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Optimal paths on the road network as directed polymers
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We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled
end points. We find that, to a good approximation, the optimal paths can be described as directed polymers
in a disordered medium, which belong to the Kardar-Parisi-Zhang universality class of interface roughening.
Comparing the scaling behavior of our data with simulations of directed polymers and previous theoretical results,
we are able to point out the few characteristics of the road network that are relevant to the large-scale statistics
of optimal paths. Indeed, we show that the local structure is akin to a disordered environment with a power-law
distribution which become less important at large scales where long-ranged correlations in the network control
the scaling behavior of the optimal paths.

DOI: 10.1103/PhysRevE.96.050301

Complex networks of nodes and links can be used to model
a wide array of systems. Examples range from biological
networks such as those formed by neurons and synapses
in the brain or chemical reactions inside a cell, to social
or transportation networks and the World Wide Web. Their
topology in the abstract space of edges and vertices has been
much studied, allowing one to identify widespread properties
such as “small-world” effects, scale-free connectivity, and a
high degree of clustering, which can be captured by simple
physical models [1–5]. Comparatively, less is understood
about the spatial organization of complex networks embedded
in a Euclidean space, a very active subject of research (see
Ref. [6] for a review). The effect of geometry becomes
especially relevant when the network is strongly constrained
by the environment or when the “cost” to maintain edges
increases significantly with their length (e.g., rivers [7],
railways [8], or vascular networks [9]). The spatial structure
of streets is another example that has been particularly
studied to gain insight into the structure of cities and their
development [10–12].

Much information about the geometry of a network can be
obtained by studying the shortest paths between the nodes of
the network. In many cases, it is also a problem of practical
importance to characterize the paths that optimize a given cost
function. For example, in transportation networks, one would
like to understand the properties of the paths that minimize the
travel time, the distance, or the monetary cost to travel between
two points. An obvious application is in the development of
efficient global positioning system (GPS) routing algorithms
which could use prior information on optimal paths to perform
better [13]. The shortest paths between two generating nodes
on the power grid are also important to predict the overloading
of electric lines [14]. Understanding the properties of these
optimal paths appears challenging since they are expected to
depend strongly on the geometry of the network which can be
shaped by various factors, from natural obstacles to historical
development or differences in policy.

The theory of directed polymers [15] tackles a related
problem. It is concerned with the statistics of a chain stretched
between two points that minimizes its energy in a random
environment modeled by a fluctuating potential. The optimal
configuration is then found as a trade-off between the line

tension of the chain and the energy imparted by the random
environment. A wealth of theoretical results is available for
directed polymers which belong to the Kardar-Parisi-Zhang
(KPZ) [16] universality class describing the roughening of
growing interfaces, maybe the most studied class of systems
in nonequilibrium statistical physics.

In this Rapid Communication, we study the statistics of
optimal (shortest and fastest) paths on the road network in light
of known results for directed polymers in a random medium
(DPRM). Gathering large data sets of millions of paths on three
continents, we compute the probability distribution of path
length and travel time as a function of the distance between the
end points. By comparison with a DPRM model, we show that
most details of the structure of the road network are not relevant
to the statistics on larger scales. The local environment can be
modeled by a power-law distributed noise with, remarkably,
a universal decay exponent. Furthermore, we show that long-
range correlations in the environment, on the scale of hundreds
of kilometers, affect the scaling exponents and are thus relevant
to the statistics of optimal paths. The transverse wandering of
the paths is also found to be consistent with our modeling as a
directed polymer.

