
Eur. Phys. J. Special Topics 224, 1231–1262 (2015)
© EDP Sciences, Springer-Verlag 2015
DOI: 10.1140/epjst/e2015-02457-0

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Active brownian particles and run-and-tumble
particles: A comparative study

A.P. Solon1, M.E. Cates2, and J. Tailleur1

1 Univ Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
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Abstract. Active Brownian particles (ABPs) and Run-and-Tumble
particles (RTPs) both self-propel at fixed speed v along a body-axis
u that reorients either through slow angular diffusion (ABPs) or sud-
den complete randomisation (RTPs). We compare the physics of these
two model systems both at microscopic and macroscopic scales. Us-
ing exact results for their steady-state distribution in the presence of
external potentials, we show that they both admit the same effective
equilibrium regime perturbatively that breaks down for stronger exter-
nal potentials, in a model-dependent way. In the presence of collisional
repulsions such particles slow down at high density: their propulsive
effort is unchanged, but their average speed along u becomes v(ρ) < v.
A fruitful avenue is then to construct a mean-field description in which
particles are ghost-like and have no collisions, but swim at a variable
speed v that is an explicit function or functional of the density ρ. We
give numerical evidence that the recently shown equivalence of the
fluctuating hydrodynamics of ABPs and RTPs in this case, which
we detail here, extends to microscopic models of ABPs and RTPs in-
teracting with repulsive forces.

1 Introduction

Outside the realm of exact results, and despite recent progress [1], non-equilibrium
statistical mechanics largely remains (paraphrasing Harish-Chandra [2]) messy, elu-
sive and non-rigorous. However, we may say (paraphrasing Dyson [2]) that this is
precisely why it is such an interesting research field. While a fully general exten-
sion of the well-established framework of equilibrium statistical physics remains out
of reach, there are important classes of non-equilibrium systems for which progress
towards a comprehensive theory seems achievable. Colloidal self-propelled particles
(SPPs), which represent a central focus of research into active matter [3–6], arguably
offer such a prospect. This applies at least in some simplified limits, such as spherical
SPPs interacting by central forces only (a restriction that excludes hydrodynamic in-
teractions). In developing theories of such systems, an important general question is
how far macroscopic behaviour is sensitive to the detailed dynamical rules. For ther-
mal systems, steady-state properties are governed by Boltzmann equilibrium, and
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hence sensitive to the energy landscape but not the dynamics used to explore it –
so long as this dynamics obeys the principle of detailed balance (as it must do in
such cases). For non-equilibrium systems, such as SPPs, the question must be asked
afresh. In this article we address this issue by studying two classes of active particles,
ABPs and RTPs. These have related but distinct dynamics, and have become two
major workhorses of recent simulation and theoretical studies of active matter. We
will find instances where their dynamical differences disappear on coarse-graining,
to give the same macroscopic physics; and other instances where these differences
remain important – typically when there is short-scale structure in the problem, such
as confinement in small traps.
In active matter, a continuous supply of energy destroys microscopic time-reversal

symmetry (TRS) and allows phenomena to arise that are impossible in thermal equi-
librium systems, where detailed balance restores TRS in the steady state. Inspired in
large part by experiments on synthetic self-propelled colloidal particles [7–14], many
recent theory and simulation papers have addressed the physics of a simplified model
comprising spherical active Brownian particles (ABPs) [15–25]. In parallel, growing
experimental interest in bacterial motion [26,28–33] has brought run-and-tumble par-
ticles (RTPs) to the fore as a second prototypical model of self-propelled particles at
the colloidal scale.
In these models, each particle feels a constant external force ζv0 oriented along its

swim direction u. At low density this is equal and opposite to the local drag force felt
by a particle moving at speed v0. (At high density the external force may be partly
opposed instead by conservative interparticle forces.) This is a one-body drag and
thus the models entirely omit hydrodynamic interactions and all the other physics
associated with the presence of an incompressible solvent. These can have impor-
tant effects, for instance generating self-pumping states [34,35] or causing rotation by
collision [36,37]. On the contrary, in the spherical ABP model the angular dynam-
ics comprises rotational diffusion with a fixed diffusivity Dr. Idealized RTPs differ
from ABPs only in their rotational relaxation; instead of continuous diffusion, RTPs
undergo discrete tumbling events of short duration that completely randomize their
swimming direction; these events occur randomly in time at mean rate α and the
mean time between two tumbles is therefore exponentially distributed1. Both models
share an important simplification, which would be inadmissible for any particles capa-
ble of exerting significant torques on one another (such as non-spherical SPPs at high
density). Specifically, the angular dynamics of each particle remains unperturbed by
interactions of any kind, and proceeds independent of the positions or orientations of
all other particles in the system. In what follows, the terms ABP and RTP refer to
this spherical, torque-free case unless stated otherwise.
Another key feature of these two models is that each particle exchanges momentum

with external driving and drag forces, not with a suspending solvent. The resulting
non-conservation of momentum within the system greatly complicates the discussion
of the macroscopic force balances that normally underly mechanical properties such
as pressure [22–24]. Indeed, the force per unit area on a wall in general depends on
the wall-particle interactions [40]; this dependence does cancel out for the case of
spherical (torque-free) ABPs moving with constant propulsive force [41], but not if
the propulsive force is itself density-dependent [40] (a case we return to below).
In this paper, we present a comparative study of these simplified models of

self-propelled particles. We first consider the steady-state distribution of non-
interacting SPPs submitted to an external potential Vext. Using exact results on
the sedimentation of active particles, we show that ABPs and RTPs each admit an

1 Other type of distributions, possibly with large tails, may also be considered. See,
e.g., [38,39].
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“effective temperature” regime when the Stokes speed vs ≡ −∇Vext/ζ is small com-
pared to the swim speed v. We show how the effective temperature concept breaks
down outside this regime in model-specific ways; this issue has attracted lots of in-
terest recently [10,35,42–44]. We then consider the confinement of SPPs in circular
or spherical traps, and show how the different angular dynamics between the two
systems result in qualitatively different behaviours outside the effective equilibrium
regime.
We then turn to interacting SPPs and consider models that replace interpar-

ticle collisions with a density-dependent propulsion force. Therefore we avoid any
detailed discussion of the mechanical pressure, although it may offer an interesting
alternative perspective on phase equilibria [24,41,45]. We explore an approximation
scheme for torque-free SPPs with collisional interactions whereby the conservative
forces responsible for collisional slow-down of the particles are replaced at mean-field
level by a “programmed” slow-down, that is, an effective reduction in the propulsive
force at high density. This path was first sketched out in [46] and pursued further in
[17,19,47–49]. In a more general context it is both legitimate and interesting to con-
sider, in its own right, the case with no conservative force field between particles, and
ask about the effects of programmed slow-down among such “ghost” particles. While
not forgetting its original motivation in the collisional case, we will often adopt this
viewpoint here. Indeed, the concept of a programmed slow-down is well established in
biological systems such as bacteria, where density-dependent dynamics can be effec-
tively introduced through a biochemical pathway called quorum sensing [4,31,50,51].
This causes bacteria to change behaviour in response to the concentration of a short-
lived chemical that they also emit. Because of the short lifetime, the response is
then directly sensitive to the number of neighbours within a short but finite dis-
tance, and hence to a local coarse-grained density. Note that this is distinct from
chemotaxis [52,53] in which organisms swim preferentially up or down gradients of
a long-lived chemical signal–effectively creating a long-range repulsion or attraction.
(Chemotaxis might also arise in synthetic, self-phoretic colloids [54].) An interesting
study of chemotactic interactions in ABPs, showing some features resembling phase
separation of the type discussed below, can be found in [55].
In bacteria such as E. coli angular relaxation is an RTP process, for which the

consequences of density-dependent speed were first worked out in [46]. However, some
bacterial types, including mutant strains of E. coli known as “smooth swimmers”,
do not tumble. In practice the genetic engineering strategies used in [31,50] to give
density-dependent slow-down primarily achieve this by altering tumble times and fre-
quencies (reducing the time-averaged speed). However, were it possible to directly link
the actual propulsion speed of bacteria to their local density in a smooth-swimming
strain, then this would offer an unambiguous physical realization of ABPs (as opposed
to RTPs) with a density dependent speed. As in [31,50], this could probably be made
to happen at densities too low for collisional or crowding effects to be important.
In summary, the study of SPPs with density-dependent propulsion speed is moti-

vated (i) as an approximate representation of the collisional slow-down in SPPs with
pairwise repulsions; (ii) as a representation of smooth-swimming or run-and-tumble
bacteria with slow-down caused by quorum sensing or a related, non-collisional mech-
anism; and (iii) as a model in its own right, with which to explore generic collective
phenomena in active matter systems. In the last context, it offers further insights into
the degree to which macroscopic outcomes depend on local dynamical rules, and we
shall focus on this below in comparing the ABP and RTP cases in some detail.
The most striking many-body phenomenon seen in this class of models is motility-

induced phase separation, or MIPS. This is by now a well-established concept
[4,46–49,56–60] and is the result of two effects in combination. First, the mean speed
of a motile particle along its propulsion direction decreases with density (in contrast
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to the equilibrium case where the velocity statistics of a particle are separable, and
fixed solely by equipartition). Second, particles tend to accumulate in spatial regions
where they move slowly (a possibility ruled out, in isothermal equilibrium, by the fact
that the speed distribution cannot depend on position). This combination creates a
positive feedback which is the origin of MIPS [4,46,57].
In what follows, after exploring in Sect. 2 the one-body behaviour of ABPs and

RTPs in external potentials, we turn in Sect. 3 to their many-body physics, show-
ing first how the large-scale dynamics with density-dependent v(ρ) can in each case
be mapped on the equilibrium dynamics of passive particles with attractive forces,
and then outlining how gradient terms affect this mapping. Sections 2 and 3 offer a
more complete presentation of results reported in [42,47] respectively. In fact we add
substantially to these results: our discussion of ABPs in traps and of angular distri-
butions for ABPs and RTPs under gravity are both new to the current paper. In the
many-body section we carefully compare our approach with recent work by others
on the role of leading order nonlocality (gradient corrections) in an effective free en-
ergy picture. We show further that, somewhat surprisingly, the large-scale equivalence
between ABPs and RTPs established at the level of fluctuating hydrodynamics for
particles with density-dependent swim speed [47] effectively extends to microscopic
simulations of ABPs and RTPs interacting with repulsive forces.

