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Christian M. Rohwer,1,2,* Alexandre Solon,3 Mehran Kardar,3 and Matthias Krüger1,2

1Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
24th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 29 November 2017; revised manuscript received 19 February 2018; published 20 March 2018)

Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged
correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety
of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact
inclusions in a gas of particles, following a change (“quench”) in temperature or activity of the medium. Analytical
calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces:
(i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed
objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced
forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-
ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient
fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces
as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct
signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a
quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature
quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation
of the forces described here.
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I. INTRODUCTION

Inclusions introduced into a fluctuating medium disturb
the fluctuations and in turn experience fluctuation-induced
forces (FIFs) [1]. A well-known example is the Casimir force
between parallel mirrors that constrain quantum fluctuations of
the electromagnetic field [2,3], as well as the related London
[4], Casimir-Polder [5], and van der Waals [6] interactions
between polarizable objects. Constrained thermal fluctuations
in a solution of polymers or colloids lead to so-called depletion
forces [7]. Unlike the Casimir and van der Waals interac-
tions, depletion forces are short-ranged and nonuniversal, and
they depend on microscopic properties of the medium and
inclusions. However, as pointed out by Fisher and de Gennes
[8], thermal FIFs become long-ranged and universal due to
long-ranged correlations emerging near a critical point [9–14].

While in a typical fluid in thermal equilibrium, long-
ranged correlations (and thus long-ranged fluctuation forces)
occur only in special circumstances, e.g., at the critical
point, such correlations are more common out of equilibrium
[15]. Indeed, in the presence of conserved quantities (such
as density), systems out of equilibrium generically display
long-ranged correlations [16–18]. Associated FIFs have been
studied theoretically in driven steady states such as fluids
subject to temperature gradients [19–21], particles diffusing
in a density gradient [22], and in shaken granular systems
[23–25]. Rather than driven states, Ref. [26] considered forces
in transient nonequilibrium states following temperature or
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activity quenches. These forces result from conserved density
fluctuations (“model B” dynamics [27]) and occur when
transient long-ranged correlations emerge after a rapid change
in temperature or noise-strength. Here, we expand on and
generalize such transient FIFs.

We note that nonequilibrium FIFs have been discussed in
many other contexts. The prototypical example is radiation
pressure due to a flux of photons and the associated near-field
forces between objects maintained at different temperatures
[28,29]. On the classical side, various nonequilibrium aspects
of critical Casimir forces have been investigated. These include
the force response to external perturbations [30] or temperature
quenches [31–33], vibrating surfaces [34], moving objects
[35], and for shear-perturbation [36]. Nonequilibrium thermal
Casimir forces have also been studied for Brownian charges
[37–39]. In contrast to the above, we focus on setups where
long-ranged forces are absent in the underlying steady states.

To simplify analytical and numerical studies we focus
on systems with only one conserved quantity, namely the
particle number. A well-studied model system is that of passive
Brownian particles, which will be underlying most of our
theoretical approaches. Another, particularly timely example
is that of dry active matter [40]. Asymmetric patterning of
activity of colloidal particles can lead to self-propulsion [41],
with collections of such particles exhibiting myriad active
phases, which have been subject to intense theoretical [42]
and experimental [43] investigations. We focus here on the
dilute (gaslike) phase with no emergent symmetry breaking,
where density fluctuations are short-ranged in the steady
state. Nonetheless, the absence of time-reversal symmetry [44]
makes these systems different from a conventional gas; e.g.,
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they may or may not posses an equation of state governing the
pressure exerted on a boundary. The question of Casimir-like
FIFs for parallel plates inserted in an active gas has also been
explored [45]. Such forces exist, but, like depletion forces,
are short-ranged, arising from accumulation of active particles
at surfaces. In these models, the particles undergo stochastic
motion, due to thermal motion or self-propulsion, with density
as the only conserved quantity; momentum and energy are
dissipated to the bath.

We demonstrate that temperature quenches lead to two
types of forces between objects embedded in a fluid of
Brownian particles: Density-induced forces (DIFs) as well
as the fluctuation-induced forces predicted in Ref. [26]. The
two effects have different origins. We show that DIFs appear
because of changes in the mean density after the quench,
especially in the boundary layer near the embedded objects
because of adsorption and desorption. The (diffusing) change
in density in turn induces a change in the force exerted by the
bath, leading to a long-ranged interaction between two objects.
This type of interaction has precedent in other nonequilibrium
situations: Driving external objects (such as spheres) through
a suspension of Brownian particles can result in a change in
the mean density (e.g., accumulation between the spheres),
and thus lead to forces between the driven objects [46,47]. On
the other hand, FIFs are due to nonequilibrium fluctuations
and correlations following the quench, and thus appear even
if the mean density remains constant. FIFs appear because of
changes in the pair correlations in the medium and hence rely
on interactions between the particles [26], while, as we will
show, DIFs already appear in the dilute limit.

We investigate the properties of these forces both analyt-
ically and in numerical simulations of the above-mentioned
model systems after a quench in the temperature or in the
activity of the bath particles. Regarding the geometrical setup,
we study two typical paradigms: Two parallel plates exemplify
the case of closed systems (or noncompact objects), while the
case of open systems is investigated via the example of two
small (compact) inclusions.

Summarizing, we find that DIFs and FIFs are superimposed
but can be distinguished due to their different characteristic
signatures. Indeed, while both are long-ranged (algebraicailly
decaying) in space, FIFs are also long-lived (i.e., algebraically
decaying in time), whereas DIFs are exponentially cut off in
time. The former effect thus dominates at long times after
the quench while the latter is found to dominate at earlier
times. Although active particles are less amenable to analytical
treatment, DIFs and FIFs appear to arise similarly for active
and passive particles. This opens many possible experimental
realizations in systems where a quench in activity can be
implemented.

In Sec. II, we introduce the model systems of passive
and active Brownian particles. Starting with noninteracting
particles, we investigate DIFs in Sec. III. Adding interactions
between the fluid particles allows us to study FIFs in Sec. IV.
We close with a summary in Sec. V.