Let us first introduce more precisely the two-dimensional
(2D) DPRM problem and summarize the results relevant to
our study. A directed polymer is a chain pinned at its end
points that is sufficiently stretched to prevent overhangs and
thus can be described by a scalar height function h(x), with x

a coordinate along the axis going between the end points and
h the distance to the axis. The energy of a configuration of the
chain is given by

E[h(x)] =
∫ d

0

[
γ

2

(
dh

dx

)2

+ V (x,h)

]
dx, (1)

where d is the distance between the end points, γ is related
to the line tension of the chain, and V is a random potential
modeling a disordered environment. The free energy of such
configurations follows the KPZ equation [16] that gives rise to
scale invariance. (Because of this mapping, x is traditionally
denoted t as a time direction, but we stick here to the
spatial notation to avoid confusion with travel times.) In
the zero-temperature limit that is relevant to our problem,
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FIG. 1. The location of the three regions considered. For sim-
plicity and efficiency of our algorithm, they are chosen to be large
rectangular areas (in latitude-longitude coordinates) without sea or
ocean.

the free energy is simply the energy of the optimal path
E[h∗]. Two exponents govern the scaling of the energy
fluctuations 〈(E − 〈E〉)2〉 ∼ d2β (where the brackets denote an
average over realizations of the disorder V ) and the transverse
wandering of the optimal chains, 〈h∗(x)2〉 ∼ x2ζ [17]. In 2D, if
V has only short-ranged correlations, the exponents β = 1/3
and ζ = 2/3 are known exactly [18]. More recently, it has
been shown that the full distribution of E is actually universal,
converging at large d to Tracy-Widom (TW) distributions of
random matrix theory [19,20]. On the contrary, long-range
correlated disorder leads to larger scaling exponents and
different energy distributions [21–25].

In light of these theoretical results, we now analyze the
statistics of two types of optimal paths (the shortest and the
fastest) on the road network. We compute the paths using
the Open Source Routing Machine (OSRM) [26] operating on
OpenStreetMap data, a collaborative effort to provide an open-
source map of the world. The fastest paths are determined using
the default configuration of OSRM which takes into account
speed limitations for cars and road types but no information
on traffic. We gather six data sets for the two types of optimal
paths in the three regions indicated in Fig. 1, sampling the end
points of the paths uniformly on the network.

In Fig. 2, we show examples of optimal paths drawn from
an arbitrary center point (near Munich, Germany) to uniformly
sampled points at a 300 km distance. Both sets of optimal paths

FIG. 2. Shortest (left) and fastest (right) paths from a center point
(near Munich, Germany) to 104 randomly chosen points at a distance
of 300 km. The arrow points to the most prominent overhang in the
paths.
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FIG. 3. Average length of the optimal paths 〈L〉 and length
of overhangs 〈Lh〉 as a function of the distance d between the
end points. All lengths are measured in km. Left: Shortest paths.
Right: Fastest paths. 106 points for each curve. Lines are guides to
the eye.

display a fractal branching pattern strongly resembling what
is observed in directed polymer models [17]. However, these
routes are not perfectly directed. This is especially visible near
the end points where the local structure of the road network
may impose overhangs (the most prominent is indicated by
a red arrow in Fig. 2). Nevertheless, overhangs are mostly
avoided by the optimal paths on the rest of the trajectory,
as quantified in Fig. 3 where we plot the average length
of the paths 〈L〉(d) and the part 〈Lh〉(d) corresponding to
overhangs (see the Supplemental Material [27] for a precise
definition of overhangs). The average path length 〈L〉 is found
to increase linearly with d at large distances while 〈Lh〉
increases slower. Overhangs thus become less relevant at larger
distances for which we expect a better comparison between
road paths and directed polymers. In the following, we divide
accordingly our study between short paths that are strongly
constrained by the network, and longer paths which result from
optimization.

We first look in Fig. 4 at the distribution of the length L

of the shortest paths (respectively the travel time T on the
fastest paths) between points at a short distance d = 1 km. We
are interested in L and T as the quantities that are minimized
and thus, in our interpretation, akin to the energy of a directed
chain. The distributions display clear power-law tails at large
L and T over more than three orders of magnitude. The tails
correspond to situations where the path has to go around an
obstacle to reach a nearby point, e.g., reach the next bridge to
cross a river. They thus characterize the overhangs described
previously. Most remarkably, the decay exponent P (L) ∼ L−α

