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We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the
spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion
biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence
yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective
motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase
diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising
universality class. In the density-temperature “canonical” ensemble, the usual critical point of the equilibrium
liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases
preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the
microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the
critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated

profiles.
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I. INTRODUCTION

Active matter systems, defined as large assemblies of
interacting particles consuming energy to self-propel, exhibit
a variety of elaborate collective behaviors. Among them, col-
lective motion—a term referring to the coherent displacement
of large groups of individuals over length scales much larger
than their individual size—has played a leading role in active
matter studies. It can be observed in a wide range of biological
systems such as bird flocks [1], fish schools [2,3], bacterial
swarms [4,5], and actin [6] or microtubule [7] motility assays
but also in inert matter that is artificially self-propelled, like
assemblies of vibrated polar disks [8], rolling colloids [9], or
self-propelled liquid droplets [10].

On the theoretical side, the transition to collective motion—
hereafter referred to as the “flocking” transition—has attracted
the attention of the physics community because simple
models have proved useful to describe its generic properties,
highlighting the possibility of universal behaviors. The model
introduced by Vicsek and collaborators two decades ago [11]
is prototypical of this line of research, containing only two
ingredients: self-propulsion at a constant speed and aligning
interactions. It has often been described as a dynamical XY
model [12] since the alignment of the particle directions of
motion resemble the ferromagnetic alignment of XY spins.

The phenomenology of the Vicsek model is now well
established [11,13,14]. When decreasing the noise on the
aligning interaction, or increasing the density, a transition
takes place from a disordered gas into an ordered state of
collective motion. Between these two homogeneous phases
lays a region of parameter space where particles gather in
dense ordered bands traveling in a dilute disordered back-
ground. These bands, which are a robust feature of flocking
models [13,15-20], are a signature of the first-order nature of
the transition, together with intermittency, metastability, and
hysteresis [13,14]. Unfortunately, they are seen only in large
systems and strong finite-size effects render the numerical
study of the Vicsek model (VM) very costly in computing
power.

1539-3755/2015/92(4)/042119(18)

042119-1

PACS number(s): 05.50.4-q, 87.18.Gh, 05.65.4b, 45.70.Vn

To overcome these numerical difficulties and gain more
insight into the flocking transition, a number of analytical
approaches have been followed. Hydrodynamic equations for
Vicsek-like models have been either derived by coarse grain-
ing [19,20] or proposed phenomenologically [12,15,21]. These
equations predict phase diagrams in qualitative agreement with
the microscopic models, including the existence of inhomoge-
neous bands [14,15,19,20]. However, their analytical study is
complicated that little can be done beyond working with their
linearized version. Nevertheless, some progress was made to
account for the long-range order and giant density fluctuations
observed in the ordered phase of the Vicsek model [12].
Interestingly, it was also recently shown that all hydrodynamic
equations derived for polar flocking models [15,19,20,22]
admit the same family of 1D propagative solutions [23].
Nevertheless, a complete analytical study of the Vicsek model,
from micro to macro, remains elusive.

An alternative strategy to gain insight into the flocking
transition relied on the introduction of an active Ising model
(AIM) [22] which circumvents both the numerical and an-
alytical pitfalls of the Vicsek model. Using nonequilibrium
versions of ferromagnetic models has indeed often proven a
useful strategy [17,24-26]. The AIM, which we study in detail
in this paper, contains the two key ingredients for flocking:
self-propulsion and aligning interactions. The continuous
rotational symmetry of the Vicsek model is, however, replaced
by a discrete symmetry; in the AIM, particles diffuse in the
two-dimensional (2D) plane but are self-propelled in only
one of two possible directions (left or right). It is thus akin
to a dynamical Ising model where particles have a discrete
rotational symmetry. The AIM is found to have a simpler,
more tractable, behavior than the Vicsek-like models with
continuous symmetry while still retaining a large part of
their physics. Using a lattice-based model also simplifies both
numerical and analytical studies.

After introducing the model in Sec. II, we present a
numerical study of the 2D AIM in Sec. III. Our main
conclusion is that the transition in the AIM amounts to
a liquid-gas transition in the canonical ensemble. At fixed
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orientational noise, the system can be in two “pure” states:
a disordered gas or an ordered liquid, the latter leading to a
collective migration of all particles to the left or to the right.
When constraining the system’s density to lie between two
“spinodal lines,” no homogeneous phase can be observed and
the system phase separates, with an ordered traveling liquid
band coexisting with a disordered gas background. A key
difference with the usual equilibrium liquid-gas transition is
that liquid and gas have different symmetries; a supercritical
region is thus prohibited since one has to break a symmetry to
take the system from a gas to a liquid state, which explains the
atypical shape of the phase diagram.

In Sec. IV, we complement our numerical approach by
deriving a set of hydrodynamic equations for the dynamics
of the local density and magnetization fields. Interestingly,
a simple mean-field theory wrongly predicts a continuous
transition, failing to account for the phase-separated profiles. A
refined mean-field model, taking into account the fluctuations
of the density and magnetization fields, reproduces qualita-
tively the phenomenology of the AIM. In Sec. V, we use
the hydrodynamic equations to compute at large densities the
shape of the phase-separated profiles, the coexisting densities,
and the velocity of the liquid domain and account for the
finite-size scalings observed in the microscopic model. Finally,
we argue in Sec. VI in favor of the robustness of our results by
considering an off-lattice version of the model and different
boundary conditions.

II. DEFINITION OF THE MODEL

We consider N particles moving on a 2D latticeof L, x L,
sites with periodic boundary conditions. Each particle carries a
spin £1 and there are no excluded volume interactions between
the particles: There thus can be an arbitrary number nli of
particles with spins &1 on each site i = (i1,i). The local
densities and magnetizations are then defined as p; = n;" + n;
and m; = n;" —n; . We consider a continuous-time Markov
process in which particles can both flip their spins and hop
to neighboring lattice sites at rates that depend on their spins
(see Fig. 1). The hopping and flipping rates, detailed in the
next subsections, are such that our model is endowed with
self-propulsion and interparticle alignment, hence consituting
a flocking model with discrete symmetry.

A. Alignment: Fully connected Ising models

A particle with spin s on site i flips its spin at rate
m;
W(s — —s) = yexp (—S,B—), Q)
Pi

Biased Diffusion
D(1—e) D(1+4e) D(l14+e) D(1—¢
YN /\/&,
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FIG. 1. (Color online) Sketch of the two possible actions and
their rates of occurrence. The ferromagnetic interaction between
particles is purely on site and particles diffuse freely. Beyond the
biased diffusion shown here, particles also hop symmetrically up or
down, with equal rates D in both directions.
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where 8 = 1/T plays the role of an inverse temperature. These
rates satisfy detailed balance with respect to an equilibrium
distribution P o exp[—BH], where H is the sum over the
L, L, lattice sites of the Hamiltonians of fully connected Ising
models:

Y ayysi--X[m-l] o

2
sites i Pi j=1 k#j sites i Pi

The first sum runs over the lattice site index i = (iy,i) and the
next two over the particles j,k present on site i, and Sj- ==l
is the value of spin j. (The factor 1/2 simply avoids double
counting.) The rate y can always be absorbed in a change of
time unit so we take y = 1, silently omitting it from now on.
This interaction is purely local: Particles only align with
other particles on the same site and, without particle hopping,
the model amounts to L? independent fully connected Ising
models. The factor 1/p; in W makes the Hamiltonian H
extensive with N and keeps the interaction rates bounded:
the rate W(s — —s) at which a particle of spin s flips its spin
varies between exp(—p) if all the other particles on the same
site have spins s to exp[B(1 — 2/p;)] if they all have spins —s.

B. Self-propulsion: Biased diffusion

Particles also undergo free diffusion on the lattice, with a
left or right bias depending on the sign of their spins: A particle
with spin s hops with rate D(1 + s¢) to its right, D(1 — s¢)
to its left, and D in both the up and down directions. There is
thus a mean drift, which plays the role of self-propulsion, with
particles of spins &1 moving along the horizontal axis with an
average velocity £2De.

The model is designed to have the self-propulsion entering
in a minimal and tunable way through the parameter e¢.
Importantly, the limit of vanishing self-propulsion ¢ — 0 is
well defined because the spins still diffuse on the lattice.
This dynamics should thus allow us to interpole continuously
between “totally self-propelled” (¢ = 1), self-propelled (¢ €
10,1[), weakly self-propelled (¢ ~ 1/L), and purely diffusive
(¢ = 0) particles.

This differs from the Vicsek model where the zero-velocity
limit corresponds to immobile particles undergoing an equi-
librium dynamics resembling that of the XY model, with a
quenched disorder on the bonds (only particles closer than a
fixed distance interact).