II. SYSTEM AND SIMULATION DETAILS

Consider a bath of N overdamped active or passive Brow-
nian particles, so that the dynamics of the ith particle follows

the Langevin equation [48]

∂t xi = v0u(θi) − μ0

∑
j

∇iU (xi − xj )

−μ0∇iV +
√

2μ0kBT ηi ,

∂t θi =
√

2Drξi, (1)

where xi and u(θi) = (cos θi, sin θi)T (in 2D) are position
and orientation vectors, respectively. The particles interact via
a pair potential U , while V is the external potential which
models the immersed objects (i.e., parallel plates or inclusions;
see below). μ0 is a mobility coefficient, kBT the thermal
energy, v0 the self-propulsion velocity and Dr is the rotational
diffusion coefficient. ηi and ξi are Gaussian white noises with
correlations

〈ηiα(t)ηjβ(t ′)〉 = δij δαβδ(t − t ′),

〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′), (2)

where Roman and Greek letters denote particle indices and
Cartesian coordinates, respectively. Numerically, Eqs. (1) are
integrated using a forward Euler scheme.

We will consider Eq. (1) in two limits: passive Brownian
particles (PBPs) with v0 = 0 and T �= 0, and active Brownian
particles (ABPs) with v0 �= 0 and T = 0. The two cases are
made comparable by introducing the effective temperature
kBTeff = v2/(2μ0Dr ) for our ABPs. Indeed, the (large-scale)
diffusion coefficient of a freely diffusing ABP equals μ0kBTeff

[49]. Also, a suspension of ideal ABPs exerts a pressure P =
ρ0kBTeff on a planar wall, as in the ideal gas law, irrespective
of the wall potential [50,51], where ρ0 is the density far from
the surface.

A temperature quench is implemented by instantaneously
changing the value of T or v0 in Eq. (1). The time-independent
states before and long after the quench are equilibrium (PBP)
or steady states (ABP). For ease of notation and readability of
the paper, in the following we partly omit the subscript “eff” for
Teff , as well as the distinction between equilibrium and steady
states.

We consider forces between planar surfaces as well as finite-
sized inclusions. In the simulations, planar surfaces will be
modeled by a repulsive harmonic potential. For example, for
the case of a plate at z = 0 that confines the fluid to the positive-
z side,

V (z) =
{

λW

2 z2, z < 0

0, z > 0.
(3)

Inclusions are modeled by a Gaussian potential; see Eq. (23).
The forces acting on the objects (DIFs and FIFs) are un-
ambiguously found by equating the reaction forces on the
potential V with the forces exerted on the particles. Naturally,
for simulating the ideal gas of BPs in Sec. III, we set U = 0.
For the interacting particles simulated in Sec. IV, we use a
short-ranged repulsive potential,

U (r) =
{

λ
2 (r − r0)2, r < r0

0, else.
(4)

Throughout the paper, we avoid crystallization or motility-
induced phase separation [52] by considering small enough
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TABLE I. Summary of quantities considered in the text.

Symbol Meaning

ρ̂(x) Density operator ρ̂(x,t) = ∑N

i=1 δ[x − xi(t)]
ρ(x,t) = 〈ρ̂(x,t)〉 Mean density (in or out of equilibrium)
�ρ(x) Density adsorbed (or desorbed) at a surface after the quench
ρ0 Density far from surfaces
φ(x,t) Fluctuations of density operator about its mean, φ(x,t) = ρ̂(x,t) − ρ(x)
P (t) (plates) Pressure acting on the inside surface
F (t) Net force, taking into account the pressures on both surfaces of a plate. Positive force indicates repulsion.

λ and appropriate ranges of temperatures. Our systems thus
always relax to a homogeneous fluid in steady state. Simu-
lation units are fixed by setting μ0 = kB = r0 = 1. Table I
summarizes important observables which are considered in the
course of the paper. Simulations are mostly performed in two
spatial dimensions, except for the one-dimensional simulations
of Figs. 7 and 11.

As regards theory, quenches of noninteracting media will
be studied via the Smoluchowski equation, modeling diffusion
of a density of ideal particles in the presence of external
potentials [53,54]. Density fluctuations, in turn, are considered
in a field-theoretical framework, which arises upon coarse-
graining microscopic descriptions [55]. Theoretical results are
presented for spatial dimensions d = 1, 2, and 3.

III. QUENCHING AN IDEAL GAS: DENSITY CHANGES
AND THE ASSOCIATED FORCES

In this section, we consider ideal gases of active or passive
Brownian particles, i.e., we set U ≡ 0 in Eq. (1). In the
absence of interactions, (pair-)correlations and fluctuations are
unaffected by the quench, and the resulting post-quench forces
(PQFs) are solely due to changes in mean particle density (i.e.,
the DIF as denoted above). This statement will be reiterated in
Sec. IV below. It is thus instructive to consider the ideal case
first.

Starting from a steady state at a given temperature T ,
the quench initially only affects the boundary layer near an
object like a plate or an inclusion. Indeed, in equilibrium, the
density profile is given by the Boltzmann distribution ρ(x) ∝
exp[−βV (x)], which depends on temperature via β = 1/kBT .
The fraction of particles adsorbed at the boundary (inside the
potential) changes accordingly during a quench, and, due to
particle conservation, diffusive fronts are initiated. Pressures
and forces are thus time-dependent. For active particles, the
same effect is expected, since they form a boundary layer at a
surface that depends on the activity of the particles, albeit in a
more complicated manner [51,56,57]. Noninteracting active
particles show diffusive motion, quantified by the effective
temperature Teff introduced in Sec. II above. In the region close
to the surfaces of objects, the “run length” of ABPs may give
rise to additional phenomena.

In the following, we consider the specific cases of parallel
surfaces (Sec. III A) and inclusions (Sec. III B). In both cases
we provide a coarse-grained analytical description and a
comparison to numerical simulations.