[and P (T ) ∼ T −α] seems to be universal across continents
with α ≈ 3 (the best-fit coefficients for the six curves
are all found within [2.83; 3.10]). This appears surprising
since we expect the paths at small d to reflect the local
structure of the road network which is a priori very different in
the three regions considered. Although we lack an explanation
for the value of the exponent, it can be compared to exponents
derived for the same distribution in different environments.
The shortest path between nearby points on the backbone of a
percolation cluster has been numerically found to exhibit the
same α = 3 [28] at small distances, while for self-avoiding
random walks, the probability of forming a loop of length � in
a 2D chain scales as �−α with (exact) exponent α = 2.68 [29].
The latter superficially resembles the configuration of a road
between nearby points that loops around to avoid intervening
obstacles, while not intersecting other roads arriving and/or
departing the two points.
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FIG. 4. Optimal paths between points at a distance d = 1 km.
Top: Probability distribution of the length L of the shortest paths.
Bottom: Probability distribution of the travel time T of the fastest
paths. N = 5 × 105 paths for each curve. Insets: Scaled plots with
the best-fit exponent α indicated in the legend.

Because of the fat tails in the distributions of Fig. 4, the
variance of L and T is not defined. We thus cannot estimate
the exponent β characterizing energy fluctuations by simply
looking at the scaling of 〈L2〉c(d) and 〈T 2〉c(d), and need to
look instead at the full probability distributions P (L|d) and
P (T |d) for increasing distance d between the end points. To
compare these distributions, we superimpose their maxima
and rescale their width by a factor dβ where β is adjusted
so that the distributions converge at large d. The results are
shown in Fig. 5 (top) for the shortest paths in Europe and in
the Supplemental Material [27] for the five other data sets,
which show similar behavior. We find that the exponent β can
be adjusted such that the left tail of the distribution converges
rapidly to a limit distribution well fitted by the Tracy-Widom
(TW) distribution expected for directed polymers. On the
contrary, the right tail converges slower and remains heavy
at the largest d attainable (larger d, comparable to the total
size of the region, show strong finite-size effects). It is thus
not clear if the right tail also converges to TW behavior or
to a different distribution, as was observed numerically for a
directed polymer model with long-ranged correlations in the
environment [25].

For comparison, we simulated a well-established DPRM
model on a square lattice with random independent energies
on each site [17,18,30]. The paths are directed in the diagonal
of the lattice, parametrized by d. As before, the distance (in
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FIG. 5. Top: Probability distribution of the length L of the shortest
paths in Europe rescaled with β = 0.66. 5 × 105 paths for each curve.
Bottom: Probability distribution of the energy for the DPRM model
with power-law noise rescaled with β = 1/3. 107 paths for each curve.
Lattice of size 107 in the transverse direction with periodic boundary
conditions. The insets show the same data with a logarithmic y axis.
Pm denotes the maximum of the distribution, found at a value L = Lm

or E = Em.

number of sites) from the diagonal is denoted by h. The energy
of the optimal path is computed recursively as

E(d,h) = min{E(d − 1,h),E(d − 1,h − 1)} + η(d,h). (2)

After d iterations, E(d,h) is then the energy of the optimal
path between the point (d,h) and the line d = 0. As opposed
to previous studies that considered Gaussian noise, we draw
the noise η(d,h) in a power-law distribution P (η) = 2η−3 with
η ∈ [1; ∞[ to match qualitatively the short-scale distributions
in Fig. 4. We then analyze the results as in the experimental
case: We shift the energy distributions P (E|d) to superimpose
their maxima and rescale their width by dβ (Fig. 5, bottom).
We observe that, as with Gaussian noise [30], the distribution
converges to a TW distribution with the KPZ exponent β =
1/3. Indeed, only a fat tail in the noise at negative energy,
P (η) ∼ η−a , as η → −∞ would change the scaling exponents
[31,32]. Interestingly, the convergence when increasing d

happens in a similar manner in the model and the experimental
data, with the right tails converging much slower. This also
lends credit to our measure of β as the exponent rescaling the
left tail of the distributions.

