−ωµνxν∂µφρ(xµ) = [I− i

2ωµν(Sµν+Lµν)]ρσφ
σ(xµ). By definition we now call Jµν = Sµν+Lµν the

total generator of Lorentz transformations. It has two parts: Sµν generates the transformation on the nature
of the field (it is the intrinsic generator of Lorentz transformations) whereas Lµν = xµP ν − xνPµ generates
the transformation on the field as being a function of spacetime (it is the extrinsic generator of Lorentz

transformations). This should be familiar from the decomposition ~J = ~S+ ~L of the total angular momentum
operator into its intrinsic (spin) and extrinsic (orbital) parts in non-relativistic quantum mechanics.

5.2.5 Summary

In the case of an arbitrary field φI(x), at the same point in spacetime, we have

φ′I(x′) = [S(Λ)]IJφ
J(x) where S(Λ) = e−i

ωµν
2 Sµν (5.36)

with Sµν depending on the representation (0 for a scalar field, i(ηρµδσν − ησµδρν) for a 4-vector field, σµν/2 =
[γµ, γν ]/4 for a Dirac spinor field, S(Λ) = ΛL for a left Weyl spinor field, etc). And at the same coordinates
(but at different points in spacetime), we have

φ′I(x) = [e−i
ωµν
2 Jµν ]IJφ

J(x) where Jµν = Sµν + Lµν (5.37)
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where Lµν is always given by xµP ν − xνPµ with Pµ = i∂µ.

5.2.6 Lorentz transformation of a spinor field

Exercise: write the two equations (5.36) and (5.37) in the case of a left Weyl spinor and also in the case of
a Dirac spinor in order to identify the corresponding Sµν . You should find that, for the left spinors

S0i = −iσ
i

2
(5.38)

Sij = εijk
σk

2
(5.39)

Similar relations hold for the right Weils spinor except that the sign of S0i is changed.

5.2.7 Representations of the Poincaré group on single particle states

A subject that would be worth studying here, especially in preparation of the appearance of particles as
excitation quanta of the fields, – but which we omit because we feel it does not belong to a classical (i.e. non-
quantum) discussion of the Poincaré group – is the representation of the Poincaré group on single particle
states in Hilbert space (see e.g. Maggiore [2] pages 36-40 or Weinberg [13], pages 62-74). This is a famous
work of Wigner (1939). He showed that irreps are classified by the mass and the spin of particles. More
precisely, for a massive particle, irreps are classified by spin j = 0, 1/2, 1, 3/2, ... and have a dimension 2j+1.
And for a massless particle, irreps are classified by the helicity h = ±1/2,±1, ... and have dimension 1. In
case parity is conserved, one may build two-dimensional representations by grouping h = +1 and h = −1
for the photon for example.

5.3 Conclusion

Scalars, vectors, spinors, tensors, etc. are simply natural objects (i.e. irreducible representations of the
symmetry group of space-time) that emerge from the geometry of space-time. They have well-defined
transformation properties under the symmetries of space-time. Almost no physics at this point. At least no
dynamics, no particles, etc.
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Chapter 6

Dirac field

6.1 Massless spinor fields and the Weyl equations

see Maggiore [2] pages 54-56
In this section, we build classical theories for spinor fields using symmetries. We will therefore be quite

far from the historical appearance of the Dirac equation (in the context of single particle relativistic quantum
mechanics) or the Weyl equation. We have in mind the description of spin 1/2 particles such as the neutrino
or the electron (even if for the moment we describe fields not yet particles, which will only emerge upon
quantization).

6.1.1 Left Weyl field, helicity and the Weyl equation

Consider a single left Weyl field ψL(x). Let σ̄µ ≡ (I,−σi) = (I,−~σ) in any frame be a quadruplet of 2 × 2

matrices (and σµ ≡ (I, σi)) built from the Pauli matrices σx, σy, σz and the 2 × 2 identity. Then ψ†Lσ̄
µψL

is a 4-vector. Check it (i.e. show that, under a Lorentz transformation Λ, it becomes ψ†LΛ†Lσ̄
µΛLψL =

Λµνψ
†
Lσ̄

νψL). Is ψ†Lσ
µψL also a 4-vector? From this knowledge, we can build a Lorentz invariant kinetic

(and elastic) term that is first order in derivative:

LL = iψ†Lσ̄
µ∂µψL (6.1)

and such that the corresponding action is also real (check it). It is not possible to write a mass term just

for a left Weyl field (for example, ψ†LψL is not Lorentz invariant – check it).

The EL equations give 0 = ∂µ(iψ†Lσ̄
µ) and upon taking the hermitian conjugate and using (σ̄µ)† = σ̄µ,

we obtain
σ̄µ∂µψL = 0 (6.2)

which is known as the Weyl equation (1929). The latter can also be written as i∂tψL = −~σ · (−i~∇)ψL, which
may remind you of the low-energy description of graphene (albeit in 3 space dimension rather than 2), or
that of a 3D Weyl semimetal. We can “take the square” of the Weyl equation to obtain

�ψL = 0 . (6.3)

This follows from σν∂ν σ̄
µ∂µ = (∂0 + σj∂j)(∂0 − σi∂i) = ∂2

0 − σjσi∂j∂i = ∂2
0 − ∂j∂j = ∂µ∂µ = � as

σiσj = δij + iεijkσk. The left Weyl spinor therefore satisfies the d’Alembert (or massless KG) equation.
Actually, the spinor has two complex components. Each component of the doublet satisfies the massless KG
equation (6.3). But in addition the doublet has to satisfy the Weyl equation (6.2). We will see that the
latter is a projection equation that gets rid of one of the two (complex) degrees of freedom.

Take a plane wave solution ψL(x) = uLe
−ik·x where uL(x) = uL is a constant spinor. If we inject it in

(6.3), we find that k2
0 = ~k2 i.e. the dispersion relation ω = ±|~k| (identical to that of light). If we inject
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in (6.2), we find that ~k · ~σuL = −ωuL. Using the two equations and choosing1 the positive branch of the

dispersion relation ω = |~k|, we find that k̂ · ~σuL = −uL (where k̂ ≡ ~k/|~k|). But the spin operator ~S = ~σ/2
for a spin 1/2 and therefore

k̂ · ~SuL = −1

2
uL . (6.4)

This means that the left Weyl field has an helicity of −1/2. The helicity is the projection of the spin
(or intrinsic angular momentum) on the direction of motion. This last equation should be thought of as an
equation that projects out half of the apparent degrees of freedom. A Weyl field seems to have two (complex)
degrees of freedom. But, because it is an helicity eigenstate, it only has a single (complex) degree of freedom.

To make this point clear, imagine the motion is along the z direction, so that ~k = |~k|~ez. Then σzuL = −uL
meaning that uL is the spinor

(
0
1

)
having a single non-zero component.

Another Lagrangian – which one obtains by integration by part in the action, which is more symmetrical,
gives the same equation of motion and is therefore equivalent – is:

L′L =
i

2
ψ†Lσ̄

µ∂µψL −
i

2
(∂µψ

†
L)σ̄µψL = iψ†Lσ̄

µ←→∂µψL (6.5)

where we introduced the following notation A
←→
∂µB ≡ 1

2A(∂µB)− 1
2 (∂µA)B or

←→
∂µ ≡ 1

2

−→
∂µ − 1

2

←−
∂µ.

As a conclusion to this part, it is essential to realize that the Weyl equation is more than just the
dispersion relation ω = ±|~k| (which is essentially what the KG equation for a massless field is). It is an
equation which is first order in gradient and which enforces a relation between the components of the spinor
doublet. Physically it projects out unwanted (or extra or redundant) degrees of freedom.

6.1.2 Right Weyl field

A similar construction can be made for a right Weyl spinor field ψR(x). It gives a Lagrangian

LR = iψ†Rσ
µ∂µψR (6.6)

(or equivalently L′R = iψ†Rσ
µ←→∂µψR), a Weyl equation

σµ∂µψR = 0 (6.7)

and, as a consequence, a massless KG equation �ψR = 0. When one injects a plane wave solution, one
obtains the dispersion relation ω = ±|~k| and the helicity equation k̂ · ~SuR = + 1

2uR.
Remark: In Nature, the neutrino (if massless) could be described by a left Weyl spinor field (it has an

helicity of −1/2). While the anti-neutrino (if it exists) would correspond to a right Weyl spinor field (of
helicity +1/2). It is now known that the neutrino has a finite tiny mass (see the phenomenon of neutrino
oscillations). However it is unclear whether it is identical or different from its antiparticle, i.e. whether it is
a Majorana particle or not.

6.2 Spinor field and the Dirac equation

see Maggiore [2] pages 56-65
Remember that ψL and ψR are exchanged under parity. Therefore, if we insist on having a parity-

invariant action, we need to take both a left ψL(x) and a right ψR(x) Weyl spinor fields and glue them

into a bispinor (i.e. a quadruplet of complex fields) to make a Dirac field ψ(x) =

(
ψL(x)
ψR(x)

)
. This is the

representation (1/2, 0)⊕ (0, 1/2).

1The important point is not the choice of the positive branch. The argument goes as well with the negative branch. The
point is that there is no freedom in the projection of the spin once the orbital motion is given. Hence, we do not have two
complex degrees of freedom but a single complex one. The spin projection is locked to the momentum. This is the notion of
helicity eigenstate.
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6.2.1 Parity and the Dirac Lagrangian

The game is now to build a Lagrangian, which is both Lorentz and parity invariant. It will now be possible
to construct a simple mass term. Indeed, under a Lorentz transformation Λ, ψL → ΛLψL and ψR → ΛRψR
with ΛL = e(i~θ+~φ)·~σ/2 and ΛR = e(i~θ−~φ)·~σ/2. The bilinears ψ†LψL and ψ†RψR are not invariant but ψ†LψR and

ψ†RψL are (check it).

Under parity xµ = (t, ~x)→ x′µ = (t,−~x) and ψL/R(x)→ ψ′L/R(x′) = ψR/L(x′). So that ψ†LψR → ψ†RψL

and ψ†RψL → ψ†LψR. Therefore ψ†LψR +ψ†RψL is parity-invariant: it is a true scalar (whereas ψ†LψR−ψ
†
RψL

is a pseudo-scalar).
Therefore, a free, Lorentz and parity invariant Lagrangian is

LD = iψ†Lσ̄
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL) , (6.8)

which is known as the Dirac Lagrangian. It is obviously Lorentz invariant. Let’s check its behavior under
parity: ∂i → −∂i so that σ̄µ∂µ → σµ∂µ and ψL ↔ ψR so that indeed LD → LD.

6.2.2 The Dirac equation and γ matrices

Dirac to Feynman: “I have an equation. Do you have one too?”