2 Steady-state of active particles in external potential

Consider the classical experimental geometry, devised by Jean Perrin, in which dilute
colloidal particles are allowed to sediment under gravity in a cuvette. Equilibrium
statistical mechanics asserts that we can forget all details of the diffusive dynamics
of the colloids: the steady-state probability of finding a particle at a given height z is
a Boltzmann distribution, P (z) ∝ exp(−δmgz/kT ), where δm is the mass difference
between the particle and a corresponding volume of liquid2. Let us now replace the
Brownian random-walk diffusion of the colloids by an active random walk, powered by
some microscopic non-equilibrium process. In the SPP context the latter is a persistent
random walk of fixed speed, with either continuous (ABP) or discrete (RTP) changes
of direction. (Its persistence length is much longer than for true Brownian motion,
although the latter is finite in principle. More importantly, the instantaneous speed
of true Brownian motion is not fixed, but has unbounded fluctuations given by the
Maxwell-Boltzmann distribution.) Though not identical, clearly the equilibrium and
non-equilibrium diffusive processes cannot be completely unrelated, at least in a limit
where the persistence length is much smaller than the sedimentation length. Outside
this regime, however, very different physics may be encountered.
Previous studies of sedimenting active particles confirm this line of reasoning.

Exact results for RTPs in one, two and three spatial dimensions have shown the
density profile to be exponential ρ(z) ∝ exp(−λz) far away from the containing
boundaries [42,46]. The sedimentation length reduces to λ−1 = kTeff/δmg, with Teff =
v2ζ/dα and ζ the inverse mobility of the particle; this result holds in the limit where
the sedimentation speed vs = ζ

−1δmg is much smaller than the swim speed v.
This effective equilibrium regime, where the sedimentation profile is given by a

Boltzmann weight with a temperature Teff independent of the potential Vext, was
observed experimentally for ABPs in [10,44] and derived analytically in [35]. Its
breakdown for stronger confinement, predicted in [42], was not observed experimen-
tally so far [10,44], triggering a debate about the generic sedimentation behaviour

2 Note that in all this article but the sedimentation sections, we silently assume the mass
of particles to be equal to one.
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for SPPs [43]. Below, for both RTPs and ABPs (Sects. 2.1, 2.2) we derive in 2D
the full probability distribution P (z, θ) for finding a particle at height z swimming
in direction θ. The outcome is that ABPs and RTPs both admit the same effective
equilibrium regime – up to a simple parameter mapping between α and Dr. However,
beyond this regime the density profiles are dynamics-dependent, and various defini-
tions of the “effective temperature”, which all coincide within the regime of small vs,
are found to differ beyond it.
In Sect. 2.4 we turn from sedimentation (which has vs uniform in space) to address

the steady-state distributions of ABPs and RTPs in harmonic traps, where vs(r) =
−κr. Again, ABPs and RTPs yield the same limiting effective equilibrium regime but
lead to very different physics once the persistence length (respectively v/α or v/Dr)
is much larger than the trap radius v/κ. In this regime, the cases of continuous (ABP)
and discrete (RTP) angular rotation give entirely different statistics for the density
at the centre of the trap, for reasons we discuss.

2.1 Sedimentation of 2D RTPs

Let us consider the dynamics of a 2D RTP in the presence of an external potential
Vext(r) = δmgz. The self-propulsion velocity vu(θ) is supplemented by a sedimenta-
tion velocity −vsez = −ζ−1∇Vext(r) so that the master equation reads

Ṗ (r, θ) = −∇ · [(vu(θ)− vsez)P (r, θ)]− αP (r, θ) + α

2π

∫
dθ′P (r, θ′). (1)

We consider a system which is not free-falling, i.e. such that a wall at z = 0 prevents
the particles from crossing this plane. A number of boundary conditions can be used
to model the relevant interaction; for example, one can simply cancel the z component
of the particles velocity [61], or take into account the torque that a wall would exert
on actual bacteria [42]. Different boundary layer structures then arise proximal to
the wall, depending on the details of the dynamics and the boundary condition,
which typically show strong particle accumulation in this region [62,63]. Beyond this
proximal regime (typically a few run lengths in height) a stationary profile is reached
at larger z whose form is independent of the boundary condition.
In what follows we consider only this distal part of the profile. Its form can be

found by assuming a factorized steady-state P (z, θ) = ρ(z)f(θ); from Eq. (1), the
factors must then satisfy

ρ′(z)
ρ(z)

=
α

v cos θ − vs

(
1

2πf
− 1
)
≡ −λ (2)

where λ is a constant, a priori unknown. Equation (2) directly give

ρ(z) = ρ0e
−λz; f(θ) =

1

2π
[
1− λ

α
(v cos θ − vs)

] · (3)

The constant λ can then be fixed by the normalization condition
∫ 2π
0

f(θ)dθ = 1,
which yields

α

√
λ(vs + v) + α

λ(vs − v) + α = λ(vs + v) + α. (4)

Finally, the inverse sedimentation length is given by

λ =
2αvs
v2 − v2s

(5)
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Fig. 1. Sedimentation of RTPs and ABPs (α = Dr = v = 1). Symbols correspond to
simulation data and full lines to analytical predictions. The conditional probability P (θ|z)
for ABPs (top left) and RTPs (top right) is independent of z in the distal part of the profile.
(For each value of vs, several P (θ|z) are constructed for different z in the distal region; they
show perfect overlap.) The simulation data matches the theoretical predictions given by (6)
and (10). Bottom left: inverse sedimentation length λ as vs/v is varied. The equivalence
between ABPs and RTPs breaks down as soon as one leaves the effective equilibrium regime
(bottom right). The dashed lines correspond to the first order corrections of the two systems
given in (12) and (15).

so that

f(θ) =
1− v2s

v2

2π

[
1− 2vs

v
cos θ +

v2s
v2
)

] · (6)

These exact results extend those of [42] where only ρ(z) was computed; they perfectly
fit simulations of sedimenting RTPs, as shown in Fig. 1.

2.2 Sedimentation of 2D ABPs

A similar path can be followed for sedimenting ABPs in 2D, starting from the master
equation

Ṗ (r, θ) = −∇ · [(vu(θ)− vsez)P (r, θ)] +Dr∂θθP (r, θ). (7)

Again, a separation of spatial and angular variables is confirmed numerically beyond
a boundary layer proximal to the wall. The steady-state P (z, θ) is found by using the
ansatz P (z, θ) = ρ(z)f(θ) in Eq. (7), to give

0 = −∂z[(v cos θ − vs)P (z, θ)] +Dr∂θθP (z, θ) (8)

which yields

ρ′(z) = −λρ(z) f ′′(θ) = − λ

Dr
(v cos θ − vs)f(θ). (9)
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As before, this yields an exponential atmosphere ρ(z) = ρ0 exp(−λz) where the inverse
sedimentation length λ is set by the normalisation of f(θ). The equation for f(θ) is
the Mathieu equation. Given that f(θ) is even, it admits the general solution

f(θ) = c1C

(
−4λvs
Dr

,−2λv
Dr

, 2θ

)
(10)

where C(a, q, ϑ) is the cosine Mathieu function [65]. For fixed q, this is π-periodic in
ϑ only for a countable subset of a values, a = an(q), which satisfy an(0) = n2. Since
λ→ 0 when vs → 0, the solution of interest has n = 0 which implies

−4λvs
Dr
= a0

(
−2 λv

Dr

)
· (11)

Solving this numerically gives λ(vs, v,Dr). (The numerics can be done using either
a formal solver like Mathematica or by procedures based on series expansion of the
an’s [66].) The resulting values of λ match perfectly the results found by simulating
sedimenting ABPs; the full distribution is then obtained by plotting the corresponding
Mathieu function, and also agrees very well with the numerics (see Fig. 1).

2.3 Effective equilibrium regimes

Boltzmann distributions. When vs/v � 1, both ABPs and RTPs admit an effec-
tive equilibrium regime. This is most easily seen for RTPs where λ can be readily
expanded:

λ �
vs�v

2αvs
v2

(
1 +

v2s
v2

)
· (12)

Keeping only the dominant contribution, the steady-state thus reduces to the
Boltzmann form

ρ(z) = ρ0e
−Vext(z)/kTeff ; kTeff =

v2ζ

2α
(13)

where the last equality is an effective Stokes-Einstein relation that connects the
mobility ζ−1 to the diffusivity D0 = v2/(2α) through an effective temperature Teff .
For ABPs, one can use the expansion

a0(q) �
q�1 −

1

2
q2 +

7

128
q4 (14)

to get

λ �
vs�v

2Drvs
v2

(
1 +
7v2s
4v2

)
· (15)

Again, the system admits a Boltzmann distribution as steady-state, at the dominant
order in vs/v, with an effective temperature

kTeff =
v2ζ

2Dr
· (16)

Equating the mean time τ = α−1 between two tumbles in RTPs and the rotational
diffusion time τ = D−1r in ABPs, the two effective equilibrium regimes match. (In
general dimensions, the parameter mapping is from α1 to (d − 1)−1D−1r , which are
the angular autocorrelation times for RBPs and ABPs respectively [47].) However,
even the first order corrections in (12) and (15) are different in form (see Fig. 1).
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Matching the angular relaxation times gives exponential decay of the angular corre-
lator 〈u(t)u(0)〉 = exp[−t/τ ] in both cases, but unless vs/v � 1 the sedimentation
length depends on the details of the angular dynamics.
Note that one can also expand the angular distribution f(θ) close to the effec-

tive temperature regime vs � v. For 2d RTPs, this gives (using the normalisation∫
dθf(θ) = 1)

2πf(θ) = 1 +

(
κv

α
+
3κ2vvs
α2

)
cos θ +

κ2v2

2α2
cos 2θ +O(κ2) (17)

= 1 +
2vs
v
cos θ +

2v2s
v2
cos 2θ +O

((vs
v

)3)
(18)

where on the last line we used that

κ �
vs�v

2αvs
v2

(
1 +

v2s
v2

)
· (19)

We can do the same for 2d ABPs using the Fourier expansion of characteristic Mathieu
functions [65], to get

2πf(θ) = 1 +
κv

Dr
cos θ +

κ2v2

8D2r
cos 2θ +O(κ2) (20)

= 1 +
2vs
v
cos θ +

v2s
2v2
cos 2θ +O

((vs
v

)3)
(21)

where on the last line we used that

κ �
vs�v

2Drvs
v2

(
1 +
7v2s
4v2

)
· (22)

The difference between f(θ) for ABPs and RTPs can thus be seen at the level of
the second harmonics. As for the difference between the density profiles of RTPs and
ABPs, it appears at second order in vs/v. Note that the first order correction to
f(θ) = 1/(2π) however suffices to distinguish these distributions from equilibrium
ones.

