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For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle
and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise
between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we
observe a collection of protocols that smoothly trade off between average work and its fluctuations.
However, for the quantum dot, we find that as we shift the weight of our optimization objective from
average work to work standard deviation, there is an analog of a first-order phase transition in protocol
space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence.
As a result, the two types of protocols possess qualitatively different properties and remain distinct even in
the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work
protocols, which therefore never become quasistatic.
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Essential to any well-functioning thermodynamic engine
is the rapid and reliable extraction of work at high thermo-
dynamic efficiency. Accomplishing this goal requires both
characterizing the optimal finite-time protocols that maxi-
mize the work extracted (or minimize the work dissipated)
[1–4] and understanding the tradeoff (or lack thereof) with
the engine efficiency [5–12]. Arguably, though, large power
with high efficiency is only useful when the cycle-to-cycle
fluctuations are small. Thus, it is equally important to
characterize any tradeoffswith power fluctuations [9,13–15].
One place where universal statements about power

fluctuations can be made is in autonomous thermodynamic
heat engines—those driven by a constant flow of heat down
a temperature gradient. For these stationary engines, the
thermodynamic uncertainty relation [16–25] imposes a
universal tradeoff between power, power fluctuations,
and thermodynamic efficiency [26]. One might hope that
such a universal tradeoff exists for nonautonomous thermo-
dynamic engines—driven by cyclic variations of an exter-
nal parameter. Counterexamples, however, invalidate the
naive extension of this prediction [13,27–30].
It thus remains to characterize optimal power fluctua-

tions in driven nonautonomous engines. As a first step,
we investigate finite-time thermodynamic processes that
attempt to minimize both the work fluctuations and the
average dissipated work. Specifically, for two canonical
models of driven mesoscopic systems—a harmonically
trapped Brownian particle [1] and a quantum dot [3],
illustrated in Fig. 1—we numerically determine the
collection of protocols that optimize the compromise
between the average and standard deviation of the work.
Remarkably, for the quantum dot, as we shift the weight
of our optimization objective from average work to work

standard deviation, we observe the analog of a first-order
phase transition, featuring two distinct local minima in
protocol space that exchange global optimality and mixed
protocols akin to phase coexistence. Looking at protocols
of increasing duration, we show that protocols minimizing
work fluctuations need not be quasistatic in the infinite
time limit, and thus remain out of reach of a linear theory.
Lastly, we adopt here the standard deviation as our

metric for the magnitude of work fluctuations, largely
because it naturally appears in the thermodynamic uncer-
tainty relation, and near equilibrium it has universal
properties [28,31–33]. However, there are other ways to
characterize work fluctuations. Integrated squared power
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FIG. 1. (a) Harmonically trapped Brownian particle with an
expanding spring constant kt. (b) Quantum dot exchanging
particles with a reservoir at temperature T and chemical potential
μ with a decreasing energy εt. (c) Pareto front (red/green) bounds
the region of allowed protocols. A suboptimal protocol (dark blue
cross) is dominated by all protocols down and left, including the
nondominated protocol (light blue cross). The single objective
J α is represented by a black line for fixed α, which is optimal
when tangent to the front. All solutions along the flat green
portion correspond to the same α.
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lends itself to analytic treatment using optimal control
theory [34]. Alternatively, single-shot thermodynamics has
emerged as a program that allows one to design protocols
that make very large fluctuations extremely unlikely
[35,36]. Finally, the authors of Ref. [37] have numerically
optimized the exponential average of the work.
Setup.—Wehave inmind amesoscopic systemwith states

x—continuous or discrete—evolving in a noisy thermal
environment at temperature T, under the influence of an
externally controlled potentialUðx; λÞ. The system is driven
by a protocol λt during a finite time τ, such that in each
realization xt the work done is W ¼ R

τ
0 ds_λs∂λUðxs; λsÞ.

Due to the noise, the work W is a fluctuating quantity.
However, its average μW ½λt� ¼ hWi and standard deviation
σW ½λt� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðW − μWÞ2i

p
are uniquely determined by the

protocol λt. Our goal is then, for fixed protocol duration and
end points ðτ; λi; λfÞ, to characterize the protocols that
minimize either the average work, the standard deviation,
or their best compromise.
A general approach to the problem of optimizing a

collection of incompatible objectives that cannot be simul-
taneously optimal—here, μW and σW—is to utilize the
notion of Pareto-optimal solutions in order to classify all
the possible optimal protocols [38]. To this end, we will say
that a protocol λ1t dominates another, λ2t , if it performs better
for one of the objectives (i.e., it leads to a smaller μW or σW)
and at least as well in the other objective. The collection of
Pareto-optimal protocols—those that are not dominated by
any other protocol—form the Pareto front and represent the
set of optimal solutions, for which one objective cannot be
improved without degrading the other. The Pareto front
thus encodes the possible tradeoffs. When plotted in the
μW − σW plane, as in Fig. 1(c), the Pareto-optimal solutions
form a boundary to the space of all feasible protocols.
A natural starting point for computing the Pareto front is

to minimize a single objective linear function [38]

