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Abstract
Motility-induced phase separation leads to cohesive activematter in the absence of cohesive forces.
We present, extend and illustrate a recent generalized thermodynamic formalismwhich accounts for
its binodal curve. Using this formalism,we identify both a generalized surface tension, that controls
finite-size corrections to coexisting densities, and generalized forces, that can be used to construct new
thermodynamic ensembles. Our framework is based on a non-equilibrium generalization of the
Cahn–Hilliard equation andwe discuss its application to active particles interacting either via
quorum-sensing interactions or directly through pairwise forces.

One of themost surprising collective behaviors of active particles is probably the emergence of cohesive active
matter in the absence of cohesive forces [1–21]. The underlying linear instability leading tomotility-induced
phase separation (MIPS) is by nowwell understood [18]: active particles accumulate where theymovemore
slowly, while repulsive interactions or steric hindrance slow down active particles at high density. Active particles
thus tend to accumulate where they are already denser.MIPS has been studied extensively inmany idealized
minimalmodels [1–6, 8].Most experimental systems, on the other hand, are too slow or too dilute, so that only a
higher propensity to clustering has been reported inmost cases [7, 9], with some notable exceptions [22, 23].

While the aforementioned linear instability is well understood, and can be used to define a spinodal region,
what controls the coexisting densities resulting fromMIPS has been the topic of a long-standing debate.
Although the phase coexistence has beenmapped to an equilibriumone [1, 13, 24, 25], this constitutes an ad hoc
approximation that leaves out the non-equilibrium contributions specific toMIPS. These have been shown to
invalidate the equilibrium thermodynamic constructions [11, 17, 20] and thus affect the phase diagram.

Here we present, complete and extend a recent thermodynamic construction forMIPS [26] starting froma
non-equilibrium generalization of theCahn–Hilliard equation [27, 28] for whichwe are able to compute the
coexisting densities analytically. In particular, we extend our framework to define a generalized surface tension
and account forfinite-size corrections to coexisting densities. Furthermore, our formalism allows us to identify
the relevant thermodynamic state variables (or generalized forces)which can be used to build new
thermodynamic ensembles, as we illustrate here considering the isobaric ensemble. Themacroscopic approach
described in this article highlights the importance of interfacial contributions, which are essential to understand
the phase diagram, as opposed to the equilibrium case.Moreover, our framework should actually be useful
beyondMIPS and apply for a larger class of non-equilibrium systems exhibiting phase-separationwithout net
mass current in the steady state.

The structure of the paper is as follows. First, we consider in section 1 a phenomenological hydrodynamic
description of active systemswhose sole hydrodynamicmode is a diffusive conserved density field. For such
systems, we show that the steady state configurations—and in particular the phase-separated profiles—
correspond to the extrema of a generalized free energy functional whichwe can compute explicitly. As a result,
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the binodals are determined at this level from a common tangent construction on a generalized free energy
density. Furthermore, we showhowour formalismpredicts Laplace-pressure-like corrections to the coexisting
densities forfinite systems and define a corresponding generalized surface tension.

In section 2, we then considermodels inwhichMIPS arises from an explicit density-dependence of the
propulsion speed v(ρ) [1, 2, 10]. This can be thought of asmodeling theway bacteria and other cells adapt their
dynamics to the local densitymeasured through the concentration of signalingmolecules; we refer to such
particles as ‘quorum-sensing active particles’ (QSAPs).We also allow for anisotropic sensing of the local density
field inQSAPs, something that would be relevant for, e.g., visual cues rather than chemical ones.We showhow,
for suchmodels, we can construct a hydrodynamic description that fits within the framework of section 1. The
latter can then be used to predict quantitatively the phase diagramofQSAPs and itsfinite-size corrections.

In section 3we then turn to active particles with constant propulsion forces interacting via isotropic,
repulsive pairwise forces (pairwise force active particles, or PFAPs) [3–6]. For thesemodels, the slowdown
triggeringMIPS is due to collisions. Contrary toQSAPs, there is nomethod in the literature allowing tomap the
hydrodynamics of PFAPs onto the general framework of section 1.Nevertheless, we show that we can still
account for the phase equilibria of PFAPs following the ideas presented in section 1.

Finally, we show in section 4 how the generalized thermodynamic variables identified using our formalism
play the role of generalized forceswhen changing ensembles. In particular, we show that using an externally
imposedmechanical pressure, i.e., considering an isobaric ensemble, only leads to aGibbs phase rulewhen
mechanical and generalized pressures coincide.

1. Phase equilibria of a phenomenological hydrodynamic description ofMIPS

1.1. General framework
Weconsider a continuumdescription of non-aligning active particles with isotropic interactions. The vectorial
degrees of freedom corresponding to the particle orientations are then fast degrees of freedom and do not enter a
hydrodynamic description. The sole hydrodynamic field is thus the conserved density r ( )tr, , obeying
r = -˙ · J. By symmetry, the current J vanishes in homogeneous phases. Its expansion in gradients of the
density involves only odd terms under space reversal. At third order, we use:

r r
r r r l r r k r r

=  
= + =  - D

˙ · ( [ ])
[ ] ( ) [ ] ( )( ) ( ) ( )

M g

g g g g

,

where . 10 1 1
2

Note that for generalκ(ρ) andλ(ρ), g[ρ] cannot bewritten as the derivative of a free energy. Equation (1) is
perhaps the simplest generalization of theCahn–Hilliard equation out of equilibrium and has been argued to be
relevant for the phase separation of active particles in the past [1, 6, 11, 26, 29]. For a non-constantM[ρ], it allows
for circulating currents with non-zero curls. A generic third order expansion

a r k r l r b r z r r=  - D +   +  + D ( ) [ ( ) ] ( )J 22 2

is formally equivalent to(1), at this order in the gradient expansion, using for instance
r r= + -  + + Db

a
l
a

z
a

k
a

¢ ¢( )( ) ( )M 1 2 and g0 such that ¢g
0
(ρ)=α(ρ), where the prime denotes a derivative

with respect to ρ. Such choices, however, can lead to a change of sign or a divergence ofM so that, inwhat
follows, we restrict ourselves to dynamics of the form(1)with positive definiteM. Such a restriction does not
matter when considering fully phase-separated profiles in themacroscopic limit butwas recently proved
important when describing curved interfaces [30]where generic currents of the form(2)may lead to a richer
phenomenology than that of equation (1).

The spinodal region of a phase-separating system can easily be predicted from equation (1). A homogeneous
profile of density ρ0 is indeed linearly unstable whenever ¢g

0(ρ0)<0 and the sign of ¢g
0(ρ0) hence defines the

spinodal region.

1.2.Warm-up exercise: the equilibrium limit
Before deriving the binodal curve predicted by equation (1) in itsmost general form, it is illuminating tofirst
review the corresponding equilibrium limit, i.e., the standardCahn–Hilliard equation [27, 28]which
corresponds to 2λ+κ′=0 [26]. In this case, the dynamics(1) corresponds to a steepest descent in a free
energy landscape  r[ ]:


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d
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g of equation (1) is then the chemical potential, defined as the functional derivative of  with respect to ρ:

d
dr

r r= = +
( )

( ) [ ] ( )g g g
r

, 40 1

where

r r r
k r

r k r r= ¢ = -
¢

 - D( ) ( ) [ ] ( ) ( ) ( ) ( )g f gand
2

. 50 1
2

The free energy functional  is extensive so that, in amacroscopic phase-separated system, the contribution of
the interfaces is sub-dominant. The term k r r( )( )1

2
2 in  can then be neglected and the phase equilibria can

be determined from the bulk free energy density f (ρ): the coexisting densities ρg and ρℓin the gas and liquid
phases are the onesminimizing the free energy under the constraint that the average density ρ0 isfixed. They are
obtained through a common tangent construction on f (ρ) or, equivalently, as the densities satisfying the
equalities of chemical potential r r m¢ = ¢ =( ) ( ) ¯ℓf fg and pressure r r= =( ) ( ) ¯ℓP P Pg , with the pressure P

defined asP(ρ)=ρ ¢f (ρ)− f (ρ). Alternatively, the coexisting densities can be constructed using aMaxwell
equal-area construction

ò n n- =
n

n
[ ( ) ¯] ( )

ℓ

P P d 0, 6
g

where ν≡1/ρ is the volume per particle, νg/ℓ≡1/ρg/ℓ. The two thermodynamic constructions are illustrated
infigure 1.