Fluctuation-dissipation relations. A quantity that is frequently looked at in non-
equilibrium statistical physics is the ratio between correlation and response func-
tions [67]. Here we examine this for active particles in a sedimentation setup. For
simplicity we only consider RTPs where we have explicit formulae, but conceptually
what follows applies equally to ABPs. Let us consider a small force f applied along
ez and compute the response function

R =
∂〈z〉
∂f

∣∣∣∣
f=0

· (23)

The steady-state distribution is then ρ(z) ∝ λ(f) exp[−λ(f)z] where λ(f) is obtained
by replacing vs → vs − ζ−1f in Eq. (5). Since 〈z〉 = λ(f)−1, R is given by

R = − λ
′(0)

λ(0)2
· (24)

Since the correlation function C ≡ 〈z2〉 − 〈z〉2 = λ(0)−2, one directly gets
C

R
= − 1

λ′(0)
· (25)
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In the effective equilibrium regime, where λ(f) = 2(vs − f/ζ)/τv2 this gives
C

R
=
ζv2τ

2
= kTeff (26)

which is the usual form for a system with an effective temperature; the system satisfies
a fluctuation dissipation theorem (as it should) governed by that temperature.
For larger vs, the same ratio can be computed explicitly for RTPs using the exact

result 5, yielding
C

R
= ζτ

v2 − v2s
2

v2 − v2s
v2 + v2s

· (27)

In this regime, there is no longer an FDT at temperature Teff for the response to a
force along z. Moreover, an alternative definition of the effective temperature (which
coincides with the fluctuation-dissipation ratio in the effective equilibrium regime)
is found by applying a force instead along ex, and asserting a Stokes-Einstein rela-
tion between the mobility ζ−1 and the lateral diffusivity defined via the mean-square
displacement along x. This yields kTeff = ζv2τ/2, just as in Eq. (26), with no de-
pendence at all on vs. For large vs, the resulting “horizontal” effective temperature
controls neither the density profile nor the fluctuation-dissipation in the z direction.
In summary, outside the effective equilibrium regime, the three equally plausible

definitions

kTeff ≡ C

R
and kTeff = − Vext(z)

logP (z)
and kTeff ≡ ζ lim

t→∞〈x
2(t)/t〉 (28)

yield three different effective temperatures. It follows that none is really effective, in
the sense that if a new one is needed to describe each property measured, the concept
of effective temperature is itself ineffective. In contrast, for both ABPs and RTPs
within the effective equilibrium regime (arising in the limit of weak gravity) all three
definitions of temperature coincide and the dynamics effectively reduces to an equilib-
rium problem. For this reason we prefer the term “effective equilibrium” to describe
this regime over the less explicit “effective temperature” name used earlier [42].
Interestingly it was recently shown experimentally, by measuring density profiles,

that the addition of repulsive interactions between the particles does not immediately
destroy the effective equilibrium regime [44]. Note that observing its breakdown ex-
perimentally requires a rather large ratio of vs/v (for vs/v � 0.4, the difference in λ
is only 40% for ABPs). This may explain why this breakdown has not been reported
experimentally so far. The more general question of effective equilibrium in active
particles remains a subtle one. For instance, if the fixed self-propulsion speed v is re-
placed by a fluctuating one, using an Ornstein-Uhlenbeck process [43,44], the effective
equilibrium regime extends to arbitrary sedimentation speed vs, which clearly differs
from the RTP and ABP cases treated here. As discussed in [42], fixed propulsion
speed is qualitatively different from any dynamics that can sample very high speeds,
even if these are rare (as they are in the thermal Maxwell-Boltzmann distribution).
One reason for this is clear: if there is a fixed maximum speed, then when vs exceeds
this, all particles are moving only downwards and the sedimentation length must
be strictly zero (in the absence of particle-particle interactions). Rare sampling of
high molecular speeds is why, in thermal equilibrium, a nonzero sedimentation length
λ−1 = kT/δmg is maintained even for very large vs = δmg/ζ.

2.4 Trapping of SPPs

Apart from RTPs in one dimension [46], there are no exact results available for the full
steady-state distribution of ABPs and RTPs in a harmonic trap. While the approach
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bulk scales as 1/Φ (bottom left), while the density of ABPs in the bulk scales exponentially
with Dr, and the profile ρ(r) decreases exponentially with the distance to the trap boundary
(bottom right).

presented in the previous section does not apply here, because P (r, θ) is not factorized,
some progress is still possible as we show below. The Stokes velocities of SPPs are
now position-dependent and read vs = −κr/ζ, where r is measured from the center of
the trap. The physics is very different from the sedimentation case since the particles
are effectively confined to r < rT ≡ v/κ; At r = rT the trapping and propulsive forces
compensate exactly, hence preventing the particles from moving further outside.
The effective equilibrium regimes correspond to τ � λ−1 and, as expected, are the

same for ABPs and RTPs, with Boltzmann weights for the steady-state distribution
ρ(r) (see Fig. 2)

ρ(r) ∝ exp
(
− κ r2

2kTeff

)
; kTeff =

v2τζ

2
· (29)

As the ratio Φ ≡ κτ between the persistence-length vτ and the trap radius rT = v/κ
increases, the time needed for the particles to cross the trap becomes much smaller
than the mean reorientation time. Particles thus accumulate at the outskirts of the
trap where, on average, they point outward radially. How long they persist in this
state depends on the dynamical details; in consequence, the density distributions of
RTPs and ABPs differ in this regime, particularly in the central region of the trap.
Note that, once again, this scenario differs from the fluctuating speed model of [43]
where the steady-state in a harmonic trap is always a Gaussian, with fast enough
particles reaching arbitrarily large distances and slow enough particles remaining in
the center of the trap.

RTP in a harmonic trap. RTPs pointing outward at the trap boundary undergo
instantaneous tumble events at rate α whereafter they move across the trap along a
certain path. Despite the trap force, and somewhat surprisingly, we show below this
path to be a straight line segment, which fully crosses the trap for large Φ; In this
limit, the trajectory is thus a succession of chords of the circle in 2D. The fraction of
time spent by a particle in the bulk then corresponds to the fraction of its run-time
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Fig. 3. SPPs in a harmonic trap (α = Dr = 0.1, v = κ = 1 in simulation units). Left
and right plots correspond to real-space trajectories and the evolution of r(t), respectively.
The arrows in the top left panel show the orientations of the particles. Top and bottom
correspond to RTPs and ABPs, on similar time-scales. The dashed line in the bottom right
panel corresponds to r = v[1−Dr/(2κ)]/κ.

needed to reach the other side of the trap; this time is proportional to 1/Φ. (This
scaling is correct although in practice the path is not followed at constant speed.)
Beyond the scaling ρ(r) ∝ α/κ in the bulk, one can furthermore compute a limiting

shape of ρ(r) as α/κ → 0. Let us consider a particle at position r0 on the trap
boundary which tumbles to make an angle θ with the horizontal axis. Its trajectory
until the next tumble is simply given by

r(t) = r0e
−κt +

v

κ
(1− e−κt)(cos θ, sin θ) (30)

which generalizes the intuitive result r = (v/κ)(2 exp[−κt]− 1) for r0 = (v/κ, 0) and
cos θ = −1. (The latter describes overdamped relaxation across a diameter of the circle
to a new equilibrium position opposite the previous one, and applies in the case where
the tumble exactly reverses the swim direction.) Equation (30) describes a linear
trajectory joining r0 to

v
κ
u(θ), where the trap force balances again the propulsion

force. The angular momentum L(t) = (r(t) − r0) ∧ ṙ(t) about the initial position r0
satisfies L(0) = 0 and L̇ = −κL so that L(t) = 0. The velocity ṙ and r− r0 are thus
always parallel: the torques about r0 exerted by the trap force and the propulsion
force balance to produce a straight trajectory at an angle intermediate between u
and r0; Only the speed |ṙ(t)| ∝ exp(−κt) is thus varying.
Let us now consider r0 = (v/κ, 0). As shown in Fig. 3, the distance to the center of

the trap first decreases from r ∼ v/κ to rmin(θ) = v| cos θ2 |/κ, which is reached after a
time t = (log 2)/κ. The distance then increases again until (almost) reaching r ∼ v/κ
before the next tumble happens. (Since the speed |v + vs| vanishes as r → v/κ, the
particle never reaches exactly the trap boundary.) The trajectory thus crosses twice
any annulus of radius r > rmin(θ) within the trap, where it spends a fraction of
its duration ∝ α(1/|ṙ[t+(θ)]| + 1/|ṙ[t−(θ)]|). Here, we have assumed that the total
duration of the trajectory is 1/α and t±(θ) are the times at which the particle reaches
|r| = r. These times satisfy

(v2 − κ2r2) exp(κt±) = v2(1− cos θ)±
√
2λ2(1− cos θ)(r2 − r2min) (31)
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so that the probability of finding a particle at position r can be computed as

ρ(r) = Z
1

2π

∫ 2π−2 arccos(κr/v)
2 arccos(κr/v)

(
α

|ṙ(t1)| +
α

|ṙ(t2)|
)
dθ. (32)

Note that ρ(r) formally diverges as r → v/κ; in practice this is cut off because the
finite duration (∼ 1/α) of the trajectory ensures that no particle exactly reaches the
maximal radius r = v/κ at which its net speed vanishes. The smaller α, the closer to
the trap boundary this cut-off takes place. We have taken α out of the normalization Z
to make the scaling of ρ(r) apparent; Z is then independent of α and equals Z � π/2.
The bottom-left quadrant of Fig 2 shows a very good agreement between Eq. (32)
and simulations of RTPs for α/κ ≤ 0.1.