Let us note, however, that even when & = 0 the model is
not at equilibrium, i.e., it does not satisfy detailed balance
with respect to any distribution. This is easily shown using
Kolmogorov’s criterion [27]. In Fig. 2, we exhibit a loop of four
configurations such that the products of the transition rates for
visiting the loop in one order, C; — C; — C3 — C4 — Cy,and
the reverse order differ, whence a violation of detailed balance.
To make the ¢ = 0 limit an equilibrium dynamics, one strategy
could be to choose hopping rates satisfying detailed balance
with respect to the Hamiltonian H defined in Eq. (2), replacing
D by D exp(—BAH/2). The steady-state distribution would,
however, be factorized and not very interesting. An alternative
would be to further add nearest-neighbor interactions to (2) but
we have not followed this cumbersome path here. Actually, as
we show in Sec. III B, this microscopic irreversibility when
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FIG. 2. (Color online) A loop of four configurations involving
two particles on two sites that breaks Kolmogorov’s criterion [27],
thus showing that the system does not satisfy detailed balance even
when ¢ = 0. The numbers associated to the arrows are the transition
rates for ¢ = (. The product of the transition rates along C;, — C; —
C3 — C4 — C; (left to right) is 2D%e~?#, whereas the reverse order
(right to left) yields 2D%e~#

e = 0 is irrelevant at large scales and we recover in this limit
a phase transition belonging to the Ising universality class.

C. Simulations

To simulate the dynamics of the model, we used a random-
sequential-update algorithm. We discretized the time in small
time steps At. A particle is then chosen at random; it flips
its spin s with probability W(s — —s)At, hops upwards or
downwards with probabilities DAt, and hops to its right or
to its left neighboring sites with probabilities D(1 & s¢)At.
Finally, it does nothing with probability 1 — [4D + W(s —
—s)]At. Time is then incremented by Af/N and we iterate up
to some final time. In practice we used At = [4D + exp(B N
to minimize the probability that nothing happens while keeping
all probabilities smaller than 1.

Note that this algorithm does not allow a particle to
be updated twice (on average) during Ar and is thus an
approximation of our continuous-time Markov process. We
also used continuous-time simulations, associating clocks to
each particle or each site and pulling updating times from the
corresponding exponential laws. In practice we did not find
any difference in the simulation results but the continuous-time
simulations were often slower so we mostly used the random
sequential update algorithm.

In most of this article we use simulation boxes with L, x L,
lattice sites and periodic boundary conditions. In Sec. VI A we
discuss what happens for closed boundary conditions.

III. A LIQUID-GAS PHASE TRANSITION

We explored the phase diagram using three control pa-
rameters: the temperature T = 8!, the average density py =
N/(L.L,), and the self-propulsion “speed” £. Doing so, we
observed three different phases, shown in Fig. 3. For ¢ # 0,
at high temperatures and low densities, the particles fail to
organize and we observe a homogeneous gas of particles
with local magnetization (m;) ~ 0. On the contrary, for
large densities and small temperatures, the particles move
collectively either to the right or to the left, forming a polar
liquid state with (m;) = m( # 0. For intermediate densities,
when pg € [p4(T,¢), pe(T,¢)], the system phase separates into
aband of polar liquid traveling to the left or to the right through
a disordered gaseous background.
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FIG. 3. (Color online) [(a)-(c)] Examples of density profiles
(green upper line) and magnetization profiles (blue lower line)
averaged along vertical direction for the three phases. (a) Disordered
gas, B = 1.4, pp = 2. (b) Polar liquid, B =2, pp = 7. (c¢) Liquid-
gas coexistence, 8 = 1.6, pp = 5. (d) Two-dimensional snapshot
corresponding to (c). For all figures D = 1, ¢ = 0.9.

The lines p4(T,¢) and p,(T,¢e) both delimit the domain of
existence of the phase-separated profiles and play the role of
coexistence lines: As shown in Fig. 4, for all phase-separated
profiles at fixed T, ¢, the densities in the gas and liquid part
of the profiles are p, and p,, respectively. Correspondingly,
the magnetization are 0 and my(T,e) # 0. Thus, varying
the density po at constant temperature and propulsion speed
solely changes the width of the liquid band. Consequently,
in the phase coexistence region, the lever rule can be used
to determine the liquid fraction & in the same way as for
an equilibrium liquid-gas phase transition in the canonical
ensemble:

Lo — Pg

o= .
Pe — Pg

3)

As we shall see below, this analogy goes beyond the sole
shape of the phase-separated profiles and the phase transition
to collective motion of the active Ising model is best described

6 P(T) — py=12 — P = 6 m(T) — p=12 — pp =3
_____ Py =2 =4 — po =2 — p=4
5-P¢ 54 ..
m
4 4 ¢
3 3
2 2
p
142 1
T T
0 T T T 0 T T T
0 200 400 600 800 0 200 400 600 800

FIG. 4. (Color online) Phase-separated density (left) and magne-
tization (right) profiles as the density increases. Parameters: § = 2,
D =1, ¢ =0.9, system of size 800 x 100. The profiles have been
averaged over time and along the y axis.
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FIG. 5. (Color online) Phase diagrams of the AIM. The red and
blue lines delimit the region of existence of phase-separated profiles.
Left: Parameter spaces (T = 1/8, po) for D = 1. Red and blue
coexistence lines correspond to ¢ = 0.9 while the green dashed line
indicates the critical points at ¢ = 0. Right: Parameter space (g, po)
for D=1, § =1.9. At ¢ =0 we recover the critical point in the
Ising universality class.

as a liquid-gas phase transition rather than an order-disorder
one.

A. Temperature-density “canonical” ensemble

The phase diagram in the (7', py) parameter plane, com-
puted for ¢ = 0.9, is shown in the left panel of Fig. 5. While
the general structure of the phase diagram, with a gas phase,
a liquid phase, and a coexistence region, is reminiscent of
an equilibrium liquid-gas phase diagram, the shapes of the
transition lines are unusual. This difference can be understood
using a symmetry argument. Since the disordered gas and
the polar liquid have different symmetries, the system cannot
continuously transform from one homogeneous phase to the
other without crossing a transition line. There is thus no
supercritical region and the critical point is sent to 7, = 1
and p, = oo. (See Fig. 6 for a schematic picture.)

This symmetry argument should be rather general for flock-
ing transitions separating a disordered state and a symmetry-
broken state of collective motion. Indeed, in Vicsek-like
models, where the role of the inverse temperature is played
by the noise intensity, the phase diagrams are qualitatively
similar to the one shown in Fig. 5. This is true both for
the full phase diagram recently computed in Ref. [14] and
for earlier results on a slightly different kinetic model [13]
and its hydrodynamic theory [19] but also for an active

T ch pc—) ”TC7 Pec = 00

Equilibrium
Liquid-gas

po

FIG. 6. (Color online) Schematic picture of the differences be-
tween the phase diagrams of the passive and active liquid gas
transition. In the active case, because the liquid and the gas have
different symmetries, the critical point is sent to p = oo, thus
suppressing the supercritical region.
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nematic Vicsek-like model [28] and a hydrodynamic theory
of self-propelled rods [29].

B. Velocity-density ensemble

Conversely, one can change the strength of the self-
propulsion ¢ while keeping the temperature fixed. Again, one
obtains a phase diagram with three regions. The difference
with the canonical ensemble is that in this parameter plane, the
two coexistence lines merge at ¢ = 0, where self-propulsion
vanishes, yielding a critical point at a finite density p*(T) (see
the right panel of Fig. 5). The curve p*(T) is reported in the
left panel of Fig. 5 and satisfies p*(T) € [p4(T,¢),p¢(T,€)]. In
Sec. IITF we show that this critical point belongs to the Ising
universality class.

The shape of this phase diagram is identical to the one
computed in Ref. [15] for a phenomenological hydrodynamic
description of self-propelled particles with polar alignment.
The comparison with other microscopic models in the litera-
ture is, however, hard to make since there seems to be very few
studies in the (&, pp) plane, probably because very few models
admit a well-defined zero-velocity limit.

C. Nucleation vs spinodal decomposition

As for an equilibrium liquid-gas transition, the coexistence
lines p,(T,¢) and p,(T ,&) are complemented by spinodal lines
@g(T,e) and @¢(T ,¢) that mark the limit of linear stability of
the homogeneous gas and liquid phases, respectively. While p,
and p, are easily measured in simulations, ¢, and ¢, are much
harder to access numerically at nonzero temperature: When
the system is in the coexistence region but outside the putative
spinodal lines, the homogeneous phases are metastable and
finite fluctuations make the system phase separate. The closer
to the spinodal line, the faster this nucleation occurs and it
is then difficult to pinpoint precisely the transition from a
“fast” nucleation to a spinodal decomposition. Nevertheless,
the differences between the coexistence and spinodal regions
are clearly seen when, starting from a homogeneous phase, one
quenches the system in the coexistence region but relatively
far from the spinodal lines.

Quenching outside the spinodal region, the homogeneous
phases are metastable. The closer to the binodals, the longer it
takes for a liquid (respectively, gas) domain to be nucleated in
the gas (respectively, liquid) background. The convergence
to the phase-separated steady state then results from the
coarsening of this domain.