Note that, instead of relying on a free energy, the equality of pressures and chemical potentials between
coexisting phases can also be derived directly from the dynamics(1). First the vanishing of the flux J in
equation (1) immediately imposes a uniform chemical potential g, which is thus equal between coexisting
phases: g0(ρℓ)=g0(ρg). To derive the equality of pressures, we rewrite equation (1) as

sr
r

= - 
⎡
⎣⎢

⎤
⎦⎥˙ · · ( )M

, 7

where s is the stress tensor, whose expression inCartesian coordinates is

s d r
rk k
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Note that, similar to g, s is related to the free energy functional through [31]:


s d r

d
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r= - -
¶

¶ ¶
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b
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In fully phase-separated, flux-free steady states, one can get the equality of pressure between coexisting
homogeneous phases from equations (7) and (8). For finite systems, equation (7) can also be used to derive the
finite-size corrections to the binodals due to Laplace pressure [28].

1.3. Generalized thermodynamic variables
For generic functionsλ(ρ) andκ(ρ), which do not satisfy 2λ(ρ)+κ′(ρ)=0, the free energy structure breaks
downbecause the gradient terms in g cannot bewritten as a functional derivative:

Figure 1. Illustration of the thermodynamic constructions of coexisting densities. (a)Common tangent construction on the free
energy density f (ρ). (b)Maxwell equal-area construction on the pressure. In both panels, we used a double-well potential for
illustrative purposes.

3
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
r l r r k r r

d
dr

=  - D ¹[ ] ( )( ) ( ) ( )g . 101
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A common tangent construction on a free energy density defined through f′(ρ)=g0(ρ) then does not lead to the
correct coexisting densities [11, 26]. However, as we show below, g can bewritten as the functional derivative of a
generalized free energy  with respect to a non-trivial new variableR, which depends on the functional forms of
κ andλ. Although the dynamics(1) are a priori out of equilibrium, its steady states correspond to extrema of this
generalized free energy and, as we show below,we recover the full structure of the equilibrium case described
above.We nowderive thismapping and show in section 1.4 how it can be used to compute the binodals of
equation (1) exactly. Finally, we turn to their finite-size corrections in section 1.5.

To proceed, we consider the one-to-onemappingR(ρ) defined by

k l k¢¢ = - + ¢ ¢( ) ( )R R2 , 11

where the derivatives are takenwith respect to ρ. Direct inspection shows that g can nowbewritten as a
functional derivative with respect toR [26]:

d
d

= ( )g
R

12

with

 ò ò f
k

= º +
¢


⎡
⎣⎢
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R
Rr rd d

2
, 132

wherewe have defined a generalized free energy densityf(R) such that

ò
f

f r r r= = ¢
r
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R

g g R
d

d
or alternatively d . 140 0

The dynamics of ρ is nowwritten as the derivative of a generalized free energy functional:


r r

d
d

=  
⎡
⎣⎢

⎤
⎦⎥˙ · [ ] ( )M

R
. 15

Note, however, that the structure of(15)differs from the equilibrium case(4) since the functional derivative is
takenwith respect toR instead of ρ. Nevertheless, the steady state solutions of(15) correspond to extrema of 
with respect toR7.

Comparing equation (15) to the equilibrium case(3), we note that the former can be seen as driven by

gradients of a generalized chemical potential = d
d

g
R
. Similarly to the equilibrium case, we now show that the

dynamics(15) can also bewritten so as to appear driven by the divergence of a generalized stress tensor.
Specifically, the current J can be rewritten as

s= -  =  · ( )M g
M

R
J 16

with a tensor s reading inCartesian coordinates

s
k

r d k r r=- + -
¢
 - ¢ ¶ ¶ab ab a b
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, 170 1
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wherewe have defined8

f
f= - ( )h R

R

d

d
. 180

Once again, the generalized stress tensor can be deduced from the generalized free energy through


s d

d
d

= - -
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¶ ¶
¶ab ab

b
a

⎡
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( )G R
R

G

R
R. 19

In the following, we identify the diagonal coefficients of s, the normal stresses, with generalized (potentially
anisotropic) pressures. Again, we split h=−σxx into a local function and an interfacial contribution:

r r
k

r k r= + = -
¢
 + ¢ ¶( ) [ ] ( ) ( ) ( )h h h h Rg

R
Rwhere

2
. 20x0 1 1 1

2 2

Weemphasize here that s and hneed not have any connection tomechanics andmomentum transfer.

7
The dynamics ofR itself can be easily deduced as = ¢  d

d
˙ · [ ]R R M

R
. Note that, in particular,R is not a conserved quantity.

8
Alternatively, h0 can be obtained through ò r r r= ¢r

( ˆ ) ( ˆ ) ˆh R g d0 0
, or, introducing u = R1 , through = - fu

u
( )h0

d

d
.
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Finally, we stress that the equilibrium case is easily recovered using 2λ+κ′=0: equation (11) then implies
thatR=ρ (up tomultiplicative and additive constants that play no role in phase equilibria and can thus be
discarded). All our generalized quantities then reduce to their equilibrium counterparts.

Before we turn to the derivation of the binodal curve, wefirst note that

f r

r
=

¢

¢

( )
( )

( )
R

g

R

d

d
. 21

2

2
0

The spinodal region, defined as ¢g
0
(ρ)<0, thus corresponds to the region inwhich the generalized free energy

density is concave, <f 0
R

d

d

2

2 , providedR′is chosen positive. Furthermore, from equation (18) onefinds that

r r¢ = ¢( ) ( ) ( )h Rg 220 0

so that the spinodal region can equivalently be defined from h0′(ρ)<0. Finally, we note that, contrary to the
generalized free energy densityfwhich depends onλ andκ throughR, the spinodal region is unaffected by the
gradient terms in g.

We now showhow the above results directly yield the binodal curve of our generalized Cahn–Hilliard
equation by considering fully phase-separated systems.We then discuss in section 1.5 the corrections to the
binodal curve for finite-size systems.

1.4. Phase coexistence in the large system size limit
Amacroscopic droplet of, say, the dense phase has an infinite radius of curvature in the large system size limit, so
that curvature effects are negligible. As in equilibrium, computing the coexisting densities reduces to studying a
one-dimensional domainwall profile perpendicular to the interface [28], whatever the original number of
spatial dimensions. To do so, we consider aflat interface, orthogonal to x̂ , between coexisting gas and liquid
phases at densities ρg and ρℓ(see figure 2).

For such a profile, any derivative with respect to a direction normal to x̂ vanishes so that equation (16)
directly implies that g andσxx are constant. For coexisting homogeneous phases, this leads directly to

= =( ) ( ) ( ) ( ) ( )ℓ ℓg R g R h R h Rand , 23g g0 0 0 0

whereRℓ,g≡R(ρℓ,g). These two constraints thus fully determine the coexisting densities and are equivalent to a
common tangent construction onf(R) since = fg

R0
d

d
and f= -fh R

R0
d

d
.

In stark contrast to equilibrium liquid–gas phase separation, the interfacial terms g1 or h1 affect the
coexisting densities through the definition ofR, equation (11), which depends onλ(ρ) andκ(ρ). Note that the
sole knowledge of the dynamics in equation (1) allows us to determine the coexisting densities using the
constructions above, without the need to solve for the full density profile at the interface. The common tangent
construction onf leads to coexisting densities which are independent of themean density ρ0. The lever rule for
determining the phase volumesVℓandVg therefore still applies: ρℓVℓ+ρg Vg=ρ0V. Note that this lever rule
applies to ρ and not toR since the latter is not a conserved quantity.

TheMaxwell construction.As in equilibrium, the common tangent construction onf is equivalent to a
Maxwell construction on h0.We nowderive the latter because it will be useful when considering PFAPs, and also
since it provides a simpler numerical route to computing the binodal curve from the expression of h.

Aswe shall do for PFAPs, we start from a current given by equation (16) so that theflux-free condition in a
situation as depicted infigure 2 implies that the generalized pressure is constant, recalling that the curvature of

Figure 2. Schematic representation of themean density field of a fully phase-separated system in 2d.We consider the density profile
connecting gas and liquid phases along a horizontal cut so that the interface is oriented along ŷ (center). In themacroscopic limit, the
interface is locally flat in the transverse direction ŷ (left) and the problem simplifies into an effectively 1d domainwall computation
for the density profile (right).
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the interface is negligible:

= + = ¯ ( )h h h h. 240 1

Then, we introduce the generalized volume per particle

u = ( )
R

1
25

and compute the integral

ò ò òu u u- = - - ¶ = ¶
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u
( ¯) ( ¯) ( )

ℓ

ℓ ℓ
h h h h x h xd d d , 26

x

x

x
x

x

x0 0 1
g

g g

where the spatial integral is computed along the direction normal to the interface. After some algebra, h1 can be
rewritten as

k
k

k
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2
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This allows us, after some algebra, to show that u¶h x1 is a total derivative

u
k

¶ = ¶
¶

¢

⎡
⎣⎢

⎤
⎦⎥

( ) ( )h
R

RR2
. 28x x

x
1

2

In turn, this leads to a generalizedMaxwell construction on h0:

ò u- =
u

u
( ¯) ( )

ℓ

h h d 0. 290
g

1.5. Finite-size effects
Let us now consider what happens if one takes into account the finite curvature of the phase-separated domains.
Again, thanks to ourmapping, the derivation below resembles closely the one done in equilibrium for theCahn–
Hilliard equation [28].We consider a radial cut along the interface of a circular domain in 2d, as infigure 2. By
symmetry, the current J vanishes in steady state. Equation (16) then immediately gives  =g 0 so that one still
has an equality of generalized chemical potentials between the two phases: g0(ρg)=g0(ρℓ). On the other hand,

s =· 0 does not lead to a uniformσxx in this circular geometry, which highlights the different behaviors of
the generalized chemical potential and the generalized stress tensor forfinite systems.