J α ¼ αμW þ ð1 − αÞσW; ð1Þ

with α ∈ ½0; 1�. As we vary α from 0 → 1, we shift from
minimizing the standard deviation σW to minimizing the
average work μW [39]. As illustrated in Fig. 1(c), a protocol
minimizing J α is always Pareto optimal. However, the
converse need not be true: the family of minima ofJ α maps
out the entire Pareto front only if the space of feasible
protocols is strictly convex [38]. For example, the green
portion of the front in Fig. 1(c) corresponds to a single
value of α. In the following, we will encounter both strictly
and not strictly convex fronts.
Harmonic trap.—As a first case study, we consider an

overdamped Brownian particle in a harmonic trap with
potential Uðx; ktÞ ¼ ktx2=2, with controllable spring con-
stant kt. We choose this model for its tractability [5,40,41]
and its experimental relevance [42–44]. The particle’s
dynamics are given by the overdamped Langevin equation

γ _xt ¼ −ktxt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
ξt; ð2Þ

where γ is the damping coefficient, T is the temperature,
and ξt is a zero-mean, Gaussian white noise. We optimize
over protocols kt of fixed duration τ with fixed initial and
final values ki and kf. Choosing appropriate units, we can
take kBT ¼ γ ¼ 1 and express all results in terms of the
ratio kf=ki.
Under these constraints, we determine numerically the

protocol minimizing J α in Eq. (1). This is summarized as
follows. (i) Exploiting the linearity of Eq. (2), we derive a
closed set of ordinary differential equations (ODEs), whose
solution for a given protocol outputs the mean work μW
and standard deviation σW (see Supplemental Material
Ref. [45]). (ii) The ODEs are integrated by discretizing
the protocol into N ¼ 100 points with linear interpolations.
We also explicitly allow for discontinuities at t ¼ 0 and
t ¼ τ, as these are known to be generic for minimum-work
protocols [1,3,4,46,47]. (iii) We then perform a stochastic
gradient descent to minimize J α: At each step, a small trial
move δk of one point of the protocol is proposed and
accepted if it decreases J α. Remarkably, the protocol space
is found to be very smooth, so that the optimization
procedure converges to a unique minimum independently
of the initial condition. This was checked for each α using
100 random initial protocols, with each point drawn from a
uniform distribution on ½0; 2kf�.
Repeating the process for different values of α, we obtain

the family of solutions shown in Fig. 2 (left) for an
expansion with kf=ki ¼ 0.04 and protocol durations
τ ¼ 1, 2, 5. We observe that when varying α from 0 to
1, the optimal protocols draw a continuous and convex line
in the μW − σW plane, which thus corresponds to the full
family of Pareto-optimal solutions. Correspondingly, the
optimal protocols, shown in Fig. 2 (right) for τ ¼ 1, deform
smoothly along the Pareto front. For α ¼ 1, our algorithm
recovers the minimum-work protocol derived analytically
in Ref. [1]. This minimum-work protocol smoothly
decreases over the entire interval (apart from discontinuous
jumps at the edges), whereas the minimum-fluctuation

FIG. 2. Left: Pareto front for the harmonic oscillator obtained by
minimizing J α for three different protocol durations τ ¼ 1, 2, 5.
Squares on the τ ¼ 1 curve indicate the position of the protocols
shown on the right. Right: The optimal protocols deform smoothly
along the Pareto front as we vary α ¼ 0 → 1. The dashed black line
indicates the exact analytical solution [1]. Both plots are for an
expansion kf=ki ¼ 0.04.
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protocol stays relatively constant before dropping quickly.
By keeping the oscillator confined, the small spread in
position translates to a small spread in work values during
the final rapid expansion, despite costing work (cf. Ref. [9]).
If we focus our attention on the optimal work protocols

at α ¼ 1, we observe that the Pareto front’s asymptote is
vertical. This indicates that to reach the optimal work
protocol, one must sacrifice a lot of fluctuations, relatively
speaking. Put another way, there are many near-optimal
protocols with substantially less fluctuation, comple-
menting Ref. [48], which found in a driven Ising model
that near-optimal protocols can be numerous. Similarly, the
flat asymptote at α ¼ 0 near the optimal-work-fluctuation
protocol indicates that a lot of dissipation is necessary to
reduce the fluctuations to a minimum.
Two-level system.—To allow for more complex behav-

ior, we now optimize a quantum dot [3,49]. We model its
dynamics as a Markov jump process with two discrete
states: empty or filled with one electron. Jumps between
states occur due to the exchange of a particle with a
reservoir. We denote by εt the difference between the
energy level of the dot and the chemical potential of the
reservoir. The system is fully characterized by the prob-
ability pt to be filled, which evolves as (see Refs. [3,45])