One salient difference remains between the paths on the
road and the directed polymer model: The measured β
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FIG. 6. Autocorrelation function of the road density as defined in
the text. The oscillations in the curve for the U.S. are not an artifact.
The peaks are located every mile (with subpeaks at half miles) and
correspond to large regions (up to 60 miles) of gridlike road network.

exponents are found between 0.58 and 0.9 (with an error
estimated around 15%) and are thus much larger than β = 1/3
in the KPZ universality class. We now argue that this can be
explained by the presence of long-range correlations in the
road network. To show this, we first discretize the full map
of each region in squares of size 100 m × 100 m and assign
the value ρ(r) = 1 if a road is found inside the square and 0
otherwise. We then compute the correlation function C(r) =
〈ρ(r)ρ(r + x)〉 − 〈ρ(x)〉2 where the average is taken over x and
orientations of r. As shown in Fig. 6, C(r) decreases slowly
[slower than C(r) ∼ r−0.5], remaining non-negligible on the
scale of hundreds of kilometers. These long-range correlations
reflect the fact that the road network is shaped by many factors
acting at every scale, from different administrative divisions
to natural obstacles. They were also shown to be important in
modeling the development of cities [33], obviously related to
that of the road network.

For DPRM, such a slow decay of correlations was proven
to be relevant to the large-scale behavior, both in numerical
simulations [23,25,34] and analytic calculations [21,24,35,36].
For Gaussian noise with isotropic correlations decaying as
a power law with exponents between −0.5 and −0.2 (as
measured for the road density correlations in Fig. 6), β

was measured between 0.5 and 0.7 [23]. Given experimental
uncertainties, these values are in relatively good agreement
with our measurements for the road network. Long-range
correlations are thus likely to be at the origin of the large
exponents observed.

Finally, we look at the wandering of the optimal paths in
the transverse direction. The routing algorithm returns a list
of points along each path (in average every 50 m) that we use
to construct the function h(x), the distance to the end-to-end
axis parametrized by x. We do so by discretizing x in bins of
size dx = 100 m and averaging points falling in the same bin.
This discards any overhang and thus produces a directed path
approximating the real path. The leading behavior is expected
to be scale invariant, 	h(x) =

√
〈h2(x)〉 ∼ xζ . However,

because of overhangs near the end points, h(0) 
= 0, so that
	h(0) 
= 0, inducing large corrections to the putative scaling.
Thus, as a first approximation, we estimate the ζ exponent
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FIG. 7. Transverse wandering for the shortest paths as a function
of the coordinate x on the axis between the end points. Average over
5 × 105 paths between points at distance d = 1000 km.

by fitting 	h(x) = a + bxζ with free parameters a, b, and
ζ . The resulting functions 	h(x) − a show scaling behavior
over two orders of magnitude with exponents ζ ∈ [0.69; 0.75]
(see Fig. 7). Once again these values are larger than the
KPZ exponent ζ = 2/3, in qualitative agreement with the
presence of long-range correlations that are expected to
increase the value of ζ . For comparison, isotropic long-range
correlations with a decay exponent in the range of Fig. 6 give
ζ ∈ [0.75; 0.85] [23] while correlations only in the transverse
direction yield ζ ∈ [0.67; 0.72] [25].

To conclude, we have shown that optimal paths on the
road network can be modeled as directed polymers in a
random medium. In doing so, we replaced the complex
road structure by a homogeneous noise featuring only the
relevant properties to account for the observed statistics of
optimal paths. We find two important characteristics. At short
distances, the structure of the network induces a scale-free
distribution of path length with a universal decay exponent,
a remarkable experimental fact that remains to be explained.
This is accounted for by a power-law distributed noise in our
DPRM model. At larger scales, the local structure becomes
less relevant. The scaling of the path length or travel time
and the transverse wandering of optimal paths are then
governed by long-range correlations that we show to be present
in the network. Although these long-range correlations are
nonuniversal, they show similar behaviors in the different
regions of the world considered here, leading to similar
distributions at large scales. Directed polymers and associated
theoretical results thus provide useful tools to understand
the statistics of optimal paths on a complex network. It
would be interesting in the future to see if this approach
can be extended to other transportation networks or different
environments, for example, to the study of shortest paths on a
critical percolation cluster [37], which have important practical
applications.
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