A. Two parallel plates

We start with the prototypical setup of two parallel plates,
separated by a distance L along the z-axis; see Fig. 1. L is
assumed to be much larger than the width of the boundary
layer near the wall so that, in a coarse-grained view, the walls
can be modeled as being hard.

1. Time-evolution of the density

Before the quench, the system is assumed to be in a
homogeneous state at initial temperature TI and density ρ0,
so that the pressure on the plates is given by the ideal gas
law P = kBTIρ0. At time t = 0, the temperature is switched
instantaneously to TF . As argued above, this modifies the
boundary layer near the plates, creating an excess or deficit
of particles. We thus decompose the mean density ρ between
the two plates as

ρ(z,t) = ρ0 + �ρ(z,t). (5)

Note that ρ depends only on z due to translational invariance
along x and y. In the coarse-grained description, the initial
shape of the excess densities is taken as sharp δ-function peaks,
which model the amount of particles adsorbed or desorbed at
the walls,

�ρ(z,t = 0) = ρ0[α1δ(z) + α2δ(z − L)]. (6)

Here the adsorption coefficients αi have units of length and
can be thought of as the change of the width of the boundary
layer induced by the quench (see Appendix A). For purely
repulsive potentials, αi < 0 for TF > TI , and vice versa. If the
two surfaces are identical (in terms of their potential), one has
α1 = α2.

For an ideal gas, the excess density �ρ evolves according
to the diffusion equation

∂t�ρ(z,t) = D0∂
2
z �ρ(z,t), (7)

with diffusion coefficient D0 = μ0kBTF . The hard walls give
rise to no-flux boundary conditions,

∂z�ρ(z,t)|z=0 = ∂z�ρ(z,t)|z=L = 0. (8)

The solution of Eq. (7) for an initial δ-function distribution
g(z,z0,t = 0) = δ(z − z0), placed at an arbitrary position z0

between the walls, can be written as an infinite sum of image
densities placed at −z0, ±z0 ± 2L, · · · , such that

g(z,z0,t) =
∞∑

n=−∞

1∑
k=0

G[z,(−1)kz0 − 2nL,t], (9)
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FIG. 1. Sketch of two parallel plates, separated by a distance L

along the z axis, immersed in a medium. The lateral extensions of the
plates are assumed to be much larger than L. In Sec. III A, the medium
is an ideal gas of active or passive Brownian particles, subject to a
quench in temperature or activity. In Sec. IV the same system with
interactions is studied.

in terms of the propagator

G(z,z0,t) ≡ 1√
4πD0t

e−(z−z0)2/4D0t . (10)

The solution for adsorption and desorption at two surfaces
is thus the sum of Eq. (9) with z0 = 0 and z0 = L, so that the
excess density is (for later purposes evaluated at z = 0)

�ρ(z = 0,t) = ρ0

L
[α1ϑ3(0,e−π2t∗ ) + α2ϑ3(−π/2,e−π2t∗ )].

(11)

In the above expression time is rescaled as t∗ = D0t/L
2,

using the time scale L2/D0 of diffusion across L. ϑ3(u,q) =
1 + 2

∑∞
n=1 qn2

cos(2nu) is the Jacobi elliptic function of the
third kind [58]. The density �ρ(z = L,t) at the second surface
is found by interchanging α1 and α2 in Eq. (11).

2. Force on the plates

The pressure P exerted on the plate at z = 0 by the fluid is
now directly deduced from Eq. (11), using the ideal gas law

P (z = 0,t) = kBTF [ρ0 + �ρ(z = 0,t)]

= kBTF ρ0 + kBTF ρ0

L

[
α1ϑ3(0,e−1/t∗ )√

πt∗

+ α2ϑ3(−π/2,e−π2t∗ )

]
. (12)

The applicability of the ideal gas law in this nonequilibrium
situation can be proven starting from Eq. (1) (for the passive
case). Recalling the setup in Fig. 1, we also account for the
fluid on the outside surface of the considered plate, by using an
adsorption of α

(o)
1 at its outside face. Assuming a semi-infinite

suspension on the outside, we take L → ∞ in Eq. (12), which
amounts to using limκ→0 ϑ3(0,κ) = 1. The net force on the
plate is then given by the difference of the pressures acting on

FIG. 2. Force on the plate at z = 0 from Eq. (13) as a function of
dimensionless time t∗ = D0t/L

2 for α1 = α2 = α
(o)
1 ≡ α. The curve

approaches 2 for large times. Inset: Asymptotic scaling ∼ (t∗)−1/2

(black line) of the difference between the force and its steady-state
value, as given in Eq. (14).

its two surfaces (a positive force denotes repulsion),

F (t)

A
= kBTF ρ0

L

[
α1ϑ3(0,e−1/t∗ ) − α

(o)
1√

πt∗

+ α2ϑ3(−π/2,e−π2t∗ )

]
, (13)

where A denotes plate area. (The ϑ3 function has been rewritten
using Poisson’s summation formula; see, e.g., Refs. [59,60].)
Equation (13) is independent of the dimensionality of the
system, and thus describes the force between two points in
1D, two lines in 2D, or two plates in 3D, as only the variation
of density along the z direction is pertinent. (Note that the
bulk contribution ∝α

(o)
1 is indeed independent of L, as is seen

by using t instead of t∗.) As such, the force scales as 1/L in
all dimensions, which is in contrast to the fluctuation-induced
force in Ref. [26] (see Sec. IV below), which scales as 1/Ld

in d dimensions. For short times, t∗ → 0, the force in Eq. (13)
vanishes with an essential singularity if α1 = α

(o)
1 , i.e., if the

plate has the same surface properties on both sides. Ifα1 �= α
(o)
1 ,

F diverges as 1/
√

t∗. The singularity is presumably cut off,
depending on details of the potential V , which are omitted in
this calculation. For long times,

lim
t∗→∞

F (t)

A
= kBTF ρ0

L

[
α1(1 + 2e−π2t∗ + 2e−4π2t∗ + · · · )

− α
(o)
1√
πt∗

+ α2(1 − 2e−π2t∗ + 2e−4π2t∗ + · · · )

]
.