ABP in a harmonic trap. Contrary to RTPs, the orientation of ABPs diffuse slowly
so that, as θ varies, they simply slide along the boundary of the trap, rarely visiting
its inner region. This was used recently [70,71] to compute the distribution of ABPs
along the boundary of small traps of arbitrary shapes, assuming that the particles
effectively never leave the boundary of the trap. As we show below, this asumption is
a sound one since the density of particles decreases exponentially as one moves away
from the boundary and is exponentially small in Φ at the trap centre. Introducing
the angle ϕ between the direction of the particle and the normal to the trap er, the
dynamics in the (r, ϕ) variables become

ṙ = −κr + v cosϕ ϕ̇ =
√
2Drη(t)− v

r
sinϕ (33)

where η(t) is a Gaussian unit white noise. Using dimensionless variables τ = tDr,
r̃ = rκ/v, and η̃(τ) = η(t)/

√
Dr, Eqs. (33) become

˙̃r = − κ

Dr
(r̃ − cosϕ) ϕ̇ =

√
2η̃ − κ

r̃Dr
sinϕ (34)

where η̃(τ) is also a Gaussian unit white noise. The angle ϕ thus undergoes rota-
tional diffusion in an effective potential κ

r̃Dr
(1 − cosϕ) whose amplitude diverges

as Dr/κ→ 0. In this limit, ϕ oscillates around ϕ = 0 with Gaussian fluctuations
〈ϕ2〉 = Dr/κ. Consequently, r̃ � 1 − Dr/(2κ): the particle is almost always at the
border of the trap, although the fluctuations of ϕ prevent it from reaching exactly
r = v/κ (see Fig. 3). The density of particles in the bulk of the trap is thus much
smaller than in the RTP case since in a time t ∼ 1/Dr, the particles are exponentially
unlikely to escape the trap boundary while RTPs would typically cross the trap in
times t ∼ 1/α. (Recall that these two times are interchangeable in the effective equi-
librium regime.) The occurrence of an effective potential, preventing particles from
diffusing in angle away from the outward normal direction, at first seems to violate
the fact that the dynamics of ABPs is torque-free. Note however that there is no real
potential for the angle θ; the effective potential for ϕ arises not because there is a
torque, but because the translational motion of a particle along the trap boundary
naturally leads it towards a location where the outward normal is parallel to the
current orientation, hence leading to ϕ � 0. This effect is also present for RTPs but
the discrete angular dynamics effectively allows the RTP to immediately escape the
reorientation potential.
To reach the bulk part of the trap, Eq. (34) tells us that ϕ needs to climb the

effective potential to turn and face its destination. In principle, there are many sto-
chastic paths leading from the boundary to some inner target point at distance r
from the center. As κ/Dr → 0, however, the transition probability is dominated by
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the most probable path leading to such a point [72] (an instanton). The probability
of this path will be given by expκΔE/Dr, where ΔE(r/rT ) is a geometric function
depending on the exact location of the target. Since reaching the center of the trap
requires a fluctuation of ϕ much larger than any required to reach another point close
to the trap boundary, the energy barrier increases as the distance of a target from
the boundary increases. In practice, a linear function ΔE(r/rT ) fits very well the
effective energy barrier:

ρ(r) � C

2πr2T
Φexp

[
CΦ(r/rT − 1)

]
(35)

where C is a dimensionless constant. The density in the center of the trap indeed
decreases much faster than for RTPs, as Φ exp(−CΦ). Somewhat surprisingly, this
simple argument gives reasonably good agreement, with a geometric factor C whose
fit yields C � 2.15, with the bulk density measured in numerical simulations (see
Fig. 2).

2.5 Effective equilibrium for generic potentials

In this section we show that for generic potentials Vext, sufficient conditions to observe
an effective equilibrium regime are given by

|ζ−1∇Vext(r)| � v; and |ζ−1ΔVext(r)| � α, Dr(d− 1). (36)

To show this, let us consider a system for which (36) holds. The fluctuating hydro-
dynamics for ABPs and RTPs in the presence of external drifts derived in [47] reads:

ρ̇ = −Ω
d
∇(vp) +∇ · [ζ−1∇Vextρ] +∇(Dt∇ρ) (37)

Apa = −∇a(vρ/Ω) +∇b(ζ−1∇bVextpa) +O(∇2) (38)

where Ω is the surface of the unit sphere in d dimensions and A equals α for RTPs and
Dr(d−1) for ABPs. This description is valid at times t� A−1 and for fields ρ,p whose
gradients are small on the scale of the persistence length of SPPs, |∇ρ|/ρ, |∇p|/|p| �
A/v; its derivation in the isotropic case is the subject of Sect. 3, whose notation differs
slightly through introduction of a quantity ϕ = ρ/Ω.
Expanding the second term of the r.h.s of Eq. (38) then yields

(A− ζ−1ΔVext)pa = −∇a(vρ/Ω) + ζ−1∇bVext · ∇bpa +O(∇2) (39)

Eq. (39) thus shows that pa � O(∇). Using (36), the Laplacian of Vext can then be
neglected and (39) simplifies into

pa = − v
A
∇a(ρ/Ω) +O(∇2). (40)

The dynamics of ρ is then given by

ρ̇ = ∇ ·
[(
Dt +

v2

A

)
∇ρ+ ζ−1∇Vextρ

]
(41)

which is nothing but the equilibrium Fokker-Planck equation of a colloid of mobility
ζ−1 subject to an external potential Vext, at a temperature

kTeff = ζ
−1
[
Dt +

v2

A

]
(42)
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The steady-state solution of this equation is the Boltzmann weight ρ(x) ∝
exp[−βeffVext], which satisfies

∣∣∣∣ vA
∇ρ
ρ

∣∣∣∣ =
∣∣∣∣∣
v

A

ζ−1∇Vext
Dt +

v2

A

∣∣∣∣∣ <
∣∣∣∣ζ
−1∇Vext
v

∣∣∣∣ (43)

which is indeed small, thanks to (36).
The two conditions (36) are enough to show the long time dynamics of the SPP to

amount to the equilibrium dynamics of a colloid subject to an external potential Vext.
Physically, they require that the Stokes speed vs = −ζ−1∇V be much smaller that
the self-propulsion speed v of the SPP, but also that its variations over a run-length
∇vs.v/A be much smaller than v.

3 Fluctuating hydrodynamics of ABPs and RTPs

Following [47], we address a model using a general angular relaxation dynamics, com-
bining smooth angular diffusion with diffusivity Dr with pointwise random reorienta-
tions (tumbles) at rate α. The model has ABPs as one limit and RTPs as another. An
intrinsic translational diffusivity Dt is also allowed for; the swim speed v is allowed to
be position-dependent in the first part of the derivation, v(r), and we will then turn
to density-dependent v(ρ). For a single particle, the probability density ψ(r,u, t) of
finding the particle at position r moving in direction u obeys exactly (in d = 2, 3)

ψ̇(r,u) = −∇ · [vuψ(r,u)] +∇u · [Dr∇uψ(r,u)]
+∇ · (Dt∇ψ(r,u))− αψ(r,u) + α

Ω

∫
ψ(r,u′)dΩ′

(44)

where∇u is the rotational gradient acting on u and the integral is over the unit sphere
|u′| = 1 of area Ω. The first term on the right is the divergence of the advective current
resulting from self propulsion and the last two terms are loss and gain due to tumbling
out of and into the direction u. The second and third terms account for rotational
and translational diffusion.

3.1 Coarse-graining procedure

The first part of the derivation below consists in using a moment expansion to show
that at large time and space scales, the dynamics (44) amount to a Langevin equa-
tion, whose drift and diffusion terms can be fully characterised. Using Itō calculus,
we will then start from this single-particle Langevin dynamics to derive a collective
Langevin dynamics of the density field of N non-interacting active particles. Since all
the computations will be done allowing for dependence of the microscopic parameters
v, α, Dr on the spatial position r of the active particle, our computation applies to the
case where these dependencies occur through the density field ρ(r). This derivation
will thus provide the stochastic dynamics for the density field of N interacting active
particles. Were we to consider purely ABPs, one could directly use Itō calculus to
construct the dynamics of the density field, as was done in [56,73,74]. In the general
case, it is the presence of the tumbles that makes it necessary to take a first diffusive
limit. Note that in lattice models, field theoretic methods can be used directly that
bypass this limitation and give the same final result [48].
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3.1.1 Moment expansion

We first decompose ψ as

ψ(r,u, t) = ϕ+ p.u+Q : (uu− I/d) + Θ[ψ]. (45)

Here, ϕ,p,Q are functions of (r, t), which parameterize the zeroth, first and second
angular (d = 2) or spherical (d = 3) harmonic components of ψ, while Θ projects onto
the higher harmonics. Note that in 2 dimensions, the angular harmonics are Fourier
sine and cosine series in θ; clearly

p.u = p1 sin θ+p2 cos θ and Q :

(
uiuj − δij

2

)
=
Q11 −Q22

2
cos 2θ+

Q12 +Q21
2

sin 2θ

span the subspaces generated by the first and second harmonics, respectively. The
same holds in d = 3, where the components of any unit vector ui are linear combina-
tions of Y m1 ,m = −1, 0, 1 whereas the components of the traceless tensor uiuj− δij/3
are linear combinations of Y m2 ,m = −2...+ 2.
We now proceed order by order in the harmonics. Integrating Eq. (44) over u gives

ϕ̇ = −1
d
∇(vp) +∇(Dt∇ϕ) (46)

whereas multiplying Eq. (44) by u and then integrating over u gives

ṗa = −∇a(vϕ)−
(
Dr(d− 1) + α

)
pa +∇(Dt∇pa)− 2

d+ 2
∇b[vQab]. (47)

Finally, multiplying Eq. (44) by uu− I/d and integrating over u yields

Q̇ab = −d+ 2
2

Babcd∇cvpd − (2dDr + α)Qab +∇ · [Dt∇Qab]−∇cvχabc (48)

where Babcd = (δacδbd + δadδbc − 2δabδcd/d)/(d + 2) and χabc, which comes from
higher order harmonics, will not play any role in the following. The derivations of
Eqs. (46)–(48) are detailed in Appendix A.

3.1.2 Diffusion-drift equations

So far, beyond the assumed isotropy of v(r),Dr,t(r) and α(r), no approximation has
been made; Eqs. (46)–(48) are exact results for the time evolution of the zeroth, first
and second harmonics of ψ(r,u, t). We then note that Eq. (46) is a mass conservation
equation:

ϕ̇ = −∇ · J with J =
1

d
vp−Dt∇ϕ (49)

with a current J which involves the first harmonic p. We will now use a large time
and space scale limit to obtain J as a function of ϕ.
We first note that ϕ is locally conserved and is thus a slow mode: the relaxation

of a density perturbation on a scale � occurs in a time that diverges as � → ∞.
On the contrary, p and Q are fast modes, whose relaxation rates are given by tp =
α + Dr(d − 1) and tQ = α + 2dDr. For times greater than tp,Q, one thus assumes

ṗ = Q̇ = Θ[ψ̇] = 0. Equations (47) and (48) then give the ordinary differential
equations that p and Q satisfy quasi-statically as ϕ evolves on time-scales much
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larger than tp,Q. By itself, this creates a non-local constitutive relation between J
and ψ which still involves all harmonics.
Next we explicitly carry out a gradient expansion, yielding for Q:

Qab = − 1

2dDr + α

(
d+ 2

2
Babcd∇c(vpd) +∇c(χabc)

)
+O(∇2) (50)

from which the quasi-stationary p then follows via (47) as

p = − 1

(d− 1)Dr + α∇(vϕ) +O(∇
2). (51)

At this order in the gradient expansion, closure is achieved without needing further
information on harmonics beyond the first; the current J is given by

J = − v

d(d− 1)Dr + dα∇(vϕ)−Dt∇ϕ. (52)

At this order, Eq. (49) corresponds to a diffusion-drift approximation of the micro-
scopic master Eq. (44), given by:

ϕ̇ = −∇ · [−D∇ϕ+Vϕ] (53)

where the diffusivity and drift velocity obey

D =
v2

d(d− 1)Dr + dα +Dt and V =
−v∇v

d(d− 1)Dr + dα · (54)

At this level of description, though not for the exact results that preceded it, RTPs and
ABPs are seen to be equivalent. That is, in (53), the tumble rate α and rotational
diffusivity Dr enter only through the combination (d − 1)Dr + α, so that the two
types of angular relaxation are fully interchangeable. Conversely, given a sequence of
snapshots showing the large-scale evolution of the local densities of SPPs, one cannot
determine whether the system is composed of ABPs or RTPs. Note that “large scale”
here excludes some of the trap problems considered in Sect. 2 where the confinement
length is smaller than the persistence length of the self-propelled motion.