The EL equation ∂LD
∂ψ†L

= ∂µ
LD

∂(∂µψ
†
L)

gives−mψR = −iσ̄µ∂µψL. Similarly ∂LD
∂ψ†R

= ∂µ
LD

∂(∂µψ
†
R)

gives−mψL =

−i(∂µσµψR). The Dirac equation is therefore

iσ̄µ∂µψL = mψR

iσµ∂µψR = mψL , (6.9)

which shows that the left and right spinors inside the Dirac bispinor are coupled.
Here it is also possible to take the square of this first order equation by applying iσµ∂µ to the left

of iσ̄ν∂νψL = mψR to find (iσµ∂µ)(iσ̄ν∂νψL) = −σµσ̄ν∂µ∂νψL = − 1
2 (σµσ̄ν + σν σ̄µ)∂µ∂νψL. Now, we

note that σµσ̄ν + σν σ̄µ = 2ηµνI (pay attention to the fact that σµσ̄ν + σν σ̄µ is not the anticommutator
{σµ, σ̄ν} = σµσ̄ν + σ̄νσµ). Therefore −∂µ∂µψL = (iσµ∂µ)(mψR) = miσµ∂µψR = m2ψL (where, in the last
step, we used the second equation (6.9)). We eventually arrive at (�+m2)ψL = 0, which is the massive KG
equation for ψL. We could as well obtain (�+m2)ψR = 0 so that in the end, each of the four componenents
of the Dirac spinor ψ satisfies the massive KG equation:

(�+m2)ψ = 0 . (6.10)

We can rewrite the above results using the Dirac spinor notation ψ =

(
ψL
ψR

)
, which is here written in

the chiral representation (meaning that its first two components behave as a left Weyl spinor and its last

two as a right Weyl spinor). But we could have chosen to define e.g. ψ = 1√
2

(
ψL + ψR
ψL − ψR

)
(see below for

another representation). In the chiral representation, the Dirac equation reads:(
0 iσµ∂µ

iσ̄µ∂µ 0

)(
ψL
ψR

)
=

(
0 σµ

σ̄µ 0

)
i∂µψ = m

(
ψL
ψR

)
= mψ (6.11)

We define the γ matrices in the chiral representation by γµ ≡
(

0 σµ

σ̄µ 0

)
so that the Dirac equation

becomes
(iγµ∂µ −m)ψ = 0 or (i/∂ −m)ψ = 0 or (/p−m)ψ = 0 (6.12)

with the Feynman slash notation /r ≡ γµrµ and pµ = i∂µ is here the 4-momentum operator.
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Remarks:
- the σ̄µ and σµ are quadruplets of 2 × 2 (Pauli) matrices but they do not transform as 4-vectors (despite
their notation). They are invariant under a Lorentz transformation.
- Similarly, the γµ are a quadruplet of 4×4 matrices (known as gamma matrices or Dirac matrices) but they
do not transform as a 4-vector. They are unchanged in a Lorentz transformation. Here, we have given their
expression in the so-called chiral basis.

The γ matrices satisfy the following algebra

{γµ, γν} = 2ηµνI (6.13)

known as the Clifford algebra. It implies that (γ0)2 = 1 and (γi)2 = −1. This algebra will actually be taken
as the definition of γ matrices. Applying iγν∂ν to the left of iγµ∂µψ = mψ and using the Clifford algebra,
we find that (�+m2)ψ = 0 as expected. Each of the 4 components of the Dirac bispinor satisfies the same
KG equation.

The Dirac Lagrangian can be rewritten

LD = ψ̄(i/∂ −m)ψ or L′D = ψ̄(i
←→
/∂ −m)ψ (6.14)

with ψ̄ ≡ ψ†γ0 the conjugate Dirac spinor (which we already defined; remember that its main property is
that ψ̄ψ is a Lorentz scalar whereas ψ†ψ is not).

The spin operator is 1
2
~Σ = 1

2

(
~σ 0
0 ~σ

)
so that the helicity operator is 1

2
~Σ · ~p|~p| where ~p = −i~∇ is here

the 3-momentum operator.

6.2.3 Chirality operator

In addition to γµ with µ = 0, 1, 2, 3, we also define γ5 ≡ iγ0γ1γ2γ3 ≡ γ5. In the chiral basis, it is γ5 =(
−I 0
0 I

)
, which we recognize as the chirality operator, i.e. the operator which distinguishes left from right

Weyl spinors. A Dirac bispinor purely made of a left (resp. right) Weyl spinor is an eigenvector of γ5 with
eigenvalue −1 (resp. +1). Its status as a γ matrix comes from the fact that it shares a few properties with the
other 4 gamma matrices: it anticommutes with the other γ matrices {γ5, γµ} = 0 (check it) and it squares to
one (γ5)2 = I (check it). The reason for avoiding γ4 as a name is because it already exists in some conventions
in which µ = 1, 2, 3, 4 = x, y, z, t instead of µ = 0, 1, 2, 3 = t, x, y, z. The chirality projectors are 1±γ5

2 . Indeed

they are projectors
(

1±γ5
2

)2
= 1±γ5

2 and they project onto chirality eigenstates 1−γ5
2 ψ =

(
ψL
0

)
(left) and

1+γ5
2 ψ =

(
0
ψR

)
(right) because γ5

(
ψL
0

)
= −

(
ψL
0

)
and γ5

(
0
ψR

)
= +

(
0
ψR

)
. Note that parity

γ0 =

(
0 I
I 0

)
in the chiral basis such that γ0

(
ψL
0

)
=

(
0
ψL

)
and γ0

(
0
ψR

)
=

(
ψR
0

)
. Parity

exchanges left and right chirality eigenstates.
Chirality refers to left and right spinors, which are spinors distinguished by their behavior under a Lorentz

boost but not under a rotation. In addition, a left spinor becomes a right spinor under parity transformation
and vice-versa. The word “chiral” actually means an object that is not identical – even after a rotation –
to its mirror image (like a right hand and a left hand). The parity transformation is essentially a mirror
reflection.

6.2.4 The Clifford algebra and different representations of the γ matrices

The γ matrices are defined by the Clifford algebra and therefore exist in several representations. In this
course, we have first presented them in the chiral basis. Let U ∈ U(4) be a unitary transformation such that
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ψ′ = Uψ and γ′µ = UγµU−1 = UγµU†. Note that U is independent of the spacetime point whereas ψ(x) is
a field even if we write ψ for conciseness. Let’s check that this is a do-nothing transformation (similar to a
canonical transformation in classical mechanics: we just change our way of representing a given problem).
From (iγµ∂µ −m)ψ = 0 and {γµ, γν} = 2ηµν , show that (iγ′µ∂µ −m)ψ′ = 0 and {γ′µ, γ′ν} = 2ηµν . The
different representations of the γ matrices correspond to different representations of the Clifford algebra.

Two important representations are the chiral (or Weyl) one, which we already discussed, and the standard
(or Dirac) representation, that we discuss below2. The chiral representation has a diagonal chirality operator
γ5 and an off-diagonal parity operator γ0. It is convenient to study massless or almost massless fields (such
as the neutrino field) and also for the transformation properties of ψ under a Lorentz transformation. The
γ matrices are

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi

−σi 0

)[
i.e. γµ =

(
0 σµ

σ̄µ 0

)]
and γ5 =

(
−I 0
0 I

)
(6.15)

and the Dirac spinor transforms as follows

ψ =

(
ψL
ψR

)
→
(

ΛL 0
0 ΛR

)(
ψL
ψR

)
(6.16)

under a Lorentz transformation Λ, where ΛL/R = e~σ/2·(i
~θ±~φ).

The standard (or parity) representation has a diagonal parity operator γ0 and an off-diagonal chirality
operator γ5. This representation is obtained from the chiral one through the unitary transformation U =

1√
2

(
I I
−I I

)
so that

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
and γ5 =

(
0 I
I 0

)
(6.17)

and

ψ =

(
φ
χ

)
=

1√
2

(
ψR + ψL
ψR − ψL

)
(6.18)

This representation of γ matrices is convenient to discuss the non-relativistic limit of a massive field (such
as the electronic field). The two spinors φ and χ are then known as the large and small components of the
Dirac bispinor.

We summarize some general properties of the γ matrices:

{γµ, γν} = 2ηµν , (γµ)† = γ0γµγ0 , γ5 ≡ iγ0γ1γ2γ3 ≡ γ5 , {γ5, γµ} = 0 , (γ5)† = γ5 and (γ5)2 = 1 (6.19)

Note the similarity between γ5 and γ0: they both square to 1, are hermitian and anticommute with all
other γ matrices. The following 16 matrices are linearly independent and form a basis of all 4× 4 matrices:

I , γµ , γ5 , γµγ5 and σµν ≡ i

2
[γµ, γν ] (6.20)

In other words, a generic 4× 4 matrix with complex entries (group called GL(4,C)) is a linear combination
with complex coefficients of these 16 matrices. The anticommutation relation for the γ matrices enables us
to find several properties of interest. In particular:

[σµν , γρ] = 2i(γµηνρ − γνηµρ)

It is very convenient to choose the γ matrices such that they fulfill the very useful property

(γµ)† = γ0γµγ0 (6.22)

Note that the γ matrices in both the Dirac and the chiral basis fulfill this property. This enables to prove
properties that will come handy later on:

γ†5 = γ0γ5γ0, (σµν)† = γ0σµνγ0 (6.23)
2We won’t discuss a third important representation called the Majorana representation.
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Dirac bilinears

We here briefly mention the properties of Dirac field bilinears under Lorentz and parity transformations.
The aim is to prepare building blocks in order to construct Lagrangians.

Show that ψ̄ψ is a true 4-scalar and that ψ̄γ5ψ is a pseudo 4-scalar. That ψ̄γµψ is a true 4-vector and that
ψ̄γµγ5ψ is a pseudo 4-vector. And that ψ̄σµνψ is an anti-symmetric (rank 2) tensor, where σµν = i

2 [γµ, γν ].

In an exercise sheet, you will see that a Dirac spinor transforms as ψ → ψ′ = S(Λ)ψ = e−
i
2ωµνS

µν

ψ under
a Lorentz transformation Λ, with Sµν = σµν

2 . This last object contains the spin operator Si and the boost

generator Ki. The spin operator is Si = 1
2εijk

σjk

2 = 1
2Σi. From there, we can show that ~Σ = γ5γ0~γ, which

in both the standard and the chiral representations gives ~Σ =

(
~σ 0
0 ~σ

)
.

Parity, chirality and helicity

These three operators with ±1 eigenvalues should not be confused:
- The parity operator γ0 realizes a space inversion P on a Dirac spinor – note that γ0 is only the action
of space inversion onto the internal degrees of freedom of the Dirac spinor field, but in addition parity
P does xµ = (t, ~x) → (t,−~x). More generally, a parity transformation realizes a mirror reflection xµ =
(x0, x1, x2, ...) → (x0,−x1, x2, ...) and is such that detP = −1. Only when space has an odd number of
dimensions can it be defined as inverting all spatial coordinates xµ = (x0, xi)→ (x0,−xi). Therefore in 3+1
or in 1+1, parity can be considered to be equivalent to space inversion. Whereas in 2+1, parity (x, y → −x, y)
is not the same transformation as space inversion (x, y → −x,−y, which is equivalent to a π rotation).
- The chirality operator is γ5, which by definition is the matrix that anticommutes with all other γ matrices. It
allows one to distinguish between left and right Weyl spinors (to avoid confusion we should say left-chiral and
right-chiral). The latter behave identically under a rotation, differently under a boost and are exchanged by a
parity transformation ([γ5, γ0] 6= 0). Chirality is therefore related to the parity transformation (for example,
it enters into the definition of a pseudo-scalar ψ̄γ5ψ or of a pseudo-vector ψ̄γ5γµψ made of two Dirac fields).
Note that γ5 and γ0 are essentially “rotations” of one another. Chirality and parity operators exchange
their matrix representation when going from the chiral to the standard basis. Chirality only exists for even
space-time dimensions (see below). Chirality is also related to the weak charge (only left spinors carry a
weak charge, not right spinors; and the weak interaction therefore maximally violates parity). Chirality is a
Lorentz-invariant quantity: it therefore has an absolute meaning independent of the observer.
- The helicity operator is essentially3 the projection of the spin operator onto the direction of motion

h = ~Σ · p̂, where ~p is the momentum operator, p̂ ≡ ~p/|~p| and 1
2
~Σ is the spin operator. Note that helicity is

not a Lorentz-invariant quantity: it has no absolute meaning and depends on the observer. However, it is a
conserved quantity (in the sense that it does not depend on time).

