
Revisiting the Flocking Transition Using Active Spins

A. P. Solon and J. Tailleur
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We consider an active Ising model in which spins both diffuse and align on lattice in one and two

dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right,

which generates a flocking transition at low temperature and high density. We construct a coarse-grained

description of the model that predicts this transition to be a first-order liquid-gas transition in the

temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition,

the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase

diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the

fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.

DOI: 10.1103/PhysRevLett.111.078101 PACS numbers: 87.18.Gh, 05.65.+b, 45.70.Vn

Active matter systems are driven out of equilibrium by
the injection of energy at the single particle level [1–4].
This microscopic breakdown of detailed balance results
in a wide range of phenomena that have aroused the
interest of physicists, from bacterial ratchets [5–8] to
self-propelled clusters [9–11]. Furthermore, this rich
phenomenology is often captured by simple models. For
instance, simple flocking models account for the patterns
found in motility assays [12,13] while bacterial clustering
was successfully modeled using self-propelled rods [14].

Nevertheless, despite the successful description of many
experiments, a full understanding of the underlying mecha-
nisms sometimes remains elusive. For instance, even though
the flocking transition is a central feature of active matter,
it remains one of the most debated questions in the field.
In their seminal work, Vicsek and co-workers [15] showed
that self-propelled particles that align locally can exhibit a
transition to long-range order in 2D. Initially thought to be
continuous [15], this transition was later shown to be first
order using large scale simulations and a finite size scaling
akin to that of magnetic phase transitions [16]. Many works
were also devoted to nematic [17–19] or metric-free inter-
actions [20], the latter yielding a continuous transition [21].
Flocking models were also studied in 1D [22,23] where,
surprisingly, the transition was found to be critical.

Obtaining conclusive numerical evidence for flocking
models is notoriously difficult due to strong finite-size
effects and the lack of a theoretical framework to analyze
them. In parallel to numerical studies, much effort was thus
devoted to construct such an analytical description of the
flocking transition. While the Vicsek model (VM) is among
the simplest to simulate, it is one of the hardest to coarse
grain, being defined off lattice, in discrete time and involv-
ing manybody interactions. Many approaches were thus
either phenomenological [24–26] or focused on simpler
models [27], and progress is slower for the VM [28]. Lots
of effort was also devoted to the nematic case [29–31] or to
topologic interactions [30,32]. The existence of long-range

order in 2D for polar alignment was established [24] but
progress is difficult since the coarse-grained equations are
hard to solve. Most analytical studies were thus restricted
to the linear stability analysis of homogeneous solutions or
the simulation of continuous equations [25–27]. While non-
linear profiles for a model with nematic alignment could
be computed explicitly [30], closed analytical solutions
are still missing for polar models despite recent progress
[25,27,28]. All in all, despite the important progresses made
during the last few years, a unifying theoretical framework
of the flocking transition is still missing.
We present below a tentative step in this direction

through the introduction of a microscopic lattice model
with discrete symmetry, which is much simpler to study
numerically and analytically than traditional flocking mod-
els. By bridging micro and macro, we show the transition
of our model to amount to a standard liquid-gas transition
in the canonical ensemble with an infinite critical density.
This sheds new light on the finite-size scaling of the tran-
sition and predicts the order parameter to vary continuously
in the temperature-density plane, in the thermodynamic
limit. Furthermore, we show that there is no critical tran-
sition in 1D, where fluctuations strongly alter the transition.
We consider N particles carrying Ising spins s ¼ �1 on

a 1D lattice of L sites. Each particle hops at rateDð1þ s"Þ
and Dð1� s"Þ to its right and left neighboring site. (In
higher dimensions, the hopping rates are symmetric in all
but one directions.) There is no exclusion between particles
and we note n�i the numbers of� spins on site i so that the
local densities and magnetizations are given by �i ¼ nþi þ
n�i andmi ¼ nþi � n�i . The particles also align their spins:
on site i each spin s flips at rate expð�smi=T�iÞ where the
temperature T plays a role similar to the orientational noise
in the VM [16]. When D ¼ 0, the system thus amounts to
Ld independent fully connected Ising models. WhenD> 0
and � � 0, three different configurations are typically
observed (see Fig. 1): at low temperature a uniform ordered
phase, at high temperature a uniform disordered phase,
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and phase-separated profiles in between, with narrow inter-
faces connecting ordered high density bands (�i ’ �h,
mi ’ mh � 0) to disordered homogeneous backgrounds
(�i ’ �‘, mi ’ 0). These profiles are all long-lived in finite
systems even though their stability in the thermodynamic
limit depends on the number of spatial dimensions. Let us
now show how a simple theoretical framework can be
constructed to account for the phase diagram of Fig. 1.