3.1.3 Many-body physics

Equations (49) and (53) give the evolution for the probability density of one particle at
diffusion-drift level. Following [46] we can now consider an assembly of particles whose
motility parameters v, α,Dr and Dt depend on position both directly and indirectly,
through a functional dependence on the microscopic density ρ(r, t) =

∑
μ δ(r−rμ(t)).

Since we are considering a multiplicative noise whose variance is a functional of the
density field ρ, the construction of the Langevin equation associated to ρ is technically
more involved than in the additive case [75]. First, we go from the Fokker-Planck
Eq. (53) to the equivalent Itō-Langevin equation for an individual particle position
rμ(t):

ṙμ(t) = V +∇1D(rμ, [ρ]) +
(∇rµ δ

δρ(rμ)

)
D(rμ, [ρ]) +

√
2Dη (55)

where ∇1D(rμ, [ρ]) represents a gradient with respect to the first argument of D
and not with respect to its implicit dependence on rμ through the field ρ(r

′) =∑
α δ(r

′ − rα). On the contrary, the operator ∇rµ δ
δρ(rµ)

applies to the functional
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dependence of D on the field ρ(r′) and the subscript rμ shows ∇rµ to apply to
dependencies on rμ and not on r

′ or rα�=μ that may appear in D. (For more technical
details, see Appendix B.) The two terms ∇1D(rμ, [ρ]) +∇rµ δ

δρ(rµ)
D(rμ, [ρ]) form the

so-called “spurious drift” term due to the Itō time discretisation. (This term is, of
course, not spurious, but necessary once one uses the Itō convention to define that
discretization [76,77].) The atypical form of this spurious drift is due to D depending
on rμ both explicitly, which explains the first term, and implicitly–through ρ(r

′)–
which explains the second one. In Appendix B, we show that the density ρ(r, t) then
obeys the many-body Langevin equation [46]

ρ̇ = −∇.
(
V[ρ]ρ−D[ρ]∇ρ+ (∇r δ

δρ(r)

)
D(r, [ρ]) + (2Dρ)1/2Λ

)
(56)

with white noise 〈Λi(r, t)Λj(r′, t′)〉 = δijδ(r− r′)δ(t− t′). The gradients in (56) have
no subscript “1” since there are no more ambiguities at this stage: the derivatives are
taken with respect to the spatial coordinate r, which does not enter ρ(r′), and not
with respect to the position of one of the N particles as in (55). Note that when the
diffusivity of particle μ does not include “self-interaction”, i.e.D = D(rμ, [ρ−δ(r−rμ)]
or is the result of a convolution between ρ(r′) and a symmetric kernel K(r), i.e. D =∫
dr′K(rμ − r′)ρ(r′), then ∇rµ δ

δρ(rµ)
D(rμ, [ρ]) = −∇K(0) vanishes (see Appendix B

for details) and one recovers the more standard equation

ρ̇ = −∇.
(
V[ρ]ρ−D[ρ]∇ρ+ (2Dρ)1/2Λ

)
. (57)

The functionals v[ρ], α[ρ] and Dt,r[ρ] in (54) then define for the interacting particle
system the many-body drift velocity and diffusivity V[ρ] and D[ρ] for use in Eq. (56).
Starting from the many-body Itō-Langevin eq. (56), one can then derive a func-

tional Fokker-Planck equation for the evolution of the probability density P [ρ(r), t]
of finding the system with a density field ρ(r) at time t:

Ṗ [ρ] =

∫
dr

δ

δρ(r)
∇ ·
[
ρV −D∇ρ−Dρ

(
∇r δ

δρ(r)

)]
P [ρ]. (58)

The technical details, which show the importance of the atypical spurious drift, are
detailed in Appendix C.

3.1.4 Connection to large-deviation functionals; role of noise

A crucial observation, first made for RTPs in [46], is that (56) reduces, under specific
conditions, to a description of passive Brownian particles (PBPs) with a specified free
energy functional βF [ρ] = βFex[ρ] +

∫
ρ(ln ρ− 1)dx. (In what follows we use thermal

units in which β = 1.) This is best seen by noting that the Fokker-Planck Eq. (58)
admits a flux-free solution

[
ρV −D∇ρ−Dρ

(
∇r δ

δρ(r)

)]
P [ρ] = 0 (59)

whenever there exists a functional Fex[ρ] which satisfies the condition

V([ρ], r)/D([ρ], r) = −∇r(δFex[ρ]/δρ(r)). (60)
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Indeed, in such a case P [ρ] = exp[−βF [ρ]] satisfies (59). As was noted in [48,74],
s[ρ] = βF/V , with V the volume of the system, is the large deviation function of the
density profile ρ

s[ρ] = − lim
V→∞

1

V
logP [ρ]. (61)

It is at first sight very surprising that one can compute this object for any kind
of interacting out-of-equilibrium system. However its computability depends on (60)
holding true, and indeed this is not true in any general manner. It is however satisfied
to leading (zeroth) order in a gradient expansion of Fex. If (60) holds, the system is
completely equivalent to an equilibrium system of passive particles with excess chem-
ical potential gradient δFex/δρ(r). This equivalence holds not only at the level of the
steady-state but also at the level of the dynamics (58). This means that, at this macro-
scopic level, the dynamics is effectively an equilibrium one and, for instance, satisfy
the Onsager-Machlup symmetry between excursion and relaxation [72]. However this
does not mean that the phenomenology of the system reduces to an equilibrium one.
For instance, the slowing down of active particles at high density causes an effective
many-body attraction between the equivalent passive particles, characterized by a
Fex whose local part has negative curvature in ρ. This kinetic slowdown can trigger
a phase separation mechanism, which we detail in the following section, which would
be impossible at equilibrium. (Making the viscous drag on each particle an increasing
function of local density would generate a similar kinetic slowdown in an equilibrium
system, but the Boltzmann distribution would be insensitive to this effect.)
If the condition (60) is not met, however, the dynamics is not equivalent to PBPs

with conservative interactions and is therefore “irreducibly” active. As we will show
later, the equivalence established above will only hold for homogeneous systems and,
when the kinetic slow-down triggers a phase-separation, higher-order gradient terms
comes into play at the large-deviation level, and break the mapping to equilibrium.

3.1.5 Mapping to equilibrium

The simplest case is where Dt = 0. Here the left hand side of (60) is −∇ ln v[ρ] and
we then require δFex[ρ]/δρ(r) = ln(v([ρ]; r). The simplest first approach is to assume
that the functional dependence of swim speed on density is strictly local, so that
v([ρ]; r) = v(ρ(r)). We then have Fex =

∫
fex(ρ(r))dr where fex =

∫ ρ
0
ln v(λ)dλ. This

structure in the free energy is equivalent to having a passive system whose chemical
potential obeys μ = ln(ρv); the mean particle current then obeys

J = −ρD∇ ln(ρv), (62)

Noting that in our chosen units (β = 1) the mobility coincides with the diffusivity D,
this is the expected form for the stated chemical potential. When Dtα is a nonzero
constant, the result for fex generalizes to

fex =
1

2

∫ ρ
0

ln[v(λ)2 + dDtα]dλ, (63)

This case is explored in [57].
To approximate the excess free energy by a local function is a widely used ap-

proximation in equilibrium systems which makes sense at (Landau) mean-field level
where fluctuations are neglected. (If the excess free energy were genuinely local, short-
length scale fluctuations would be out of control, so to go beyond mean field theory
requires treatment of nonlocality even if that is weak.) The chosen form (with Dt = 0)
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leads to a spinodal instability whenever dv/dρ < −v/ρ [46,57]. The system is then
equivalent to an equilibrium system undergoing liquid-gas phase separation due to
attractive forces and the spinodal instability is complemented by binodals, which can
be characterised analytically in some cases (see [57] for a recent review).
For ABPs with collisions, one finds empirically that v(ρ) � v0(1− ρ/ρ∗) with ρ∗

a near-close-packed density beyond which self-propulsion is effectively arrested. The
system is then spinodally unstable for ρ ≥ ρ∗/2 [15,17,19]. Stability is restored by
packing constraints at high enough density, but in the present approach (collisions
replaced by an effective density-dependent propulsion speed), empirical corrections
to Fex are needed to account for this [17]. An alternative is to impose a sharp cutoff
so that f = +∞ for ρ > ρ∗; this is used in [41].
The presence of a finite Dt, either due to Brownian motion or resulting from the

random collision of particles (in which case Dt will depend on ρ), alters the shape
of the spinodal curves which instead obey 1 + ρv′/v < −dDt/(v2τ). This causes
the spinodals to meet at a critical point; while in qualitative agreement with the
shape of the phase diagram reported for ABPs with repulsions (see, e.g. [15,17,21]),
this is somewhat accidental since the actual role of Dt in the simulated dynamics is
negligible. The observed critical point is better viewed in terms of the competition
between slowing down at high density (promoting motility-induced phase separation)
and the buildup of particle mechanical pressure [41]. The latter stems primarily from
the pair interaction, rather than the small ideal gas part which is proportional to Dt
[24,41]. Numerically, the spinodals are hard to locate precisely, whereas binodals can
be located by looking directly at the coexisting densities in phase-separated states.
The point at which phase separation is seen kinetically in ABP simulations often lies
in between the spinodal and binodal; it depends in general on nucleation rates and is
subject to large finite-size corrections. Very large scale simulations are thus required
for accurate phase diagram determination [17,19].