Quenching inside the spinodal region, the different sym-
metries between gas and liquid result in different spinodal
decomposition dynamics when starting from ordered and
disordered phases. Starting from a disordered gas, the linear
instability almost immediately results in the formation of an
extensive number of small clusters of negative and positive
spins. The coarsening then stems from the merging of these
clusters, until a single, macroscopic domain remains. The late
stage of the coarsening is thus dominated by the long-lived
competition between a small number of right- and left-moving
macroscopic clusters. Their shapes (see Fig. 7) are reminiscent
of the counterpropagating arrays of bands reported in Ref. [30],
where it was suggested, using deterministic simulations of
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FIG. 7. (Color online) Snapshots in the late stage of coarsening
taken from the same simulation as the first row of Fig. 8 at time
t = 283000 (left) and # = 310000 (right). Parameters: D = 1,6 =
0.9,8 = 1.8, 09 = 3, system sizes 400 x 400.

the Boltzmann equation derived for kinetic flocking models,
that such profiles could constitute a new phase of flocking
models. In our simulations, we always observed a coarsening
process leading to a single band, which seems to indicate that
the apparent stability of these solutions in Ref. [30] could be
due to the lack of fluctuation terms. It would nevertheless be
interesting to make a more detailed study of the coarsening
dynamics to see if these alternating bands could indeed form
a stable phase (for instance, at low temperatures, where the
coarsening seems to become slower and slower).

Starting from the ordered phase, the linear instability results
in many liquid domains which all move in the same direction.
The coarsening then results from the collision of liquid bands
that move in the same direction but with slightly different
speeds. See Fig. 8 and supplemental movies [31] for examples
of these four possible dynamics.

t=20
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FIG. 9. (Color online) Left: Evolution of the liquid fraction ¢
upon changing continuously py. Large jumps in ® correspond to the
nucleation of bands in metastable homogeneous profiles while small
jumps are finite-size effects due to the finite width of the interfaces
connecting the gas and liquid regions. The density is increased
by 8pp = 0.02 every At =2000. L, x L, =800 x 100,88 =2,¢ =
0.9, D = 1. Right: Evolution of the magnetizations per particles
and per sites as the density is varied. The linear scaling typical of
liquid-gas phase transition is seen using m; = M/L>.

D. Hysteresis loops

Another similarity with a liquid-gas transition is the
presence of hysteresis loops obtained by varying slowly the
density at constant 8 and ¢ in finite-size systems. Such loops
are shown in the left panel of Fig. 9, where the liquid fraction
@ is reported as the density is continuously ramped up and
down. To measure @ numerically, a first strategy, followed in
Ref. [22], is to compute average density profiles at fixed pg, as

t> Tstat

t = 200

gas nucl.

t = 4600

gas spin.

liquid spin

liquid nucl

FIG. 8. (Color online) Successive snapshots following quenches from homogeneous gas and liquid phases inside and outside the spinodal
region. Parameters: D = 1, = 0.9,8 = 1.8; system sizes 400 x 400 and 1000 x 1000 for the quenches from the gas and liquid phases. From
top to bottom, py = 1.84, 3, 3, 4.7. See the supplemental movies in Ref. [31].
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shown in the left panel of Fig. 4 and use an arbitrary density
threshold between p, and p, to associate each site to the gas
or liquid regions.

Since the interfaces between gas and liquids are not
perfectly straight, this is slightly artifactual for finite-size
systems. Here we decided to measure ® numerically through:

1

Ppym, = m Zmi, 4

where m, is the magnetization of the plateau in the liquid part
of the profile (m, is independent of py as long as the system
is phase-separated and corresponds to the magnetization of a
uniform liquid phase at the coexistence density p;). The results
are very similar to those obtained in Ref. [22] but first (4) is
faster to measure and second it does not rely on an arbitrary
density threshold.

Starting in the gas phase and increasing the density, the
system remains disordered, with a liquid fraction ¢ = 0, until
a band of liquid is nucleated, at which point ¢ jumps to a finite
value. Increasing again py, the liquid region widens until the
two interfaces between gas and liquid almost touch and the
liquid phase almost fills the system. At that point, the system
jumps to a homogeneous liquid phase with ¢ = 1.

Upon decreasing the density, a similar scenario occurs: A
homogeneous liquid becomes metastable as the coexistence
line is crossed. As the density keeps decreasing, the system
thus remains in a liquid state with ® = 1 until a nucleation
event brings it to a phase-separated profile. The liquid
region then shrinks until its boundaries almost touch and a
second discontinuity of ® occurs as the system jumps into a
homogeneous gas phase.

E. Order parameter and finite-size scaling

The liquid-gas transition picture suggests different finite-
size scaling and order parameter than those associated to
magnetic phase transitions previously used to study flocking
models. Most studies [13,32,33] indeed relied on the mean
magnetization per particle,

mN=%Zmi, 5)

rather than the mean magnetization per unit area,

1
mp = L.L, Zi:mi = pomy. (6)

For models like the Vicsek model, the former is nothing but
the polarization my = P while the latter is related to the total
momentum m; = poP/v. In the phase-separated region, both
can be related to the liquid fraction ® through Eq. (3),

1 1-—
mx = = ®L, Lym, = my L2 @)
N Pe — Pg
mL=CI>mg=mgM. (8)
Pe — Pg

The simple linear scaling of mj with pg-p, is replaced by a
nonlinear dependence of m y with py, as shown in Fig. 9 (right
panel). An apparently innocent change of the normalization
used to make the magnetization M = ), m; intensive thus
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FIG. 10. (Color online) Hysteresis loops for system sizes 200 x
100, 400 x 100, and 800 x 100. For each system, the density is
increased by §pg = 0.02 every Ar = 2000. T = 0.5, ¢ =0.9.

can turn the simple affine scaling of m with py, typical of
a liquid-gas transition, into the nonlinear dependence of my
that could make one mistake the transition for a critical one.

Let us now go back to the hysteresis loops and discuss their
finite-size scaling. As shown in Fig. 10, the discontinuities of
the liquid fraction get closer and closer to the binodals o, and
pe as the system size increases, leading to vanishingly small
hysteresis loops in the thermodynamic limit.

Consider first the transition from gas to phase-separated
profiles. The liquid fraction exhibits two different discontinu-
ities when the density is decreased or increased, due to two
different effects. As the density is decreased, phase-separated
profiles cannot be maintained arbitrarily close to p,. There
is indeed a critical nucleus, which roughly amounts to two
connected domain walls, as can be seen in Fig. 4 for pp = 1.2.
As shown on Fig. 11 (left), this critical nucleus L. is indepen-
dent of the system size. If the excess mass LL (0o — p,)
is smaller than a critical value ¢.L,, this critical nucleus
cannot be accommodated in the system, which thus falls into
the gas phase. As the system size increases, the minimal
density to observe phase-separated profiles pg = 0 + @./(Lx)
thus converges to p, as L, increases and phase-separated
profiles are seen closer and closer to the binodal. The second
discontinuity, met upon increasing the density, corresponds
to the nucleation of a liquid band of width L, in a gaseous
background. Since L, can be anything between L. and L,,
increasing the system size at fixed density should decrease
the mean time until nucleation of such bands, thanks to an
entropic contribution due to the number of places where the
bands can be nucleated. As shown in Fig. 10, this is indeed
the case and the transition to phase-separated profiles thus also
happens closer and closer to the binodal p,.

The same line of reasoning can be used to understand the
scaling of the second hysteresis window, close to p;. Thus, in
the thermodynamic limit, all discontinuities disappear and the
liquid fraction varies continuously from ¢ = 0 at py = p, to
¢ =1 at py = p¢, as for an equilibrium liquid-gas transition
in the canonical ensemble. Note that the width of the critical
nucleus diverges as one gets closer and closer to the critical
points (¢ = 0 or B = 1), as shown in the right panel of Fig. 11.
This could explain why some studies of the Vicsek model in
the small velocity region claim to find a critical transition [34]:
As one gets closer and closer to the zero speed limit, the system
size above which one can correctly observe the discontinuous
nature of the transition diverges.
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FIG. 11. (Color online) Left: Divergence of the critical nucleus
L. when approaching the critical points 8 — 1 and ¢ — 0. To
measure L., we started in the phase-separated state and decreased
continuously the density (the error bars correspond to the density step
used) to record the density p,, at which the liquid band disappears.
L, is then defined by Lp, = Lp, + L.(pr — py), as the length of a
band at density p, that can be made with the excess density p,, — pg.
Right: Variation of the critical nucleus with L showing that, within
numerical errors, it does not depend on system size. Parameters:
D=1,¢=09,8=109.

F. The & = 0 critical point

While the 8 = 1, p. = oo, critical point is out of reach
numerically, the study of the & = 0 critical point is accessible.
Ate = 0, there is no self-propulsion and the phase transition is
of a completely different nature from the liquid-gas transition
described above. As we show below, despite the dynamics
being nonequilibrium, it turns out to be a standard critical
phase transition belonging to the Ising universality class.

