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Pressure is not a state function for generic
active fluids
A. P. Solon1*, Y. Fily2, A. Baskaran2, M. E. Cates3, Y. Kafri4, M. Kardar5 and J. Tailleur1

Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it
depends only on bulk properties—such as density and temperature—through an equation of state. Here we show that
in a wide class of active systems the pressure depends on the precise interactions between the active particles and the
confining walls. In general, therefore, active fluids have no equation of state. Their mechanical pressure exhibits anomalous
properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of
state, however, in some specific and well-studied active models that tacitly restrict the character of the particle–wall and/or
particle–particle interactions.

For fluids in thermal equilibrium, the concept of pressure, P ,
is familiar as the force per unit area exerted by the fluid on
its containing vessel. This primary, mechanical definition of

pressure seems to require knowledge of the interactions between
the fluid’s constituent particles and its confining walls. But we
learn from statistical mechanics that P can also be expressed
thermodynamically, as the derivative of a free energy with respect
to volume. The pressure therefore obeys an equation of state, which
involves only bulk properties of the fluid (temperature T , number
density ρ, and so on). Hydrodynamics provides a third definition
of P , as the trace of the bulk thermodynamic stress tensor, whose
microscopic definition in terms of momentum fluxes is again well
known1. In thermal equilibrium, all these definitions of pressure
coincide. The corresponding physical insight is that the fluid may
be divided into blocks that are in mechanical equilibrium with each
other and with any confining walls, so bulk and wall-based pressure
definitions must agree.

Purely thermodynamic concepts, such as temperature, are well
known to be ill defined in systems far from equilibrium2. However,
one could hope thatmechanical properties, such as pressure, are less
problematic. Here we investigate this question for active fluids, in
which energy dissipation at the microscopic level drives the motion
of each particle to give strong non-equilibrium effects3. Assemblies
of self-propelled particles (SPPs) have been proposed as simplified
models for systems ranging from bacteria4,5 and active colloidal
‘surfers’6–8, to shaken grains9–11 and bird flocks12. We define the
mechanical pressure P of an active fluid as the mean force per
area exerted by its constituent particles on a confining wall. This
was studied numerically for a number of active systems, showing
some surprising effects for finite-size, strongly confined fluids13–19.
Alternatively, when describing the dynamics of such active fluids
at larger scales, some authors have introduced a bulk stress tensor
and defined pressure as its trace3,17–19, leading to recent experimental
measurements20. As we are far from equilibrium, an equivalence
between these different definitions, as seen numerically in refs 13,
17,18, requires explanation.

In this article, we show analytically and numerically that the
pressure P exerted on a wall by generic active fluids depends

directly on the microscopic interactions between the fluid and the
wall. Unless these interactions, as well as the interactions between
the fluid particles, obey strict and exceptional criteria, there is no
equation of state relating the mechanical pressure to bulk properties
of the fluid. Therefore, all connections to thermodynamics and to
the bulk stress tensor are lost. Nevertheless, we provide analytical
formulae to compute the wall-dependent pressure for some of
the most-studied classes of active systems. Exceptional models
for which an equation of state is recovered include the strictly
spherical SPPs considered in refs 13,17,18. Below we find that
such simplified models are structurally unstable: small orientation-
dependent interactions (whether wall–particle or particle–particle)
immediately destroy the equation of state. Such interactions are
present in every experimental system we know of.

A clear distinction exists between the present work and that of
ref. 21. The latter includes an explicit proof that pressure is, after all,
well defined within a narrow class of models: spherical SPPs with
torque-free wall interactions and torque-free pairwise interparticle
forces. Because this class has been a major focus of theory and
simulation studies, that finding is important, creating in those cases
a direct link between pressure and correlation functions that can be
exploited in future theoretical advances. However, in general terms
it is even more important to know that an equation of state for
the pressure is the exception, rather than the rule, in active matter
systems. This we establish here.