To proceed, we integrate the radial component of s · along the path depicted infigure 2. To highlight the
spherical geometry, we parametrize this path as ˆrr . Using the expression for the divergence of a tensor in
spherical coordinates (polar in 2D) leads to

^ò òs s s s = = ¶ + - qq
⎡
⎣⎢

⎤
⎦⎥( · ) · ( ) ( )

ℓ ℓ

r
r

rrd 0
1

d . 30
r

r

r

r

r rr rr
g g

Using the expression(17) of s in this geometry then leads to

òs s r r k r- = - = -
¢

¶
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )ℓ ℓ

ℓ

r r h h
R

r
rd , 31rr rr g g

r

r

r0 0
2

g

wherewe have used that the isotropic terms in s cancel and derivatives with respect to θ vanish by symmetry.
When thewidth of the interface is small compared to the droplet radius rd, expanding r around rd and using

that r¶( )r
2 vanishes outside the interface leads to

r r
g

D º - ( ) ( ) ( )ℓh h h
r

, 32g
d

0 0 0

wherewe have introduced a generalized surface tension γ:

òg k r= ¢ ¶( ) ( )
ℓ

R rd . 33
r

r

r
2

g

Note that, as for h0 andσ, γneed not have anymechanical interpretation for generic phase-separating active
matter systems. To leading order in 1/rd, γ can be computed across aflat interface (using a slab geometry as in
figure 2). For an interface perpendicular to the x-axis, it then reads

ò òg s s k r= - = ¢ ¶( ) ( ) ( )
ℓ ℓ

x R xd d . 34
x

x

yy xx
x

x

x
2

g g

Finally, let us comment on the sign of γwhich has recently attracted interest since it has beenmeasured
negative for PFAPs [32] (see section 3.4 for a discussion of that case). Here, sinceκneeds to be positive for
stability reasons, we see from equation (34) that γ has the sign ofR′. Starting from the dynamics in equation (1),

6
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the sign ofR′ is arbitrary, corresponding to an integration constant when solving equation (11). The generalized
surface tension γ can thus be either positive or negative, althoughwith different expressions for the generalized
pressure h0(ρ). On the other hand, starting from an expression for the stress tensor in equation (17), as will be the
case for PFAPs in section 3,R′is fixed by the expression for s and can take either sign.Our framework thus
supports both positive and negative γ.

1.6. Illustration of our general framework for a scalar activemattermodel
In this sectionwe showon a particular example that our generalized thermodynamic construction predicts
exactly the phase equilibria of the non-equilibriumCahn–Hilliard equation (1) through equation (23). To this
end, we numerically integrate this equation in 2d for the particular (and rather arbitrary) choice:

r r r r r r r k r r l= - - - + - = = =( ) ( ) ( ) ( ) ( ) ( )g r M12 4 ; 1; ; 0. 350 0 0
2

0
3

To check the theory, wefirst numerically solve equations (1) and(35) using a semi-spectral integration
scheme (linear terms are computed in Fourier space, nonlinear terms in real space)with Euler time stepping. For
each value of r, we start from a phase-separated state with two arbitrarily chosen densities (ρg=1 and ρℓ=5)
andmeasure the coexisting densities once the systemhas relaxed to its steady state.

To compare with the theoretical predictions for the binodals, we first determine the functionR(ρ)using
equation (11), which (up to two unimportant integration constants) gives r r=( )R log .We then use either the
common tangent construction onf(R) or theMaxwell construction on u( )h0 , shown infigures 3(b) and (c), as
described in the previous section. The comparisonwith the coexistence densitiesmeasured in the simulations of
equation (1) is shown infigure 3(a): the difference between theory and simulations is found to be smaller than
0.5% for every point, thus confirming that the dynamics does indeed yield the stationary state analyzed in
section 1.

These numerical results are obtained in systemswhere a straight band of liquid coexists with a dilute gas
phase so thatfinite-size curvature effects are negligible. On the contrary, when finite-size liquid droplets coexist
with a gaseous background, the coexisting densities differ from those predicted by equation (23) due to the
finite-size corrections discussed in section 1.5. In this case, a jumpof the generalized pressure through the
interface is indeedmeasured numerically, and found to be given quantitatively by the generalized surface
tension(33) (seefigure 4(a)). Similarly, there are density shifts in each of the phaseswhich scale as 1/rd as shown
infigure 4(b).

2.QSAPs

Wenow turn to amicroscopicmodel forQSAPs, for whichwe derive a hydrodynamic description and compare
the predictions of our formalismwith direct numerical simulations of themicroscopicmodel.We consider
particles labeled by =i N1 ... , moving at speed v along body-fixed directions ui which undergo both
continuous rotational diffusionwith diffusivityDr and complete randomizationwith tumbling rateα. The
equations ofmotion are given by the Langevin dynamics

Figure 3. (a)Binodalsmeasured in 2d simulations of equation (1)with the coefficients of equation (35) compared to the theoretical
predictions of equation (23). (b)Common tangent construction onf(R) for r=2. (c)Maxwell construction on u( )h0 , equation (29)
for r=2. Equation (1)was integratedwith a precision of dx=1 in space and a time step dt=2.5×10−4 for a system size of
100×20.
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where h and ξ are delta-correlatedGaussianwhite noises of appropriate dimensionality. In addition to
continuous angular diffusion, we have included in(36) a non-Gaussian noise accounting for tumbling events:
the ti are Poisson distributedwith a rateα and the δθjʼs are drawn from auniformdistribution between 0 and 2π.
Each particle adapts its speed, r e+[ ˜( )]v r ui i , to a localmeasurement of the density:

òr e e r+ = ¢ + - ¢ ¢ ¢˜( ) ( ) ˆ ( ) ( )Kr u r r u r r rd d 37i i

with ( )K r an isotropic coarse-graining kernel, and r d= å -ˆ ( ) ( )r r ri i themicroscopic particle density. Note
that the local density ismeasuredwith an offset eui which allows for anisotropic quorum sensing. This effect,
which does not create alignment interactions, captures a slowdownof particles that would arise, for instance,
due to a large density of particles in front of them. This can thusmodel, say, a visual quorum-sensing or steric
hindrance. In a different context, anisotropic sensing has been shown to lead to a rich phenomenology for
aligning active particles [33].

2.1.Hydrodynamic description ofQSAPs
Deriving hydrodynamic equations frommicroscopics is generally difficult, even in equilibrium [34]. ForQSAPs
we can follow the path of [1, 24, 35], taking amean-field approximation of their fluctuating hydrodynamics.We
first assume a smooth density field and a short-range anisotropy so that the velocity can be expanded as

r r e r r r r e+ ¢  + ¢ D +  ℓ( ˜ ) ( ) ( ) · ( ) ( ) ( )v v v vu , , 38i
2 2 3

where ρ is evaluated at ri and ò=ℓ ( )r K r rd2 2 . Following [24, 35], thefluctuating hydrodynamics ofQSAPs,
derived in appendix A, is then given by:

r L=   +˙ · ( ) ( )M g M2 39

withΛ a unit Gaussianwhite noise vector and
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where d is the number of spatial dimensions.Here, t aº - + -[( ) ]d D1 r
1 is the orientational persistence time.

Themean-field hydrodynamic equation ofQSAPs is then equation (1)with the coefficients in equation (40). As
mentioned earlier, the spinodal region is defined from the criterion ¢g

0
(ρ)<0, which leads here to a

modification of the standard linear instability criterion forQSAPs [1]:

r
r

e
t r

¢
- < -⎜ ⎟⎛
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( )
( )

( )v

v v
1

1
. 41

To construct the phase diagram for a given choice of v(ρ), using the generalized thermodynamic procedure,
wefirst solve forR(ρ) using equation (11) and from it obtain bothf(R) and h0(R). The binodals then follow via a
common tangent construction onf(R) or, equivalently, by setting equal values of h0 and g0 in coexisting phases.
Note that since l k+ ¢ ¹2 0 one has r¹R . The phase diagram thus cannot be found by globallyminimizing a
free energy density f (ρ)defined from ¢f (ρ)=g0(ρ) as discussed before [1, 24]. Indeed, such a procedure

Figure 4. Finite-size effectsmeasured in 2d simulations of equations (1) and (35)with r=2. (a)Difference in the generalized pressure
h0 between the two phases. The dashed line is the predicted leading order behavior γ/rdwith the effective surface tension γ=4.06
measured independently from a straight interface using equation (33). (b)Corrections to the coexisting densities. The dashed lines are
fits to cg, ℓ/rdwith cg, ℓ a phase dependent constant. The system size is 80×80, and the other parameters as infigure 3.
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correctly captures the equality of g0 in both phases but predicts a common tangent construction on fwhich is
violated.We now turn to describe the numerical simulations ofmicroscopicmodels ofQSAPs.