3.1.6 Beyond the local approximation

When a system phase separates, large gradients develop and the gradient expansion
cannot be truncated at lowest order: the local approximation to F no longer yields a
good approximation to the large deviation functional. In such a case, one has to look
for higher order gradient terms, which stem from two different mechanisms. First,
for real particles, the interactions between particles are never perfectly local: even
for hard-core repulsions, the particle size defines a finite interaction range. Second,
we have dropped higher angular harmonic contributions by appeal to a gradient
approximation. Retaining higher order gradients thus requires two different type of
terms whose impact on motility-induced phase separation we now discuss.

Non-local v(ρ). The local form of the free energy can be used to predict the binodal
densities for phase coexistence via the the common tangent construction on f =
fex + ρ(ln ρ − 1) [46]. In this construction one equates the chemical potential df/dρ
and the “thermodynamic” pressure ρdf/dρ− f in the two phases; this means that a
single line can be drawn on a plot of f(ρ) that is tangent at the binodal densities and
lies below f everywhere else. However, there is a hidden pitfall here: this construction
implicitly assumes that, whatever the nonlocal terms are, these continue to obey (60).
Whenever they do, a free energy still exists and, so long as it does, the binodal
densities do not depend on the precise form of the nonlocal terms. Conversely, if
a free energy does not exist, then the binodal conditions can depend explicitly on
the nonlocal terms. This is explored in some detail, within the simplification of a φ4

effective field theory, in [49]. For ABPs, numerical evidence of the breakdown of the
common tangent construction was reported in [17,19].
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The lowest order nonlocal theory can be constructed by assuming that the func-
tional dependence of swim speed on density takes the form [46]

v[ρ] = v(ρ̂) � v(ρ+ γ2∇2ρ) � v(ρ) + v′(ρ)γ2∇2ρ. (64)

This represents a quasi-local dependence on a quantity ρ̂ that samples the local den-
sity isotropically in a region of size γ. For programmed slowing-down (e.g., quorum-
sensing) the simplest assumption is that γ is a density-independent constant. However
for collisional slowing down in ABPs, a better estimate is γ � γ0v(ρ)/[(d− 1)Dr +α]
which, with γ0 of order unity, is the distance travelled during one angular relaxation
time. Substituting the nonlocal form for v in (62) gives to leading order

J = −ρD∇μ (65)

μ = ln(ρv)− γ2

v
v′∇2ρ (66)

Only if γ2v′/v is a constant, independent of density ρ, does this form of chemical
potential support the existence of a free energy. If this combination is constant – such
as for the case where γ is constant and v(ρ) ∼ exp[−aρ] [46] – then the common
tangent can legitimately be used to predict the binodal densities. In all other cases
it cannot be relied upon [17,49]. Note that in practice, only quantitative differences
with the local theory have been noticed when simulating models with such non-
local v([ρ]) [17,49]: the phase separation still occurs, the coarsening law is not much
affected, and one only observes quantitative shifts of the binodals. Importantly, the
concept of a binodal is maintained: the densities of coexisting phases do not change as
the global average density in the system is varied between the two coexistence values.

Other gradient terms. The second source of higher order gradient terms is the
gradient expansion used to close the spherical harmonics expansion in Sect. 3.1.2.
Were we to pursue this gradient expansion to higher orders, we would obtain a set
of ordinary differential equations for p, Q, etc. rather than the simple algebraic rela-
tion (51) between p, ϕ and ∇ϕ. Solving these equations in terms of ϕ and reinjecting
into J would then not lead to a simple Fokker-Planck equation, from which we would
not be able to derive a microscopic Langevin equation like (55), which is the starting
point of our approach. The equivalence between ABPs and RTPs at this higher order
in gradients is thus questionable. This echoes the fact that the difference between
the two models becomes more important at short length scales. As we will show in
Sect. 3.1.7, however, these differences hardly impact the phase diagram.
For ABPs, since one directly starts at the microscopic level with coupled Langevin

equations, one can bypass the construction of the microscopic Langevin Eq. (55) and
directly use Itō calculus to obtain a stochastic equation for the probability density
ρ(r,u) of finding particles at r going in the direction u [56,73,74]. One then has to
project this equation onto successive harmonics and use an appropriate truncation.
Again, the Eq. (56) amounts to a second order gradient expansion. It is then easier
to pursue this development to higher orders, which would yield coupled stochastic
equations for ρ, p, Q, etc.. As far as we are aware, this has not be carried out in the
literature for ABPs or RTPs, but progress along this path can be found for aligning
nematic particles [78].
For ABPs, a similar path has been followed at mean-field level, albeit without a

proper derivation of the noise terms, to arrive at [15,25,60]

ρ̇ = DΔρ−∇ · [vp]
ṗ = −Drp− 1

2
∇[vρ] +DΔp. (67)
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One can then always complete these equation by adding ad-hoc Gaussian noise [15]
or by assuming that, were the coupled Eq. (67) to be written in a gradient
form (implying the existence of a free energy functional) the noise terms would
be whatever is required to give an equilibrium like-dynamics. As we have shown
in Sect. 3.1.4, however, the derivation of the noise terms is a crucial step to
determine whether or not the system really maps onto an equilibrium one. In-
deed, the integrability criterion (60) is derived by requiring a flux-free steady-
state in the Fokker-Planck equation. This condition crucially relies on the fact
that the variance of the noise obeys a fluctuation-dissipation relation with the
mobility.

Nevertheless, since the derivations of these noise terms are particularly difficult, a
first strategy can be to look at whether the equations (67) have the gradient structure
of an equilibrium model. While analyzing the linear stability of (67) for a linearly
decreasing v(ρ) reveals a spinodal decomposition scenario very similar to the one
described in Sect. (3.1.5), it was explicitly shown in [60] that these equations are
not of gradient form. However, expanding close to the linear instability, the authors
of [60] were able to map these equations onto a Cahn-Hilliard model, but with an
effective free energy which depends on where in the phase diagram the expansion is
carried out. This revealed a rather surprising feature: the addition of the Δp terms
breaks the global mapping to equilibrium but seems to preserve a local one. This
however fundamentally changes the structure of the phase diagram: there is nothing
to guarantee that the binodals stay in fixed positions as one moves along the “tie line”
between them (and without this property the concept of a binodal is inapplicable).
Moreover, according to this calculation, a large part of the transition line is changed
from a first order to a second order transition, in contrast to the isolated critical point
usually seen in liquid-gas type phase-separation.

To test the predictions of this approach, we simulated directly the equations (67)
using spectral-methods and semi-implicit time-stepping. We chose a form of v(ρ)
which does not lead to v(ρ) < 0 at any density and thus does not require an ad-hoc
cut-off at the level of the effective free energies:

v(ρ)2 = v20 + (v
2
1 − v20)(1− e−ρ/φ). (68)

For this choice, we can compute analytically spinodals and binodals predicted by the
local theory [57] and hence evaluate precisely the impact of the Δp term. The sce-
nario revealed by our simulations does not show any of the surprising phenomenology
predicted by the methods of [60]: the binodals are quantitatively shifted by this new
gradient term, in qualitative agreement with the effect of gradient terms stemming
from a non-local v(ρ) [49], but the binodals do not vary along the tie-line in the co-
existence region (where the lever rule still applies). Also, the transition line seems to
remain first-order on approach to the critical point, exhibiting the familiar hysteresis
curves (see Fig. 4).

In principle, this outcome could depend on our choice of v(ρ); note that direct
comparison with [60] is not possible since the theory developed there relies on the
addition of confining terms at the level of the free energy that do not exist at the level
of the PDE, Eq. (67). However this interpretation seems unlikely given the growing
breadth of literature supporting the existence of well-defined binodals in MIPS. An
alternative possibility is that the new and unusual phenomenology predicted from
the approach of [60] is an artefact of a quasi-linear, noiseless treatement of what is
in fact a noisy nonlinear transition. Further study is needed to resolve this issue, for
instance by carrying out the analytical procedure in [60] for the particular v(ρ) chosen
in (68).
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Fig. 4. The phase diagram (left) predicted by the theory without the Δp term (red and
green lines) are only quantitatively affected by the Δp term (blue). Hysteresis loops (right),
showing the first order nature of the transition, can be seen on approach to the critical point
by ramping v0 up (solid lines) or down (connected symbols). D = 0.25, v1 = 0.25, φ = 4,
τ = 1/Dr = 1.

Fig. 5. Coarsening dynamics of RTPs (top) and ABPs (bottom) interacting via the density-
dependent swim-speed (68) with v0 = 15, v1 = 0.25, ϕ = 4, τ = 1, Dt = 0.25. Simulated for
N = 120 000 particles in a box of side L = 100.

3.1.7 Comparison between microscopic simulations of RTPs and ABPs

Since gradient terms can alter the equivalence between ABPs and RTPs, we carried
out extensive microscopic simulations of MIPS for both models in two dimensions for
N particles in an L × L square domain. We first compared the two models in the
case of a density-dependent swim speed v(ρ) given by (68). The coarsening of both
phase separating systems is shown in Fig. 5 and shows a strikingly similar dynamics.
Beyond the apparent similarity of the two dynamics, one can compute the steady-
state density distributions P (ρ) of the two systems in the phase separated region,
which shows that both the mean densities and their fluctuations in each phase are
also very similar (see Fig. 6). Note that as expected, the coexisting densities along
the tie-line in the coexistence region do not depend on the mean density ρ0 = N/L

2.
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Fig. 6. Left: the local density distributions P (ρ) of ABPs and RTPs interacting via the
density-dependent swim speed Eq. (68) with v0 = 15, v1 = 0.25, ϕ = 4, τ = 1, Dt = 0.25.
The two systems overlap very well, showing that not only the mean coexistence densities
in the two models but also their fluctuations are very similar. As expected, changing the
mean density ρ0 does not change the coexisting densities. Right: phase diagrams of RTPs
and ABPs interacting via WCA potential. The boundary lines are obtained by computing
the binodals as a function of v0 in the phase coexistence region for various global densities
ρ0 = N/L

2, to check that the binodals are indeed independent of ρ0. Again, a surprisingly
good overlap between the two systems is observed.