We studied this critical point using a finite-size scaling
standard for magnetic systems at criticality [35]. We thus
consider the magnetizationmy € [0, 1]. In equilibrium, around
ferromagnetic critical points, the order parameter, susceptibil-

(m*)

ity, and Binder cumulant G =1 — (nZz are known [35] to

obey the finite-size scaling relations
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where t = L'"(p — p*)/p* is the rescaled distance to the
critical density p*. F,, Fy, and F; are universal scaling
functions and 8, y, and v the usual critical exponents.

We used the fact that G(+ = 0) is independent of L to find
the critical density, which is thus the density where all the
curves G(¢) for different system sizes intersect (Fig. 12, left).
We found that the value at the crossing point is the same
universal value G(t = 0) >~ 0.61 as in the 2D Ising model [36].
A very neat data collapse is further observed for the critical
exponents of the 2D Isingmodel 8 = 1/8,y =7/4,andv = 1
(see Fig. 12). We thus conclude that the critical point at e = 0
is indeed in the Ising universality class.

Note that a direct evalutation of the critical exponents is
much harder than for the equilibrium Ising model. Here the
dynamics is fixed so one cannot use alternative dynamics
like cluster algorithms to circumvent the problem of critical
slowing down.

G. Number fluctuations

In most flocking models the homogeneous ordered phase
exhibits giant density fluctuations [13,15,28,37,38]. These are
quantified by measuring number fluctuations, i.e., by counting
the number of particles n(£) in boxes of increasing sizes
¢ < L and computing its root mean square An(£). When
the correlation length £ is finite, a box of size £ > £ can
be divided in (£/£)* independent boxes. The total number
of particles in the large box is then the sum of independent
identically distributed random variables; the central limit
theorem applies and the probability distribution of n(£) tends
to a Gaussian. This yields the “normal” scaling An ~ n'/%.
On the contrary, one finds in the Vicsek model the anomalous
scaling An ~ n%8 [13].

In the active Ising model the number fluctuations are found
to be normal in the liquid and gas phases, where An ~ n'/2,
and trivially “giant” in the phase-separated regime where
An ~ n (see Fig. 13).

Note that the scaling An ~ n is a simple consequence of

—B/v 1/v
(m) = LV E, L), ©) phase separation and one should thus distinguish this scaling
s o ) v L from the “anomalous” scaling of the Vicsek model, which is a
x =L°((m%) = (m)") = L""Fy(tL"""), (10) signature of long-range correlations. Let us consider a system
" at liquid fraction ¢ that is large enough that we can find a
G =Fc(tL™"), (1n range of box sizes £ such that: (1) £ <« L so we can neglect
0.7 —
G 1.0 <m>LB/U "0~04—XL_7/V 8 O.G—G f“ A
i il !
0.6 0.8 L=50 f ) 03— & :
= » [,=80 ~ e ! 0.4 :
0.6 « « L=100 » ’ 3 ' M
s o 1.=120 A 0.02— L °
_ 0.4— e .
SR I B
= . - ] X
0.2 “rf ”‘,i "5;15 ‘.,‘
0.4 I p 0.0 x -(I » I I t 00 « .(I»()' I I 00 _ I‘qt"l‘ I t
2.7 2.8 2.9 —-30 —20 -10 0O 10 —30 —20—10 O 10 —30 —20 —10 O 10

FIG. 12. (Color online) Left: Binder cumulant G(p) from which we find the critical density p* = 2.798 £ 0.002. Other three figures: Data
collapse on the universal scaling functions F,,, F,, and F (defined in the text) when the data is rescaled with the 2D Ising exponent values
B=1/8,y=7/4,andv=1.t =LY (p — p*)/p*. Parameters: D =1, ¢ = 0.9, 8 = 1.9.
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FIG. 13. (Color online) Number fluctuations in the three different
phases: gas (red), liquid (green), and at coexistence (blue, upper line).
n is the number of particles in boxes of size £ and An its root mean
square. D =1, ¢ = 0.9, L =400, py = 5.

the contribution of the interfaces (a box is either in the liquid
or the gas phase) and (2) ¢ is large enough that n(£) takes only
two possible values and we can neglect the fluctuations around
these two values. With these assumptions,

P(n) =~ ¢8(n — pel?) + (1 — $)5(n — pyt?), (12)

where p, and p, are the densities in the gas and liquid domains.
Then one finds

(n) = (¢pe + (1 — $)p)* = pol?, (13)

An = (n2) = (n)? = /(1 — ¢>%<m>, (14)

which is a simple hand-waving explanation of the scaling
observed in the coexistence region of the active Ising model,
as well as in other phase-separating systems [39,40].

IV. HYDRODYNAMIC DESCRIPTION OF THE ACTIVE
ISING MODEL

In this section we derive and analyze a continuous de-
scription of the AIM based on two coupled partial differential
equations accounting for the spatiotemporal evolutions of the
density and magnetization fields.

We first show in Sec. IV A that a standard mean-field
treatment wrongly predicts a continuous transition between
the disordered gas and the ordered liquid. In Sec. IVB
we show that local fluctuations, which are neglected in the
mean-field approximations, are necessary to correctly account
for the physics of the system when the density is finite and
& # 0. We show in particular that as soon as the density is
finite, fluctuations make the transition first order. We then
use our hydrodynamic description in Sec. V to study the
inhomogeneous profiles.

A. Mean-field equations

The simplest way to account analytically for a nonequilib-
rium lattice gas is probably to derive mean-field equations.
These are known to be quantitatively wrong, but they often
capture phase diagrams correctly [41,42].

PHYSICAL REVIEW E 92, 042119 (2015)

Their derivations follow a standard procedure which can be
applied to the AIM and which, for simplicity, we first present
in 1D. Starting from the master equation, one first derives the
time evolution of the mean number of £1 spins on site i,

(F) = D(1 £ e)(n ) + D(1 F &)(n},) — 2D(n7)

proe (o)) e (03]
E{n; exp|B— |)F(n/exp| —-B— ), (15)
Pi Pi

which can then be rewritten for the density and magnetization,

(0i) = D({piv1) + {pi—1) — 2{p:i)) — De({m;y1) — (m;_1)),
(16)

(m;) =D((mit1) + (mi—1) —2(m;)) — De((piy1) — (pi-1))

. m; m;
+ 2<,oi sinh (ﬁ—)> - 2<mi cosh <,8—>> a7
Oi Pi

One can then take a continuum limit using the rescaled variable
#=1i/L €[0,1], D= D/L? © =2De/L and use the Taylor
expansion p;1;] = p(x) £ L7198, 0(x) + L720,p(x)/2. We
then obtain equations for the continuum fields p(x), m(x),
which are assumed to smoothly interpolate the discrete
occupancies p;, m;:

9 (p) = Doz (p) — 00z (m), (18)

0;(m) = Ddzz(m) — 005 (p) + <2p sinh '37m — 2m cosh ﬂ7m>
(19)

In higher dimension, the sole difference is that the diffusive
terms become DA(p) and DA (m), whereas the ¥ terms still
involve solely d; since the hopping is biased only horizontally.

In practice, to compare microscopic simulations and hydro-
dynamic theories it is often easier not to rescale space and use
a continuous variable x = L% € [0,L] (and hence D = DL?
and v = LT = 2Dg¢). Macroscopic and microscopic transport
parameters are then expressed in the same units and Egs. (18)
and (19) are then valid, without the tilde variables. This is what
we use in the following.

Equations (18) and (19) are exact; they couple the first
moments (o) and (m) to higher moments through the averages
of the hyperbolic sine and cosine functions. Following the
standard procedure established for equilibrium ferromag-
netic models, we then make two approximations. First, we
take a mean-field approximation by replacing (f(po,m)) by
f{p),(m)) for any function f. (We then drop the (...)
notation for clarity.) This amounts to neglecting both the
correlations between density and magnetization and their fluc-
tuations. Second, we expand the hyperbolic functions in power
series, up to m?/p®. This further restricts our description to the
case where m < p. We then arrive at the mean-field equations

0 =DAp —vd.m, (20)
m3
m=DAm —vd,p+2mpB—1)—a—, 2D
1)

where a = B%(1 — B/3). (For B > 3, one should expand to
higher order to obtain a stabilizing term.)
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FIG. 14. (Color online) Schematic account for the role of density
and magnetization gradients in the mean-field equations. Left:
Initially, m = 0 and Vp > 0 around site i. Once plus particles jump
to the right and minus particles to the left, the density in site i is
unchanged but m; has decreased. Right: Initially, o is constant and
Vm < 0around site i. Once particles have jumped, the magnetization
of site i is unchanged but the density has decreased.

Let us consider the various terms appearing in the mean-
field equations. The first terms on the right-hand side of (20)
and (21) are diffusion terms arising from the stochastic particle
hopping. Let us stress that these terms do not depend on the
bias ¢ and are thus present even in the totally asymmetric
case ¢ = 1; they do not rely on the possibility for +1 and
—1 particles to hop backwards and forwards, respectively. The
second terms, proportional to v, are due to the bias. Their
physical origin is explained in Fig. 14 where we show how
positive gradients in m or p yield negative contributions to
0 or m, respectively. Finally, the last two terms in Eq. (21)
stem from the ferromagnetic interaction and, apart from the
o> dependence of the last term, are typical of ¢* Landau
mean-field theory. Note that the alignment terms are the only
nonlinear ones and thus the only terms for which the mean-field
approximation is actually an approximation.