2.2. Comparison between theory andnumerics
Inwhat followswe studymodels where the density r̃ is computed according to equation (37)with the bell-
shaped kernel

=
Q -

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )K r

r r

Z

r

r r
exp . 420 0

2

0
2 2

HereΘ is theHeaviside function,Z a normalization constant andwe used an interaction radius of r0=1. In
additionwe take the velocity to be

r
r
r

= +
-

+ -
⎡
⎣
⎢⎢

⎛
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⎞
⎠⎟

⎤
⎦
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2
1 tanh 2 2 . 43

m
0

1 0

This interpolates smoothly between a high velocity v0 at lowdensity (r r m) and a low velocity v1 at high
density (r r m). In addition to the 2d continuous spacemodel described above, we also conducted simulations
ofQSAPs in 1d on lattice [2]. In this case, we consider run-and-tumble particles (RTPs): particle i has a direction
ofmotion ui=±1which isflipped at rateα/2. It then jumps on the lattice site in direction uiwith
rate r e+[ ˜( )]v x ui i .

Figure 5(a) shows the phase diagrams predicted by our generalized thermodynamics and thosemeasured in
QSAP simulations for a symmetric sensing of the density (ε=0). Overall, the agreement between predicted and
measured binodals is excellent, in contrast to the common tangent construction on f (ρ). It is remarkable that,
forQSAPs, we can quantitatively predict the phase diagramof amicroscopicmodel without anyfitting
parameters, something rare even for equilibriummodels.

Figure 5(b) shows the binodalsmeasured in 1d simulations on latticewith e ¹ 0 together with the
corresponding theoretical predictions. The dependence of the binodals on the asymmetry e is apparent in both
cases. It results from the explicit dependence of g0(ρ) on e established in equation (40). This dependence
probably explains why run-and-tumble particles hopping on lattices with excluded-volume interactions [2] are
notwell described by the coarse-grained theory proposed so far forQSAPswhich did not account for any
asymmetric sensing [1].We can see that our theoretical predictions aremore accurate for small e, as expected
from the derivation of the hydrodynamic equation given in appendix A.

Our theoretical predictions for the phase diagramofQSAPs rely on two different approximations. First, we
use amean-field approximation to derive the specific expression(40) for g[ρ]. For our choice of v(ρ),MIPS
occurs only at large densities so that this approximationworks verywell except in the small and numerically
unresolvedGinzburg interval close to the critical point. Second, our general theory disregards higher order
gradient terms in equation (1). This probably explains why the hydrodynamic descriptionworks best fairly close
to the critical point, where interfaces are smoothest and the gradient expansion, equation (38), most accurate.
The quantitative limitations of our gradient expansion highlights that gradient terms directly influence the
coexisting densities through equation (11), unlike the equilibrium case.

Figure 5.Phase diagrams ofQSAPs. (a) Symmetric sensing (e = 0). The solid lines correspond to common tangent constructions on
f(R) (red) or f (ρ) (black). Dashed lines correspond to the spinodals f r= =R fd d d d 02 2 2 2 . Data points are from simulations of
RTPs (α=1,Dr=0) andABPs (α=0,Dr=1), either in 1d on lattice (system size L=2000 lattice sites) or in a 2d continuous
space (system size 50×50). (b)Asymmetric sensing (e ¹ 0) for 1dRTPs on lattice: solid lines show the predicted binodals computed
by common tangent constructions onf(R), and symbols denote simulation results obtainedwith systems of size L=2000 lattice
sites. For all plots, we used ρm=200, v1=5, τ=1.
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In addition to giving quantitative predictions for the phase diagrams, our approach sheds light on the
observed universality of theMIPS inQSAPs. For example, the phase diagramdoes not depend on the exact shape
of the kernelK, which enters equation (40) through ℓ2 which then cancels in the nonlinear transformR(ρ).
Similarly,figure 5 also shows lattice simulations ofQSAPs in 1dwhere complete phase separation is replaced by
alternating domains (with densities given by the predicted binodal values). This confirms the equivalence of
continuous (ABP) and discrete (RTP) angular relaxation dynamics forQSAPs [24, 35]. Our results, however,
also expose sensitivity to othermicroscopic parameters such as the fore-aft asymmetry ewhich enters g0 and
therefore affects the binodals. Thismight explain the different collective behaviors seen in swarms of robots that
adapt their speeds to the density sampled in either the forward or the backward direction [36].

2.3. Finite-size corrections
Similar to the scalar activemodel of section 1.6, we expectfinite-size correctionswhen a liquid droplet is formed
in afinite system: for a droplet of radius rd, we expect to leading order in the droplet radius an effective pressure
jump across the interface(32):

ò
k

D
¢
¶( ) ( ) ( )

ℓ

h r
r R

R r
1

d . 44d
d r

r

r0
2

g

Accordingly, one expect the finite-size corrections to the coexisting densities to decay asµ r1 d . Infigure 6(a), we
show that themeasured binodals indeed converge towards their asymptotic values in amanner consistent with a
1/rd decay.

A quantitative check of(44) is difficult since, first, our derivation of h0(R(ρ)) is based on a number of
approximations, and, second, our numericalmeasurements of the binodals are necessarily noisy. To proceed,
wemeasure ρg(rd) and ρℓ(rd) and construct r rD = -( ) ( ( )) ( ( ))ℓh r h r h rd d g d0 0 0 .Δh0(rd) does not vanish exactly
in the large system size limit, nor in a slab geometry inwhichwemeasure a small correction

rD »( )ℓh h 0.1%0
slab

0 . This systematic error can stem from several origins, from the gradient expansion to the
mean-field approximation, through limitations in the numerical accuracy of the densitymeasurement. Though
very small, this error becomes comparable to the Laplace pressure jump for radii r 20d , highlighting the
numerical challenges inmeasuring thesefinite-size effects. Nevertheless we show infigure 6(b) that
Δh0(rd)−Δh0

slab converges to its asymptotic value consistently with a 1/rd decay. Furthermore, the prediction
of equation (44) can be checked bymeasuring the prefactor òg º ¶k

¢
( )ℓ R rd

r

r

R r
2

g
of this decay in a slab geometry.

The corresponding prediction is shown as a dashed line in figure 6(b) and agrees semi-quantitatively with our
numerical results, without anyfitting parameters.

To understandwhywe observe a quasi-quantitative agreement despite relatively small values of rd, it is useful
to explicitly expand equation (31) as

ò k rD ¢ ¶ -
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+
-

⎛
⎝⎜

⎞
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h
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r r

r

r r

r

1
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2
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Figure 6. Finite-size effects in phase-separatedQSAPs,measured in 2d off-lattice simulations ofQSAPswith symmetric sensing
(e = 0). (a)Correction to the coexisting densities. The dashed line shows a scaling proportional to 1/rd. (b)Correction to the
generalized pressure h0. The dashed line is the predicted leading order behavior γ/rdwith the effective surface tension γmeasured
independently across a straight interface using equation (33).Dh0

slab accounts for the small pressure jumpdue to equation (40)not
being exact, as described in the text. The simulation parameters are ρm=50, v0=30, v1=5, τ=1 and a system size 100×100.
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Thefirst order correction toD = gh
r0
d
is thus given by
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Using that, from the definition(11), (R′κ)′=−2λR′, the prefactorR′κ can then be expanded around r=rd as
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Sinceλ=0 forQSAPs, we are left with
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which is zero for a symmetric interface so that in that case
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For our choice of v(ρ), the density profile is indeed very close to a hyperbolic tangent (data not shown) and the
lack offirst order corrections for such profiles probably explains the semiquantitative agreement of our
numerical results with the 1/rd behavior.

3. PFAPs

Wenow consider the case of self-propelled particles interacting via pairwise forces, which has attracted
considerable interest over the past few years [3, 4, 8, 17, 25, 29, 37, 38].We define themodel in section 3.1 and
construct its hydrodynamic description in section 3.2. Contrary toQSAPs, there is no availablemethod to derive
accurate estimates of the coefficientsλ(ρ) andκ(ρ) or to rule out the existence of other terms [30].We discuss in
section 3.3 howwe can nevertheless follow the path laid out using our generalized thermodynamic formalism to
understand how coexistence densities are selected in PFAPs. Finally,finite-size effects are considered in
section 3.4.