For a massless particle, helicity and chirality turn out to be the same. Indeed, if m = 0, then chirality
(γ5 with eigenvalues ±1) and helicity (~Σ · p̂ with eigenvalues ±1) are identical. Using ~Σ = γ5γ0~γ, show
it. Therefore, physically, chirality is similar to helicity, which is less abstract. Note however, the subtle
differences between the two (which are important for massive particles). The helicity operator is not Lorentz
invariant, whereas γ0 and γ5 are. Therefore the chirality is an intrinsic (absolute) property, whereas helicity
is not (it is relative, it depends on the frame). But the helicity is conserved (the helicity operator commutes
with the Dirac Hamiltonian HD = γ0~γ · ~p + mγ0, see below), whereas the chirality is not (γ5 does not

commute with HD). Show that [~Σ · p̂, HD] = 0 and [γ5, HD] = 2mγ5γ0.
In order to clearly distinguish chirality and helicity, one should say left-chiral/right-chiral and left-

helical/right-helical for the eigenstates of eigenvalue −1/+ 1 of γ5 and h = ~Σ · p̂.
In summary, for a massless Dirac particle, helicity = chirality, which has an absolute meaning and is

conserved. Therefore it makes sense to say that a massless Dirac particle is left-handed. For a massive
particle, helicity 6= chirality: helicity is conserved but has no absolute meaning, whereas chirality has an

3Here, for the clarity of the present discussion, we did not include S = 1
2

into the definition of the helicity 1
2
~Σ · p̂.
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absolute meaning but evolves in time (i.e. is not conserved). Therefore it does not make sense to say that a
massive Dirac particle is left-handed. See P.B. Pal, Am. J. Phys. 79, 485 (2011).

6.2.5 General solution of the Dirac equation: mode expansion

see Ryder [3] pages 51-54

This is a technical section included in preparation for the quantization of the Dirac field to be done in the
next chapter. Consider the Dirac equation (iγµ∂µ −m)ψ(x) = 0 with a finite mass term m 6= 0. We want
to find a general plane wave solution. The strategy is to work in the standard (Dirac) basis for γ matrices
(as it is well adapted to the non-relativistic limit) and first to obtain a plane wave solution in the rest frame
(which only exists for a finite mass). And then to boost this solution to another frame to obtain an arbitrary
plane wave.

A plane wave is written ψ(x) = ψke
−ik·x where ψk is a Dirac spinor (but no longer a field) and k · x =

k0t− ~k · ~x = ωt− ~k · ~x.
We first obtain the dispersion relation from the “squared Dirac equation” which is the massive Klein-

Gordon equation (�+m2)ψ(x) = 0. On the plane wave ansatz, it gives (k2 +m2)ψk = 0 and as ψk 6= 0 we

find that ω2 = ~k2 +m2. We define ωk ≡
√
~k2 +m2 such that ω = ±ωk. This means that for each wavevector

~k, there are two solutions ω = ±ωk corresponding to positive and negative energies4. In the following we
choose to write positive energy solutions as

ψ(x) = u~ke
−ik·x with k · x = ωkt− ~k · ~x

which (despite the notation) only depends on ~k (as ω = ωk =
√
~k2 +m2 is not independent of ~k). It is

a plane wave with energy ωk and momentum ~k, and u~k is a Dirac spinor. Negative energy solutions are
written as

ψ(x) = v~ke
ik·x with k · x = ωkt− ~k · ~x

which actually corresponds to a plane wave with energy −ωk and momentum −~k, and v~k is a Dirac spinor.
The Dirac equation (i/∂ − m)ψ(x) = 0 actually contains more information than the mere dispersion

relation k2 = m2 obtained from the Klein-Gordon equation. When applied on the two above positive and
negative energy solutions it gives

(/k −m)u~k = 0 and (/k +m)v~k = 0

In the following, we will see that these are actually projection equations getting rid of two out of the four
components of a Dirac spinor (which makes sense if we remember that the electron has only two internal
degrees of freedom and not four).

Let us specialize first to the rest frame where kµ = (m,~0) so that /k = kµγ
µ = mγ0 and the projection

equations become
(γ0 − I)u~0 = 0 and (γ0 + I)v~0 = 0

as m 6= 0. In the standard basis γ0 =

(
I 0
0 −I

)
, so that I+γ0

2 =

(
I 0
0 0

)
and I−γ0

2 =

(
0 0
0 I

)
act

as projectors onto positive or negative energy states in the rest frame. Then u~0 = (6= 0, 6= 0, 0, 0) and
v~0 = (0, 0, 6= 0, 6= 0). We therefore choose the following basis of solutions:

u
(1)
~0

=


1
0
0
0

 , u
(2)
~0

=


0
1
0
0

 , v
(1)
~0

=


0
0
1
0

 , v
(2)
~0

=


0
0
0
1

 .

4Indeed, as seen in exercise session, the energy/Hamiltonian associated to the Dirac Lagrangian – and obtained from Noether’s
theorem via the energy-momentum tensor – is H =

∫
d3xψ†(x)i∂tψ(x) which equals ω when computed on a normalized plane

wave ψ(x) = ψ(~x)e−iωt such that
∫
d3xψ†(x)ψ(x) = 1.
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To summarize, for ~k = 0, we have found four different solutions of the Dirac equation: two with positive

energy u
(α)
~0
e−imt and two with negative energy v

(α)
~0
eimt (with α = 1, 2).

To find an arbitrary state of motion, we perform a boost Λ to a moving frame such that the 4-
momentum is transformed as (m,~0) → kµ = (ω,~k) with ω2 − ~k2 = m2. Introducing n̂ as the space

direction of ~k (such that ~k = kn̂ with k > 0), we easily find that the rapidity φn̂ characterizing the
Lorentz transformation fulfills sinhφ = −k/m and coshφ = ωk/m. Such a boost on a Dirac spinor

is easily performed in the chiral representation (CR) in which ψ′CR = S(Λ)ψCR =

(
ΛL 0
0 ΛR

)
ψCR

with ΛL = e~σ·
~φ/2 and ΛR = e−~σ·

~φ/2. These formulae involve the hyperbolic functions of argument
φ/2 which can be deduced by using standard hyperbolic trigonometry relations5 we therefore find that
cosh(φ/2) =

√
(ωk +m)/(2m), sinh(φ/2) = −

√
(ωk −m)/(2m). We also know how to go from the chiral

to the standard representation by a unitary transformation ψSR = UψCR with U = 1√
2

(
I I
−I I

)
. There-

fore, under a Lorentz transformation Λ, a Dirac spinor in the standard representation (SR) transforms as
ψSR → ψ′SR = Uψ′CR = US(Λ)ψCR = US(Λ)U†ψSR. Calculating the product of three matrices US(Λ)U†,
we obtain the Lorentz transformation in the SR as:

1

2

(
ΛR + ΛL ΛR − ΛL
ΛR − ΛL ΛR + ΛL

)
=

(
cosh(φ/2) ~n · ~σ sinh(φ/2)

~n · ~σ sinh(φ/2) cosh(φ/2)

)
=

√
ωk +m

2m

(
I ~k·~σ

ωk+m
~k·~σ
ωk+m I

)

We now apply US(Λ)U† to the Dirac spinors u
(α)
~0

and v
(α)
~0

to obtain u
(α)
~k

and v
(α)
~k

(we also know that e∓imt

become e∓ik·x with ω = ωk). We find that the plane wave solutions are u
(α)
~k
e−ik·x and v

(α)
~k
eik·x with

u
(1)
~k

=

√
ωk +m

2m


1
0
kz

ωk+m
k−

ωk+m

 , u
(2)
~k

=

√
ωk +m

2m


0
1
k+

ωk+m

− kz
ωk+m


and

v
(1)
~k

=

√
ωk +m

2m


kz

ωk+m
k−

ωk+m

1
0

 , v
(2)
~k

=

√
ωk +m

2m


k+

ωk+m

− kz
ωk+m

0
1


where k± ≡ kx ± iky. One may check the following basis independent relations:

u
(α)
~k

=
/k +m√

2m(m+ ωk)
u

(α)
~0
, v

(α)
~k

=
−/k +m√

2m(m+ ωk)
v

(α)
~0

The Dirac spinors u
(α)
~k

and v
(α)
~k

are normalized as follows:

u
(α)†
~k

u
(β)
~k

=
ωk
m
δαβ = v

(α)†
~k

v
(β)
~k

and u
(α)†
~k

v
(β)

−~k
= 0 = v

(α)†
~k

u
(β)

−~k

ū
(α)
~k
u

(β)
~k

= δαβ = −v̄(α)
~k
v

(β)
~k

and ū
(α)
~k
v

(β)
~k

= 0 = v̄
(α)
~k
u

(β)
~k

We also define the following projectors on positive and negative energy states

P+(~k) ≡
2∑

α=1

u
(α)
~k
ū

(α)
~k

and P−(~k) ≡ −
2∑

α=1

v
(α)
~k
v̄

(α)
~k

5Such as cosh(φ/2) =
√

(1 + coshφ)/2.

56



Exercise: show that P 2
+ = P+ and similarly for P−. Assume that P+(~k) = aI+ b/k and find a and b to obtain

that:

P+(~k) =
/k +m

2m
and P−(~k) =

−/k +m

2m

Remark: (/k −m)u~k = 0 and (/k +m)v~k = 0
A general solution of the Dirac equation can be written as a linear combinaison of the planes wave

solutions that we found

ψ(x) =

∫
d3k

(2π)3

m

ωk

∑
α

(
bα(k)u

(α)
~k
e−ik·x + d∗α(k)v

(α)
~k
eik·x

)
(6.24)

where b and d’s are the name of the expansion coefficients. This expression will be useful when quantizing
the Dirac field.

6.2.6 Conserved currents and charges

see also exercise sheet
In this section, we apply the results of the Noether theorem to obtain three conserved currents: the

energy-momentum tensor, the vector current and the axial current. Starting from the Dirac Lagrangian
L = i

2 [ψ̄γµ∂µψ − (∂µψ̄)γµψ] −mψ̄ψ and using the EL equations, we obtain the equations of motion for ψ
and for ψ̄: (iγµ∂µ −m)ψ = 0 and i(∂µψ̄)γµ +mψ̄ = 0.

The energy-momentum tensor is the Noether current associated to the symmetry under space-time trans-
lation. It reads6

θµν =
∂L

∂(∂µψ)
∂νψ + ∂νψ̄

∂L
∂(∂µψ̄)

− δµνL =
i

2
ψ̄γµ∂νψ −

i

2
(∂νψ̄)γµψ − δµνL (6.25)

Therefore θ00 = Πψ∂0ψ + Πψ̄∂0ψ̄ −L, which we recognize as the Hamiltonian density H, with Πψ = ∂L
∂(ψ̇)

=
i
2 ψ̄γ

0 = i
2ψ
† and Πψ̄ = ∂L

∂( ˙̄ψ)
= − i

2γ
0ψ = i

2ψ
†. After integration by part and using the equations of motion,

we find that the Hamiltonian is:

H =

∫
d3xθ00 =

∫
d3xψ†(i∂t)ψ (6.26)

Similarly θ0i = i
2 ψ̄γ

0∂iψ − i
2 (∂iψ̄)γ0ψ and the corresponding Noether charge (the momentum) is:

~P =

∫
d3xθ0i =

∫
d3xψ†(−i~∇)ψ (6.27)

Both equations can be summarized by saying that the 4-momentum Pµ =
∫
d3xψ†(i∂µ)ψ is a conserved

charge, in which we recognize the 4-momentum operator i∂µ.
There is also a so-called vector current that is conserved as a result of global U(1) phase invariance.