(14)

The outside contribution thus relaxes with a power law
α

(o)
1 /

√
πt∗ (the semi-infinite space provides no long-time

cutoff), while the contribution from between plates relaxes
exponentially. We have kept the next-to-leading terms in
Eq. (14) to demonstrate that for α1 = α2 (i.e., for identical
surfaces), this exponential relaxation is particularly fast, since
terms describing a potentially slower decay, as ∼e−π2t∗ , cancel.
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[Passive] (a)

[Active] (b)

FIG. 3. Pressure on the plates separated by a distance L, after a
quench from kBTI = 0 to kBTF = 0.5 (simulation units, see Sec. II),
measured in 2D simulations for PBPs (a) and ABPs (b); t∗ = D0t/L

2

with D0 = μ0kBTF . Due to the adsorbed density, the steady-state
pressure deviates from P = kBTF ρ0 (black dashed line) by a term
proportional to 1/L; see Eq. (16). Insets show the L-dependence of
the final pressure, with the straight lines corresponding to slope α =
−0.89 found from Eq. (17).

Ultimately, the force approaches the steady-state value of

F (∞)

A
= kBTF ρ0

L
(α1 + α2), (15)

which resembles the limit were the excess density in Eq. (7)
is distributed homogeneously between the walls. Note that the
contribution kBTF ρ0, arising from the bulk density, cancels in
the force in Eq. (15), because it acts on the plate from both
sides.

Regarding Fig. 1, there might be another process of dif-
fusion around the edges of the (finite) plates, which may
ultimately lead to equilibration of the baths inside and outside
the plates. This process is not taken into account here (it is
assumed to be much slower than the considered processes).

The force on the plate [Eq. (13)] is shown in Fig. 2. The fast
initial increase, and the slow power law approach to the final
value are clearly discernible.

[Passive] (a)

[Active] (b)

FIG. 4. Comparison of the data of Fig. 3 to Eq. (12) (solid black
line), for passive (a) and active (b) particles, with α = −0.89 obtained
from Eq. (17). The dashed and dotted lines are the leading behaviors at
short and long times, respectively. For the active case, D0 was reduced
to �0.75μ0kBTeff to obtain agreement.

3. Simulations

Next we compare the above predictions to 2D simulations of
both PBPs and ABPs. We consider two identical plates (α1 =
α2 = α) and measure the pressure acting on an inside surface,
so as to compare to Eq. (12). The plates are realized by a
quadratic potential [Eq. (3) with λW = 1], and we quench from
an initial zero (effective) temperature to TF , so that there is no
pressure for t < 0. The measured pressure after the quench is
shown in Fig. 3. As expected, the steady-state pressure reached
at long times depends on L in accordance with Eq. (12), which
in this limit reads

P (t) = kBTF ρ0

[
1 + 2

α

L
(1 + 2e−4π2t∗ + · · · )

]
. (16)

The insets of Fig. 3 show the limiting pressure as a function
of L, which allows a quantitative check of the coefficient α.
For PBPs, α can be computed explicitly from the Boltzmann
distribution, see Appendix A, as

α =
∫

dz(e−V (z)/kBTI − e−V (z)/kBTF ), (17)

where the integration runs over the width of the surface
potential (i.e., where Vi �= 0). Equation (17) may be interpreted
as the difference between the width of the boundary layer in
the initial and final states. For the parameters used, this gives
α = −√

π/2 ≈ −0.89, yielding excellent asymptotes in the
insets of Fig. 3, even for the active case.
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FIG. 5. Sketch of two inclusions with characteristic sizes σi ,
separated by a center-to-center distance L. The surrounding medium
is a suspension of noninteracting active or passive Brownian particles,
undergoing a temperature quench. Throughout, the limit σi � L is
assumed.

Figure 4 shows the comparison to Eq. (12) as a function of
time. A first confirmation of Eq. (12) is the very good collapse
of data for different L when the pressure is rescaled with 1/L

and the time axis t∗ is used. For short times, the divergence ∼
1/

√
t∗ is observed, from which the simulation data ultimately

deviate (due to the short time scale of diffusion across the
boundary layer). For long times, the final value is approached
exponentially in accordance with Eq. (16).

Here, we note a subtlety for ABPs: To collapse the data
with Eq. (12) (especially for short times), a renormalized
diffusion coefficient of 0.75μ0kBTeff was used. We attribute
the necessity to adjust this value to the circumstance that the
diffusion coefficient μ0kBTeff is only valid in the bulk, and may
be expected to be smaller near the walls.

B. Two inclusions at large separations

We now study the time-dependent post-quench DIF be-
tween two inclusions, modeled by spherically symmetric
potentials V1 and V2, immersed in the suspension of ideal PBPs
or ABPs at positions x = 0 and x = Lez, where L is assumed
large compared to the size of inclusions (σi); see Fig. 5.

As before, we consider a coarse-grained description where
the quench leads to a local excess of BPs at the position of the
inclusions (mimicking the BPs adsorbed or desorbed by the
inclusion-potential). At t = 0,

�ρ(x,t = 0) = ρ0[α1δ(x) + α2δ(x − Lez)]. (18)

The parameters αi are now understood as the change in volume
of the boundary layer around the inclusions, and can be
computed as (see Appendix A)

αi =
∫

ddx(e−βI Vi (x) − e−βF Vi (x)), (19)

where Vi is the potential of inclusion i.
Unlike the plate geometry, the method of images cannot be

used to solve exactly for the dynamics with initial condition
Eq. (18). However, analytical progress is possible in the limit
of shallow inclusions, |Vi | � kBTF , where ρ is only weakly
perturbed by the potentials. The quench creates a disturbance
around (say) the first inclusion, that propagates (in the absence
of inclusion 2) as

�ρ1(r,t) = ρ0α1

(4πD0t)d/2
e−r2/4D0t , (20)