3.1.Model
WeconsiderN self-propelled particles in two-dimensions interacting via the repulsive, pairwise additive,
Weeks–Chandler–Andersen potential:

 
s s

= - +⎜ ⎟ ⎜ ⎟
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⎦⎥( ) ( )V r

r r
4 50

12 6

with an upper cut-off at r=21/6σ, beyondwhichV= 0.Hereσ defines the particle diameter, ò determines the
interaction strength, and r is the center-to-center separation between two particles. Particle i evolves in two
dimensions, with periodic boundary conditions, according to the Langevin equations:

å xm q h= -  - + + =˙ (∣ ∣) ˙ ( )V D v Dr r r u2 ; 2 . 51i
j

i i j t i i i r i0

Here, q q= ( )u cos , sini i i indicates the direction of self-propulsion and xh ,i i are unit Gaussianwhite noises. For
simplicity, we only include continuous rotational diffusion but our results are expected to extend to run-and-
tumble dynamics since these two types of orientational noise have been shown to lead to the same phase
diagram [35].

The full phenomenology of thismodel requires scanning a three-parameter phase diagram, parametrized for
instance by the Péclet number s= ( )v DPe 3 r0

9, the packing fraction p s r( )4 2 and the potential stiffnessμ
ò/(v0σ). Here, we focus on the onset ofMIPS as the Péclet number and the packing fraction are varied,
disregarding the role of the potential stiffness [3–5, 39]. In practice, we fix ò=1,σ=1, v0=24,μ=1 and vary
Dr and ρ.MIPS then occurs at high enough densities when the run-length v0/Dr ismuch larger than the particle
sizeσ, namelywhen Pe exceeds a threshold value »Pe 50c [3–6].

3.2.Hydrodynamic description
Following [17, 40], we start from the exact Itō–Langevin equation for themicroscopic density of particles
y q d d q q= å - -=
ˆ ( ) ( ) ( )r r r, i

N
i i1 at position r with orientation θ

9
Historically, the Péclet numberwas defined as s= v DPe t0 with translational diffusionDt and a Brownian rotational diffusion

Dr=3Dt/σ
2. It was later realized that in simulations of PFAPs exhibitingMIPS, the translational diffusion has a negligible effect on the

phase diagram and could be set to zero. This explains the factor 3 in the definition of Pe, although a dimensionless run length lr=v0/(σDr)
would seemmore natural.
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VI r r r r r r, d , , òr y q q=ˆ ( ) ˆ ( )r r, d is thefluctuating density, and h

and x are unit-varianceGaussianwhite noises of appropriate dimensionality. Denoting averages over noise
realizations by angular brackets we define r r= á ñ( ) ˆ ( )r r , = á ñ( ) ˆ ( )m r m r and = á ñ( ) ˆ ( )r r . Here

ò q y q=ˆ ( ) ˆ ( )m r u rd , is the orientation vector,  ò q y q= -ˆ ( ) ( ) ˆ ( )r u u rd : 2 , is the nematic tensor, and 
the identitymatrix.

Integrating equation (52) over θ and averaging over noise realizations, the dynamics of r ( )tr, reads
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The dynamics of m is then obtained similarly bymultiplying equation (52) byu and integrating over θ. This
yields, with an implied summation over repeated indices
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where the last term is obtained by integration by parts andwe have defined
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We stress that, so far, equation (52) and(55) are exact, although they are not closed since they feature and the
microscopic correlators in ( )I 0 and ( )1 which depend on highermoments of ŷ.

As a first approximation, we use that, contrary to r ( )tr, , m is a fastmode decaying at a rateDr. On time
scalesmuch larger than -Dr

1, one can thus assume thatmα relaxes locally to

 rd
= - ¶ + + - ¶a b ab

ab
ab b a

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )( )m

D
v D m

1

2
. 57

r
t0

1

The current in equation (53) is then given by
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Interestingly, equation (58) can be rewritten as the divergence of a stress tensor
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wherewe have followed Irving andKirkwood [41] (and [31] in a similar context) andwrote m s= ¶a b ab
( )I 0 IK with
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Wenow turn to relate these results to the formalism derived previously.

3.2.1. Generalized pressure and equation of state
The resulting dynamics for ρ, with the current given by equation (59), should be compared to the generalized
Cahn–Hilliard equation of section 1with the current driven by the generalized stress tensor as in equation (16).
We see that PFAPs correspond to the special caseM/R=μ, themicroscopicmobility. This has important
consequences for themechanical interpretation of s. Indeed, one can see that imposing an external potentialU
on the particles leads to

sm mr=  - · ( )UJ . 62

In aflux-free steady state, =J 0 and equation (62) becomes a force balance. Integrating(62) from a point in the
bulk to infinity shows the normal component ofs to be equal to the total force per unit area exerted on a
boundary. Indeed, the normal component ofs exactly coincides in homogeneous phaseswith the equation of
state (EOS) found previously for themechanical pressure P of PFAPs [17]. Generalized andmechanical pressures
thus coincide for PFAPs andwe note, following section 1.1
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wherewe have defined, following earlier notation [17], the ‘active’ contribution to the pressure PA and a ‘direct’
passive-like partPD:
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Note that PA is sometimes also called ‘swimpressure’ [12], even though neglecting the pressure of the
surrounding fluid to describe the phase separation of actual swimmers is problematic.

The value of the pressure in a homogeneous phase of density ρ0 is then given by

r r r r
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where P A
0 and P D

0 are the values taken by PA andPD in homogeneous disordered phases of density ρ0. This
allows us to identify, in analogywith equation (20)
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Note that while the structure is similar to equation (20), there is no gradient expansion taken here—h1 is exact,
formally containing gradients of all orders. Its expression is given by
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where º -P P PA D A D A D
1 0 contains the interfacial contributions to the active and the direct pressures. The

terms inmx andxx are purely interfacial since they vanish in the (disordered) bulk phases.We now show that
the phase equilibria in PFAPs can be understood using these results with the ideas of section 1.

3.3. Phase equilibria in PFAPs
Oneway forwardwould be to construct an explicit gradient expansion for h in terms of ρ and obtain closed
expressions for h0 and h1. This would then allow us tofindR(ρ) andf(R) analytically as was done forQSAPs in
section 2. Despite the extensive literature on PFAPs, such a gradient expansion has not yet been presented, but
could be accomplished for instance by using a low-density virial approximation. Such a routewould possibly
lead to qualitative predictions for the phase diagram, but our goal here is to show that our formalism
quantitatively accounts for the phase equilibria of PFAPs, andwe thus do notwant to rely on such
approximations.We thus proceed differently, using an approachwherewe insteadmeasure the gradient terms to
quantitatively verify the validity of our formalism for PFAPs.

Aswith the other systems, wefirst consider the case of amacroscopically phase separated system, forwhich
the liquid–gas interface is locally flat and perpendicular to x̂ . As in section 1.4, in a flux-free steady state, = ¯h h is
constant across the interface so that the pressure is equal in coexisting phases

r r= =( ) ( ) ¯ ( )ℓh h h. 68g0 0

To construct the phase diagram,we need to complement this equality by a second constraint. Sincewe do not
have any closed expression for the interfacial terms h1, we cannot use aMaxwell construction in the

u = -( )h R,0
1 plane aswas done in section 1.4. Instead, wemeasure the violation of the equilibriumMaxwell

construction in the n rº -( )h ,0
1 plane, schematically depicted infigure 7, with ν=1/ρ the free volume per

particle:

ò òn n n- = ¶ º D
n

n
( ( ) ¯) ( )

ℓ

ℓ
h h h x Ad d . 69

x

x

x0 1
g

g

Here h0(ν) is the pressure-volume EOS, h̄ is the pressure of coexisting phases andD ¹A 0 directly quantifies the
violation of theMaxwell construction for PFAPs [17].

Given the value ofΔA, equations (68) and(69) are two independent constraints satisfied by ρℓand ρg. A fully
predictive theorywould thus evaluateΔA analytically and then solve(68) and(69) to obtain the values of the
binodals and the coexisting pressure h̄. Here, instead, we use a numericalmeasurement ofΔA to construct the
phase diagram. Although less predictive than knowing h0 and h1 analytically, ourmethod clearly illustrates how
the violation of theMaxwell construction, due to the role played by the interfaces, selects the binodals.

3.3.1. Numerical strategy and results
Tonumerically construct the phase diagram,wefirst derive an approximation to the bulk equation of state h0(ρ).
Then, wemeasure h(x)numerically via equation (63) fromwhichwe subtract h0(ρ(x)) to obtain h1, which is
integrated to obtain the numerical value ofΔA. The right-hand side of equation (69) is then held constant at this
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value, and the binodals are determined as the intersect between the EOS h0(ν) and a horizontal line of ordinate h̄
whose value is adjusted until it satisfies equation (69). Note that, for the parameter range of interest here, the two
contributions to h proportional toDt are negligible andwe thus discard themhereafter.