Indeed when ψ → eiαψ with α(x) = α = constant, L is invariant. The Noether theorem implies that
JµV = − ∂L

∂(∂µψ) iψ + iψ̄ ∂L
∂(∂µψ̄)

should be conserved (the V index is for Vector in order to distinguish it from

another conserved current called Axial, see below. This current is also often simply called Jµ.). We find
that

Jµ = JµV = ψ̄γµψ. (6.28)

We know that this is a true 4-vector (see the section on Dirac bilinears). Let’s check that it is divergenceless:
∂µ(ψ̄γµψ) = (∂µψ̄)γµψ + ψ̄γµ(∂µψ) = −mi ψ̄ψ + ψ̄mi ψ = 0 upon using the equations of motion. In non-

covariant notation ∂t(ψ
†ψ) + ~∇ · (ψ†~αψ) = 0 where ~α ≡ γ0~γ is the velocity operator, ψ†ψ is the particle

6Observe that this tensor is not symmetric under permutation of the indices. There is a general procedure, due to Belinfante,
to obtain a symmetric tensor. Since the tensor is not symmetric in this form, it is important to keep in mind that the two
indices have a different status. The second one characterizes which symmetry transformation we are considering and the first
one describes the components of the associated conserved current. As a consequence, ∂µθµν = 0, as you can check for yourself.
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density and ψ†~αψ is the particle current density (here we anticipate in invoking “particles”). The conserved

charge is Q = QV =
∫
d3xJ0

V =
∫
d3xψ†ψ =

∫
d3x(ψ†RψR+ψ†LψL) such that dQV

dt = 0. To clearly understand
the nature of this conservation law, one would need to couple the electronic field to the electromagnetic field
(in order to see the electric charge as a coupling strength) and to quantize the fields (in order to really have
particles and give a meaning to the “number of particles”).

Consider now the massless Dirac Lagrangian. In the chiral basis, it reads L = iψ†Lσ̄
µ∂µψL+ iψ†Rσ

µ∂µψR.
On top of the U(1) invariance discussed above, there is an extra phase symmetry. Indeed, one can transform
the phase of the left and right Weyl spinors separately. The usual way to define this transformation is
ψ(x) → eiαγ

5

ψ(x), which means that ψL → e−iαψL and ψR → eiαψR. Under such a transformation the
mass term ψ̄ψ is not left invariant, which explains why we consider only the massless Dirac Lagrangian.
According to Noether’s theorem the conserved current is

Jµ5 = JµA = ψ̄γ5γµψ. (6.29)

It is called the axial current (it is also often called Jµ5 ) and is a pseudo 4-vector. Check that it is indeed

conserved if and only if m = 0. The Noether charge is Q5 = QA =
∫
d3xψ̄γ5γ0ψ =

∫
d3x(ψ†RψR − ψ

†
LψL),

which is a pseudo 4-scalar. The conservation law is that of the difference in number of right and left
particles. When m = 0 both the vector and the axial current are conserved, which means that the number
of left particles is separately conserved and the number of right particles as well.

Remark:
- The phase transformation of a Weyl spinor is usually known as a chiral transformation. When applied on
a Dirac bispinor, it decomposes into a vector transformation (acting similarly on left and right fields) and
an axial transformation (acting in opposite ways on the right and left fields). Indeed if ψL → eiαLψL and
ψR → eiαRψR, one can define αV = (αR + αL)/2 and αA = (αR − αL)/2 such that ψL → eiαV e−iαAψL and

ψR → eiαV eiαAψR or, in other words, ψ → eiαV eiαAγ
5

ψ. Here αV is the overall global phase and αA is the
relative phase between the two Weyl spinors.
- The axial symmetry of the massless spinor field is quite interesting. It is a classical symmetry that does
not survive upon quantizing the theory, a fact known as an anomaly in quantum field theory. In the present
case, it is called the axial or chiral or triangle or Adler-Jackiw-Bell anomaly. For a first introduction to
anomalies see Zee [4] pages 243-254. The anomaly manifests itself as a non-conservation of the quantum
current in the presence of an electromagnetic field. See also the exam 2016-2017.

6.3 Quantization

[see Ryder [3], pages 139-143]

6.3.1 Anticommutators: spinor fields are weird

We start from the mode expansion of a classical Dirac field obeying the equation (iγµ∂µ − m)ψ(x) = 0.

Remember, the four plane wave solutions: u
(α)
~k
e−ik·x (positive energy) and v

(α)
~k
eik·x (negative energy) with

α = 1, 2 (α is something like a spin index, labelling the two spin projections). The u and v’s are Dirac
spinors (not fields). The information they carry is about the internal polarization (the spin). A general
mode expansion is

ψ(x) =

∫
k

∑
α

(
bα(k)u

(α)
~k
e−ik·x + d∗α(k)v

(α)
~k
eik·x

)
(6.30)

where kµ = (ωk,~k) as usual and here
∫
k
≡
∫

d3k
(2π)3

m
ωk

is different then in the case of the scalar fields7 (but it

is also Lorentz invariant). This is conventional and is related to the way the u and v’s are normalized.

7For scalar fields the convention was that
∫
k ≡

∫
d3k

(2π)3
1

2ωk
.
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Let ψ become an operator. Its mode expansion is

ψ(x) =

∫
k

∑
α

(
bα(k)u

(α)
~k
e−ik·x + d†α(k)v

(α)
~k
eik·x

)
(6.31)

as bα(k) and dα(k) are now also operators. And the Dirac conjugate field operator ψ̄(x) ≡ ψ†(x)γ0 is

ψ̄(x) =

∫
k

∑
α

(
b†α(k)ū

(α)
~k
eik·x + dα(k)v̄

(α)
~k
e−ik·x

)
(6.32)

where ū ≡ u†γ0 and similarly for v̄.
From the Lagrangian L = iψ̄γµ∂µψ −mψ̄ψ, we obtain the conjugate field Π = ∂L

∂(∂0ψ) = iψ̄γ0 = iψ† and

the Hamiltonian H =
∫
d3x(Πψ̇ −L) =

∫
d3xψ̄(−iγj∂j +m)ψ =

∫
d3xψ†i∂0ψ (in the last step, we used the

Dirac equation)8. Inserting the mode expansion and using the normalization conditions on the u and v’s,
we find that (check it, it is not that obvious)

H =

∫
k

∑
α

ωk
(
b†α(k)bα(k)− dα(k)d†α(k)

)
(6.33)

with k0 = ωk. Note that we have not performed normal-ordering for the time being and remark the important
minus sign in the above expression.

We now impose commutation relations (as for the scalar fields):

[bα(k), b†α′(k
′)] = (2π)3ωk

m
δα,α′δ(~k − ~k′) = [dα(k), d†α′(k

′)] (6.34)

and all other commutators (with b and b, b† and b†, b and d, etc.) vanish. The strange factors (2π)3 ωk
m come

from our normalization convention for the u and v’s (nothing profound). From these relations, we find that
the Hamiltonian is

H =

∫
k

∑
α

ωk
(
b†α(k)bα(k)− d†α(k)dα(k)

)
−
∑
α

∫
d3kδ(3)(~0)ωk (6.35)

A first issue is the diverging vacuum energy −
∑
α

∫
d3kδ(3)(~0)ωk = −

∑
α,~k ωk = −4

∑
~k
ωk
2 (we used that∫

d3kδ(3)(~k) →
∑
~k δ~0,~0 =

∑
~k). It is negative, it has a fourfold degeneracy (later to be interpreted as spin

up/spin down and particle/anti-particle) and comes from the zero-point motion. This could be taken care
of by redefining the zero of energy (e.g. via normal ordering) H ≡ H − 〈vac|H|vac〉. The second problem is
much more serious, it is related to

∫
k

∑
α ωk

(
b†α(k)bα(k)− d†α(k)dα(k)

)
being unbounded from below because

of the minus sign in front of d†d. There is no lower bound to the energy! This means that we can not define
a stable vacuum or groundstate, because we could always lower the energy (and hence it would not be a
groundstate) by adding more d-type particles. Therefore, we step back and give up imposing commutation
relations.

To overcome this problem, we follow Jordan and Wigner (1928) and take a radical step by postulating
that anticommutation relations should be used instead:

{bα(k), b†α′(k
′)} = (2π)3ωk

m
δα,α′δ(~k − ~k′) = {dα(k), d†α′(k

′)} (6.36)

We also explicitly write the anticommutators that vanish because they are weird:

{b, b} = 0 = {b†, b†} = {d, d} = {d†, d†} i.e. (b†)2 = 0 e.g. (6.37)

8Note that we have a “single-particle” Hamiltonian hD = −iγ0~γ · ~∇+mγ0 = i∂t (this is the historical Dirac Hamiltonian).
We also have a Hamiltonian for the field (or a “many-body” Hamiltonian) H =

∫
d3xH given in terms of the Hamiltonian

density H = ψ†(x)hDψ(x).
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and even weirder
{b, d} = 0 = {b†, d} = {b, d†} = {b†, d†} i.e. b†d† = −d†b† e.g. (6.38)

Contrary to the case of the scalar field, which was quantized using commutation relations, here all these
equations are “quantum” (not just the one explicitly containing δ(~k−~k′)) in the sense that an anticommutator
can never be equal to zero in a classical theory (unless one introduces anticommuting numbers, known as
Grassmann numbers). Note that b and d-type particles are all excitation quanta of the same field ψ(x) and
are not like two species of particles (as e.g. electrons and protons). With these anticommutation relations,
the Hamiltonian (with the vacuum energy removed) becomes

H ≡ H − 〈vac|H|vac〉 =

∫
k

∑
α

ωk
(
b†α(k)bα(k) + d†α(k)dα(k)

)
, (6.39)

which is now positive definite (it has a lower bound).
Anticommutation relations are required by the positivity of energy H. We will see another motivation

for anticommutation relations below. It is related to the excitation quanta (the particles) being fermions,
which we admit for the moment.

It is also possible to define a normal ordering procedure for fermions. It moves all creation operators to
the left of annihilation operators (while preserving the order among either creation operators and also among
annihilation operators) and gives a minus sign for each exchange of two (creation or annihilation) operators
in the process. For example

: b(k1)b†(k2) := −b†(k2)b(k1) and : b(k1)b(k2)b†(k3) := (−1)2b†(k3)b(k1)b(k2) = b†(k3)b(k1)b(k2) (6.40)

Then the procedure of canonical quantization for spin 1/2 fields is: use anticommutators (instead of com-
mutators) to quantize the fields and normal-order (with the specific prescription) observables (such as the
Hamiltonian, 3-momentum, angular momentum, etc) which are constructed from bilinears in the field oper-
ators. For example, the 4-momentum is

Pµ =

∫
d3x : ψ†i∂µψ :=

∫
k

∑
α

kµ :
(
b†α(k)bα(k)− dα(k)d†α(k)

)
:=

∫
k

∑
α

kµ
(
b†α(k)bα(k) + d†α(k)dα(k)

)
(6.41)

with kµ = (ωk,~k).
As an exercise (see Zee [4], pages 106-107), show the following equal-time anticommutation relations

(ETAR):

{ψi(t, ~x), ψ†j (t, ~x
′)} = ~δijδ(~x− ~x′) (6.42)

where i, j = 1, 2, 3, 4 here label the quadruplet of components of a Dirac bispinor (not to be confused
with i = 1, 2, 3 = x, y, z). Note that Π(x) = iψ(x)† = iψ̄(x)γ0 is the conjugate field and that indeed
{ψi(t, ~x),Πj(t, ~x

′)} = i~δijδ(~x− ~x′). Other anticommutators are9

{ψi(t, ~x), ψj(t, ~x
′)} = 0 = {ψ†i (t, ~x), ψ†j (t, ~x

′)} (6.43)

Hints: use the mode expansion, the anticommutation relation between b and b† and also between b and d

and then the relation
∑
α u

(α)(k)u(α)†(k) = P+(k)γ0 = /k+m
2m γ0 and similarly for the v’s.