To appreciate the remarkable consequences of the generic
absence of an equation of state, consider the quasi-static
compression of an active fluid by a piston. As the mechanical
pressure depends on the piston, compressing with a very soft wall—
into which particles bump gently—or with a very hard wall requires
different forces and hence different amounts of work to reach the
same final density. This is not the only way our thermodynamic
intuition can fail for active systems.We will show both that pressure
can be anisotropic, and that active particles admit flux-free steady
states in which the pressure is inhomogeneous. Finally, in the
models we consider (which best describe, for example, crawling
bacteria4 or colloidal surfers or rollers near a supporting surface22,23)
there are situations in which the confinement forces at the edges
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Figure 1 | Non-interacting self-propelled ellipses. a, Normalized pressure as the particle anisotropy κ and the wall sti�ness λ are varied for ABPs and RTPs.
The theoretical prediction for ABPs corresponds to equation (5). b, Density profiles for spherical ABPs for four di�erent wall sti�ness values, all yielding a
pressure equal to ρkTe�. The solid lines are Boltzmann distributions at kTe�, showing that the pressure is given by the e�ective temperature far outside the
Boltzmann regime λ�Dr . v= 1,Dt=0,Dr= 1 for ABPs and α= 1 for RTPs, with box size Lx×Ly= 10× 1.

of a sample do not sum to zero. We show how this unbalanced
force is compensated by momentum transfer to the support. The
issue of whether an equation of state exists in so-called ‘wet’
active matter3—in which full momentum conservation applies
throughout the interior of the system—remains open.

Non-interacting particles
We consider a standard class of models for SPPs in which the
independent Brownian motion of each particle (diffusivity Dt ) is
supplemented by self-propulsion at speed v in direction u,

dr
dt
=vu+

√
2Dt η(t) (1)

with η(t) a Gaussian white noise of unit variance. The reorientation
of the direction of motion u then occurs with a system-specific
mechanism: active Brownian particles (ABPs) undergo rotational
diffusion, whereas run-and-tumble particles (RTPs) randomly
undergo complete reorientations (‘tumbles’) at a certain rate.
These well-established models have been used5,7,24–28 to describe
respectively active colloids6,8,22,23, or bacterial motion4,28 and cell
migration29. Such models neglect any coupling to a momentum-
conserving solvent, and are thus best suited to describe particles
whose locomotion exploits the presence of a gel matrix or
supporting surface as a momentum sink. This is true of many active
systems, such as crawling cells30, vibrated disks or grains9–11, and
colloidal rollers23 or sliders22.

We address a system of SPPs with spatial coordinates r= (x , y)
in two dimensions; we assume periodic boundary conditions, and
hence translational invariance, in the ŷ direction. The system is
confined along x̂ by two walls at specified positions, which exert
forces −∇V (x) on particles at x ; these forces have finite range and
thus vanish in the bulk of the system. The propulsion direction of a
particle is u= (cosθ , sinθ), with θ=0 along the x̂ direction. In the
absence of interactions between the particles, the master equation
for the probabilityP(r,θ , t) of finding a particle at position r at time
t pointing along the θ direction reads

∂tP = −∇ ·[(v−µt∇V (x))P−Dt∇P]

−∂θ [µrΓ (x ,θ)P−Dr∂θP]−αP+
α

2π

∫
P dθ ′ (2)

Here µt and Dt are the translational mobility and diffusivity;
likewiseµr andDr for rotations. The propulsive velocity is v=vu(θ),

and α is the tumble rate. ABPs correspond to α = 0 and RTPs
to Dr=0. Here we allow all intermediate combinations, to test
the generality of our results. In addition to the external force
−∇V (x), we include an external torque Γ (x , θ), which may, for
example, describe the well-documented alignment of bacteria along
walls31. Generically, just as in passive fluids, a wall-torque will
arise whenever the particles are not spherical, and its absence
is thus strictly exceptional. Obviously, the asphericity of (say)
water molecules does not violate the thermodynamical precepts of
pressure; remarkably, we show below that, for active particles, it
does so.