The mean-field equations always accept the trivial homo-
geneous solution

p(x) = po, m(x) =0, (22)
which is linearly stable for 8 < 1. As soon as 8 > 1, two

ordered homogeneous solutions appear,

2(8 -1
m = %pg ¥,

P = Po, (23)
which are linearly stable (see the left panel of Fig. 15).
Therefore, at the mean-field level, a linearly stable homoge-
neous solution exists for all (8, pg). Furthermore, integrating

my [MF| 14 ™o RMFM, 8>1
N I
0OfF————F------------ O——l:- ------------
—1 ~\
8117 Po

FIG. 15. (Color online) Linear stability of homogeneous profiles
in the naive (left) and refined (right) mean-field models. Plain
(respectively, dashed) lines denote stable (respectively, unstable)
solutions. In the RMFM, for § < 1, only the homogeneous profile
exists and is stable at all densities.
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numerically Egs. (20) and (21) starting from different initial
conditions [43], the system always relaxes to a homogeneous
solution and inhomogeneous profiles are never observed.
Hence, the mean-field equations predict a continuous transition
between homogeneous disordered and ordered profiles at =1,
just as for the Weiss ferromagnet [44]. The phase diagram is
simply split between a high-temperature disordered homo-
geneous phase, for 7 > 1, and a low-temperature ordered
homogeneous phase, for T < 1. This mean-field approach
thus completely misses the phenomenology of the microscopic
model; it cannot explain the existence of phase-separated
profiles and yield a phase diagram corresponding to a single
(continuous) transition line at 7 = 1, in contradiction to the
crescent shape observed in the microscopic model (see Fig. 5).

B. Going beyond the mean-field approximation

Previous coarse-graining approaches of flocking mod-
els [18,19,45,46] often relied on neglecting correlations by
factorizing probability distributions. For example, in the
Boltzmann-Ginzburg-Landau approach of Bertin ef al. [19]
the two-particle probability distribution is replaced by the
product of one-particle distributions. In our case, to derive the
mean-field equations (20) and (21) we made an even cruder
approximation.

When computing, for instance, the first nonlinear term
(m3/p?), neglecting correlations between m and p leads to

(m*/p?) = <m3><%>. (24)
We went one step further, completely discarding fluctuations
and replaced (1/,02), (m3) by 1/(,0)2, (m)3. As we show below,
these fluctuations are crucial to account qualitatively for the
physics of the AIM.

The dynamical equations (18) and (19) on the first moments
predict how (p(x,t)) and (m(x,t)) evolve in time, given an
initial distribution

Plp.m] = 8(p(x) — po)d(m(x) — mo).
The mean-field approximation then amounts to compute the
averages of hyperbolic functions in Eq. (19) by assuming that,
as time goes on, P remains a product of Dirac functions:
P[pvm7 xat|p07m0] = 6(p(x7t) - ﬁ(x5t))8(m(-x7t) - ’/h(-xat))v
(26)

(25)

where p(x,t) and m(x,t) are solutions of the mean-field
equations (20) and (21). In practice, this means that repeatedly
simulating the microscopic model starting from an initial
distribution (25) always yields the exact same values p(x,t) =
p(x,t)and m(x,t) = m(x,t). A better description should allow
both p and m to fluctuate around their mean values as well as
account for their correlations.

We can thus improve our approximation by replacing the
Dirac functions in Eq. (26) by Gaussians of variance ag(x,t)
and cr,f, (x,1). This still neglects correlations between p and m
but allows for (small) fluctuations around their mean. Note
that the only approximation made in the derivation of the
mean-field equations occurred at the level of the alignment
terms. Since each site of the AIM is a fully connected Ising
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model, it is reasonnable to assume that in the large density
limit, mean field should be correct. We thus assume that our
corrections to mean field should be small in the high-density
regions, where it is also reasonable to suppose that the variance
of p(x,t) and m(x,t) are proportional to o : 03 =o,p and
anzq = o, p, where «, and «,, are functions of 8 and v only.

The probability to observe given values of p(x,t) and m(x,t)
is then assumed to be

P[prm;xst | )OO:mO] = N(P - ﬁ?apﬁ)N(m - m’amﬁ)i (27)

where N (x,02) = ¢ /%" //27 52 is the normal distribution.
Under these assumptions, the alignment term in Eq. (19)
can still be computed analytically. We show in Appendix A
that, at leading order in a m/p expansion, the correction to
mean field reads
=3
<2p sinh'B—m — 2m cosh ﬂ_m> ~ 2(,3 —1- i_)nﬁ — oen_l—z,
o P p P
(28)
where r = 3aa,, /2 is a positive function of §. Intuitively, the
fluctuations “renormalize” the transition temperature

ﬁm»=1+%=ﬂVF+%- 29)

In principle, one could expand B, to higher order to obtain a
better approximation. The correction (29), however, suffices
to account qualitatively for the most salient features of the
microscopic model and we will thus stop our expansion
at this order. Furthermore, extending (28) to higher orders
does not suffice to provide quantitative agreement between
microscopic simulations of the AIM and the “corrected” mean-
field equations, probably because we still neglect correlations
between p and m. More details are provided in Appendix A
for the interested reader.

C. Refined mean-field model

The correction to mean field derived in the previous
section can thus be seen as a finite-density correction to the
transition temperature §,, which converges to its mean-field
value BMF =1 as p — oco. As was already recognized in
previous studies [15,19,29,45], the density dependence of B,
is the key ingredient to describe phase separation at the level
of hydrodynamic equations. With this correction, we obtain a
refined mean-field model (RMFM)

p=DAp —vd.m, (30)

r m?
m:DAm—vaxp+2<ﬂ—l——>m—a—2, 31
P p
which we now study.
The linear stability analysis of homogeneous solutions
strongly differs from the mean-field case. For > 1 the
disordered profile is stable for py € [0,¢,(B8)], where

P(B) =1/(B = 1). (32)

The homogeneous ordered solutions

-1 r
p(x) = po, m(x)=mo==xp0g Z—ﬁ -2—, (33)
o Lot
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FIG. 16. (Color online) Phase diagrams in the RMFM. The lines
¢, and @, are the spinodal lines denoting the limit of linear stability
of homogeneous profiles. The lines p, and p, are coexistence lines
that limit the domain of existence of phase-separated profiles. Top
row: Temperature-density ensemble. The right plot is a zoom of the
region delimited by the gray rectangle. D = r = v = 1. Bottom left:
Velocity-density ensemble. D = r = 1, § = 1.5. Bottom right: Two-
dimensional snapshot of the density field in the phase coexistence
region. Its position in the phase diagrams is indicated by the gray
squares. D =r =v =1, B =1.5,and py = 2.1.

exist for all py > ¢, but are only stable for oy > ¢ > ¢, (see
Fig. 15). The explicit expression of ¢, can be found using a
standard linear stability analysis, detailed in Appendix B:

vy/a[vZk + 8D(B — 1)2] 4 v’k + 8Da(B — 1)

be= e 202 + 8Da(f — 1) ’
(34)
where k =2 +a — 28.
Close to the critical pointat 8 = 1,
r
@e :¢g+E+O(IB -1, (35)

so ¢; and ¢, both diverge, while their difference remains
constant. Close to the v = 0 critical point, we obtain

rv )
A TR (36)
S0 @ — @, when v — 0.

The homogeneous solutions are linearly unstable in the
density range [¢,,¢¢]. Simulating the RMFM [43] for such
densities yield phase-separated profiles similar to those seen
in the AIM, with macroscopic liquid bands traveling in a
disordered gas background (see bottom-right panel of Fig. 16).
The densities in the gas and liquid parts of the profiles remain
constant as o is varied; they thus give access to the coexistence
lines p, and p;.

The phase diagrams of the RMFM in the temperature-
density and velocity-density ensembles shown in Fig. 16 are
qualitatively similar to those of the AIM, with an asymptote at
T =1 when py — oo in the T-pg plane, and a critical point
at v = 0 in the v-pg plane. As before, the coexistence lines
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FIG. 17. (Color online) Hysteresis loops in the RMFM. Left:
Density profiles along the loop as py is varied. Right: Evolution
of the liquid fraction ¢ upon changing continuously py. Parameters:
=15 D=v=r=1,L=2800.

pg and p, delimit the domain of existence of phase-separated
solutions; they can now be complemented by the spinodals ¢,
and ¢, which mark the loss of linear stability of homogeneous
disordered and order phases, respectively.

The hysteresis loops observed in the RMFM (see Fig. 17)
are similar to those found in the microscopic model (see
Fig. 9 and 4). Starting at low density in the gaseous phase
and increasing density, the system stays in the gas phase until
it becomes unstable at py = ¢,, where it phase separates.
Increasing again the density, the liquid fraction increases
linearly until the liquid almost fills the system. As in the
AIM, the finite widths of the interfaces set a minimum
and a maximum size for a domain, hence preventing liquid
bands from completely filling the system. This results in a
discontinuous jump of the liquid fraction close to the binodals,
whose height vanishes as the system size diverges (see Fig. 17,
right panel). The main difference with the hysteresis loops
observed for the AIM is that, given the absence of noise in the
RMEM, there is no nucleation and the system phase separates
only when the spinodal densities are reached.