Question: obtain the equation of motion for the Dirac field ψ(x) in several different ways. First from the
EL equation. Then from the Hamilton equation ψ̇ = δH

δΠ . And as a third way, from the Heisenberg equation

of motion ψ̇ = −i[ψ,H]. And now a tricky question: what about −i{ψ,H}?
9Think how weird fermions are: at equal-time, the Dirac field should anticommute at all distances! Doesn’t that violate

relativity? No. Actually fermionic fields are not observables. Observables are constructed from field bilinears and this makes a
huge difference. The field bilinears can be shown to respect the requirements of special relativity even if the fields themselves

seem not to. In addition, upon taking ~→ 0, only the first anticommutator is modified to {ψi(t, ~x), ψ†j (t, ~x′)} = 0. Is this the

classical limit of fermionic fields? All equal-time anticommutators (not commutators!) vanish. These are no longer operators
but are non commuting numbers. They are anticommuting numbers. The latter are usually called Grassmann numbers or
variables, i.e. anticommuting c-numbers.
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6.3.2 Fock space, Fermi-Dirac statistics and the spin-statistics relation

The construction of Fock space starts by defining the vacuum state |vac〉 as being annihilated by all bα(k)
and dα(k) operators. So that H|vac〉 = 0 after normal ordering. There are four types of single particle
states b†α(k)|vac〉 and d†α(k)|vac〉 (these will later be interpreted as spin up/down and particle/anti-particle).
However, because of the anticommutation relation {b†α(k), b†α(k)} = 0, one hase [b†α(k)]2 = 0, which means
that it is impossible to have two identical (bα-type here) particles in the same mode. This is reminiscent of
the Pauli exclusion principle. Note that Fermi-Dirac statistics is more than the mere exclusion principle. It
requires having many-body wavefunctions that are antisymmetric under exchange. But the anticommutation
relation {b†α(k), b†α′(k

′)} = 0 implies that the two-particle state b†α(k)b†α′(k
′)|vac〉 = −b†α′(k′)b†α(k)|vac〉 is

indeed antisymmetric in the exchange of the two particles. This is indeed Fermi-Dirac statistics.
We here glimpse at a particular case of a general relation: half-integer spin fields are quantized using

anticommutation relations, which leads to Fermi-Dirac statistics. Whereas integer spin fields are quantized
with commutation relations, leading to Bose-Einstein statistics. This is the famous spin-statistics theorem,
which we only state here. It was proven in the frame of relativistics quantum field theory by Pauli, Fierz,
Lüders, Zumino and others.

6.3.3 U(1) charge and anti-particles

From the invariance of the Dirac action under a global internal U(1) transformation, we found a conserved
vector current JµV = ψ̄γµψ such that ∂µJ

µ
V = 0. Upon gauging the symmetry, we understood that this is

actually the conservation of electric charge. The conserved charge being Q =
∫
d3xJ0

V =
∫
d3xψ†(x)ψ(x).

Now, when quantizing the Dirac field, the conserved charge becomes

Q =

∫
d3x : ψ†(x)ψ(x) :=

∫
k

∑
α

:
(
b†α(k)bα(k) + dα(k)d†α(k)

)
:=

∫
k

∑
α

(
b†α(k)bα(k)− d†α(k)dα(k)

)
(6.44)

The vacuum is uncharged (thanks to normal ordering) Q|vac〉 = 0. The charge is quantized Q ∈ Z and counts
the number of particles (i.e. b-type particles, carrying a +1 charge) minus the number of anti-particles (i.e.
d-type particle, carrying a -1 charge). Actually the electric charge is −eQ where e = 1.6 × 10−19 C is the
electric charge unit that plays the role of a coupling strength.

6.3.4 Charge conjugation

[see Zee [4], pages 97-98]
Charge conjugation is a discrete transformation that exchanges particles and anti-particles. The Dirac

equation in a U(1) gauge field is (iγµDµ −m)ψ = 0 with the covariant derivative Dµ = ∂µ + iqAµ, where
q = −e < 0 is a property of the Dirac field that measures the coupling strength between the Dirac and the
gauge field (it is called the electric charge of the matter field). We now check that if ψ satisfies the Dirac
equation

[iγµ(∂µ + iqAµ)−m]ψ = 0, (6.45)

we can find a transformed field ψc that satisfies the Dirac equation with the opposite charge. In either the
chiral or the standard representation (but not in a general representation), the transformation is

ψ → ψc = −iγ2ψ∗ (6.46)

(the phase −i is conventional). It is a transformation that involves complex conjugation (as time reversal).
As (γ2)2 = −1, we have that (ψc)c = −iγ2(−iγ2ψ∗)∗ = −iγ2i(−γ2)ψ = (−iγ2)2ψ = ψ, as expected.

Note that (γ2)∗ = −γ2 because γ2 =

(
0 σ2

−σ2 0

)
contains the purely imaginary Pauli matrix σ2 = σy =(

0 −i
i 0

)
.
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Second, we take the complex conjugation of the above Dirac equation to find

[−i(γµ)∗(∂µ − iqAµ)−m]ψ∗ = 0 (6.47)

Then we multiply to the left by γ2 and insert the identity in the form (γ2)2 between [...] and ψ∗ to get

[−iγ2(γµ)∗γ2(∂µ − iqAµ)−m]γ2ψ∗ = 0 (6.48)

Using that γ2(γµ)∗γ2 = −γµ, we finally obtain:

[γµ(∂µ − iqAµ)−m]γ2ψ∗ = 0 (6.49)

This shows the desired property that [iγµ(∂µ − iqAµ) − m]ψc = 0 i.e. (iγµD∗µ − m)ψc = 0. The charge
conjugate field ψc satisfies the same Dirac equation (same mass) but with an opposite electric charge.

6.3.5 Motivation for anticommutation

[see Zee [4], pages 103-108]
Here, we would like to show that imposing Fermi-Dirac statistics leads to anticommutators (instead of

the Jordan-Wigner way: assuming anticommutators leading to FD statistics).
Let b†α|vac〉 be a single fermion state (a mode) with quantum number α (here α is not the same thing as

the index α = 1, 2 of the section on the Dirac equation in which it serves to number the spinor components.
Here it serves as a short hand notation for something like ~k.). In first quantization this state would be called

|1 : α〉. Now add another fermion in mode β 6= α: b†βb
†
α|vac〉. This is a two particle state.

1) For two electrons, which are fermions, we would like the wavefunction to be antisymmetric under

exchange. Therefore b†βb
†
α|vac〉 = −b†αb

†
β |vac〉. Actually, we would like this to hold for an arbitrary state |χ〉

and not only for the vacuum state. We want b†βb
†
α|χ〉 = −b†αb

†
β |χ〉 i.e. {b†α, b

†
β} = 0 and by taking the adjoint

we find {bα, bβ} = 0 when α 6= β.
As a subcase, we get the Pauli exclusion principle. Indeed, when β = α, there is no such two-particle

state, i.e. (b†α)2|vac〉 = 0 (and also (b†α)2|χ〉 = 0 for an arbitrary state |χ〉 in Fock space). Therefore
{b†α, b†α} = 0. By taking the adjoint, we also have {bα, bα} = 0.

2) At this point, we already have {b†α, b
†
β} = 0 = {bα, bβ} for all α and β modes. But we still need

to obtain {bα, b†β} 6= 0. We now ask that N ≡
∑
α b
†
αbα be the number operator, which means that

[N, b†α] = b†α. Indeed, the whole construction of Fock space such as |Nα = 1〉 = b†α|0〉 proceeds from this

relation. For bosons ([bα, b
†
β ] = δα,β and [bα, bβ ] = 0), the relation follows from [N, b†β ] =

∑
α[b†αbα, b

†
β ] =∑

α

(
b†α[bα, b

†
β ] + [b†α, b

†
β ]bα

)
= b†β upon using [AB,C] = A[B,C] + [A,C]B. Let’s try to repeat that for

fermions: [N, b†β ] =
∑
α[b†αbα, b

†
β ] =

∑
α

(
b†α{bα, b

†
β} − {b†α, b

†
β}bα

)
upon using [AB,C] = A{B,C}−{A,C}B.

We already have {b†α, b
†
β} = 0 and therefore [N, b†β ] =

∑
α b
†
α{bα, b

†
β}. To obtain the desired relation [N, b†α] =

b†α, we therefore require that {bα, b†β} = δα,β , which is what we wanted to show.
In the end, we obtain

{bα, bβ} = 0 = {b†α, b
†
β} and {bα, b†β} = δα,β (6.50)

as a consequence of asking for Fermi-Dirac statistics and the corresponding Fock space.

6.3.6 Spin

The spin of a particle is an observable associated with the generator of rotations. It is therefore necessary to
derive the Noether current associated with the infinitesimal Lorentz transformations. A lengthy calculation
shows that the conserved currents are

Mρ,µν = xµθρ,ν − xνθρ,µ +
1

4
ψ̄{γρ, σµν}ψ (6.51)
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which satisfies ∂ρM
ρ,µν = 0 when the equations of motion are imposed.

The conserved charge associated with the rotation in the plane (ij) is the integral over space of M0,ij .
It contains an orbital part and a spin part. To simplify the discussion, we will consider a massive particle at
rest, described by the ket bα(0)|vac〉. In this state, only the spin part contributes. In order to characterize
the spin of this state, we look at the action of this ket on the operator

∫
d3xM0,ij . We will eventually show

that this ket is an eigenstate of the operator with eigenvalues ± 1
2 . To do so, we will use the fact that the

vacuum is invariant under rotation:
∫
d3xM0,ij |vac〉, which enables us to write:∫

d3xM0,µνb†s(0)|vac〉 =

∫
d3x

[
Mρ,µν , b†s(0)

]
|vac〉 (6.52)

we can then use the anticommutation relations to compute this commutator by writing [ab, c] = a{b, c} −
{a, c}b, which eventually leads to∫

d3xM0,ijb†α(0)|vac〉 =
1

2
u

(β)†
~0

σiju
(α)†
~0

b†β(0)|vac〉 (6.53)

We are now done! if we choose to study the spin in the z direction (that is (ij) = (12), we find two eigenstates
with eigenvalues ± 1

2 . This proves that indeed the Dirac field describes a spin 1/2 particle.

6.3.7 Causality and locality

A consequence of the anticommutation relations that we impose is that the commutator of the fields at
points separated by a spacelike interval do not commute. This implies that measuring a field at one event in
general influences the measure of the field in a presumably causally independent region. Is this a disaster,
as we may expect

The answer to this paradox comes from the observation that the fermionic field itself in not an observable.
A true observable is always quadratic in the field (think for instance of the energy density, etc. If we compute
the commutator of these quadratic operators at causally independent events, we retrieve that they indeed
commute, as they should.
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Chapter 7

Electromagnetism

7.1 Electromagnetic field and the Maxwell equation

The electromagnetic (or Maxwell) field is a real massless 4-vector field. We will see that it is actually more
than that: it is also a gauge field. We start by discussing the covariant formulation of the Maxwell equations.