As our set-up is invariant along the ŷ direction, the mechanical
pressure can be computed directly from the force exerted by the
system on a wall (which we place at x=xw�0), as

P=
∫
∞

0
ρ(x)∂xV (x)dx (3)

Here an origin x=0 is taken in the bulk, and ρ(x)=
∫ 2π
0 P(x ,θ)dθ

is the steady-state density of particles at x . As stated previously,
for a passive equilibrium system (v= 0) with the same geometry,
the mechanical definition (3) of pressure is equivalent to the
thermodynamic definition, as proved for completeness in the
Supplementary Information. Note that equation (3) still applies in
the presence of other particles, such as solvent molecules, so long
as those particles do not themselves exert any direct force on the
wall (which is thus semipermeable). Under such conditions P is, by
definition, an osmotic pressure; the results below will still apply to
it, whenever equation (2) remains valid.

As described in the Supplementary Information, the pressure can
be computed analytically from equation (2) as:

P =
[

v2

2µt(Dr+α)
+

Dt

µt

]
ρ0

−
vµr

µt(Dr+α)

∫
∞

0
dx
∫ 2π

0
Γ (x ,θ) sinθ P(x ,θ)dθ (4)

This is a central result, and exact for all systems obeying equation (2).
Clearly,Γ (x ,θ) in general depends on thewall–particle interactions,
as does P(x ,θ), which is sensitive to both Γ (x ,θ) and V (x). Thus
the mechanical pressure P obeying equation (4) is likewise sensitive
to these details: it follows that no equation of state exists for active
particle systems in the general case.
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Figure 2 | Interacting self-propelled spheres. a–c, Pressure versus density P(ρ0) for interacting particles (Lx×Ly=200×50). a, Aligning ABPs. The torque
exerted by particle j on particle i is F(θj−θi,ri,rj)= (γ /N (ri)) sin(θj−θi) if |rj−ri|<R and 0 otherwise, where N (ri) is the number of particles interacting
with particle i. v= 1, Dr= 1, Dt=0, R= 1 and γ =2. b, ‘Quorum sensing’ interactions v(ρ̄)=v0(1− ρ̄/ρm)+v1 with v0= 10, v1= 1, ρm=5, Dr=Dt= 1. c, The
pressure of particles interacting with repulsive WCA potentials is independent of the wall potential. Triangles and circles represent RTPs and ABPs,
respectively, with v= 10, Dr= 1, α= 1 and Dt=0. Open and filled symbols correspond to linear and harmonic wall potentials, respectively. (See
Supplementary Information for numerical details.)

To illustrate this effect and show that (4) can indeed be used to
compute the pressure, we study amodel of ABPswith elliptical shape
(see Supplementary Information for details).We choose a harmonic
confining potential, V (x)= (λ/2)(x− xw)2 for x> xw , with V = 0
otherwise, accompanied by a torque Γ =λκ sin2θ (again, for x>xw
and zero otherwise). With κ = (a2 − b2)/8, this is the torque felt
by an elliptical particle of axial dimensions a,b and unit area πab,
subject to the linear force field−∇V (x) distributed across its body.
Assuming the steady-state distribution P(x , θ) to relax to its bulk
value outside the range of the wall potential, P(xw , θ)=ρ0/2π, the
pressure in such an ABP fluid (for Dt=0) is given by

P=
ρ0v2

2λµtµrκ

[
1−exp

(
−
λµrκ

Dr

)]
(5)

For κ > 0, the torque reduces the pressure by orienting the ABPs
parallel to the wall. Equation (5) shows explicitly how walls with
different spring constants λ experience different pressures, in sharp
contrast with thermodynamics.We checked this prediction by direct
numerical simulations of ABPs and found good agreement (see
Fig. 1). We also found similar behaviour numerically for (likewise
elliptical) RTPs, confirming that the failure of thermodynamics
is generic.