(i) We first construct an analytical approximation for the pressure h0(ρ0) by measuring the active and direct
pressures from anABP simulation in the homogeneous region ( <Pe Pec) using equations (64). Following
the route proposed in [17], we then apply scaling arguments to extrapolate the EOS into the two-phase
region >Pe Pec. Figure 8 explains and verifies the proposed scaling in the low-Péclet region and shows the
resulting EOS for P A

0 and P D
0 . Details about the numerical procedure (refinedwith respect to [17]) can be

found in appendix B.3.

(ii) The next step is to numerically determine h1 using equation (67) and, through it, the value of ΔA. In
numerical simulations of phase-separated systems in a slab geometry (see figure 9(a)), we thusmeasure the
profiles ρ(x), ( )P xA ,PD(x) and ( )xxx across the interface (see figures 9(b) and (c)). Using the EOS r( )P A

0

and r( )P D
0 from (i) together with themeasured density profile ρ(x)we obtain the gradient contributions to

the active and direct pressures as r= -( ) ( ) ( ( ))P x P x P xA D A D A D
1 0 (figure 9(d)). Togetherwith ( )xxx ,

this directly provides h1(x) and hence the value ofΔA in equation (69).

(iii) Using the equation of state h0(ν), we now adjust h̄ in equation (69) untilΔAmatches the value computed in
step (ii) as shown infigure 10(a). The resulting h̄ and the corresponding two values of νg and νℓconstitute
our prediction for the pressure at coexistence and the binodals.

Figure 7. Schematic picture of the violation of theMaxwell equal-area construction. The black non-monotonic line shows the
equation of state h0(ν), dashed in the part where homogeneous systems are unstable with respect to phase separation. The violation of
theMaxwell equal-area construction is quantified by D = - ¹A A A 01 2 .

Figure 8.Construction of the equation of state for the pressure of PFAPs. (a)PA andPD (symbols) as a function of the average density
ρ0measured in simulations of homogeneous systems (Pe<Pec). The solid lines showfits to the data at =Pe 40 using the functional
forms P A

0 and P D
0 detailed in appendix B.3. As seen from the rescaling, P A

0 scales linearlywith Pe while P D
0 is independent of Pe.We

use this scaling to extrapolate the equation of state to the regionwhere the systemphase separates (Pe>Pec). (b)The full equation of
state (solid lines) for the pressure = +h P PA D

0 0 0 , with symbols denoting numericalmeasurements. The curves for =Pe 60 and
=Pe 80 are extrapolated frommeasurements at =Pe 40 using the above scaling arguments.
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As seen infigure 10(b), the predicted coexistence densitiesmatch verywell themeasured ones.We stress
again that this is not afirst principle prediction, sincewe do not use an analytic expression for the gradient terms,
which thus have to bemeasured numerically. Nevertheless, the excellent agreement confirms the scenario
proposed in section 1 forMIPS: unlike in equilbrium, the interfacial contributions are essential infixing the
coexistence densities. Indeed, the equilibriumMaxwell construction (equivalent to takingD =A 0 in
equation (69)) clearly fails to account for the phase diagramof PFAPs, as shown in figure 10(b). Therefore, the

Figure 9. (a)Close-up of a snapshot showing the interfacial region in a phase-separated system at =Pe 120. (b)Density field ρ(x)
across the interface in (a), averaged over t and y. The solid line is afit to a hyperbolic tangent function. Inset: plot of h1∂x ν across the
interface. The area under the curve quantifies the violationΔA of theMaxwell construction(69). (c)Profiles of the total pressure h(x)
and its three non-negligible components PA,PD and  mv Dxx r0

2 (solid lines). The dashed lines correspond to the local contributions
r( ( ))P xA

0 and r( ( ))P xD
0 that are predicted by the equation of state for a homogeneous system at density ρ(x). (d)The interfacial

contributions to the pressure, entering h1 in equation (67).

Figure 10. (a)Unequal-area construction on the equation of state h0(ν) (solid lines) at Pe= 80, using the value ofΔA obtained by
measuring the gradient terms.Open circles correspond to themeasured binodals, and filled diamonds correspond to the pressures
measured in the numerics. Note that the generalized pressure remains constant along the tie line. The dashed line indicate the pressure
predicted by the unequal-area construction across the tie line. (b)Phase diagrams of PFAPs,measured numerically (diamonds),
through our prediction equation (69) (red circles), and from the equilibriumMaxwell constructionwithΔA=0 (blue line). The
dashed line corresponds to the boundaries of the spinodal region ¢h0(ρ)<0.
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interfacial contributions have to be accounted for, either by defining an effective density as in sections 1, 1.6 and
2, or by quantifying the violation of the equilibrium constructions, as demonstrated here.

Wefinally note that the behavior of the interfacial terms P A
1 and P D

1 infigure 9(d) can be qualitatively
understood as arising from the polarization of the gas–liquid interface. Since a particle at the interface is on
average oriented towards the (denser) liquid phase, i.e., up the density gradient, it experiences amore efficient
collisional slow-down than it would in an isotropic environment at the same local density. Since PA[ρ] is
proportional to the effective swim-speed v, this will yield a lower PA than in the isotropic phase, and thus a
negative P A

1 . Conversely, asPD is proportional to the amount of repulsive particle contacts experienced by the
particle, the same argumentwill lead to a positive interfacial contribution P D

1 to the direct pressure, confirming
the observations infigure 9(d). Since these two terms give the dominant contributions to h1, we thus conclude
that, at themicroscopic level, the phase coexistence densities in PFAPs is controlled by the polar ordering of
particles at the gas–liquid interface.

3.4. Finite-size corrections
Wenow turn to study thefinite-size corrections to the phase equilibria of PFAPs. As previously, we consider a
circular droplet of radius rd (seefigure 2). Following section 1.5, the pressure jump across the interface is given at
leading order in 1/rd by

ò
g

g s sD = = -( ) ( )
ℓ

h
r

x; d , 70
d x

x

yy xx0
g

where the surface tension γ ismeasured across a planar interface perpendicular to x̂ .We follow the same route as
forQSAPs andmeasure independentlyΔh0 and γ in numerical simulations to characterize the finite-size
corrections to the phase coexistence.

To understand the different contributions to γ, we introduce the difference between the xx and yy
components for each term in the stress tensor(60) (recall that the terms proportional toDt are negligible):

 d
m

= -( ) ( )( ) ( )P
v

D
, 71A

r
xx yy

0 1 1

d s s= - + ( )P , 72D xx yy
IK IK

  d = - ( ). 73xx yy

The surface tension is then given by

òg d d
m

d= + +
⎛
⎝⎜

⎞
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ℓ

P P
v

D
xd . 74

x

x

A D
r

0
2

g

These three contributions and their sum,σyy−σxx, are plotted infigure 11, asmeasured across aflat (on
average) interface; the resulting integral yields the estimate γ≈−140 in the units of our simulations.
Interestingly, the contribution of the direct term δPD is completely negligible, in contrast to the equilibrium case
inwhich the phase separation is due to attractive forces, which also determine the surface tension.Here, the
main contributions stem from the anisotropy of the active pressure in the interface, as well as from the
anisotropic nematic order of the particles in the interfacial region.We furthermore note that the resulting value
of the surface tension is negative, which confirms thefinding of [32] and can be rationalized following [42] by
considering the escape angle of an active particle exiting a curved interface.

We now evaluate the effective Laplace pressureΔh0 for curved droplets of different radii. Although this
quantity is in principle directlymeasurable in simulations, it is numerically challenging due to the large
fluctuations in the local pressure.We thus instead proceed similarly as forQSAPs, by first accuratelymeasuring
the coexisting densities infinite systems inwhich a liquid droplet of radius rd coexists with a vapor background.
These are shown infigure 12(a), showing that the liquid phase is effectively depleted forfinite rd, hence
confirming the heuristic argument given in [42]. The correction to the coexistence densities is again found to be
compatible with a 1/rd decay. The pressure jump can then be computed using the equation of state and the
measured densities as r rD = -( ) ( )ℓh h h g0 0 0 , shown infigure 12(b). To extract the leading order behavior in

1/rd, wefitD ( )h rd0 with two parameters, using a function +c r c rd d1 2
2. The second-order term is necessary

because thewidth of the liquid–vapor interface is large (≈40, seefigure 9(b)) so that the assumption of large rd
does not hold. The leading-order coefficient from thefit infigure 12 corresponds to a value of γ≈−230, to be
compared to γ=−140measured across the straight interface infigure 11. The sign and order ofmagnitude are
thus correctly captured, in spite of themany approximations and numerical difficulties inherent in these
measurements.