D. Control parameters

To determine how many independent control parameters
are needed to describe the behavior of the RMFM, we recast
Egs. (30) and (31) in dimensionless form. To do so, we first
have to introduce back the rate y which appeared in the
definition of the flipping rates (1) and that we have taken equal
to one until now. Introducing the dimensionless variables and

constants
t=1tly, x= £,
Y

v = yDﬁ2,

S

p=rp,
(37

m=rm,

the refined mean-field equations become

P — 03z, (38)

A
A A PO 1 m?
m:Am—vaAp—i—Z,B—l——m—oz—z. 39
0

Since « is a function of B, there are only two external
dimensionless control parameters: ¥, which is a Peclet number
comparing the advection speed v and the diffusivity D at
the length scale v/y traveled by a particle between two spin
flips, and B, which controls the ordering of the system [47].
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The average density, which sets an external constraint on
the system, constitutes a third independent parameter. Our
phase diagrams shown in Fig. 16 thus sample all the relevant
parameters of the RMFM.

V. INHOMOGENEOUS BAND PROFILES

In the previous section we have shown how one can
build a refined mean-field model by taking into account the
local fluctuations of magnetizations and densities. Numerical
simulations of the RMFM exhibit a phenomenology akin to
that of the microscopic AIM, confirming the liquid-gas picture
of the phase transition. We now focus on the inhomogeneous
profiles and show analytically that the RMFM accounts for
their shapes and speeds when 8 — 1. Furthermore, the RMFM
also correctly predicts the scaling of the width of the critical
bands in the vicinity of the critical points 8§ = 1 and v = 0.

A. Propagative solutions

Let us reduce Egs. (30) and (31) to a single ordinary
differential equation. To do so, we first introduce a new
coordinate z = x — ¢t comoving with the liquid band at an
unknown speed c. In this comoving frame, the stationnary
solutions of the RMFM satisfy

Dp" +cp' —vm' =0, (40)

" I / r m3

Dm" +cm’ — vp +2(,3—1——>m—a—2 =0. 41
P o

The RMFM is a finite-density correction to the p = 0o
mean-field limit and should thus work best for large densities.
As we can see in the phase diagram shown in Fig 5, the
densities p, and p, diverge as B — 1, as do ¢, and ¢,
[see Egs. (34) and (35)]. Furthermore, one can check that
P¢ — pg remains finite in this limit, as does m, (see Fig. 18).
Close to § = 1, we can thus expand Eq. (41) in powers of

€ =m/ps ~ 6p/p,, where §p = (p — @,), to get

2rmép m>
0=Dm" +cm' —v8p' + —5— —a—. (42)
g08’ wg
1.35 -
6 4° 130 /v * + micro
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FIG. 18. (Color online) Left: The magnetization m, in the liquid
band and p,-p, at phase coexistence, measured in the microscopic
simulations, converge to the same constant when 8 — 1 as predicted
by the analytical solution. Parameters: D =1, ¢ = 0.9, L =400
for the microscopic simulations. r = v =D =1, L =400 for the
RMFM. Right: Velocity ¢ of a liquid band propagating in a gas
background. As B — 1, ¢ — v in the microscopic model, in 1D
simulation of the RMFM (31), and in the analytical solution.
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In addition, Eq. (40) can be solved iteratively to obtain p(z)
in terms of m(z) and its derivatives,

v v & [ D\‘dkm(z)

. (43)

where p, is an integration constant that equals the density in
the gas phase at coexistence, since p(z) = pg, where m = 0.
Again, the RMFM should work best close to the critical points,
where the width of band fronts diverge (see Fig. 11); we thus
can expect the development (43) to rapidly converge in this
limit and retain only

D D?
PE) = e+ —m@) = @)+ Q). (@44

At second order in &, Eqgs. (42) and (44) then reduce to
Dm” + (ag — aym)m’ — bym + bym®> — bsm> =0,  (45)

where we have introduced the positive constants

D=D 1_+_v2 1 v? 4Dvr
= =), a=c|l—-=), aj=—5——-—
) 7 ) T @ e
Qg — P 2rv o
by =2r2—=% 5 £, 2 =—, by=—. (46)
Pg CPg Pg

We then look for propagating solutions made of two fronts,
connecting an ordered liquid band at p;, m, to a disordered gas
background at p,, m, = 0. Precisely, we look for propagating
fronts given by:

m(z) = %[1 + tanh(k2)]. @7)
To describe phase-separated domains, we need two front solu-
tions, an ascending front m,(z) with k, > 0 and a descending
front m4(z) with k; < 0, with the same speed ¢, density p,,
and magnetization m,. Since the term (ag — aym)m’ breaks the
symmetry of the equations under (m,c) — (—m,—c) the fore
and rear fronts need not be the same, so |k,| # |kgs| in general.

The complete solution, specified by ¢, pg, m¢, and kg4,
can be obtained by injecting the ansatz (47) into Eq. (45).
Using the equality tanh’(kx) = k — k tanh?(kx), the left-hand
side of Eq. (45) then yields a third-order polynomial in
tanh(kx) whose coefficients all have to vanish. Tedious but
straightforward algebra then gives

1
1+ 82D \*
=v
¢ 3av?p;

4
my = 37'_7)
ac 48)
4rv?
Pe = s~ 9ac?
3.9 9
CcCy— 4)/3 y+av (pg
kyg=— 141+ —-—4+ —"=1,
a/d 4Dy+[ \/+ 3 T e

where yr =1+ z—z

The solution is thus completely determined, the density
and magnetization profiles being given by Eq. (47) and (44),
respectively.
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B. Close to the 8 = 1 critical point

At leading orders when 8 — 1, the propagating fronts are
characterized by

4r 8r
pngpg_%§ p£=¢g+%;
mg=4—r; c=v+w; 49)
3a 3va
e VLA VY e W V-t V'
“73JDa  6va ’ 3/Da  6va

Some comments are in order. First, the two coexistence
lines p, and p, diverge as B — 1, as do the spinodals ¢,
and ¢y, while their difference and the magnetization m,
converge to finite constants. This behavior, which is in line with
simulations of the microscopic model (see Fig. 18), legitimates
the expansion of (41) in powers of m /¢, and §p/¢,.

Then we can check the validity of the gradient expansion
by comparing two successive terms in Eq. (43). When 8 — 1,
we have

(2)"em p
(Q)Tk_rf ~ ? ald ™ B—-1), (50)
c dy*

SO our approximation becomes exact when § — 1.

The front solutions account for a number of interesting
features of the propagating liquid bands. First, the front speed
¢ is generally larger than v, the maximal mean speed of a
single spin. This may seem surprising until one realizes that
the front propagation is due both to the spins in the liquid
band hopping forward and to the “conversion” of disordered
sites into ordered ones at the level of the fore front. There
is thus a FKPP-like contribution [48] to the speed of a band,
which allows ¢ to be larger than v. Interestingly, despite the
approximations made in deriving the RMFM, the behavior
of c/v as B — 1 coincides exactly with what is observed in
microscopic simulations of the AIM (see Fig. 18).

Regarding the propagating fronts, the analytical solution
predicts |k,| < |kg4|, i.e., that the descending (fore) front is
steeper than the ascending (rear) front. The asymmetric term
being subleading as § — 1, the fore and rear fronts become
more and more symmetric as § — 1. This is consistent with
the microscopic model: In Fig. 19, we show that the fronts
are well described by two symmetric tanh functions close to
B = 1. As the temperature decreases, the fronts first remain
well approximated by hyperbolic tangents, but with different
widths k, # k4, before their functional form deviates from the
tanh solution (see Fig. 19).

Let us now be slightly more quantitative and compare the
scalings of the front widths in the AIM with the prediction
of our analytical solution (49). In the microscopic model, we
fitted the fronts of phase-separated profiles by the hyperbolic
tangent solutions (47) to extract their width. Although data
are hard to obtain close to critical points, because m/p — 0,
the measures are consistent with the analytical predictions. As
shown in Fig. 20, k4/s ~ (8 — 1) when 8 — 1. One can also
see that in this limit the two fronts become symmetric, i.e.,
ko — ky. The size of the inferfaces, inversely proportional
to kq/4, can be linked to the size of the critical nucleus. As
explained in Sec. III D, a liquid domain can form only if the
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FIG. 19. (Color online) The fore and rear fronts of propagating bands become more asymmetric as 7 decreases. The shape of the fronts
in the microscopic model (red curves) also deviate more and more from the analytical tanh solution (valid in the limit 8 — 1). Black dashed
curves are fits of the rescaled fronts by expression (47), where k is used as a fitting parameter. Parameters: D = 1, ¢ = 0.9. Fronts are averaged

over time and along the vertical direction.

excess number of particles with respect to the gas is sufficient
to create a band of minimal size L. As a first approximation,
this minimal size is set by the size of the interfaces so we expect
L.~ 1/k, + 1/k,. Indeed, the same scalings are observed for
L. as for 1/k,/q as shown in Fig. 11.