FIG. 6. Simulation results of the force between two identical
inclusions modeled by the potential in Eq. (23) in d = 2, after a
quench from infinite temperature to a finite TF for ideal PBPs.
Solid black curve gives Eq. (24) using a = 1. The maxima in the
simulation curves have been normalized to unity, which yields the
temperature-dependent amplitude a shown in the inset. L = 6, σ = 1,
V0 = 2π , and system size 72 × 12 with periodic boundary conditions.
The force is repulsive.

where r ≡ |x|. (We have allowed for an arbitrary dimension d.)
At leading order, the second inclusion experiences the density
gradient generated by the first one without influencing it. The
force exerted on the second inclusion then reads

F2(t) =
∫

ddx[∇V2(x)]�ρ1(r,t)

≈ −
[∫

ddxV2(x)

]
∂�ρ1(r,t)

∂r

∣∣∣∣
r=L

êz, (21)

where êz points from the first to the second inclusion, and in
the last line we used σ � L so that �ρ1(r,t) does not vary on
the scale of inclusion 2. Putting Eqs. (20) and (21) together,
we obtain the force (again, positive sign denotes repulsion)

F2(t) = ρ0α1V2

2(4π )d/2L1+d (t∗)1+ d
2

e− 1
4t∗ , (22)

where we have defined Vi = ∫
ddxVi(x).

As a complement to the computation yielding Eq. (22),
the PQF was computed analytically, without explicit coarse-
graining, for inclusions modeled by Gaussian potentials,

V1,2(r) = V0

(2π )d/2
e
− r2

2σ2 , (23)

for kBTI � V0 and TF → ∞. Equation (22) is then recovered
in the limit σ � L; see Appendix B.

Returning to generic potentials, we can ask what happens
for “hard” inclusions, with potentials |V | � kBTF . For d �
2, and σ � L, Eq. (22) still gives the correct dependence
on L and t for hard potentials, as can be argued for by
using a multiple reflection expansion (see, e.g., Refs. [47,53]).
Equation (20) is then still expected to hold as the initial
density, but the hard inclusion 2 now modifies the density
in its vicinity (as corrected for by a reflection term). The
force remains proportional to the density gradient of ρ1 at the
origin of inclusion 2, but the reflection modifies its amplitude,
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introducing a more complicated dependence on V2(x). We thus
expect a generalization of Eq. (22) to

F2(t) = a[βF V2(x)]
ρ0αV

2(4π )d/2L1+d (t∗)1+ d
2

e− 1
4t∗ , (24)

involving an amplitude a, an unknown functional of the
potential, which approaches unity as βF → 0.

In Fig. 6, we compare simulation results for two inclusions,
modeled by the potential in Eq. (23) with V0 = 2π (simulation
units), immersed in an ideal gas of PBPs in 2D. The system
is quenched from infinite temperature (a homogeneous initial
condition) to a finite temperature TF . TF is then varied to test
Eq. (24) and to determine a[βF V0]. Equation (24) is found
to match the simulation data well, except for a shift in time-
scale at very low TF . We conjecture this deviation to be due
to corrections of order σ/L, which become more important at
low temperatures. (This effect may be investigated by changing
σ in Eq. (23), which indeed results in a shifted time-scale,
as shown analytically in Appendix B.) As expected, we find
that the amplitude a approaches unity at high TF (see inset of
Fig. 6), so that Eq. (22) is recovered in this limit.

In d = 1, the leading orders of reflection do not yield the
dominant contribution at large L, and the argument leading to
Eq. (24) does not apply. Figure 7 shows that the PQF agrees
with Eq. (22) at high TF as expected, with the only visible
deviation for long times, were the simulation data approach
zero faster than expected from Eq. (22). The finite size of
the simulation box cuts off the power-law decay in time; see
Appendix C. In contrast to the 2D case, the PQF is qualitatively
different for low TF , where it tends to the result of Sec. III A
for two plates: In this limit particles cannot pass the inclusions
(which then, in 1D, become impenetrable “plates”). Indeed,
the summation of image densities performed in Sec. III A can
be seen as a reflection expansion, albeit to finite order.

IV. FLUCTUATION-INDUCED FORCES

In the previous section, we noted that temperature or activity
quenches lead to excess adsorption or desorption at surfaces,
resulting in density “waves” and corresponding PQFs, even in
the absence of particle interactions. These forces depend on
details of potentials characterizing surfaces or inclusions (e.g.,
via adsorption coefficients α). Importantly, in our simulations
of ideal gases investigated thus far, we did not see any hint
of the post quench fluctuation-induced force predicted in
Ref. [26]. In this section we demonstrate that such FIFs do
occur for interacting BPs, via simulations employing a nonzero
interaction potential U in Eq. (1) [see Eq. (4)]. For concrete-
ness, we focus on the parallel plate geometry of Fig. 1. As we
shall demonstrate, a nonzero U is necessary for FIFs to occur,
as they are related to equilibration of (pair-)correlations of
particles. Another insight is that for the system investigated, the
DIFs studied in the previous section, and the FIFs considered
here, are to a good approximation independent, and are nearly
additive.

As a reminder, in Sec. IV A, we expand on the results of
Ref. [26], by including quenches between arbitrary initial and
final temperatures. In Sec. IV B, the relation between corre-
lations and the nonequilibrium forces is discussed. Finally, in

FIG. 7. Simulation results of the force between two identical
inclusions modeled by the potential in Eq. (23) in d = 1, after a
quench from infinite temperature to a finite TF for ideal PBPs. The
solid black curve shows Eq. (22). At low temperatures, the particles
are trapped between the two inclusions which become more and more
like impenetrable “plates,” so that the curve approaches the shape of
the curve in Fig. 2. σ = 1, V0 = √

2π , and system size is 72 with
periodic boundary conditions.

Sec. IV C we identify FIFs in simulation data of both passive
and active BPs.