For passive particles in thermal equilibrium, v = 0 and
equation (4) reduces to the ideal gas law, P=ρ0kBT , on use of the
Einstein relation (Dt/µt = kBT ). Another case where an equation
of state is recovered is for torque-free (for example, spherical)
particles, with Γ =0. In that case equation (4) reduces to the same
ideal gas law, but with an effective temperature

P
ρ0
=kBTeff=

v2

2µt(Dr+α)
+

Dt

µt
(6)

This explains why previous numerical studies of torque-free,
non-interacting active particle fluids gave consistent pressure
measurements between impenetrable14,15 or harmonically soft
walls13. Related expressions for the pressure of such fluids were
found by computing the mean kinetic energy13, or the stress
tensor17–19, possibly encouraging a belief that all reasonable
definitions of pressure in active systems are equivalent. However,
equation (4) shows that these approaches cannot yield consistent
results beyond the simplest, torque-free case.

The ‘effective gas law’ of equation (6) for the torque-free case
is itself remarkable. For ABPs or RTPs in an external potential
V (x), the effective temperature concept predicts a steady-state
density ρ(x)∝ exp[−V (x)/kBTeff] that is accurate only for weak
force fields32,33. Yet equation (6) holds even with hard-core walls,
for which the opposite applies and the steady-state density profile

is far from a Boltzmann distribution (see the simulation results of
Fig. 1 and the analytical results for one-dimensional RTPs in the
Supplementary Information). In fact the result stems directly from
the exact computation of

∫
∞

0 ρ(x)∂xV (x)dx , which can be done at
the level of the master equation and leads to equation (4), so that no
broader validity of the Teff concept is required, or implied.

Interacting active particles
Equation (4) gives the pressure of non-interacting active particles
and we now address the extent to which our conclusions apply to
interacting SPPs. Clearly, interactions will not restore the existence
of an equation of state in the presence of wall torques, and we thus
focus on ‘torque-free’ walls.

Interparticle alignment is probably the most-studied interaction
in active matter3. To measure its impact on pressure, we consider
N ABPs whose positions ri and orientations θi evolve according
to (1) and

dθi
dt
=µr

N∑
j=1

F(θj−θi,ri,rj)+
√
2Drξi(t) (7)

where F is an aligning torque between the particles. As shown
in the Supplementary Information, the pressure can be computed
analytically to give

P =
[

v2

2µtDr
+

Dt

µt

]
ρ0−

vµr

µtDr

∫
∞

0
dx
∫
∞

−∞

dy
∫ 2π

0
dθ

×

∫
dr′
∫ 2π

0
dθ ′F(θ ′−θ ,r,r′) sinθ〈P(r,θ)P(r′,θ ′)〉 (8)

where the integral over r′ is over the whole space. As the distribution
P(r, θ)=

∑N
i=1 δ(r− ri)δ(θ − θi) depends (for x > 0) on the wall

potential, so does the pressure. Therefore, even in the absence of
wall torques, alignment interactions between particles destroy any
equation of state. Simulation results of ABPs evolving according to
equations (1) and (7) are shown in Fig. 2a, with a particular choice
of interparticle torque F : the measured pressure indeed depends on
the wall potential and agrees with equation (8).

In active matter, more general interactions than pairwise torques
often have to be considered. For example, in bacteria with ‘quorum
sensing’ (a form of chemical communication), particles at position
r can adapt their dynamics in response to changes in the local
coarse-grained particle density ρ̄(r) (ref. 34). Also shown in Fig. 2b
are simulations for the case v(ρ̄)= v0(1− ρ̄/ρm)+ v1, reflecting
a pairwise speed reduction (see Supplementary Information for
details). This is an example where even completely torque-free
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Non-interacting spherical ABPs Non-interacting elliptical ABPs