C. Close to the v = 0 critical points

While our approach was derived to work close to the
critical point at 8 = 1, the front solution still predicts many
correct scalings close to the v = 0 critical points. There, the
propagating bands are characterized by

V2rv

¢ = T 38 - 1)/3Da
N V8rv
pr =gy + ———————
T 38— 1)V/3Da
3274 174
e (2703 - 1>2a3D> v
8D — 12\
(e
3a
1 1
k k
- - s |kql
0.1 _ - = 0.1 /
E -
- P
-~
B—1 /OL\FJ v
0.01 —t— 0.01 S
0.1 0.01 0.1

FIG. 20. (Color online) Scaling of the front widths close to the
critical points 8 — 1 (left) and v — 0 (right). The data are consistent
with the predictions from the RMFM in these limits [Eq. (49) and (51)]
both for the scaling of k,,; and for the asymmetry between the
ascending and descending fronts. ¢ = 0.9 (left), = 1.9 (right), and
D=1.

B -
kg = oD —6D — W=V
(B—

— (=T = V3) V. (51)

k
4= 12D\/6Da

Again, the two coexisting densities merge with the spinodal
lines at v = 0 while the magnetization in the liquid vanishes,
hence justifying the expansion of Eq. (41) in powers of m /¢,
and 8p/¢@,. While gradients are again expected to vanish
as v — 0, the expansion of p in derivatives of m includes
a diverging prefactor (D/c)f ~ 1/v/? at the k™ order. The
comparison of two successive terms in the expansion (44)
then yields

( )k+1 iikyt\ir]

@

Thus, in this limit, the series may still converge but the
ratios between two consecutive terms do not vanish as v — 0
and we cannot completely neglect higher-order gradients.
Nevertheless, as shown in Fig. 20, the analytical solution
correctly predicts that the asymmetry between the fore and rear
fronts does not disappear in the v — 0 limit. It also correctly
predicts the scaling of the front widths k,/4 ~ /v and thus the
scaling of the critical nucleus in this regime.

Beyond accounting for the shape of the phase diagram
and the liquid-gas nature of the transition, the RMFM can
thus correctly predict the shape of the band, their speed,
and the scaling of the critical nucleus in the vicinity of the
critical points. In order to get a more quantitative agreement
between the RMFM and the microscopic model, beyond the
estimation of the unknown parameter », one would probably
needs to account for the correlations between m and p. Apart
from quantitative corrections, these correlations, however, do
not seem to play any role in controlling the structure of
the phase transition and most features of the propagating
bands. Interestingly, symmetric hyperbolic tangent front were
also observed in hydrodynamic equations for self-propelled
rods [29], even though in that case the domains are not moving.

D
?ka/d ~ O(1). (52)

042119-13



A.P. SOLON AND J. TAILLEUR

0 200 400 600 800 1000
1000 L 20
800 \
600
10
400
200
0 t
0 2000 4000 6000 8000 10000

FIG. 21. (Color online) Active Ising model with closed boundary
conditions. Top: Snapshot of the density field. Bottom: Space-time
graph (averaged in the y direction) showing the liquid domain
bouncing back and forth in the box. Parameters: § = 1.9, py =
3, D =1, e =0.9. See the supplemental movies in Ref. [31].

VI. ROBUSTNESS OF THE RESULTS

Let us now discuss how the results presented in the previous
sections extend beyond our lattice-gas model with periodic
boundary conditions. To do so, we consider the case of closed
boundary conditions in Sec. VIA and study an off-lattice
version of the AIM in Sec. VI B.

A. Closed boundary conditions

Since the ordered liquid domains always span the whole
system in the vertical direction and propagates periodically in
the horizontal direction, one could think that their existence
and stability relies on the use of periodic boundary conditions.
To check this, we simulated the AIM in closed boxes. We tried
different conditions at the edges of the box: When particles hit
a wall, their spins were flipped, randomized, or left unaltered.

The same behavior was observed in all cases. First, one
notices a small accumulation of particles close to the wall,
which is typical of self-propelled particles [49]. Then the
system shows the same type of traveling bands as with periodic
boundary conditions, with a macroscopic phase separation
between a liquid domain and a gaseous disordered background
(see Fig. 21, top). When the liquid domain reaches a boundary,
it accumulates close to the wall until its magnetization flips
and crosses back the system in the other direction. This leads
to the bouncing wave shown on Fig. 21 (bottom), which
is reminiscent of what is observed experimentally for the
collective motion of colloidal rollers (see the supplemental
movies of Ref. [9]).

B. Off-lattice version

To show that the phenomenology of the AIM does not rely
on the spatial discreteness of this lattice gas, we devised an
off-lattice version of our model. To do so, we consider N
particles in a continuous space of size L, x L,. Each particle
carries a spin £1, which flips at rate

1

W(s — —s) = exp (—ﬂ%) (53)
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FIG. 22. (Color online) Phase diagram and phase-separated pro-
files for the off-lattice model showing the same behavior as the lattice
model. Parameters: D = 1, v = 1, and = 1.6 for the profiles.

where the local density p; and magnetization m; are computed
in disks of radius 1.

The position of the particle evolves according to the
Langevin equation

i = s;vex + /2D, (54)

where rj and s; are the position and spin of particle i and 7 is
a Gaussian white noise of unit variance.

The phenomenology of this model is very similar to that
of the AIM; its phase diagram in the temperature-density
ensemble shows the same three regions, with an asymptote
at B =1 as p — oo (Fig. 22, left). As in the lattice model,
only the liquid fraction changes when py is increased at fixed
temperature as shown in Fig. 22 (right).

VII. DISCUSSION AND OUTLOOK

In this paper we have characterized in detail the transition
to collective motion in the 2D active Ising model. For any
temperature 7 < 1 and self-propulsion velocity v > 0, there
is a finite-density range for which the system phase-separates
into a polar liquid and a disordered gas. The densities at
coexistence do not depend on T or v so changing the average
density only changes the liquid fraction. This is one of the
many characteristics shared by the flocking transition of
the AIM with the equilibrium liquid-gas transition in the
canonical ensemble. Others include metastability, hysteresis,
and the existence of critical nuclei. More generally, this
analogy suggests that the flocking transition should be seen
as a phase-separation transition rather than an order-disorder
transition. The fact that the liquid phase is ordered, however,
plays a major role by forbidding a supercritical region, which
explains the atypical shape of the phase diagram.

To construct a continuous theory for our model we first
noticed that one needs to go beyond a standard mean-field
approach. The latter indeed fails to capture the phase separation
behavior because it lacks a density dependence of the transition
temperature. Retaining part of the fluctuations neglected at the
mean-field level then allowed us to derive a refined-mean-field
model which accounts for the behavior of the microscopic
model qualitatively for all parameter values.

The analytical solution for the phase-separated profile that
we derived in Sec. V is only one of a two-parameter family
of solutions, as shown in Ref. [23]. Although it is the sole
propagating solution accounting for phase separation, the
mechanism by which it is selected remains to be investigated.
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This is particularly interesting since, as shown in Ref. [14],
most of the picture laid out for the AIM remains valid for
the Vicsek model, apart from the shape of the bands in the
phase-separated region. The full phase separation of the AIM
is then replaced by a microphase separation, something which
cannot be explained at the hydrodynamic level and requires
explicit noise terms.

Beyond the sole case of the AIM, we showed that our
results are also valid off lattice. We can thus consider the AIM
as a representative example of a flocking model with discrete
rotational symmetry. Variants with alignment between nearest
neighbors, and not simply on site, also yield similar results.

Our study of the AIM relies on numerical simulations,
microscopic derivation, and study of hydrodynamic equations.
It says little about the universality of the emerging properties of
the active Ising model and we strongly believe that developing
proper field theoretical approaches of the AIM and more
general active spin models could shed light on a number of
interesting questions. For instance, is the ¢ = 0 limit of the
AIM in the universality class of model C [50], which couples
a conserved diffusive field and a nonconserved ¢* theory?
Then can one study the divergence of the correlation length
of the AIM when approaching the 7 = 1 and v = 0O critical
points? What are the corresponding universality classes? These
questions will be addressed in future works.

Last, the analogy of the phase transition in the AIM with
an equilibrium liquid-gas transition triggers new questions.
For example, could we define a mapping, at some level, with
an equilibrium system? And would it be possible to change
ensemble in this nonequilibrium system and, for example,
design a grand-canonical ensemble? These questions, if an-
swered, would certainly improve our theoretical understanding
of active matter systems.
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APPENDIX A: ONE STEP BEYOND MEAN FIELD

As shown in Sec. IV A, the mean-field equations, which
neglect all fluctuations and correlations, fail to describe the
active Ising model since they predict a continuous phase
transition between homogeneous phases. In this Appendix we
show how one can improve the mean-field approximation.
To do so, we take into account the fluctuations of the local
magnetizations and densities when computing the dynamics
of their first moments (m) and (p).