7.1.1 Covariant form of the Maxwell equations

(see also exercise sheet #1)
Here we change perspective and do not start by constructing a 4-vector field theory just from symmetries
but suppose that we already know the Maxwell equations describing the electromagnetic field. In Heaviside-
Lorentz rationalized units (and with c = 1)1, these equations are

(a) ~∇ · ~B = 0 (magnetic monopoles (or magnetic charges) do not exist)

(b) ~∇× ~E + ∂t ~B = 0 (Faraday: time dependent B field produces an E field)

(c) ~∇ · ~E = ρ (Gauss: electric charges exist and are sources of E field)

(d) ~∇× ~B − ∂t ~E = ~j (Ampère + Maxwell: electric currents and time-dependent E field produce B field)

when written in terms of 3-vectors and 3-scalars. The two first (a and b) are the homogeneous Maxwell
equations (no sources in the right hand side). The two last (c and d) are the inhomogeneous Maxwell
equations (sources in the right hand side, i.e. ρ and ~j). These equations are Lorentz covariant (the Lorentz
transformation was actually discovered from them). But they are not manifestly covariant as they are written
in terms of irreps of the rotation group, whereas they should be written in terms of irreps of the Lorentz
group.

We start by introducing the electromagnetic field strength Fµν , which is just a smart way of writing
the electric and magnetic fields together in a single object. It is an anti-symmetric rank 2 tensor, whose 6
independent components are F 0i = −Ei and F ij = −εijkBk. Or the other way around: Ei = −F 0i and
Bi = −εijkF jk/2. Written in matrix form, the field strength is:

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 (7.1)

1In this footnote, we explicitly restore the units of c to show the Maxwell equations in Heaviside-Lorentz rationalized units:

~∇ · ~B = 0 , ~∇× ~E +
1

c
∂t ~B = 0 , ~∇ · ~E = ρ and ~∇× ~B −

1

c
∂t ~E =

1

c
~j

For more details on the manipulations needed to get rid of µ0 and ε0 and have only c to appear in the Maxwell equations, see
[15].
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We now rewrite the Maxwell equations in covariant form using the field strength tensor and start with
the homogeneous ones (a) and (b). Usually the potential vector ~A is introduced so that ~B = ~∇ × ~A is

defined as a 3-curl in order that ~∇ · ~B = 0 is automatically satisfied. Likewise, the scalar potential A0 is
introduced such that ~E = −~∇A0 − ∂t ~A in order that ~∇× ~E + ∂t ~B = 0 is automatically satisfied. Note that
∂t ~A+ ~∇A0 = − ~E together with ~∇× ~A = ~B actually defines a 4-curl i.e. ∂µAν −∂νAµ. Here, similarly, if we
say that there exist a real 4-vector Aµ = (A0, Ai) = (A0, ~A) such that the field strength is defined as a 4-curl
Fµν = ∂µAν − ∂νAµ, then (a) and (b) are automatically satisfied. Indeed Fµν = ∂µAν − ∂νAµ implies that
∂ρFµν +∂µFνρ+∂νFρµ = 0 known as a Bianchi or Jacobi identity (check that it is equivalent to (a) and (b)).
The field Aµ is known as the 4-vector potential (or the gauge potential or the gauge field). Still another way
of writing the homogeneous Maxwell equations, that does not require introducing a gauge potential Aµ, is
by introducing the dual field tensor F̃µν ≡ 1

2ε
µνρσFρσ and noticing that ∂µF̃

µν = 0 is equivalent to (a) and
(b). Indeed

F̃µν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 (7.2)

It is called the dual field strength because it is obtained from Fµν by the replacement ( ~E, ~B) → ( ~B,− ~E).

Check that ∂µF̃
µν = 0 gives (a) ∂iF̃

i0 = 0 = ~∇ · ~B and (b) ∂µF̃
µi = 0 = −∂t ~B − ~∇× ~E.

Consider what happens to the four Maxwell equations (a-d) in the absence of sources (ρ = 0 and ~j = 0)

under this replacement. Would ( ~E, ~B)→ (− ~B, ~E) also work? And ( ~E, ~B)→ ( ~B, ~E)? This property is called
duality. It would be worth studying in more depth.

Let’s turn our attention to the other two Maxwell equations (c) and (d). We define a 4-vector jµ ≡ (ρ,~j)
called the 4-current in order to rewrite the inhomogeneous Maxwell equations as ∂µF

µν = jν . Indeed

∂iF
i0 = j0 is (c) ∂iE

i = ρ and ∂µF
µi = ji is (d) ∂0F

0i+∂jF
ji = −∂tEi+εijk∂jBk = −∂t ~E+ ~∇× ~B = ji = ~j.

In summary, we defined the field strength tensor, its dual and the 4-current

Fµν ≡


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , F̃µν ≡ 1

2
εµνρσFρσ and jν ≡ (ρ,~j) (7.3)

such that the Maxwell equations are compactly and covariantly written

∂µF̃
µν = 0 and ∂µF

µν = jν (7.4)

or
Fµν = ∂µAν − ∂νAµ and ∂µF

µν = jν (7.5)

or

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 and ∂µF
µν = jν . (7.6)

7.1.2 Free electromagnetic field and gauge invariance

In this section, we restrict to the free electromagnetic field, i.e. the field in absence of the sources jµ = 0.
The field equations are then Fµν = ∂µAν − ∂νAµ and ∂µF

µν = jν , which, upon inserting the first equation
into the second, gives

∂µ∂
µAν − ∂ν∂µAµ = �Aν − ∂ν(∂ ·A) = 0 (7.7)

The second term −∂ν(∂ · A) is weird for the moment and is discussed below: we will show that it actually
disappears upon making a certain choice. For the moment, we just neglect it. The first term looks like
d’Alembert’s wave equation for a 4-vector field �Aν = 0. Note the absence of a “mass term” �Aν+m2Aν = 0
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(we don’t obtain the Klein-Gordon equation for a 4-vector field). This is in agreement with the dispersion

relation expected for light ω = ±|~k|.
The electromagnetic field can be described either in terms of the field strength Fµν (i.e. ~E and ~B) or in

terms of the vector potential Aµ (i.e. A0 and ~A) 2. However the description in terms of Aµ is not unique.
In other words, there is a redundancy or freedom: several choices of Aµ lead to the same equations (a-d).
The transformation

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µθ(x) , (7.8)

where θ(x) is any differentiable function (field), is called a gauge transformation. It is an internal and
continuous transformation. It leaves the field strength invariant as Fµν → F ′µν = ∂µA′ν − ∂νA′µ =
∂µAν − ∂νAµ + ∂µ∂νθ− ∂ν∂µθ = Fµν . And therefore the free field equations ∂µF̃

µν = 0 and ∂µF
µν = 0 are

also invariant. We postpone the discussion of what happens to the 4-current jµ under a gauge transformation.
The Lagrangian for the free electromagnetic field is

L = −1

4
FµνF

µν =
~E2 − ~B2

2
= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ (7.9)

It is a Lorentz scalar. Note that (apart for the sign) the first term looks similar to the Lagrangian of a
massless real scalar field L = 1

2∂µφ∂
µφ. The above Lagrangian is also gauge-invariant as it only depends on

the field strength. Therefore the gauge transformation is a symmetry (called gauge invariance). Note that
it is a weird symmetry: it does not act on Fµν directly but only on Aµ. It is an internal symmetry (not
a spacetime one) but it is a local internal symmetry as θ(x) depends on the spacetime point. The factor
−1/4 is here to make the kinetic energy positive and have the familiar 1/2 factor for a real field. Indeed

L = 1
2 (∂t ~A)2 − 1

2 (∂i ~A)2 + 0× (∂tA0)2 + 1
2 (∂iA0)2 + ∂t ~A · ~∇A0 + 1

2∂i
~A · ~∇Ai (one also notices the absence of

a kinetic energy term for A0 – it has therefore no dynamics – and the surprising sign of the elastic energy
term for A0). The Lagrangian is quadratic in Aµ (also in ~E and ~B): it is a free field theory (light does not
scatter light). A term like AµAµ is also quadratic in the field and could be present in a free field theory.
But it is actually absent. Its presence would spoil the gauge invariance. Such a term would correspond to

a “mass term” L = − 1
4FµνF

µν + m2

2 AµA
µ 3. Note also that from our knowledge of the real scalar field

L = 1
2∂µφ∂

µφ− m2

2 φ
2, we would have probably guessed that L = 1

2∂µAν∂
µAν − m2

2 AµA
µ instead of (7.9).

Think of the different problems related to such a Lagrangian.
We check that the Lagrangian is correct by re-obtaining the equations of motion from the EL equation4

∂L
∂Aν

= ∂µ
∂L

∂(∂µAν) giving:

0 = −∂µ∂µAν + ∂µ∂
νAµ = −�Aν + ∂ν(∂ ·A) (7.10)

qed.
By integration by part, the Lagrangian can also be written as

L =
1

2
Aµ (�ηµν − ∂µ∂ν)Aν (7.11)

The main message of this subsection is that the electromagnetic field is not only a 4-vector field Aµ(x),
but it is a gauge field, i.e. a vector field that has a gauge invariance. Gauge invariance is not truly a symmetry
(although it is often called “gauge symmetry”). The gauge freedom is only a recognition of the fact that we
are not able to construct a unique covariant description of the electromagnetic field. Remember that when

2Actually, this is a subtle point. In classical physics, the electric and magnetic fields seem fundamental (they are also
gauge-independent) and the scalar and vector potentials appear as a mathematical construction lacking physical reality (they
are also gauge-dependent). In quantum physics, the situation is partially reversed. There are actually good reasons – see the
Aharonov-Bohm effect, the Dirac monopole, etc. – to believe that the 4-vector potential is fundamental and physical (in the
sense that it couples locally to other fields), despite its being gauge-dependent and therefore not directly measurable. We will
come back later on that issue.

3This is known as the Proca Lagrangian. See for example Ryder [3] pages 69-70.
4First show that ∂L

∂(∂βAα)
= Fαβ .
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we discussed rotation symmetry, we insisted on the difference between a transformation and a symmetry –
that one could rotate a system, even if it did not possess rotational symmetry. However, electromagnetism
always has gauge invariance. Gauge invariance is just a redundancy in our description of the electromagnetic
field. It is therefore important to have in mind the difference between a vector field and a gauge field.
A gauge field is a vector field that has a gauge invariance (i.e. the action should be invariant under the
transformation Aµ → Aµ + ∂µθ for any θ(x)). The Maxwell (or electromagnetic) field is a gauge field (it
is actually the simplest example of a gauge field). But it is also possible to construct a theory for a vector
field that has no gauge invariance (see, for example, the Proca field theory for a massive vector field with

Lagrangian L = − 1
4FµνF

µν + m2

2 AµA
µ). In this case, the vector field Aµ should not be called a gauge field.

7.1.3 Gauge choices

There is something puzzling about the above construction. We know (experimentally) that the electromag-
netic field has two internal degrees of freedom (two linear polarizations or two circular polarizations5). But
the 4-vector field Aµ has 4 internal components. There are too many degrees of freedom. All of them can
not be physical. There is a redundancy. We have already noticed that the component A0 has no dynamics
(no kinetic energy in the Lagrangian) and can therefore not represent a physical degree of freedom.