ABPs interacting via WCA potential ABPs interacting via v( ¯)ρ

Figure 3 | Simple test for the existence of an equation of state. Four snapshots of the steady state of 10,000 ABPs in a 200×50 cavity split in two by a
mobile asymmetric harmonic wall (λ= 1 on the left and λ=4 on the right, v= 10, Dr= 1, Dt=0) for: non-interacting spherical ABPs (top left),
non-interacting elliptical ABPs with µr=κ= 1 (top right), ABPs interacting via the WCA potential (bottom left) and via v(ρ̄) (bottom right) with v0= 10,
v1= 1, ρm=4.8. A spontaneous compression of the right half of the system is the signature of the lack of an equation of state.

particles have no equation of state. Again, we show in the
Supplementary Information howan explicit formula for the pressure
can be computed from first principles.

The case of torque-free ABPs with short-range repulsive
interactions24,25,35,36 was recently considered in refs 17,18. The
mechanical force exerted on a wall was found to coincide with
a pressure computed from the bulk stress tensor, suggesting
that in this case an equation of state does exist. To check
this, we choose a Weeks–Chandler–Andersen (WCA) potential:
U (r)=4

[
(σ/r)12−(σ/r)6

]
+1 if r < 21/6σ and U = 0 otherwise,

where r is the interparticle distance and σ the particle diameter.
Using simulations we determined P as a function of bulk density ρ0
for various harmonic and linear wall potentials. As shown in Fig. 2c,
all our data collapse onto awall-independent equation of stateP(ρ0).
An analytical expression for P(ρ) in this rather exceptional case is
derived and studied in ref. 21 in the context of phase equilibria.

The cases explored above show that there is generically no
equation of state in an active fluid, one exception being when wall–
particle and particle–particle torques are both negligible and the
self-propulsion speed is constant. Given this outcome, a simple test
for the presence or absence of an equation of state, in simulations
or experiments, would be welcome. If the pressure is set by bulk
properties of the fluid, when an asymmetrically interacting partition
is used to separate the system into two parts, no force acts on the
partition and it does not move. Conversely, if the partition does
move, there is no equation of state. To check this, we simulated
a large box of homogeneous active fluid, introduced at its centre
a mobile wall with asymmetric potentials on its two sides, and let
the system reach steady state. In the cases shown above to have an
equation of state, the wall remains at the centre of the box so that
the densities on its two sides stay equal. In the other cases, however,
the partition moves to equalize the two wall-dependent pressures,
resulting in a flux-free steady state with unequal densities in the two
chambers (Fig. 3).

Anomalous attributes of the pressure
A defining property of equilibrium fluids is that they cannot
statically support an anisotropic stress. Put differently, the normal
force per unit area on any part of the boundary is independent
of its orientation. This applies even to oriented fluids (without
positional order), such as nematic liquid crystals37, but breaks down
for active nematics3.

We next show that it can also break down for active fluids with
isotropic particle orientations, as long as the propulsion speed is
anisotropic, that is, v= v(θ). This could stem from an anisotropic
mobility µt(θ), as might arise for cells crawling on a corrugated
surface. We suppose v(θ)= v(θ + π) so that oppositely oriented
particles have the same speed; equation (2) then shows that the
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Figure 4 | Anisotropic pressure. RTPs with anisotropic speed
v(θ)=v0+v1 cos(2θ), with v0= 10, v1= 1, Dt=0. The pressure depends on
the angle, φ, between the wall and the axis ŷ, but not on the sti�ness of
the potential.

bulk steady-state particle distribution P(r, θ) remains isotropic.
In addition, as shown in Supplementary Information, the pressure
P(φ) acting on a wall whose normal is at angle φ to the x̂ axis
remains independent of the wall interactions, but is φ-dependent;
for RTPs (Dr=0) it obeys

P(φ)=
ρ0Dt

µt
+

ρ0

2πµtα

∫ 2π

0
v2(θ)cos2(θ−φ)dθ (9)

To verify that the pressure is indeed anisotropic we performed
numerical simulations for v(θ)=v0+v1 cos(2θ)which show perfect
agreement with equation (9) (see Fig. 4).