We then simulated both ABPs and RTPs in the case where slowing down is caused
by repulsive interactions (represented as a WCA potential as in [15–17]). We know
that the v(ρ) theory correctly captures the slowdown in these models but that it
lacks the direct interparticle forces which are responsible for saturating density in
the high-density phase [41]. Therefore, the dynamical equivalence of ABPs and RTPs
at large scales might break down for the repulsive case where much of the physics
depends on short-distance collisional events taking place below the coarse-graining
length scale of the fluctuating hydrodynamics theory. Suprisingly however, the phase
diagrams of repulsive ABPs and RTPs collapse onto each other upon the usual rescal-
ing α = (d− 1)Dr (see Fig. 6). Thus, although we have shown that the details of the
angular dynamics are important for SPPs confined to traps of size comparable to the
run-length or smaller, the presence of short-length scale physics in the mechanism
for MIPS does not create a similar dependence on details, as judged either by the
qualitative kinetic observations or a quantitative study of phase diagrams.

4 Conclusions

Motivated by a wish to understand for active systems the relation between micro-
scopic dynamics and macroscopic behaviour, we have in this paper compared in detail
two distinct but related classes of self-propelled particles: Active Brownian particles
and run-and-tumble particles. These differ only in the details of their angular relax-
ation (continuous versus discrete). We considered first one-body-problems involving
non-interacting particles in either uniform fields (e.g., gravity) or isotropic harmonic
traps. In both cases, for weak enough forces there is an “effective equilibrium” regime
in which the characteristic length scale set by the balance of external and propulsive
forces is large compared to the run length, defined as the distance a free particle
can travel during its orientational relaxation time. In this regime, the two types of
dynamics (ABP and RTP) are equivalent modulo a simple mapping between para-
meters, which corresponds to equating the angular relaxation time in the two cases.
However, for stronger confinement the corrections to this picture are specific to the
chosen dynamics. In the case of harmonic traps, this difference is particularly striking:
in the regime where the confinement length is large compared to the run length, there
is an exponentially strong suppression of the density of ABPs at the trap centre when
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compared to RTPs of the same rotational relaxation time. This can be attributed to
a subtle but physically simple mechanism whereby, in the strong trapping regime,
particles tend to remain a long time at the outer edge of the trap, where external
and propulsive forces balance. For RTPs this balance is suddenly destroyed with each
tumble event, whereas for ABPs, which update their orientations gradually, there is a
tendency to drift around the perimeter so that the balance is continually maintained,
causing only an exponentially small escape rate from the surface region. We also con-
sidered the effect of the microscopic rotational dynamics on MIPS, or motility-induced
phase separation. For this process we gave a fuller presentation of results summarized
in our earlier papers concerning the derivation of collective equations for the particle
density field, from which criteria for MIPS are easily found within a limiting approx-
imation corresponding to neglect of gradient terms in the large deviation functional.
This criterion is again insensitive to the choice of rotational dynamics. It is explicitly
derived from a model where particles interact through a programmed dependence of
their propulsion speed on the local density, but also describes, to reasonable accu-
racy, the case where slowing down is caused instead by collisions. We then considered
the role of gradient corrections, arising either from nonlocality in the dependence of
speed on density, or as additional terms in a combined expansion in spatial gradients
and angular harmonics of the local distribution of particle orientations. Although
the latter could in principle cause qualitative shifts in phase behaviour, in common
with previous studies we do not find compelling evidence for anything more than a
quantitative shift numerically. Specifically, although the “equilibrium” conditions for
phase coexistence (those derivable from the local part of the large deviation func-
tional) are violated, the system still exhibits conventional binodals whose defining
property is that the density of coexisting phases is independent of the intermediate
global density of the system. For the case where MIPS is caused by collisional rather
than programmed speed reduction, we find, somewhat surprisingly, that there is once
again almost no difference in phase behaviour between ABPs and RTPs with matched
angular relaxation time. This is despite the fact that both the collisional dynamics,
and the presence of sharp interfaces in the system, involve length scales below those
at which the equivalence of the two models can be formally established by systematic
coarse graining.

The authors thank Rosalind Allen, Ludovic Berthier, Cecile Cottin-Bizonne, Paul Goldbart,
Davide Marenduzzo, Joakim Stenhammar and Raphael Wittkowski for discussions. MEC
thanks the Royal Society for a Research Professorship. This work was supported in part by
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A Moment-expansion

We start from the master equation on the probability density ψ(r,u, t):

ψ̇ = −∇ · [vuψ] +DrΔuψ +∇ · [Dt∇ψ]− αψ + α

Ω

∫
dΩψ(u′) (69)

with Δu the rotational part of the Laplacian acting on u. We then use the decompo-
sition (45) of ψ, which we recall here for clarity

ψ(r,u, t) = ϕ+ p · u+Q : (uu− I/d) + Θ[ψ]. (70)

In the following we will use the notation Mab = uaub − δab/d and the convention
that repeated indices are implictly summed upon: figi ≡

∑
i figi. Because Q enters
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ψ solely through the combination
∑
i,j QijMij , it can always be chosen traceless

symmetric. (Indeed, replacing Q by (Q + Q†)/2 or Q − 1Tr(Q)/d does not change
this sum.)
We will use the standard notation for the scalar product on the sphere

〈f, g〉 =
∫
dΩf(u)g(u) (71)

for which spherical (and angular) harmonics are orthogonal. To obtain equations for

ϕ̇, ṗ, Q̇, we take the scalar product of Eq. (69) with 1, u andM . To do so, we compute

〈1, ψ〉 = Ωϕ; 〈u, ψ〉 = Ω
d
p; 〈Mab, ψ〉 = Ω

d
BabcdQcd =

Ω

d

2

d+ 2
Qab (72)

which rely on

〈ui, uj〉 = Ω
d
δij ; 〈uiuj , uku
〉 = Ω

d(d+ 2)
(δijδk
 + δi
δkj + δikδj
)

Bijk
 =
d

Ω
〈Mij ,Mkl〉 = 1

d+ 2

(
δikδj
 + δi
δjk − 2

d
δijδkl

)
·

(73)

Projecting (69) on 1 then yields for ϕ̇

ϕ̇ = −1
d
∇[vp] +∇ · [Dt∇ϕ] (74)

while projecting (69) on u yields for ṗ

Ωṗ

d
= −〈u,∇[vuψ]〉+Dr〈u,Δuψ〉+∇ · [Dt∇〈u, ψ〉]− α〈u, ψ〉. (75)

The last two terms are easy to compute since 〈u, ψ〉 = Ωp/d. Then, spherical and
angular harmonics of order � are eigenvectors of Δu with eigenvalues −�(� + 1) and
−�2, respectively, and the projection on u selects the p.u term so that

Dr〈u,Δuψ〉 = −Dr(d− 1)Ωp
d
· (76)

The first term of the r.h.s. of (75) is harder to compute since uψ is not directly
developed in harmonics. It can however be brought to a simpler form:

〈ua,∇b[vubψ]〉 = ∇bv〈Mab, ψ〉+∇bv δab
d
〈1, ψ〉

=
Ω

d
∇bv 2

d+ 2
Qab +∇avΩ

d
ϕ

=
2Ω

d(d+ 2)
∇bvQab +∇avΩ

d
ϕ.

(77)

Note that ∇ always applies to everything on its right, unless specified otherwise. One
then obtains for the evoluation of p

ṗa = −∇a[vϕ]−
(
Dr(d− 1) + α

)
pa +∇ · [Dt∇pa]− 2

d+ 2
∇b[vQab]. (78)
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Next, one projects (69) on Mab to obtain

〈Mab, ψ̇〉 = Ω
d

2

d+ 2
Q̇ab (79)

for the left hand side, and for the r.h.s.

−〈Mab,∇vuψ〉+Dr〈Mab,Δuψ〉+∇ · [Dt∇〈Mab, ψ〉]− α〈Mab, ψ〉 (80)

Again, the last two terms are simple since 〈Mab, ψ〉 = 2ΩQab/[d(d + 2)]. Only the
second angular/spherical harmonics survive the projection on Mab; they are eigen-
vectors of Δu, with eigenvalues −�(� + 1) = −2d for d=3 and −�2 = −2d for d = 2.
Hence the rotational diffusion term contributes a factor

Dr〈Mab,Δuψ〉 = −2dDrΩ
d

2

d+ 2
Qab. (81)

Again, the first term of (80) is slightly more difficult to handle and has to be split as

−〈Mab,∇cvucψ〉 = −∇cv〈Mab, ucudpd〉 − ∇cv〈Mab, ucΘ[ψ]〉
= −∇cvpd

〈
Mab,

(
Mcd +

dcd

d

)〉
−∇cvΩ

d
χ̃abc

= −Ω
d
∇cvpdBabcd −∇cvΩ

d
χ̃abc

(82)

where we have introduced Ω
d
χ̃abc = 〈Mab, ucΘ[ψ]〉 which comes from the projection

of uΘ[ψ] on the second harmonics and whose precise expression we won’t need.
Putting everything together then yields Eq. (48) of the main text

Q̇ab = −d+ 2
2
∇cvpdBabcd − 2dDrQab +∇ · [Dt∇Qab]− αQab −∇cvχabc (83)

with χ = (d+ 2)χ̃/2.

B From microscopic to mesoscopic Itō-Langevin equations

Itō drift with functional dependences. The total gradient of D with respect to
rμ, notated as D

′(rμ, [ρ]) for lack of a better notation, is given by the chain rule

D′(rμ, [ρ]) ≡ ∇1D(rμ, [ρ]) +
∫
dr′

δD(rμ, [ρ])

δρ(r′)
∇rµρ(r′) (84)

where the first term on the r.h.s. comes from the explicit dependence of D on rμ
and the second from the dependence of D on ρ(r′) which itself depends on rμ. By
convention, ∇1D(rμ, [ρ]) is thus a “partial gradient” which acts upon the explicit
dependence of D on rμ (its first argument) but not on its implicit dependence through
ρ. Using the explicit expression of ρ(r′), one has

∇rµρ(r′) = ∇rµ
∑
j

δ(r′ − rj) = ∇rµδ(r′ − rμ) = −∇r′δ(r′ − rμ). (85)

Equation (85) shows why the notation ∇rµ , which indicates that the gradient acts
on rμ and not on r

′ or rj , is essential–though cumbersome–to get the correct result.
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Inserting (85) into (84) and integrating by parts, one then finds that

D′(rμ, [ρ]) = ∇1D(rμ, [ρ]) +
∫
dr′δ(r′ − rμ)∇r′ δD(rμ, [ρ])

δρ(r′)

= ∇1D(rμ, [ρ]) +
(
∇rµ

δ

δρ(rμ)

)
D(rμ, [ρ]).