Getting rid of the redundancy can be done by fixing a gauge. There are several usual gauge choices.
Below, we discuss the Lorenz gauge condition and the radiation gauge. Gauge freedom allows one to impose

∂µA
µ = 0 (7.12)

(known as the Lorenz – and not Lorentz, who is a different physicist – gauge condition) by choosing θ(x).
Imagine that Aµ is given. Let A′µ = Aµ + ∂µθ. We want to find θ(x) such that ∂µA

′µ = 0 = ∂µA
µ +�θ we

therefore only have to find a solution to the equation �θ = −∂µAµ. However, this does not fully fix θ, so
that there remains some partial gauge freedom6. The Lorenz gauge condition is Lorentz covariant. But it
does not fully fix the gauge freedom. Several gauge choices satisfy the Lorenz gauge condition (see below).
The latter fixes one component of Aµ among four but three remain, whereas only two are physical. To see
this, we note that, within the Lorenz gauge condition, the equation of motion for the gauge field becomes

�Aν = 0 (7.13)

This is a d’Alembert wave equation for each component of the 4-vector field and corresponds to a dispersion
relation ω = ±|~k| as expected for light in the vacuum. Consider a plane wave Aµ(x) = Aµe−ik·x with

kµ = (|~k|,~k). The Lorenz condition reads kµAµ = 0 = |~k|A0 − ~k · ~A. Therefore A0 = k̂ · ~A, which shows
that the time-component A0 is not independent of the spatial components Ai. This proves that the Lorenz
condition reduces the number of independent components of the gauge field from 4 to 3. The advantage of
the Lorenz gauge condition is that it removes part of the redundancy without sacrifying manifest Lorentz
covariance. The drawback is that we still have to handle some redundancy and manipulate non-physical
components.

A choice that fully fixes the gauge freedom is the so-called radiation gauge. It is such that A0 = 0 and
~∇ · ~A = 0 (so that ∂µA

µ = ∂tA0 + ~∇ · ~A = 0). These conditions are obviously not Lorentz covariant because
under a Lorentz transformation A0 mixes with the other components of the 4-vector field whereas 0 is a 4-
scalar. The advantage of the radiation gauge is that only physical degrees of freedom appear (there is no more
redundancy). The drawback is that the theory is no longer manifestly Lorentz covariant. Let’s construct the
radiation gauge choice step by step following Maggiore [2] pages 66-67. Starting from a given Aµ, we perform

a first gauge transformation Aµ → A′µ = Aµ+∂µθ with θ(x) = −
∫ t
dt′A0(t, ~x), such that ∂0θ(x) = −A0(x).

Therefore A′0 = 0, which shows that we can get rid of a first component. Next, we perform a second gauge

5Anticipating, we also know that the photon exists in two helicities ±1. It carries a spin 1 but it is massless and therefore
the longitudinal component (Sz = 0) is not possible and only the two transverse ones (Sz = ±1) are.

6If θ(x) satisfies �θ = −∂µAµ then θ′(x) = θ(x) + f(t − ~n · ~x) also satisfies �θ′ = −∂µAµ for any smooth function f and
any unit vector ~n. Indeed, show that φ(x) = f(t− ~n · ~x) is a general solution of the d’Alembert equation �φ(x) = 0.
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transformation A′µ → A′′µ = A′µ+∂µθ′ with θ′(x) =
∫
d3y 1

4π|~x−~y|∂iA
′i(t, ~y). Actually θ′(x) does not depend

on time. The electric field Ei = −∂0A
′i (because A′0 = 0) and the Gauss equation (in the absence of a source)

∂iE
i = 0 shows that ∂0∂iA

′i = 0. Therefore ∂0θ
′(x) =

∫
d3y 1

4π|~x−~y|∂0∂iA
′i(t, ~y) = 0, which shows that

θ′(x) = θ′(~x). As a consequence, A′′0 = A′0 + ∂0θ
′ = A′0 = 0. In addition ∂jA

′′j(x) = ∂jA
′j(x) + ∂j∂

jθ′(x) =

~∇ · ~A′(x) +
∫
d3y~∇2

(
1

4π|~x−~y|

)
~∇ · ~A′(t, ~y). With the help of the identity ~∇2

(
1

4π|~x−~y|

)
= −δ(3)(~x− ~y) (this

is the Green’s function of the Laplacian in 3 spatial dimensions), we see that ~∇ · ~A′′ = ~∇ · ~A′ − ~∇ · ~A′ = 0.
In summary, starting from a given gauge field, we have found a gauge choice that allows one to have A′′0 = 0

and ~∇ · ~A′′ = 0. Going to Fourier space, we have A′′0(k) = 0 and ~k · ~A′′(k) = 0. The last equation means
that for a plane wave propagating in the z direction, we have A′′z (k) = 0 in addition to A′′0(k) = 0 and only
two non-zero components A′′x and A′′y .

In conclusion, quoting Ryder [3] pages 143-144, “The origin of the difficulty is that the elecromagnetic
field, like any massless field, possesses only two independent components, but is covariantly described by a
4-vector Aµ. In choosing two of these components as the physical ones, [...], we lose manifest covariance.
Alternatively, if we wish to keep covariance, we have two redundant components.”

7.1.4 Energy-momentum tensor

(see exercise sheet)

7.1.5 Coupling to matter and electric charge conservation as a consequence of
gauge invariance

We now include the sources in the inhomogeneous Maxwell equations. From ∂µF̃
µν = 0 and ∂µF

µν = jν we
get the equation of motion:

�Aν − ∂ν(∂ ·A) = jν (7.14)

Taking the 4-divergence of the preceding equation, it follows that ∂νj
ν = �(∂νA

ν)− ∂ν∂ν(∂ ·A) = 0, which
means that there is a divergenceless current. This is nothing but the familiar local form of the conservation
of electric charge. Let us show that it is possible to derive this conservation law using Noether’s theorem for
a specific symmetry (namely gauge symmetry). The Lagrangian for the electromagnetic field in presence of
a source is7

L = −1

4
FµνF

µν − jµAµ , (7.15)

which obviously gives back the correct equations of motion. Is this Lagrangian invariant under a gauge
transformation Aµ → Aµ − ∂µθ? We know that the field strength is invariant and we further assume that
the 4-current jµ is also invariant8. Then L → L + jµ∂µθ is not invariant. But the action S =

∫
d4xL →

S+
∫
d4xjµ∂µθ = S−

∫
d4xθ∂µj

µ (using an integration by part in the last step). Therefore if ∂µj
µ = 0 then

the action is gauge invariant and there is a gauge symmetry. Reciprocally, if there is a gauge symmetry, i.e.
if the action is gauge invariant, then

∫
d4xθ∂µj

µ = 0 for any θ(x) and therefore ∂µj
µ = 0.

In summary, gauge invariance of the action is equivalent to ∂µj
µ = 0. So that the conservation of electric

charge can be seen as a consequence of a gauge symmetry. This is not yet entirely satisfying because of at
least two things: (i) the conservation law is for charged matter but we derived it from a symmetry pertaining

7For a single particle of mass m and charge q, the Lagrangian L(~x, ~̇x) = m~̇x2

2
−V (~x) becomes L = m~̇x2

2
−V (~x)−qA0 +q~̇x · ~A

in the presence of an electro-magnetic field described by a potential Aµ = (A0, ~A). Note that −qA0 + q~̇x · ~A is similar to

−jµAµ = −ρA0 + ~j · ~A, with ρ → q and ~j → q~̇x. The canonical momentum is ~p = ∂L

∂~̇x
= m~̇x + q ~A = m~v + q ~A so that the

Hamiltonian is H(~x, ~p) =
(~p−q ~A)2

2m
+ V (~x) + qA0. This has a familiar form of the sum of kinetic energy

(~p−q ~A)2

2m
= m~v2

2
and

potential energy V (~x) + qA0, where the last term is the electric potential energy. Note also that the canonical momentum ~p is
gauge-dependent, while the mechanical momentum m~v is gauge-invariant.

8Actually, we know that the Maxwell equations (a) to (d) only involve gauge-independent quantities, when written in terms
of E and B fields. Therefore, we know that the current and density are gauge invariant. So that jµ is also gauge invariant.
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mainly to the neutral gauge field (the charged matter field being hidden in the 4-current jµ); (ii) the gauge
symmetry is local whereas Noether’s theorem was proven for the case of a global symmetry (of course a
global symmetry can be seen as a particular case of a local symmetry9).

7.1.6 Gauging a symmetry

We now come to a very interesting point that goes back to the work of Hermann Weyl (in 1918 and 1929).
We present his general method for writing a gauge invariant action for a matter field. It is called “gauging
of an internal symmetry” (see pages 69-72 in [2] and pages 93-100 in [3]). It goes in four steps:

1) Start from a complex scalar (matter) field

L1 = (∂µφ)∗(∂µφ)−m2φ∗φ . (7.16)

This Lagrangian has a global U(1) symmetry. It is an internal and continuous symmetry. It is known as a
phase symmetry. The Lagrangian is invariant under the transformation φ(x) → eiθφ(x) with θ = constant
(eiθ ∈ U(1)). From Noether’s theorem, there is a conserved current

Jµ = iφ∗∂µφ− iφ∂µφ∗, ∂µJµ = 0 if (�+m2)φ = 0. (7.17)

2) The “gauge principle” is the idea that an exact symmetry of Nature can not be global but has to be
local (otherwise it would have the flavor of action at a distance). But it is an unproven assumption, it is
a principle. It is inspired by Einstein’s step of going from special to general relativity by asking that the
invariance under change of frame be local rather than global (an idea out of which popped the theory of
gravitation)10.

Let us therefore force the U(1) phase symmetry to be local (this is called “gauging the symmetry”):

φ(x) → φ′(x) = eiθ(x)φ(x)

∂µφ(x) → eiθ(x)[∂µφ+ φi∂µθ] (7.18)

The last equation implies that (∂µφ)∗∂µφ is not invariant under the local U(1) transformation, so that
neither L1 nor the corresponding action S1 are. The idea is to introduce a real field Aµ(x) such that
Aµ(x) → Aµ(x) − ∂µθ(x) under the local U(1) transformation. The purpose of this new field is solely to
make the Lagrangian invariant under the local U(1) transformation by changing the differential ∂µ. Indeed

φ(x) → φ′(x) = eiθ(x)φ(x)

(∂µ + iAµ(x))φ(x) → eiθ[∂µφ+ φi∂µθ] + i(Aµ − ∂µθ)eiθφ = eiθ(x)(∂µ + iAµ)φ (7.19)

By changing ∂µ into ∂µ + iAµ, we now have the property that the field φ and its “gradient” (∂µ + iAµ)φ
transform similarly under a local U(1) phase transformation.

The new field is called a gauge field and the local U(1) phase transformation law for the matter field
corresponds to a gauge transformation for the gauge field Aµ. We define

Dµ ≡ ∂µ + iAµ (7.20)

9From the point of view of the 4-vector potential Aµ(x), a gauge transformation is an internal and continuous transformation.
It can be made infinitesimal and rendered global by choosing a specific transformation. Indeed xµ → x′µ = xµ and Aµ(x) →
Aµ(x′) = Aµ(x)− ∂µθ ≈ Aµ(x) + εaµ for a specific field θ(x) = −εaνxν with ε→ 0 and aν is a 4-vector.