For passive fluids without external forces, mechanical equilib-
rium requires that the pressure is not only isotropic, but also uni-
form. This follows from the Navier–Stokes equation for momentum
transport37, but also holds in (say) Brownian dynamics simulations
which do not conserve momentum1.

We now show that P need not be uniform in active fluids, even
when an equation of state exists. Consider non-interacting spherical
ABPs in a closed container with different propulsion speeds in
different regions, say v=v1 for x<0 and v=v2 for x>0. This is a
realizable laboratory experiment in active colloidswhose propulsion
is light-induced8,22. From equation (2), the flux-free steady state
has ρ ∝ 1/v throughout26,27,38, so that the pressures P1,2 ∝ ρv2 are
unequal. Although different, the pressures in the two compartments
are well defined, uniform within each bulk, and independent of the
wall–particle interactions. They remain different when interparticle
interactions are added (see Fig. 5). Indeed, if for v1 6=v2 equality of
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Figure 5 | Inhomogeneous pressure. Spherical ABPs interacting with a WCA potential, with speeds v1 for x<0 and v2 for x>0. a, Snapshot of the cavity in
steady state (v1= 1, v2=5). b, Pressures P1 and P2 as v2/v1 is varied. c, As v2/v1 varies, the densities evolve to equalize ρv rather than P∼ρv2. Dr= 1, Dt=0,
λ= 1, Lx×Ly=200×50.

the ideal pressure is restored by setting Dr ∝ v, the effect of such
interactions is to reinstate a pressure imbalance. Non-uniformity of
P is thus fully generic for non-uniform v.

The above example implies a remarkable result, that also
holds for systems with no equation of state enclosed by spatially
heterogeneous walls. In both cases the net force acting across
the system boundary is generically non-zero. Were momentum
conserved, this would require the system as a whole to be
accelerating. Recall, however, that equation (2) describes particles
moving on, or through, amedium that absorbsmomentum, and this
net force is exactly cancelled by the momentum exchange with the
support. The latter vanishes on average in the isotropic bulk, but is
non-zero in a layer of finite polarization (m1 6=0) close to each wall.

Discussion
Our work shows that in active fluids the concept of pressure defies
many suppositions based on concepts from thermal equilibrium.
The generic absence of an equation of state is the most striking
instance of this. Despite its absence, we have shown how to compute
the mechanical pressure for a large class of active particle systems.
Clearly, the concept of pressure is even more powerful in the
exceptional caseswhere an equation of state does exist. This excludes
any chemically mediated variation in propulsion speed, and also
requireswall–particle and interparticle torques both to be negligible.
Because it can easily be achieved on a computer, although not
in a laboratory, the torque-free case of spherical active Brownian
particles without bulkmomentum conservation has played a pivotal
role in recent theoretical studies of active matter13,17,18. The proof21
that an equation of state does exist for this system is all the more
remarkable because, as we have seen, such an outcome is the
exception and not the rule.

It is interesting to inquire how our results would change
for systems with full momentum conservation in the bulk. As
mentioned previously, if equation (2) still applies, our exact results
for P remain valid so long as this is taken as an osmotic pressure.
For dilute systems equation (2) should indeed hold in bulk, even
though particles now propel by exerting force multipoles on the

surrounding solvent. (As the walls of the system are semipermeable,
the solvent can carry momentum across them, and effectively
becomes a momentum sink for the active particles.) However, even
for spherical swimmers, hydrodynamic interactions can now cause
torques, both between the particles and near the wall39, making an
equation of state less likely. Its absencewould thenmanifest as a non-
zero net force on a semipermeable partition between two identical
samples of (say) a swimming bacterial fluid.Wepredict this outcome
whenever the two faces of the partition have different interactions
with the swimming particles.
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