A. Field theory

1. Preliminaries and static correlations

We describe density fluctuations in terms of the field
φ(x,t) = ρ̂(x,t) − ρ0, where in this section, we neglect any
deviation of ρ from the bulk density ρ0. Coarse-graining
beyond any fluid length scales, the resulting Hamiltonian
contains only one term [26,27,61],

H [φ] =
∫

dx
m

2
φ2(x). (25)

The “mass” m in the passive case is given by [55,62]

m = kBT

(
1

ρ0
− c(2)

)
, (26)

where c(2) is the zero wave-vector limit of the so-called
direct pair correlation function [63], which is related to the
compressibility [63] [see Eq. (40) below]. In steady state,
the Hamiltonian of Eq. (25) leads to correlations of density
fluctuations,

〈φ(x)φ(x′)〉 = kBT

m
δd (x − x′), (27)

which are purely local. Consequently, no FIFs are observed in
the steady state.

2. Post-quench correlations

Since the density of particles is conserved locally, the
evolution of the field following a quench must be described
by a model B [27,61] dynamics. This leads to the stochastic
diffusion equation

∂tφ(x,t) = ∇ · (μ∇[mφ(x,t)] +
√

2kBT μη), (28)
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FIG. 8. The time-dependent bulk correlation function, relating
two points separated by a distance X, as given in Eq. (31). We show
different dimensions d .

with mobility μ, for which the mapping to Eq. (1) yields μ =
ρμ0 (see, e.g., Refs. [55,64]). The noise is correlated as

〈ηα(x,t)ηβ(x′,t ′)〉 = δαβδd (x − x′)δ(t − t ′). (29)

To compute the post-quench correlation function, we denote
R(x,x′) = −μ∇2δ(x − x′) [32,33] and �I/F = mI/F δ(x −
x′), with subscript I and F indicating pre- and post-quench
quantities, respectively, as before. [The mass in Eq. (26) is
temperature-dependent via the prefactor, but also because c(2)

depends on T ]. The time-dependent correlation function for φ

at time t after the quench can then be written as [33]

〈φ(x,t)φ(x′,t)〉 = kBTI e
−2t�F R�−1

I (x,x′)

+ kBTF �−1
F [1 − e−2t�F R](x,x′). (30)

We extract from Eq. (30) the long-ranged parts (which generate
long-ranged forces) by noting that � is a local, gradient-
free operator, so that only the terms with exponentials yield
nonlocal contributions. These long-ranged correlations are
transient, vanishing as t → ∞. It is instructive to consider the
explicit result for the bulk first, where (X �= 0)

〈φ(0,t)φ(X,t)〉LR =
[
kBTI

mI

− kBTF

mF

]
1

Xd

e− 1
8t∗

(8πt∗)d/2
. (31)

This equation generalizes the result of Ref. [26], where TI = 0
was considered. The time-dependent amplitude of the correla-
tion function is shown in Fig. 8.

Equation (31) encodes the important result that the temper-
ature quench yields transient long-ranged correlations. Let us
recall that these are absent in equilibrium. The physical reason
for these correlations is the conservation of particles, which
translates to conservation of density. Here, t∗ = μmt/X2,
i.e., the time scale of diffusion across the distance X. These
correlations initially rise from zero to a maximal value at
t∗ � 1, but then relax slowly as a power law for large times.

The Casimir forces (FIF) resulting from the correlations
in Eq. (31) are found by solving Eq. (30) for two parallel
plates with no-flux boundary conditions; see Fig. 1. (Also see,
e.g., Refs. [65–67] for details regarding boundary conditions
at surfaces in Model B.) The corresponding operator e−2t�F R

can be computed [26], and yields (with the parallel coordinates

set equal, x‖ = x′
‖, and with t∗ = μmt/L2)

〈φ(z = 0,t)φ(z′ = 0,t)〉LR

=
[
kBTI

mI

− kBTF

mF

]
2ϑ3(0,e− 1

2t∗ )

Ld (8πt∗)d/2
. (32)

This equation generalizes the result of Ref. [26] to include
nonzero TI . While this correlation function diverges for t∗ → 0
(due to coinciding points), it relaxes as a power law for large
times [with a reduced power compared to Eq. (31)] as

lim
t∗→∞

2ϑ3(0,e− 1
2t∗ )

(8πt∗)d/2
= (8πt∗)−(d−1)/2. (33)

3. No nonequilibrium correlations (and thus no FIFs)
in an ideal gas

For an ideal gas [i.e., U = 0 in Eq. (1)], the direct correlation
function is zero, c

(2)
I/F = 0 [63] (see also Eq. (40) below), so

that from Eq. (26) we have mI/F = kBTI/F /ρ0. The nonequi-
librium long ranged correlations in Eqs. (31) and (32) are
thus zero, and the effect of FIFs (to be discussed below) is
consequently absent. This confirms and explains the fact that
no FIFs were observed in the simulation data for ideal gases
presented in Sec. III.

B. Fluctuation-induced force

Equation (32) is the nonequilibrium transient correlation
function for two parallel plates, evaluated at one of the surfaces.
A nontrivial step is the computation of local forces or pressures
from this correlation function. We present two approaches in
this subsection.

1. Force from Gaussian field theory

For the Gaussian field theory, the stress tensor of the
Hamiltonian in Eq. (25) is given by σ = −δij

mφ2

2 [68]. Using
this, the result of Ref. [26] for the FIF-contribution to the
pressure exerted by the fluid on the wall is obtained as

PFI(t) = mF

2
〈φ(z = 0,t)φ(z′ = 0,t)〉LR. (34)

We consider two explicit cases: (i) In simulations we set TI →
∞ (i.e., c

(2)
I = 0), and measure the pressure exerted on the

inside of one of the surfaces. In this case,

PFI(t) = −c
(2)
F ρ0

kBTF

Ld

ϑ3(0,e− 1
2t∗ )

(8πt∗)d/2
. (35)

c
(2)
F is the direct correlation function introduced in Eq. (26)

above. While this expression diverges as t∗ → 0, this regime
is not relevant to the simulations, as the pressure is dominated
by the DIF for short times.