Previous coarse-graining approaches often relied
on factorization approximation of kinetic equations
[27,29,33,34]. On a 1D lattice, this amounts to a mean-
field approximation: fðhn�i iÞ ¼ hfðn�i Þi, which may be
quantitatively wrong but often captures phase diagrams
exactly [35,36]. Introducing x ¼ i=L, v ¼ 2D"=L, ~D ¼
D=L2, and � ¼ T�1, the mean-field dynamics of the
coarse-grained fields �ðxÞ¼ h�ii andmðxÞ ¼ hmii is given,
in the large L limit, by

_� ¼ ~D@xx�� v@xm (1)

_m ¼ ~D@xxm� v@x�þ 2� sinh
�m

�
� 2m cosh

�m

�
: (2)

In higher dimensions @xx becomes a Laplacian �, and we
use this more general form hereafter.

Looking for the onset of a flocking transition, we
linearize the dynamics for m � �, which yields [37]

_m ¼ ~D�m� v@x�þ 2mð�� 1Þ � �
m3

�2
(3)

where � ¼ �2½1� ð�=3Þ�. The line � ¼ 1 separates the
linear stability regions of homogeneous ordered and dis-
ordered profiles while simulations of Eqs. (1) and (2) never
show stable phase-separated profiles [38]. The mean-field

approximation thus predicts a continuous transition from
m � ð1=LÞPimi ¼ 0 to m ¼ m0ð�Þ at �c ¼ 1, in contra-
diction with Fig. 1. As often [39,40], the mean-field ap-
proximation is only valid for � ! 1; for finite densities we
thus expand the mean-field critical temperature to include
1=� corrections [41,42] and use�c � 1þ ðr=�Þ in Eq. (3):

_m ¼ ~D�m� v@x�þ 2m

�

�� 1� r

�

�

� �
m3

�2
: (4)

The phase diagram corresponding to Eqs. (1) and (4),
which form our refined mean-field model (RMFM), is
presented in the top-right corner of Fig. 1. When T < 1,
homogeneous disordered (resp. ordered) profiles are always
linearly stable at low enough density �0 < �1 (resp. high
enough density �0 > �2). Since �1 < �2, there is a finite
intermediate region [�1, �2] where neither homogeneous
profiles are stable. In this region, the system separates into
two homogeneous phases connected with sharp fronts: a
disordered region with low density �‘ < �1 and an ordered
region with high density �h > �2 and mh � 0.
Propagating shocks can be computed analytically when

� is close to 1 by linearizing Eq. (4) around the density
�1 ¼ r=ð�� 1Þ at which the homogeneous disordered
profile becomes linearly unstable. We first solve Eq. (1),
by neglecting the diffusion term in a reference frame
moving at speed c, to get � as a function of m:

�ðrÞ ¼ �‘ þ v

c
mðrÞ: (5)

Equations (4) and (5) then yields for m

~D�mþc

�

1�v2

c2

�

@xmþ�

�

�l��1þv

c
m

�

m��
m3

�2
1

¼0

(6)

where � ¼ 2r=�2
1. Looking for ascending (qþ > 0) and

descending (q� < 0) front solutions

mðrÞ ¼ mh

2
½1þ tanhðq�xÞ� (7)

one gets

c¼ v; q� ¼�mh

ffiffiffiffi
�

p
ffiffiffiffiffiffiffi
8 ~D

p
�1

; mh ¼ 4r

3�
; �‘ ¼ �1� 4r

9�
:

(8)

Such solutions are consistent with our approximations since
½ð�� �1Þ=�1� � 1 and ~D�� � v@x� when � ! 1 [42].
In this regime, Eqs. (5)–(8) and simulations of the RMFM
yield the same profiles and band velocities. For larger �,
the ~D�� term makes fore and rear fronts asymmetric and
c > v: the flocks fly faster than the birds [42].
Since �‘, �h, andmh do not depend on �0, increasing the

density at fixed temperature only increases the width of
the high-density bands. In the thermodynamic limit, phase
separated profiles can be seen from �‘ to �h. One always
has �‘ < �1 < �2 < �h so that clusters and homogeneous
profiles are linearly stable when �0 2 ½�‘; �1� [ ½�2; �h�.