10Weyl was inspired by Einstein’s theory of general relativity. He first hoped to derive electromagnetism from a deeper
symmetry – just as Einstein had done with gravitation and the symmetry under general coordinate change – related to changing
the scale length or changing locally the ruler or the gauge (in the sense of a metal bar) used to measure distances. This is now
called dilatation transformation and conformal symmetry. This was not the correct symmetry for electromagnetism. But the
name “gauge symmetry” sticked. Weyl later – in 1929 after the advent of quantum mechanics and complex wavefunctions –
understood what the correct symmetry was: namely a U(1) phase symmetry of the matter field.
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called the covariant11 derivative so that (Dµφ)∗(Dµφ) is invariant under the local U(1) transformation. We
can therefore postulate a new Lagrangian

L2 = (Dµφ)∗(Dµφ)−m2φ∗φ = (∂µφ
∗ − iAµφ∗)(∂µφ+ iAµφ)−m2φ∗φ (7.21)

The latter now includes coupling between the matter field and the gauge field. To see it clearly, we rewrite
the Lagrangian as:

L2 = (∂µφ)∗(∂µφ)−m2φ∗φ−Aµ(iφ∗∂µφ− iφ∂µφ∗) + φ∗φAµA
µ

= L1 −AµJµ + φ∗φA2 (7.22)

This coupling (between the matter field φ and the gauge field Aµ) is called minimal coupling and is usually
written as ∂µ → Dµ = ∂µ+ iAµ or i∂µ → iDµ = i∂µ−Aµ, where i∂µ is the momentum operator (impulsion)
and i∂µ − Aµ is the gauge-invariant or mechanical momentum (quantité de mouvement). In the above
equation, we recognize the free matter field Lagrangian L1, the coupling between the gauge field and the
current Jµ = iφ∗∂µφ− iφ∂µφ∗ of the matter field (similar to the one in eq. (7.15)) and there is a third term
that could look like a mass term for the gauge field (it is proportional to AµA

µ). This last term plays an
important role when discussing the Higgs mechanism.

We also understand why a local U(1) symmetry is called a gauge symmetry. At first it was a global phase
symmetry for the complex matter field. We turned it into a local phase transformation and were forced
to introduce a gauge field if we wanted to maintain invariance under the local phase transformation. Then
we realized that for the gauge field, the local phase transformation is actually a gauge transformation (in
the sense of the familiar gauge transformation in the Maxwell equations). So that from now on, a gauge
transformation actually means the following combined transformation

φ(x) → eiθ(x)φ(x)

Aµ(x) → Aµ(x)− ∂µθ(x) (7.23)

namely, a local U(1) phase transformation on the matter field, together with a gauge transformation (in the
old acceptation of classical electromagnetism) on the 4-vector potential (now called a gauge field).

3) The gauge field Aµ that we introduced does not have a dynamic yet. There is no kinetic energy or
elastic energy for this field in L2. But we already know how to write a free field Lagrangian for a gauge-
invariant real 4-vector field. It is L = − 1

4FµνF
µν . A term such as m2

AAµA
µ is forbidden by gauge invariance

and therefore the gauge field has to be massless. We therefore arrive at the following Lagrangian:

L3 = (Dµφ)∗(Dµφ)−m2φ∗φ− 1

4
FµνF

µν (7.24)

This is actually a baby version of quantum electrodynamics (QED) called scalar QED. It is a theory for
electrons and photons except that the electron is here spinless (scalar field instead of spinor field).

4) Gauge invariance of the Lagrangian L3 is now different from gauge invariance of the Maxwell action
S =

∫
d4x(− 1

4FµνF
µν − jµAµ). We therefore revisit Noether’s theorem in this new context. The gauge

invariance of L3 implies global U(1) invariance and therefore a conserved current via Noether. However this
current is not necessarily Jµ = iφ∗∂µφ− iφ∂µφ∗ as we show below. From L3 and the EL equations,we obtain
the equations of motion for the matter field

(DµDµ +m2)φ = 0 (7.25)

and the gauge field
∂µF

µν = Jν − 2φ∗φAν = iφ∗∂νφ− iφ∂νφ∗ − 2φ∗φAν (7.26)

where Fµν ≡ ∂µAν − ∂νAµ is the field strength associated to the gauge field Aµ. These equations are
coupled: the evolution of the matter field depends on the gauge field and vice versa. From ∂ν∂µF

µν = 0

11Here covariant means covariant with respect to the gauge transformation.
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(contraction of a symmetric tensor with an anti-symmetric one), we find that ∂ν(Jν − 2φ∗φAν) = 0, which
allows us to identify the conserved current as

jν ≡ Jν − 2φ∗φAν = iφ∗Dµφ− iφ(Dµφ)∗ and ∂νj
ν = 0 (7.27)

The equation of motion for the gauge field is:

�Aν − ∂ν(∂ ·A) = jν i.e. (�+ 2φ∗φ)Aν − ∂ν(∂ ·A) = Jν = iφ∗∂νφ− iφ∂νφ∗ (7.28)

We can also check the current we found directly from the explicit form of the general Noether current.
For a global continuous internal symmetry, the Noether current is jµ = − ∂L3

∂(∂µφ)Fφ −
∂L3

∂(∂µφ∗)
Fφ∗ . The

infinitesimal transformations are φ → φ + θiφ and φ∗ → φ∗ + θ(−iφ∗) so that Fφ = iφ and Fφ∗ = −iφ∗.
Therefore the Noether current is jµ = −(Dµφ)∗iφ+ (Dµφ)iφ∗, which is indeed correct.

We rewrite the Lagrangian to identify three terms:

L3 =
[
(∂µφ)∗(∂µφ)−m2φ∗φ

]
− 1

4
FµνF

µν −AµJµ + φ∗φAµA
µ

= Lmatter field + Lgauge field + Linteraction (7.29)

The last term Linteraction = −AµJµ(φ)+φ∗φAµA
µ can also be written Linteraction = −Aµjµ(φ,A)−φ∗φAµAµ,

where the notation jµ(φ,A) emphasizes that, in the present case, the gauge-invariant current jµ depends
both on the matter and on the gauge field. Whereas Jµ is the gauge-dependent current.

The construction of Weyl (inspired by the general relativity construction of Einstein) is marvellous! (cf.
G. t’Hooft “Under the spell of the gauge principle”). It means that each time a new conservation law is
found to exist in Nature and which appears to be exact, it should correspond to a local internal symmetry
of the matter fields and to a new gauge field corresponding to an interaction. But remember it is a principle
(why do exact symmetries have to be local?).

7.1.7 Coupling of the Dirac and the electromagnetic fields

see Maggiore [2] pages 69-72
This section is essentially a repetition of the section on the gauging of a global internal U(1) symmetry,

expect that it will now be performed on a Dirac field rather than on a complex scalar field. We start by
making two remarks:
- LD = iψ̄γµ∂µψ−mψ̄ψ is a parity invariant free theory for a spin 1/2 complex and massive field (the Dirac
field, which is a matter field). It is invariant under a global U(1) phase transformation ψ(x)→ eiθψ(x).
- LM = − 1

4FµνF
µν is a free theory for a massless spin 1 and real field (the gauge field Aµ). It is invariant

under the (local) gauge transformation Aµ(x)→ Aµ(x)− ∂µθ(x) with θ(x).
Starting from the Dirac Lagrangian, we apply the gauge principle and decide to make the U(1) phase

symmetry local: ψ(x)→ eiθ(x)ψ(x). Then the derivative ∂µψ → eiθ(x)[∂µψ + ψi∂µθ] is not covariant (i.e. it
does not transform as the field ψ) under the local phase transformation. We therefore introduce the covariant
derivative Dµ ≡ ∂µ + iAµ where Aµ is an auxiliary field such that Aµ → Aµ − ∂µθ and Dµψ → eiθ(x)Dµψ.
Therefore we consider the modified Dirac Lagrangian L = iψ̄γµDµψ−mψ̄ψ. We also need to add a dynamics
for the field Aµ and therefore arrive at

L = iψ̄γµDµψ −mψ̄ψ −
1

4
FµνF

µν = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν −Aµψ̄γµψ = LD + LM −AµJµV (7.30)

where Lint = −AµJµV is the Lagrangian describing the minimal coupling between the Dirac field and the
gauge field and JµV = ψ̄γµψ is the vector current. Note that the vector current ψ̄γµψ is invariant under a
local phase transformation (unlike the current iφ∗∂µφ+c.c. obtained in the complex scalar case). The reason
why the dynamics for the gauge field has this form is that it has to be quadratic, contain the correct kinetic
energy and can not have a mass term that would spoil the invariance under the local phase transformation.

Note that in the above construction, we did not introduce a knob to vary the strength for the coupling
between the matter (Dirac) field and the gauge field. In other words, we would like to have Lint = −qAµψ̄γµψ
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instead of Lint = −AµJµV with q a real number expressing the strength of the coupling between the two fields.
The way to do it is simply to realize that when introducing the Lagrangian − 1

4FµνF
µν , there is the freedom

to introduce an arbitrary constant 1/g > 0 12 such that

L = iψ̄γµDµψ −mψ̄ψ +
1

g

(
−1

4
FµνF

µν

)
(7.31)

This Lagrangian is as valid as the one with g = 1 in order to describe a Dirac field with a local phase
symmetry. But it has one additional parameter. This parameter g controls the relative weight between the
two Lagrangians for the fields ψ and Aµ. If one wants to recover the traditional form of the Lagrangian, this
parameter can be absorbed in a redefinition of the gauge field Aµ → Aµ

√
g. Then it means that the gauge

transformation of the field Aµ is unchanged but that the phase transformation of ψ becomes ψ → eiqθ(x)ψ
with q ≡ √g and the covariant derivative is now Dµ = ∂µ + iqAµ. Therefore q can be considered as a
characteristic property of the matter field (it will later be interpreted as the electric charge of an electron13).
The Lagrangian becomes

L = iψ̄γµDµψ −mψ̄ψ −
1

4
FµνF

µν = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν −Aµqψ̄γµψ (7.32)

which is the QED Lagrangian describing electrons, photons and their interaction. The minimal coupling is
now ∂µ → Dµ = ∂µ + iqAµ i.e. pµ = i∂µ → iDµ = i∂µ − qAµ.

The EL equation for the Dirac field gives

(iγµDµ −m)ψ = (iγµ∂µ − qγµAµ −m)ψ = 0 (7.33)

and for the gauge field:
∂µF

µν = qψ̄γνψ = jν (7.34)

From the antisymmetry of Fµν we obtain ∂ν∂µF
µν = ∂νj

ν = 0, in other words, we have a conserved current
jν = qψ̄γνψ and a conserved charge Q =

∫
d3xj0 = q

∫
d3xψ̄γ0ψ = q

∫
d3xψ†ψ. Here jν = qJνV : this should

be contrasted to the complex scalar field case for which jν = iφ∗Dνφ + c.c. 6= Jν = iφ∗∂νφ + c.c.. Upon
quantizing the Dirac field, we will see that q is actually the electric charge carried by a single particle (an
electron). Here we see the role of the electric charge as the coupling strength of the matter field to the gauge
field.

Remark: Note that

JµV = − ∂L
∂Aµ

= − δS

δAµ
, (7.35)

which is often taken as a definition of the current of a matter field that is coupled to a gauge field.

12It is conventional to call this parameter 1/g. The reason is that g plays the role of a dimensionless coupling constant. It is
actually ∼ the fine structure constant.

13And then indeed g = q2 which is units such that ~ = 1 and c = 1 is essentially the fine structure constant α = q2

~c with q
the charge of a single electron.

72



Bibliography
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