_pt ¼ −ωpt þ
ω

1þ eεt=kBT
; ð3Þ

with bare rate constant ω. We choose ω ¼ kBT ¼ 1, fixing
time and energy units.
Like the harmonic oscillator, the linearity of Eq. (3)

allows us to construct a set of ODEs whose solution gives
μW and σW for a protocol εt changing from εi at t ¼ 0 to εf
at τ. The optimization procedure is identical to that of
the harmonic trap. We choose here a representative set
of parameters εi ¼ 4, εf ¼ −4, and τ ¼ 1. The protocols
minimizing J α for α ∈ ½0; 1� are shown in red in Fig. 3(a).
Strikingly, as we vary α from 0 to 1, tracing the red line
from bottom right to top left, there is a discontinuous
break (hopping over the green segment), signaling a jump
in protocol space (at α� ≈ 0.305 for our parameters). This
corresponds to a qualitative change in the optimal proto-
cols pictured in Fig. 3(b)—from minimum-fluctuation-
like protocols with εt increasing (apart from discontinuous
jumps at the end points), to minimum-work-like protocols
with εt decreasing. The transition happens when these two
different solutions that are locally optimal in protocol
space exchange global optimality.
The missing portion of the Pareto front can be accessed

by optimizing a different function,

Gμ ¼ κðμW − μ0Þ2 þ σW; ð4Þ

for a fixed value of μ0. Taking large κ ¼ 10, the protocol
that minimizes Gμ has an average work very close to the

fixed value μW ≈ μ0 and minimum standard deviation. It is
thus a good approximation of the point on the Pareto front
at μ0. (An alternative method imposing a hard inequality
constraint can be found in Ref. [50].) Varying μ0 then yields
the green portion of Fig. 3(a), thereby completing the front.
The resulting protocols, as shown in Fig. 3(b), exhibit a
sharp jump in the middle. Numerically, we find that in this
part of the phase diagram our stochastic gradient descent
can get trapped in local minima corresponding to different
positions of the jump. To find the global minimum of Gμ,
we thus performed many runs (>500) with different initial
conditions to sample all local minima. For more precision,
we also adapted our code to replace sharp gradients with
exact discontinuities.
Putting everything together, the picture is similar to that of

a first-order liquid-gas transition [38]. The parameter α inJ α

plays the role of an intensive parameter (say the pressure),
whereas J α is analogous to the free energy: There is a finite

(a) (b)

(c) (d)

FIG. 3. (a) Pareto front for the quantum dot, obtained by
minimizing J α and Gμ. Symbols indicate the positions of the
protocols shown in (b). (b) Optimal work protocol (magenta), the
two protocols at α ¼ α� on the minimum-work and mimimum-
work-fluctuation branches (blue and yellow), and a protocol in
the coexistence region (green). (c) Optimal J α obtained by
ramping α up (yellow) or down (blue) without restarting from a
random initial protocol; the exchanging of global optimality occurs
at α�. (d) Position of the discontinuity in phase-coexistence
protocols as a function of μW with a linear fit. Parameters:
τ ¼ 1, εi ¼ 4, εf ¼ −4.

FIG. 4. Pareto front of the quantum dot for varying εf at fixed
εi ¼ 4 and τ ¼ 1. For εf > 1, the optimal-work-fluctuation
solution family disappears, and the Pareto front becomes strictly
convex. Dotted black lines are guides to the eye denoting the
coexistence regions.
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jump to a different protocol at a critical α� where the two
solutions exchange global optimality. As in a liquid-gas
transition, these “homogeneous” solutions remain metasta-
ble beyond α�. Although these suboptimal solutions are not
part of the Pareto front, they can be accessed by slowly
ramping α while minimizing J α without restarting from a
random initial protocol, in the sameway that hysteresis loops
are observed by ramping fluid pressure. The transition point
α� corresponds to the exchange of global optimality, as
shown in Fig. 3(c).
Minimizing Gμ is then akin to switching to a constant-