FIG. 1 (color online). Top left: Phase diagram in 2D with
ordered liquid (L), disordered gas (G), and coexistence region
(Gþ L). The red and blue lines correspond to low and high
densities of phase separated profiles; they enclose the region
where such profiles can be seen.D ¼ 1, � ¼ 0:9, L ¼ 300, �0 ¼
N=L. Bottom: Snapshots of the different profiles averaged over
the transverse direction. Top right: Phase diagram predicted by
the RMFM. In addition to �h and �‘, black and green dashed
spinodal lines signal the loss of linear stability of the homoge-
neous profiles. D ¼ v ¼ r ¼ 1.
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The refined mean-field scenario thus resembles an equi-
librium liquid-gas transition in the canonical ensemble, the
total magnetization being proportional to the fraction of the
liquid phase. Varying the density at fixed temperature, one
indeed observes hysteresis loops (see Fig. 2). Increasing
�0, homogeneous disordered profiles are seen up to �1

where the system discontinuously jumps into a phase-
separated profile. Further density increases result in a
widening of the liquid phase until it almost fills the system
for � & �h. (The widths of the fronts connecting �‘ and �h

prevent phase-separated profiles for �0 ’ �‘=h in finite

systems.) Decreasing �0, the homogeneous ordered phase
remains metastable until �0 ¼ �2 before discontinuously
jumping to a coexistent state. The fraction of gas then
increases until it fills the system at � ’ �l.

Unlike equilibrium liquid-gas transitions, dense and
dilute phases in flocking models have different symme-
tries. One thus cannot circumvent the transition and con-
tinuously transform the system from a gas to a liquid: the
transition line cannot stop at a finite point in the (T, �0)
plane and, indeed, the critical density is infinite. As far as
we are aware, this has not been described for other flocking
models [43] even though it should be generic and is con-
sistent with numerical results on the VM [16,27].

Simulations of the 2D active Ising model confirm both
the structure of the phase diagram (see Fig. 1) and the
nature of the transition predicted by the RMFM. The
coexistence between homogeneous and phase-separated
profiles is observed and changing �0 at fixed T in the
coexistence region only changes the fraction of the liquid
phase (see Fig. 2); the velocity of the high density bands,
for instance, remains constant [42]. Since high density
bands have a minimal size ‘c, the apparition of a flock in
a finite-size system corresponds to a discontinuous jump to
a nonzero magnetization m0 ’ mh‘c=L which vanishes as

L ! 1. In this limit, as for a liquid-gas transition in the
canonical ensemble, the order parameter varies continu-
ously throughout the phase diagram.
The scenario presented here can be related to the mea-

surement of the binder cumulant G ¼ 1� ðhm4i=3hm2i2Þ
done in the literature [16,31]. The coexistence between
phase-separated profiles (m ¼ �m0) and supercooled gas
phase (m ¼ 0) yields three peaks in PðmÞ whose weights
vary across the transition. (The same holds for the
coexistence with superheated liquid.) Assuming a sum
of three Gaussians of variance �, the minimum of
G, Gmin ¼ �½12ð�=m0Þ2 þ 36ð�=m0Þ4��1, is only mark-
edly negative when m0 � �. When L ! 1, contrary to
what happens in a grand-canonical ensemble, both m0 and
� vanish, the negative peak need not become more pro-
nounced, and the transition may appear critical if �
remains comparable to m0 (see the 1D case below).
Let us now show that fluctuations strongly alter the

transition in 1D. First, all three profiles shown on Fig. 1
exist and are linearly stable in finite systems [44]. The
general scenario predicted by the RMFM thus holds:
homogeneous profiles are linearly unstable for �1ðTÞ<
�0 < �2ðTÞ and phase-separate between linearly stable
low-density disordered and high-density ordered regions.
To assess the impact of fluctuations, let us consider the

stability of an ordered band in the coexistence region.
In 1D, an excess of, say, positive spins on a single site
suffices to flip an approaching negative cluster (see Fig. 3);
this happens frequently and the total magnetization keeps
flipping in this region. The 2D counterpart of such a
fluctuation is an excess of positive spins on a transverse
band of�L sites in front of the approaching cluster, which
has a negligible probability when L ! 1. Similarly, the
m ¼ m0 homogeneous profile is unstable in the thermody-
namic limit in 1D, which may be why it has not been
observed before [44]. Indeed, although a fluctuation lead-
ing to a small negative cluster in a uniform profile with
m> 0 is rare, its probability does not decay exponentially
fast with L since only a finite number of sites have to be
flipped. When L increases, so does the entropy of such
local perturbations; the time it takes to exit the homoge-
neous state thus vanishes when L ! 1.
In 1D, only two phases thus survive in the thermody-

namic limit: homogeneous disordered profiles and flipping

FIG. 2 (color online). Left: Fraction of the ordered liquid
phase when �0 is either increased or decreased for the RFMF
(top) and in 2D microscopic simulations (bottom). Right
Corresponding profiles of the system. Parameters: RMFM
L ¼ 100, v ¼ D ¼ 1, r ¼ 1:6, � ¼ 1:75, ��0 ¼ 10�2 every
�t¼15000; 2D lattice model L¼250, �¼2, D ¼ 1, " ¼ 0:9,
��0 ¼ 10�2 every �t ¼ 500.