(ii) We repeat the case considered in Ref. [26] with TI = 0,
and compute the net force acting on the plate by taking into
account the pressure acting on the outside face due to the bulk
(L → ∞) system. Thus,

FFI(t)

A
= kBTF

Ld

ϑ3(0,e− 1
2t∗ ) − 1

(8πt∗)d/2
. (36)
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In contrast to Eq. (35), this force approaches zero for t∗ →
0, since the short-time divergence is a bulk property of the
medium which cancels in the subtraction in Eq. (36). Note that
the force amplitude of Eq. (36) does not depend on microscopic
details such as ρ0. This is because for TI = 0, the dependence
on mF cancels; for TI �= 0 and TF �= 0, the force (or pressure)
generally depends explicitly on the masses mI/F .

2. Force from a local equilibrium assumption

The expression for the force in Eq. (34) relies on the
stress tensor from the Gaussian theory. Since realistic systems
may display non-Gaussian fluctuations (e.g., the distribution
for an ideal gas is Poissonian [69]), it is useful to consider
an alternative method for relating the density correlations in
Eq. (32) to local pressures. Indeed, the nonequilibrium (long-
ranged) modes of φ decay slowly compared to the fast local
ones, so that it is reasonable to assume that the system is locally
in equilibrium at the density ρ0 + φ(x,t). The pressure can
then be found from the equilibrium (or steady state for ABPs)
equation of state, Pss(ρ), expanded to account for fluctuations.
At lowest contributing order,

P [ρ0 + φ] = Pss(ρ0) + P ′′
ss(ρ0)

2
[〈φ2〉 − 〈φ2〉ss] (37)

(see Ref. [70] for the equation of state of an active fluid). Simi-
lar approximations have been proposed in Refs. [19,22,24,71].
The second term in Eq. (37) subtracts 〈φ2〉ss to avoid double
counting of (local) steady-state fluctuations of Eq. (27). This
difference on the right of Eq. (37) is thus the nonequilibrium
part of the correlator considered in the previous subsection, and
the fluctuation-induced pressure acting on the wall at z = 0
follows as

PFI(t) = P ′′
ss(ρ0)

2
〈φ(z = 0,t)φ(z′ = 0,t)〉LR. (38)

Compared to Eq. (34), the amplitude of the FIF with the local
equilibrium assumption is proportional to the second virial
coefficient P ′′

ss(ρ0) instead of the mass m, so that the pressure
on the inside face after quenching from TI = ∞ is

PFI(t) = −P ′′
ss(ρ0)c(2)

F ρ0

mF

kBTF

Ld

ϑ3(0,e− 1
2t∗ )

(8πt∗)d/2
. (39)

Equations (35) and (39) thus provide alternative results
for the same physical situation, which will now be tested in
simulations.

C. FIF in simulations

To look for the FIF in simulations, we quench a collection
of BPs from infinite temperature (randomly distributed in the
space 0 < z < L) to a finite (effective) temperature of TF =
0.5. The resulting pressure acting on an internal surface is
shown in Fig. 9. This graph should be compared to Fig. 3, where
the only difference is the presence of the interaction potential
U . For short times, the curves in the respective graphs look
similar, but there is a pronounced difference for larger times:
While the ideal gas curves of Fig. 3 approach their final value
from below (and exponentially fast), the curves in Fig. 9 cross
zero, and then approach the final value as a slow power law in

[Passive] (a)

[Active] (b)

FIG. 9. Pressure exerted on the inside surfaces of two parallel
plates after a temperature quench to TF = 0.5 from simulations (data
points). The only difference to Fig. 3 is the presence of an interaction
potential U . (a) PBPs with λ = 1 and ρ0 = 0.936, giving P ′′(ρ0) =
0.674 and c(2) = −1.35. t∗ = μm/L2 is found with Eq. (26). (b) ABPs
with λ = 2 and ρ0 = 0.909, giving P ′′(ρ0) = 4.06 and c(2) = −3.61.
For both: System size 10 × 2000. The data is averaged over 6 × 104

runs and the final pressure is measured in longer simulations t∗ > 200.
The theory curves are the sum of Eq. (16) (with α chosen for best fit)
and Eqs. (35) or (39), respectively.

time. The difference can be identified with the FIF of Eq. (35),
a conclusion which we aim to make quantitative.

To this end, we first determine the virial coefficients P ′
ss(ρ0)

and P ′′
ss(ρ0) independently from simulations in the bulk with

periodic boundary conditions as in Ref. [70]. The former yields
the direct correlation function [63] via [using m = (ρ2

0χT )−1

with the compressibility χT = 1
ρ0P ′

ss(ρ0) ]

c
(2)
F = 1 − P ′

ss(ρ0)/(kBTF )

ρ0
. (40)

With c
(2)
F , the mass (which also enters t∗) follows via Eq. (26),

so that Eq. (35) can be evaluated without any free parameters.
The same is true for Eq. (39) with additional input of P ′′

ss(ρ0).
These equations are shown by lines in Fig. 9. For the

passive case, we see that Eq. (39) matches simulation data
perfectly, while the pressure from the Gaussian stress tensor,
Eq. (35), is slightly off. We have also added the asymptote of
Eq. (36), (32πt∗)−1/2, which also matches quite well, partly
by coincidence. However, it shows that this simple expression
yields a good estimate of the FIF-amplitude. The observation
that the amplitude of the force in Fig. 9 is of the same order of
magnitude as Eq. (36) is insightful: The force given by Eq. (36)
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is universal, in the sense that the prefactor depends only on
temperature, but not on details of the system. While we discuss
corrections to Eq. (36) (e.g., due to a finite initial temperature),
the shown agreement is still worth noting: FIFs appear to be to
some extent universal, in the sense that their order of magnitude
can be estimated without knowledge of system details.