volume (canonical) ensemble. This allows us to observe
the analog of phase coexistence inside the protocols: One
observes a family of protocols (all at α ¼ α�) that comprise
two parts—decreasing minimum-work-like and increasing
minimum-fluctuation-like protocols—linked together by a
discontinuity. As shown in Fig. 3(d), the proportions of
each “phase” vary linearly along the front (up to numerical
uncertainty), similar to what the lever rule predicts for a
liquid-gas transition.
The two “homogeneous” solutions correspond to two

distinct strategies: (i) The optimal work is achieved by
monotonically decreasing the energy level, while (ii) the
minimum standard deviation is achieved by first increasing
the energy to confine the system into a single discrete
state with almost no spread in state space prior to a rapid
fluctuationless switch. Physically, in case (i), the dot is
partially filled, and the protocol tries to keep the distribu-
tion as much like the equilibrium distribution as possible.
In case (ii), the dot is mostly empty, and thus it ends with a
distribution very different from the final equilibrium. The
trapping of the distribution, made possible by the system’s
discreteness, is at the origin of the transition. This is
confirmed by Fig. 4, which shows the Pareto fronts for
different εf at fixed εi ¼ 4. For larger εf > 1, the initial and
final energy levels are not separated enough to make the
compressed distribution very different from the final
equilibrium. Consequently, the optimal protocols approach
the linear regime where work fluctuations are constrained
to be equal to the average work [2,31], forcing the optimal-
work-fluctuation branch to disappear.
Quasistatic limit.—This disappearance of the transition

suggests a similar phenomenon would occur for the linear

regime reached for long times [12,51–56]. Thus, we would
expect all optimal protocols to collapse onto a quasistatic
one that remains nearly in equilibrium at every point
in time. The second law of thermodynamics, however,
only guarantees that minimum-work protocols will become
quasistatic, whereas this need not be true for protocols
optimizing a different quantity. Indeed, we show here that
the protocols minimizing work fluctuations for the quan-
tum dot never become quasistatic.
Close to the quasistatic limit, linear response predicts

that 2Wdiss ¼ σ2W , with Wdiss ¼ μW − ΔF being the dissi-
pated work and ΔF the free-energy difference between
the initial and final equilibria [31,33]. For the harmonic
oscillator, Fig. 5 shows that as τ increases, the linear
response regime is approached by both the optimal-work
and optimal-work-fluctuation protocols. On the contrary,
for the quantum dot, only the optimal-work protocol
approaches the linear regime. Even in the infinite-time
limit, the optimal-work-fluctuation protocol dissipates a
finite amount and thus remains nonquasistatic.
The different limits are best understood by looking at how

the optimal protocols change as τ increases, as shown in
Fig. 6. For the harmonic oscillator, the whole Pareto front
contracts to a point in protocol space as the two extremities
for α ¼ 0 and α ¼ 1 converge to the same protocol. On the
contrary, the protocols corresponding to minimal mean work
and work standard deviation remain different as τ → ∞ for
the quantum dot. The structure of the phase diagram of
Fig. 3 is preserved upon increasing τ so that there always
exist two “phases.” Only the family containing the optimal-
work protocol becomes quasistatic for large τ, while the
optimal-fluctuation protocols retain instantaneous jumps and
are therefore not quasistatic. Thus, studies of optimal-work-
fluctuation protocols within linear irreversible thermody-
namics cannot access the optimal solution.
To summarize, we have shown that for the harmonic

oscillator, the tradeoff between work and work fluctuations
is captured by a smooth family of protocols. However, this
behavior is not generic. For a quantum dot, approximating a
double-well potential, optimal-work and work-fluctuation
protocols belong to qualitatively different “phases.” The
tradeoffs between the two, captured by the Pareto front,

FIG. 5. Approach to the linear-perturbation regime for optimal
work and work-fluctuation protocols as τ increases. Harmonic
oscillator (red lines) with kf=ki ¼ 0.04 and quantum dot (blue
lines) with εi ¼ 4, εf ¼ −4.

FIG. 6. Optimal-work (α ¼ 1) and work-fluctuation (α ¼ 0)
protocols of varying duration τ. Left: Harmonic oscillator with
kf=ki ¼ 0.04. The two protocols become identical in the large-
duration limit. Right: Quantum dot with εi ¼ 4, εf ¼ −4. The
two protocols remain different for large durations.
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have the structure of a first-order phase transition with
phase-coexistence protocols interpolating between the two
phases. Such a phase transition may be a common feature
of optimization problems: they occur in optimal complex
networks [57,58] and statistical inference [59], and similar
phenomena were observed in a quantum control problem
with varying constraints [60] and in the utilization of
memory in an information engine [61–63]. Finally, we
observed that the minimum-work fluctuation and the
phase-coexistence protocols do not become quasistatic
even for very long protocols and are thus not accessible
by a linear theory.
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