(86)

As a consistency check, and to understand how the operator ∇rµ δ
δρ(rµ)

works, let us

consider a simple example where the diffusivity of a particle at position rμ is a linear
functional of the density of its neighbours, convoluted by some kernel K:

D(rμ, [ρ]) =

∫
dr′ρ(r′)K(rμ − r′) =

∑
j

K(rμ − rj). (87)

In such a case, the total gradient of D with respect to rμ can be directly computed:

D′(rμ, [ρ]) =
∑
j �=μ
∇K(rμ − rj), (88)

where ∇K is the standard gradient of the function K(r). Applying the formula (86),
one finds

D′(rμ, [ρ]) =
∫
dr′ρ(r′)∇K(rμ − r′) +

∫
dr′
[
∇rµ

δρ(r′)
δρ(rμ)

]
K(rμ − r′) (89)

where the first term comes from the explicit derivative and the second one from the
functional derivative. Note that, in the latter term, ∇rµ does not act upon K(rμ−r′).
The computation can now be readily pursued, to give

D′(rμ, [ρ]) =
∫
dr′
∑
j

δ(r′− rj)∇K(rμ− r′)+
∫
dr′[∇rµδ(r′− rμ)]K(rμ− r′). (90)

Using again that ∇rµδ(r′ − rμ) = −∇r′δ(r′ − rμ) and integrating by parts, one gets

D′(rμ, [ρ]) =
∑
j

∇K(rμ − rj)−∇K(0) =
∑
j �=μ
∇K(rμ − rj). (91)

Interestingly, the functional derivative generates a term −∇K(0) which will be absent
wheneverK(r) is a symmetric kernel or when the particles are not self-interacting. (By
this we mean that the diffusivity D of particle μ is a function of rμ and a functional
of ρ(r) − δ(r − rμ); as such it is functionally dependent only on the density field of
other particles, which differs from the total density by the δ-function self-term.) For
complete generality however, we must retain this term in the Langevin Eq. (55) and
throughout the construction of the Langevin equation for ρ(r), in order to derive a
Fokker-Planck equation which is properly ordered as this is crucial to get the correct
steady-state. Since the contribution of this term vanishes in many cases, it is often
silently omitted in the literature.
Let us further note that, looking at the simple derivation of Eq. (88), all ambigu-

ities can be overcome by coming back to the microscopic definition of ρ(r). As often
with functionals, the notational problem is present only when working at the field
level, where it stems from an underlying ambiguity concerning the gradient symbol
∇, which is used in different contexts to represent either a total derivative (acting on



1258 The European Physical Journal Special Topics

both implicit and explicit dependences of D(r, [ρ]), and hence containing in practice
a functional derivative) or a partial derivative acting only on the first argument of D.
This ambiguity translates into an ordering problem at the level of the Fokker-Planck
equation. However, at the large deviation level–which corresponds here to the large
size limit–we are effectively interested in the small noise limit of our stochastic par-
tial differential equations. The various ordering of the Fokker-Planck equation differ
by terms, similar to those that distinguish Itō and Stratonovich time-discretisation,
which are generally negligible [72]. This is why the issue was for instance (rightly)
neglected in [74].

Mesoscopic Langevin equation. Let us now consider a function f(r) and compute
the time evolution of f(rμ(t)) where rμ(t) is solution of the Langevin Eq. (55). Using
Itō’s formula [76,77], one finds

ḟ(rμ(t)) =
[
A+

√
2Dη
]∇f(rμ) +DΔf(rμ) (92)

where

A = V +∇1D(rμ, [ρ]) +
(
∇rµ

δ

δρ(rμ)

)
D(rμ, [ρ]). (93)

Introducing ρμ = δ(r− rμ) and using that, for any function H, H(rμ) =
∫
drρμH(r),

Eq. (92) can be rewritten

ḟ(rμ(t)) =

∫
drρμ(r, t)[(A+

√
2Dη)∇f(r) +D(r, [ρ])Δf(r)] (94)

where the derivatives in ∇f(r) and Δf(r) are now taken with respect to r. The
last term in (94), even though it looks harmless, requires some explanations. Indeed,
D(rμ, [ρ]) has dependencies on rμ both through its explicit dependence and through
its functional dependence on ρ(r′) =

∑
α δ(r

′ − rα). When going from (92) to (94),
we use that

δ(r− rμ)D(rμ, [ρ])Δf(rμ) = δ(r− rμ)D(r, [ρ])Δf(r), (95)

where we have replaced all the rμ’s by r but the one in ρ, i.e., ρ(r
′) =

∑
α δ(r

′ − rα)
has not been replaced by δ(r′ − r) +∑α�=μ δ(r′ − rα). There is thus no dependence
of D on r through ρ. From now on, gradients ∇D(r, [ρ]) are not ambiguous anymore:
they solely apply to the first argument of D which is the only place where D depends
on r. There is thus no need anymore for the notation ∇1. Integrating by part Eq. (94)
then leads to

ḟ(rμ(t)) =

∫
drf(r)∇ · [−(A+

√
2Dη)ρμ(r, t) +∇(Dρμ)]. (96)

Alternatively, ḟ(rμ) can also be written

ḟ(rμ) =

∫
drρ̇μ(r)f(r). (97)

Since the Eqs. (96) and (97) hold for any function f , one gets

ρ̇μ = ∇[−(A+
√
2Dη)ρμ(r, t) +∇(Dρμ)]. (98)

Introducing the Gaussian white noise
√
2DρΛ ≡

∑
μ

√
2Dημρμ (99)
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whose statistics satisfy

〈Λ〉 = 0; 〈Λ(r, t)Λ(r′, t′)〉 = δ(t− t′)δ(r− r′) (100)

one gets

ρ̇(r) = ∇[−ρ(r)V +D∇ρ(r)− ρ
(
∇r δ

δρ(r)

)
D −

√
2DρΛ] (101)

which is Eq. (56) as required.

C Functional Fokker-Planck equation

The easiest way to derive the Fokker-Planck Eq. (58) starting from the Langevin
Eq. (56) is to spatially discretize the latter in one spatial dimension

ρ̇i = Ai +
1

2
(Bi,i+1ηi+1 +Bi,i−1ηi−1) (102)

where

Ai = ∇i
[
−ρiVi + 1

2
Di(ρi+1 − ρi−1) + 1

2

(
∂Di

∂ρi+1
− ∂Di

∂ρi−1

)
ρi

]
(103)

Bi,i+1 = −1
2

√
2Di+1ρi+1 and Bi,i−1 =

1

2

√
2Di−1ρi−1 (104)

Note that we use centred differences ∇iOi ≡ 1
2 (Oi+1−Oi−1) to respect the isotropy of

the equation. One can then use the general relation between Itō-Langevin dynamics
and the Fokker-Planck equation [76],

ẋi = Ai +Bijηj −→ Ṗ (x) = −
∑
i

∂

∂xi
AiP +

1

2

∑
i,j,k

∂

∂xi

∂

∂xj
BikBjkP (105)

to derive the Fokker-Planck equation satisfied by P (ρi). To do so, we first note that

2
∑
k

BikBjk =
∑
k

[√
Di+1ρi+1δk,i+1 +

√
Di−1ρi−1δk,i−1

]

×
[√

Dj+1ρj+1δk,j+1 +
√
Dj−1ρj−1δk,j−1

]
(106)

=
√
Di+1ρi+1Dj+1ρj+1δi,j −

√
Di−1ρi−1Dj+1ρj+1δi−2,j

−√Di+1ρi+1Dj−1ρj−1δi+2,j +√Di−1ρi−12Dj−1ρj−1δi,j . (107)

To (slightly) lighten the notation, we write ∂ρi for the operator
∂
∂ρi
. The second order

differential operator then becomes

2
∑
i,j,k

∂ρi∂ρjBikBjk =
∑
i

∂ρi
[
∂ρiDi+1ρi+1 − ∂ρi−2Di−1ρi−1

− ∂ρi+2Di+1ρi+1 + ∂ρiDi−1ρi−1
]

=
∑
i

∂ρi
(
∂ρi − ∂ρi+2

)
Di+1ρi+1 −

∑
i

∂ρi
(
∂ρi−2 − ∂ρi

)
Di−1ρi−1.
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Shifting by ±1 the indices in the two sums, one finally gets

2
∑
i,j,k

∂ρi∂ρjBikBjk =
∑
i

(
∂

∂ρi−1
− ∂

∂ρi+1

)(
∂

∂ρi−1
− ∂

∂ρi+1

)
Diρi. (108)

We now have to compute the drift term in the Fokker-Planck equation
∑
i ∂ρiAi.

Noting that Ai is a gradient, Ai = ∇iCi, where Ci can be read in (103), the drift
term can be rewritten

2
∑
i

∂ρiAi =
∑
i

∂ρi(Ci+1 − Ci−1) =
∑
i

(∂ρi−1 − ∂ρi+1)Ci (109)

=
∑
i

(∂ρi−1 − ∂ρi+1)
(
−ρiVi +Di ρi+1 − ρi−1

2
+
1

2

(
∂Di

∂ρi+1
− ∂Di

∂ρi−1

)
ρi

)
·

Putting everything together yields

Ṗ =
∑
i

∂ρi−1 − ∂ρi+1
2

(
ρiVi −Di∇iρi − ρi

2

( ∂Di

∂ρi+1
− ∂Di

∂ρi−1

)
+
∂ρi−1 − ∂ρi+1

2
Diρi

)
·

(110)
Let us now note that ρi commutes with ∂ρi−1 − ∂ρi+1 but not Di, since the latter is
in principle a function of all the ρj ’s. However, the application of ∂ρi−1 − ∂ρi+1 on Di
exactly cancels the one before last term in (110), so that

Ṗ =
∑
i

1

2
(∂ρi−1 − ∂ρi+1)

(
ρiVi −Di∇iρi +Diρi ∂ρi−1 − ∂ρi+1

2

)
P.

Taking at this stage the continuum limit and integrating once by part yields the
correct Fokker-Planck equation

Ṗ = −
∫
dx

∂

∂ρ(x)
∇
(
ρ(x)V (x, [ρ])−D(x, [ρ])∇ρ−D(x, [ρ])ρ∇x δ

δρ(x)

)
P (111)

where one has recognised the operator

1

2
(∂ρi−1 − ∂ρi+1) = ∇i

∂

∂ρi
−→ ∇x δ

δρ(x)
· (112)

Equation (112) is actually the best way to make sense of this operator and to see that
the gradient really applies to the field with respect to which we are taking a functional
derivative and not to the argument of this functional derivative. The Eq. (111) directly
generalizes to (58) in higher dimensions. We note that to get the correct ordering
between ρD and ∇r δ

δρ(r) in the Fokker-Planck equation, it was necessary to correctly

account for the atypical form of the spurious Itō drift as defined in the main text.
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