We stress that the procedure we detail above retains all the gradient terms entering s through h1, and hence
accounts for the negative value of γ. As explained before, we have not, however, carried out explicitly a gradient
expansion of s. Therefore, we do not knowwhether PFAPs can be quantitatively described by equations (16)

16

New J. Phys. 20 (2018) 075001 AP Solon et al



and(17).We have shown that, in the formalismof section 1, phase-separated solutions are compatible with a
negative γ. However, the finite-size corrections derived in section 1.5 are constrained by the equality of
generalized chemical potential in the two phases which imposes that the density correction r r- ¥ take the
same sign in the two phases. This is at oddswith the observation offigure 12(a), thereby suggesting that PFAPs
are not fully described by our generalized Cahn–Hilliard equation. A promising suggestion is that the finite-size
effects of PFAPs are best described by amore general gradient expansionwhichwould imply the analog of a
Laplace pressure jump for the chemical potential [30].

4. Change of ensembles

One powerful aspect of equilibrium thermodynamics is that it relates the physical states of a systemunder
different environmental constraints. Beyond its engineering value, the existence of several ensembles provides
useful theoretical tools to study phase transitions [43]. Similar developments for non-equilibrium systems have
however proven difficult [44–46]. Interestingly, our formalism allows some progress.

Figure 11.The three contributions to the difference between the tangential and normal stress components as defined in
equations (71)–(73), measured from a simulation in slab geometry at =Pe 100. The integral of the total stress differenceσyy−σxx
across the interface is the effective ‘surface tension’ γ defined in equation (70).

Figure 12. (a)Coexisting densitiesmeasured numerically as a function of the droplet radius for =Pe 100, normalizedwith the
corresponding densities r¥ in the slab geometry (i.e., = ¥rd ). The solid lines indicate fits to themeasured data using the function
r r = + +¥ c r c r1 d d1 2

2, with c1 and c2fitting parameters. Note that thesemeasurements are very sensitive to the definition of
coexisting densities, e.g. using the positions of the peaks ofmaximumprobability in the distribution P(ρ) of local density ρ versus
using the average of such peaks, so thatwe can expect at best semiquantitative agreementwith theory. The droplet radii rd are estimated
from the phase volumes obtained from the integral of the respective peaks in P(ρ). (b)The corresponding difference in coexistence
pressureΔh0, obtained from the densities in (a) using the numerical EOS, and normalizedwith the pressure h∞ for aflat interface.
Solid lines showfits toD = +¥h h c r c rd d0 1 2

2, where thefitting parameter » -¥c h 2301 is an estimation for the surface
tension γ.
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Weadapt our previous constant volume (isochoric) simulations to consider an isobaric (constant pressure)
ensemble. PFAPs orQSAPs are now confined bymobile harmonic walls, subject to a constant force density Pw
which imposes amechanical pressure P=Pw (seefigure 13(a) and supplmentarymovies available at www.
dropbox.com/s/v5fsftrskvmbtux/PFAPs_NPT_up.avi?dl=0 andwww.dropbox.com/s/2cgajgxevw5b6z9/
PFAPs_NPT_down.avi?dl=0)10. Since P=h0 is a generalized thermodynamic variable for PFAPs, we expect, as
in equilibrium, that the coexistence region of the isochoric (N V, , Pe) ensemble collapses onto a coexistence line
in the isobaric (N P, , Pe) case, corresponding to the pressure at coexistence in the isochoric ensemble (see
figure 13(b)). Imposed-pressure loops carried out by slowly ramping up and down Pw then lead to small
hysteresis loops around the value ofPw corresponding to coexistence. These loops would vanish in the large
system size limit for quasi-static ramping ofPw (seefigure 13(c)).

In contrast, forQSAPs themechanical pressure P is unrelated to either of the generalized variables g0, h0. The
same value ofPwmay thus lead to different states of the systemdepending on its history: theGibbs phase rule

Figure 13.PFAPs in the isobaric N P, , Pew ensemble. (a) Snapshots fromPFAP simulationswith amobile wall imposing a pressure Pw
at =Pe 100 during a slowupwards (left) and downwards (right) pressure ramp (see the supplementarymovies). In the isobaric
ensemble, the phase transition becomes discontinuous, in contrast to the phase coexistence observed in constant-volume simulations.
(b) For each Péclet number, the discontinuous phase transition (red symbols) occurs when the imposed pressure Pw

c equals the
mechanical pressure of coexisting gas and liquids in the isochoric ensemble (black symbols). (c)When ramping the imposed pressure
slowly up or down across the transition, themeasured phase densities (symbols) fall on the pressure equation of state (solid black line),
with a small hysteresis loop centered around the coexistence pressure (horizontal dashed line).

Figure 14. ForQSAPs, the volume (or here the density atfixed particle numberN=150 000) is not single-valued in the imposed
mechanical pressure Pw, leading to large hysteresis loops. Note that themechanical pressures Pw corresponding to liquid and gas
binodals are different, as expected. Parameters: ρm=25, v0=20, v1=5, τ=1, vertical size Ly=50.

10
PFAPs_NPT_up.avi: Constant-pressure simulation of PFAPs at the transition pressure (Pw= 87) in the upwards pressure ramp, showing

the discontinuous (but slow) transition from the gas to the liquid. PFAPs_NPT_down.avi: As the firstmovie, but at the transition pressure
(Pw= 84) in the downwards pressure ramp; the difference between transition pressures comes from finite-size hysteresis effects.
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does not apply forQSAPs in this ensemble. This translates into large hysteresis loopswhen slowly cycling Pw, as
shown infigure 14.

On a fundamental level, the different relationship between thermodynamical andmechanical observables
can be related to the presence or absence of an effectivemomentum conservation in the steady state [47]. From a
more practical point of view, this can be traced back to the fact that adding an external potentialU to PFAPs gives
a simple force balance equation in aflux-free steady state

sr =  · ( )U . 75

Thismakes themechanical pressure a state variable for PFAPswhile themore complicated relationship between
g0, h0 andU forQSAPs breaks this link [1]. This explains the different roles of pressure in these two systemswhen
considering change of ensembles.

5. Conclusion

In this article, we have shown how to derive the phase equilibria ofMIPS for a number of different systems. At
the hydrodynamic scale, the simple gradient terms that drive ActiveModel B [11] out of equilibrium still allow
for the construction of a generalized thermodynamics, which leads to the definition of generalized chemical
potential, pressure and surface tension. Using this formalism, we account quantitatively for the binodal curve of
fully phase-separated systems as well as for itsfinite-size corrections.

ForQSAPs, we have shown how to build a hydrodynamic description thatfits within our generalized
thermodynamic framework, using a combination of a localmean-field approximation and a gradient expansion.
Despite these approximations, our formalism accounts quantitatively for the phase diagramofQSAPs. For
particles interacting via repulsive pairwise forces, no closed hydrodynamic description including the relevant
gradient terms exist in the literature.We thus followed an alternative route and showed how the binodals are
selected by an equality ofmechanical pressure complemented by a violation of the equilibriumMaxwell
construction due to interfacial contributions.

Our identification of the relevant intensive variables governing the phase equilibriumofMIPS is important
to define thermodynamic ensembles, whichwe have illustrated by considering the isobaric ensemble forQSAPs
and PFAPs.We hope that our approachwill pave theway towards amore general definition of intensive
thermodynamic parameters [44–46] for active systems. Building a thermodynamic of activematter would
further improve our understanding and control of these intriguing systems and has become a central question in
thefield [1, 11–13, 17, 20, 25, 32, 35, 37, 48–53].
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AppendixA.Hydrodynamics ofQSAPs

In this sectionwe derive the hydrodynamic equations ofQSAPs interacting via a density-dependent velocity. In
the hydrodynamic description, we consider only smooth density profiles, slowly varying in space and time, so
thatwe can expand the self-propulsion speed as

r e r e r+ + [ ˜( )] [ ˜( )] · [ ˜( )] ( )v v vr u r u r . A.1i i i i i

Furthermore, for a systemof size L, the (diffusive) relaxation time τD of the density profile scales as L
2 and is

much larger than themicroscopic orientational persistence time t a= + - -( ( ) )d D1 r
1. To construct the

large-scale dynamics ofQSAPs, wefirst coarse-grain their dynamics on time scales such that t t ~ t LD
2,

following themethod detailed in [24, 35]. In practice, wefirst construct a diffusive approximation to the
dynamics ofQSAPs on a time scale over which their density field does not relax so that the propulsion velocity of
a single particle depends on its position and orientation through a function ( )v r u,i i which is constant in time.
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A.1.Diffusion-drift approximation
The probability y ( )r u, offinding a given particle at position r with an orientation u evolves according to:

òy y y y ay
a

y= - -  + D - +
W

W¢˙ · [ ( ) ] ( )v D Dr u u, d A.2t r u

ψ can be expanded in spherical (3d) or Fourier (2d) harmonics:

y j y= + + + Q( ) · [ ] ( )Q Mr u p u, : , A.3

whereMab=uaub−δab/d, andj, p, andQ solely depend on r .Θ[ψ] is the projection ofψ on higher order
harmonics, which plays no role in the following.We furthermore introduce the scalar product

òá ñ = ( ) ( ) ( )f g f gu u u, d , A.4

where the integration is over the unit sphere. The components ofψ in the expansion(A.3) are then obtained
from

y j y yá ñ = W á ñ =
W

á ñ = W̃ ( )
d

M Qu p1, ; , ; , , A.5ab ab

whereΩ is the area of the unit sphere and W º W
+

˜
( )d d

2

2
. Projecting equation (A.2) onto 1, u andM yields the

dynamics ofj, p andQ:

j y j= -
W
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Q

where t a= +- dD2Q r
1 is the relaxation time of the second harmonicQ. Similar equations could also be derived

for higher order harmonics. However, the structure of equations (A.6)–(A.8) immediately shows thatj is the
sole hydrodynamic field since all higher order harmonics relax on times of order( )1 (τ for p and τQ forQ).
Consequently, one can assume that ṗ and Q̇ vanish, as would the time derivative of higher order harmonics. The
structure of equations (A.7) and (A.8) then shows that all harmonics beyondj are at least of order ( ) in the
gradient expansion.

Going further than [24, 35], we now also expand v in spherical harmonics. Under(A.1), only thefirst two
harmonicsmatter andwe use:

º +( ) ( ) ( ) · ( )v vr u r v r u, , A.90 1

where v1will be of order ( ) in the gradient expansion. Equation (A.8) then gives forQ:

j t c= -
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2
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where the constant tensorsB andC are defined as
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ab c stems fromhigher order harmonics. Since Q̇ 0 on hydrodynamic time and
space scales, onefinds atfirst order in gradients
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Similarly, the dynamics of ṗ is given by
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where c y= á Q ñ W[ ]d u u v,ab
p

a b . Again, using ṗ 0, onefinds atfirst order in gradients

t j= - ¶ + ( ) ( )p v O . A.13a a
0 2

Finally, the dynamics ofj reads
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Using equation (A.13) and = ( )Q Oab
2 , the dynamics ofj at diffusion-drift level reduces to the Fokker–

Planck equation

j j j= - - ˙ · [ ] ( )DV A.15

with

e t t
=


-
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= + ( )v

d

v v

d
D D

v

d
V ; . A.16t

2

A.2.Hydrodynamic equation
The Fokker–Planck equation (A.15) forj is equivalent to an Itō–Langevin dynamics for the position of the
QSAP. From there, one can derive the collective dynamics ofNQSAPs using Itō calculus, as was donemany
times in simpler settings [1, 35, 54]. For simplicity, we consider here the caseDt=0.One thenfinds the coarse-
grainedN-body density ofQSAPs to follow the stochastic dynamics

hr r r r r
e

t r
r r=   + +

⎡
⎣⎢

⎡
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⎤
⎦⎥

⎤
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( ˜ )
( ˜ ) ( )D v

v
Dlog 2 , A.17

Wecan now expand r̃( )r in gradients of the density field

r r r+ D +  ℓ˜ ( ) ( )1

2
A.182 3

with ò=ℓ ( )r K r rd2 2 . In turn, this implies for the propulsion speed

r r r r+ ¢ D +  ℓ[ ˜( )] ( ) ( ) ( ) ( )v v vr A.192 3

Finally one finds the self-consistent dynamics for ρ:

hr r r r k r r r r=   - D + ˙ · [ ( ) ( ( ) ( ) ) ( ) ] ( )D g D2 , A.200

where

r r r
e

t r
k r

r
e

t r
= + = -

¢
-

⎛
⎝⎜

⎞
⎠⎟ℓ( ) [ ( )]

( )
( ) )

( ) ( )
( )g v

v v v
log ; 1 . A.210

2

As hinted before [1, 11, 35], the non-locality of the density sampling results in a ‘surface tension generating’ term
κ(ρ). Interestingly, the asymmetric sensing e affects both the free energy density f (ρ) and the gradient terms
κ(ρ).

Appendix B. PFAPs

B.1. Constant-volume simulations
Simulations in the isochoric (constant-volume) ensemblewere carried out in rectangular boxes of size Lx×Ly
with periodic boundary conditions using amodified version of the LAMMPSmolecular dynamics package [55].
For simulations in slab geometry at coexistence, we chose Lx=500, Ly=300, andN=115 000 particles. In
order to ensure a stable,flat (on average) interface spanning the ŷ-direction, these simulationswere initiated by
first equilibrating the particles in a smaller box of size 300×300with v0=0, yielding a near-close-packed
phase. After this initial equilibration, the boxwas expanded in the x̂-direction and the activity was turned on,
after which the system relaxed towards a phase-separated steady state. The simulationswere run for a time
t=1000, the data being collected over the second half of this time.

We compute binodal densities by coarse-graining the local density using aweighting function
µ - -( ) [ ( )]w r r r rexp cut

2
cut
2 2 , where r is the distance between the particle and themeasuring point, and rcut is a

cut-off distance.Histograms of the density then show two peaks thatwe identify as the coexisting densities.
In order to handle the relatively largefluctuations in the position of the interface, the density and pressure

profilesmeasured on each time stepwas translated to a commonorigin. This point was taken to be the point
where the density (averaged over y) has fallen below ρ=0.95.

B.2. Constant-pressure simulations
Here, we used a simulation boxwith Ly=100,N=10 000 and periodic boundary conditions in the vertical
direction only. In the x-direction, the systemwas confined by twowallsmodeled by harmonic potentials:

= - Q -( ) ( ) ( ) ( )V x k x x x x , B.1w
R

R R
2
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= - Q -( ) ( ) ( ) ( )V x k x x x x , B.2w
L

L L
2

where k controls the stiffness of thewalls (we take k=5). The right wall isfixed at x=xR, while the position xL
of the left wall obeys the deterministic overdamped dynamics:

åg= -
¶
¶=

⎛
⎝⎜

⎞
⎠⎟˙ ( )

ℓ
x P L

V

x
, B.3L w y

i

N
w

i1

where xi is the abscissa of particle i,Pw the pressure externally imposed on thewall and γ itsmobility, taken to be
γ=0.1. The dynamics is integrated by Euler time stepping, with the same time step as for the particles. To
compute the phase diagram in the isobaric (N P, , Pew ) ensemble, we rampPwup and down very slowly. For
each Pe, the systemwasfirst equilibrated at a starting pressure Pw, whichwas then incremented or decremented
in steps of±1 every 108 time steps.

B.3. Construction of the equation of state
In order to separate the gradient contributions from the bulk contributions toPA andPD, one needs an accurate
EOS for the full phase-separated parameter region—somethingwhich is not known a priori. In order to obtain
an approximate EOS, we adopt a refined version of the strategy followed in [17]: we (i)measure r( )PA

0 and r( )PD
0

for Pe<Pec, where homogeneous systems are stable for all densities, and (ii) apply scaling arguments to extend
the validity of the EOS to >Pe Pec.

We start from the exact expression of the active pressure in a homogeneous system [17]

m r r r=( ) ( ) ( )P
v

D
v

2
, B.4A

r

0 0

where v(ρ) is the density-dependent single-particle swim velocity projected along its orientation [17]

 år r qº + = + á - ñ = á ñ
¹

( ) ( ) · ( ) ˙ · ( )v v v u F r r r u2 . B.5xx i
j i

j i i i0 0

As has been shown several times before [3, 6, 7, 17, 29], v(ρ) is accurately described by a linearly decreasing
function up to near-close-packed densities. However, as the details of the high-density region of the EOS are very
important for the accuracy of the predicted binodals, we furthermore include a quadratic term in ρ and a
switching functionwhich ensures a smooth transition to v 0:

r r r r= - + - -( ) ( )( ( ( ))) ( )v
v

s s s s
2

1 1 tanh , B.60
1 2

2
3 4

where s1−s4 arefitting parameters which are found to be essentially independent of Pe (see figure 8) as long as
we remain in the <Pe Pec region. The local EOS for PA

0 is then given by(B.4)with(B.6).
We now consider the local EOS for the direct pressure. For the values of v0 and ò used in this study, which

control the effective stiffness of theWCApotential, PD is found to be independent of Pe (see figure 8). For
Pe=40, wefind that r( )PD

0 is accurately fitted by a biexponential function:

r r r= - + -( ) ( ( ) ) ( ( ) ) ( )P d d d dexp 1 exp 1 , B.7D
0

1 2 3 4

where d1−d4 are fitting parameters.
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