FIG. 3 (color online). Reversal of a 1D cluster due to a localized
fluctuation. v2 is greater than v1 until �ðxÞ ¼ �h in the whole
cluster. (See movies in [42].) �0 ¼ 5, D ¼ 1, " ¼ 0:9, � ¼ 1:7.
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clusters, whose dynamics we now describe (see Fig. 3 and
movies in [42]). Starting from a localized cluster, the
ordered region spreads at constant speed: the fore front is
initially faster than the rear front, their velocity becoming
equal when the density in the band has uniformly spread
to �h. The mean cluster size before a reversal LR

c is thus
proportional to the mean time between reversals. A rever-
sal corresponds to the progression of a fluctuation from the
front to the rear of a cluster, progressively flipping all its
sites. The average duration of a reversal is thus propor-
tional to LR

c and hence to the mean time between reversals.
When L ! 1, there is a nonzero probability to find the
system in a reversal, PðmÞ does not vanish between �m0,
and hmi ¼ 0 (see Fig. 4): there is no spontaneous symme-
try breaking in 1D. Since the reversals capture a finite part
of the steady-state measure, one cannot replace m by jmj
when computing the susceptibility �m ¼ Lðhm2i � hmi2Þ,
as is frequently done for the Ising model. In agreement
with the lack of ergodicity breaking, and contrary to
earlier results in 1D, �m is simply extensive in the cluster
region.

The difficulty of analyzing Binder cumulants can be
clearly seen in 1D, where the large L limit is easily reached
and the three peaks in PðmÞ at the transition can be hard to
discriminate. If the width of the peaks is larger than their
separation, no negative peak inG is observed. Increasing L
does not help since the peaks get closer as they get nar-
rower. In Fig. 5 we show two extreme cases: without the
RMFM to analyze the data, it would be very difficult to
realize that they correspond to the same transition. This
may explain why previous studies of 1D flocking models

with similar—though not identical—dynamics concluded
to a second-order transition [22,23].
Conclusion.—We have introduced a lattice model of

self-propelled Ising spins whose phenomenology is similar
to that of traditional flocking models. The simplicity of
our model allows us to show that its flocking transition
amounts to a liquid-gas transition in the canonical
ensemble with an infinite critical density. The total mag-
netization is proportional to the liquid fraction and thus
varies continuously through this first-order transition in the
thermodynamic limit, a rather counterintuitive result. This
scenario, confirmed numerically in 2D, is altered by fluc-
tuations in 1D, where neither spontaneous symmetry
breaking nor critical transitions are observed.
Despite fundamental differences between our model and

others found in the literature, such as the symmetry of the
order parameter, many features of the flocking transition
observed here seem consistent with existing numerical
results on either microscopic models [16,19,30] or continu-
ous descriptions [25–28] of self-propelled particles. For
instance, the phase diagram seems compatible with those
of nematic [19,30] or VM [16,27], even though the high
density regions have not been studied in these models. This
suggests that the analogy between the flocking transition
and a canonical liquid gas transition could be generic, while
the symmetry of the order parameter would mostly control
features of the ordered phase. For instance, giant-number
fluctuations, which have been reported in flocking models,
are trivially present in the coexistence region of our model.
There, Pð�iÞ is peaked around �‘ and �h, and the variance
of the number of particles in a box of finite size satisfies
hN2i � hNi2 / hNi2 [45]. They are, however, absent from
the homogeneous ordered phase [42], showing that such
fluctuations are not intrinsic to polar flocking states.
Active spin models are mostly aimed at improving our

theoretical understanding of the flocking transition. One
can nevertheless wonder whether such models could be
relevant experimentally. The discrete symmetry of the
order parameter can for instance stem out of a geometry
allowing only two flocking directions, as for locusts in a
ring-shaped arena [46,47]. Then, as for the VM, the high
density region can only be attained if the interaction range
between particles is much larger than their size, as for

FIG. 4 (color online). Left: Cluster length as a function of
time, showing a linear spreading between reversals. D ¼ 1
" ¼ 0:9 � ¼ 2 �0 ¼ 3. Center and Right: PðjmjÞ for �0 ¼ 4;
�mð�Þ=L; � ¼ 1:538, D ¼ 1, " ¼ 0:9.

FIG. 5 (color online). Histograms and Binder cumulant of the total magnetization for �0 ¼ 3, D ¼ 1 (left) and �0 ¼ 0:2, D ¼ 10
(right). " ¼ 0:9. L ¼ 8000 for PðmÞ.
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electrostatic, hydrodynamic, or social interactions. In other
cases, such as hard rods, the steric exclusion between
particles and other density-induced effects may alter the
flocking transition [33]. Lastly, thanks to recent progress
on the manipulation of cold atoms in optical lattices,
physicists now have a large freedom to control the inter-
actions in spin chains [48]. This could provide an interest-
ing path towards a quantum version of active spin models.

The authors thank H. Chaté, M. Cheneau, G. Grégoire,
P. Krapivksy, F. Peruani, H. Touchette, and F. van Wijland
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