1. Gaussian fluctuations

The simplest assumption that can be made about the
fluctuations of m(x) and p(x) around their mean values,
(m(x)) and {p(x)), is that they are Gaussian. For m(x), this
can be seen as resulting from a central limit theorem: In a
first approximation, the magnetization is the sum of many
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FIG. 23. (Color online) Rescaled probability distributions of lo-
cal density (left) and magnetization (right) in the liquid phase at
B = 1.1 for different densities. N'(0,1) is the Gaussian distribution
with zero mean and unit variance. D = 1, ¢ = 0.9, L = 100.

spins fluctuating independently and, indeed, Fig. 23 shows
its fluctuations to be well described by a Gaussian. On the
contrary, the distribution of the local density is not perfectly
Gaussian, as shown in Fig. 23. A better approximation could
be obtained by considering a Poisson distribution but, as will
be apparent in the following, the first correction to mean field
comes from the fluctuations of m so this would not improve our
approximation. Furthermore we believe that, to improve our
refined mean-field model, the next step should be to include
the correlations between p and m, which we neglect in the
following, and not higher cumulants of the distributions of p
and m.

More formally, the probability to observe a magnetization
m and a density p at time ¢ and position x given initial profiles
po(x) and mo(x) are assumed to be given by

P(p.m.x.t | po.mo) = N(p — p.o))N(m —m.a,), (Al)

where N(x,0?) = e/’ /~/2mo? is the normal distribution
and p(x,t) and m(x,t) are the average value of the density and
magnetization fields.

We further assume that the variances of the Gaussian distri-
butions scales linearly with the local density: 02 = a,, p(x,t)
and a/f = o, p(x,t). Again, the underlying assumption is that
the fluctuations of the fields p(x) and m(x) arise from the sum
of p independent contributions. As shown in Fig. 24 this is a
rather good approximation in the gas phase, close to the critical
pointat 8 =1, p = oo.
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FIG. 24. (Color online) Variance of the distribution of local
density (left) and magnetization (right) in the gas phase compared
to a linear scaling. D =1, ¢ = 0.9, L = 100.
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2. Corrections to mean field

In deriving hydrodynamic equations from Eqgs. (18)
and (19), the only terms that have to be approximated are
the nonlinear contributions of the aligning interactions:

'3 2k+1
I = <2p sinh — — 2m cosh —> E ar———
I

(A2)
where

2k+1 2k
ak=2[’3—— A } (A3)

Qk+ D! (2k)!

Using the assumption (A1), we can compute / as a sum of
Gaussian integrals which can all be evaluated by saddle-point
approximation in the limit of large p. We first notice that, since
we neglect the correlations between p and m,

m2k+1
<—> = (m* 1) (1/p*). (A4)

,02k

To compute (m?+1)

SO
+00
(m2k+1> — f dm

400
:/ dut (u + )N o ).

o]

, we first change variables to u = m — m

m* N (m — 1m0 p)
(A5)

We then expand in powers of u and compute the corresponding
Gaussian integrals:

2k+1

+00
(m2k+l) — / du Z <2k + 1) i _2k+] IN(M amp)
- i=0
k .
Z <2k + 1) F(]\‘/F;/z)(zamﬁ)jm%ﬂzj_

j=0
(A6)

—2k>

Let us now evaluate the terms (o First, the integral

+00
(07%) = /0 dp p™*N(p — p.a,p) (A7)

is divergent because of the p = 0 lower limit. This is a simple
discretization problem which can be bypassed by introducing
a cutoff ¢ at small density. For large p, the integrals will be
dominated by large values of p so this cutoff does not play any
role in the following. Changing variable tos = (o — p)/p, we
find

,55 —2k +00

V2ra,

This integral can now be approximated by an asymptotic
saddle-point expansion. In the limit of large p, the integral is
dominated by s = 0. The lower limit of the integral £ — 1 =

(k) = ds (1 + sy ke "

(A8)

PHYSICAL REVIEW E 92, 042119 (2015)

—1 can thus be extended to —oo harmlessly and one can expand
(1 + 5)7% to get the asymptotic expansion
_2k 2N

1
72/{ 02 2k+l—1>/ i ,ﬁi
ds (— >ap
(o T%E ( s

4 0(15 —2N—2k—1/2)‘

(A9)

All the odd contributions vanish by symmetry. Changing
variable t0 @ = ps?/(2a,), one recognizes the integral form
of a I" function and, finally,

M 2k 425 —1\T(j+3)
—2k — 2] ]—*] 2k
e ;( 2j > N
+O(p HNY), (A10)

Putting everything together, we obtain

o k N 1 +2k=2i 1
I'= ZZ [akbi'kcjak PR +0<151+N+2k—i>i|’
k=0 i=0 j=0
(A11)
where
2k + 1\ 2T +1/2)
bi.k=< * )Mafw (A12)
2i JT
2k +2j —1\2/T(j +1/2
Cj,k=< T )—(J+ /D1 (A13)
2j JT

Keeping only the dominant terms and reordering the sum in
increasing powers of m yields

(o) l+2i’l N N-— lan+l ln-ch . 1
1:2 Yoy e 7 +O<'51+N>
n=0 i=0 j=0
(A14)
Expanding up to m> and 1/52, we finally obtain
=3
1:2(,9—1—5—%>m—am_—2, (A15)
pop p
where
o=—a = ﬂ2(1 - g) (A16)
b 3aa,,
= _@buicor  Saan (A17)
2 2
_2g2 B* 2
ry =3B°(B — 3ama, + Z(ﬂ ) (A18)

In practice, we take r, = 0 in the RMFM since the first-order
correction r/p suffices to account for the phenomenology of
the AIM. Expanding (A14) to higher orders is not sufficient to
get a quantitative agreement between microscopic simulations
and our refined mean-field model, probably because the most
important correction to (A15) would involve correlations
between m and p. As we show in Sec. IV, however, this first
correction to mean field is sufficient to capture the physics of
the model.
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APPENDIX B: LINEAR STABILITY ANALYSIS

The mean-field and refined mean-field equations read

p=DAp —voym, B1)
m3
m=DAm —vip +2mpu —a—, (B2)
o

where 4 = — 1 —r/p and r = 0 for the mean-field equa-
tions. These equations admit three steady homogeneous
solutions p(x,t) = pg, m(x,t) = mo: A disordered solution
with mo = 0 that exists for all py and B, and two ordered

solutions
21
mo = £pp ? (B3)

that exist only when & > 0.

1. Stability of the disordered profile

Let us consider a small perturbation around the disordered
profile, m(r,t) = ém(r,t), p(r,t) = po + Sp(r,t). Going into
Fourier space,

ép = / dx / dy 8p(q,t)e @< +a), (B4)
—00 —00

and linearizing Eqgs. (B1) and (B2), one finds

8p —Diq|? —igyv 8p
()= (e e
om —igxv  —Dlq|”+ 2 ) \ém
where we noted o = (8 — 1 — r/po). The eigenvalues of the
2 x 2 matrix are

he=—=D(q} +q;) + mo £ \/u —vq2  (BO)

The profile is linearly unstable if one of these eigenvalues
has a positive real part. Clearly, the sign of w( controls the
stability: the disordered profile is unstable to long-wavelength
perturbations when 8 > land pg > ¢; = r/(B — 1) and stable
otherwise. This gives the first spinodal line ¢, in Fig. 16.

2. Stability of the ordered profile

Linearizing the dynamics of a small perturbation around the
ordered profile m(r,t) = mgy + dm(r,t), p(r,t) = py + Sp(r,t)
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FIG. 25. (Color online) Real part of the largest eigenvalue A
related to the stability of the ordered profile m = m, of Eq. (BS)
for =15, D=r =v =1, and g, = 0. Ordered profiles exist for
all py > ¢, = 2 but are unstable for ¢, < py < ¢, (red, green, and
yellow curves) and stable only for py > ¢, (blue curve). For the
parameters considered here ¢, = 2.598.

gives
at<ap> :[ —Dlq? —igyv kw)’
Sm —igv + ';Lé’(i—g +4po) —Dlgl* — 4uo|\sm
B7)
and the eigenvalues now read
A =—D(q; +4q;) — 210
i\/4u3 Y 2iquxv(;2+ 2#0,00)' (B8)
0

Equation (B8) shows ¢, to have a purely stabilizing effect.
Taking g, = 0 thus does not affect the conclusions about the
stability of the system. Computing numerically Re(Ay) we
observe (Fig. 25) that for small but positive g, Re(A+) > 0
at long wavelength. The value of w( at which the system
becomes stable can be determined analytically as the point
where 83xRe(ki)(qx = 0) changes sign (the first derivative
being zero at g, = 0). This yields the second spinodal line
shown in Fig. 16,

vy/a[vic +8D(B — 1)2] + v’k + 8Da(p — 1)
202k + 8Da(B — 1)

P = Qg s

(B9)
where k =2 +a — 28.
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