At short times, the PQF in Fig. 9 is very similar to Fig. 3,
as it results from equilibration of the density to the new
temperature. We have thus simply added the predictions for
FIFs to the predicted value for DIFs given by Eq. (16) with
a fitted coefficient α. The resulting blue curve shows good
agreement with simulation data over the whole range shown
(for the passive case). The values of α are −0.41 (passive)
and −0.62 (active), which are smaller than in Fig. 3, because
interactions reduce the amount of adsorbed particles due to
exclusion. Importantly, the observation that Eq. (39) agrees
quantitatively with the simulation for PBPs demonstrates that
the DIFs and FIFs can be considered quantitatively additive and
independent, at least for the system investigated. However, this
is not quite true for ABPs, where, as in Fig. 4, the time scale t∗
appears difficult to determine a priori. While a naive estimate
of the small wave-vector diffusion coefficient via μm [with
Eqs. (26) and (40)] yields �2.14 in simulation units, we instead
obtained best agreement by using a value of 1.07 (roughly half
this value). Furthermore, the Gaussian stress tensor appears
in best agreement with the data, which may be coincidental.
To a good approximation, additivity of the DIFs and FIFs is
nonetheless also displayed for ABPs.

Apart from these issues regarding quantitative description
of ABPs, it is worth pointing out that both active and passive
BPs show the nontrivial transient fluctuation-induced force,
thus confirming the theoretical prediction of Ref. [26]. This
core finding opens the possibility for experimental detection
in many systems, as detailed in Sec. V. While we may expect
that DIFs (scaling as 1/L) in general dominate FIFs (scaling
as 1/Ld ), the DIFs in Fig. 9 decay exponentially quickly, so
that the power law of FIFs dominates for long times, where it
becomes relevant and detectable.

V. DISCUSSION AND OUTLOOK

A. Conclusions

Rapidly changing the (effective) temperature of active or
passive Brownian particles leads to two rather distinct phe-
nomena, which are both due to local density conservation: (i)
Near immersed objects or boundaries, the temperature quench
changes the amount of adsorbed or desorbed particles, so
that diffusive fronts are initiated, leading to density-induced
forces (DIFs). For noninteracting particles, this is the only
effect which arises after the quench, and it can be described
quantitatively using the diffusion equation, for parallel walls
as well as for inclusions. For parallel walls, the mean density
profile relaxes exponentially quickly between the plates, and
the force scales with inverse separation, as 1/L. The magnitude
of the DIF depends explicitly on the potential of the immersed
objects.

(ii) For interacting BPs, there is another contribution, arising
from disturbed fluctuations, which are present even if the mean
density remains unchanged. These forces are quantitatively

TABLE II. Comparison of density-induced forces (DIFs) and
fluctuation-induced forces (FIFs) for objects a distance L apart,
where t∗ is the correspondingly rescaled time. Expressions are partly
simplified for clarity. For parallel plates, α has units of length, and
the dimensionless prefactor for FIFs is of order unity and depends on
whether the Gaussian stress tensor or the local equilibrium assumption
is employed. For inclusions, α and α̃ have units of volume (note that
their definition differs slightly for FIFs [26]). Temperatures may be
replaced with effective temperatures for active particles.

System DIF FIF

Parallel P (t)
t→∞−→ ρ0kBTF [ 1 P (t)

t→∞−→
Plates + 8α

L
(1 − e−4π2 t∗ )] ∼2 kBTF

Ld (8πt∗)−
d−1

2

Exponential decay Scale-free algebraic
in time decay in time
Residual pressure Vanish at
in steady state long times

Inclusions F (t) = [26] F (t) =
αα̃ρ0kBTF

2
√

4π
d

e
− 1

4t∗

L1+d (t∗)1+ d
2

α2 kBTF

L2d+1 e− 1
2t∗

×
{

(1−t∗)
16

√
2π(t∗)5/2 , d = 1,

[1−t∗(3t∗+4)]
256

√
2π5/2(t∗)9/2 , d = 3.

No sign change of Sign change of force
force at t∗ ≈ 1

described in a Gaussian field theory [26], and scale for parallel
plates with 1/Ld , as is the case for the equilibrium critical
Casimir force. In contrast to the DIFs, the fluctuation-induced
forces relax in time with a power law, due to scale-free
relaxation of fluctuation modes parallel to the surfaces. This
is a major difference between FIFs and DIFs. We note that, at
least for passive particles, the amplitude of the FIF does not
depend on the potentials of the immersed surfaces, which is in
contrast to DIF.

The density-induced and fluctuation-induced forces seem
largely decoupled, and the superposition of the two captures the
numerical measurements well, especially for passive Brownian
particles, for which the theory matches the simulation data
quantitatively. A quench in activity for self-propelled particles
was shown to lead qualitatively to the same effects and can
thus be seen as quench in the effective temperature of the
active particles, albeit with some quantitative differences in the
amplitudes and time-scales. We summarize the main properties
of DIFs and FIFs in Table II.

Several ideas exist for future work. Of great interest are
more complex time dependencies of T , such as periodic varia-
tions. Another route is to investigate different surface potentials
and the resulting adsorption factors α. More generally, the
shape dependence of DIFs and FIFs will be interesting to
investigate in more detail, also with regard to self-propulsion
of nonsymmetric objects by DIFs/FIFs.

B. Suggestions for experiments

There are various possibilities for experimental observation
of DIFs and FIFs. Many heating and cooling methods exist for
implementing rapid changes of temperature, both in molecular
fluids, as well as in suspensions.
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Furthermore, it is interesting to note that, instead of chang-
ingT , a rapid change in (pair-)potentials is also expected to lead
to DIFs and FIFs, in a manner very similar to the phenomena
described in this manuscript. Such changes in potentials can be
achieved by several methods. For instance, the grafted particles
of Ref. [72] drastically change their size by just mild changes
of temperature due to a swelling/deswelling transition. The
interactions of the paramagnetic particles in the system of
Ref. [73] can be tuned with an external magnetic field, and can
thus be switched very quickly over a wide range of strengths.

The advent of active matter in various realizations opens
up many more experimental possibilities. The ABPs (“swim-
mers”) modeled in our simulations have experimental counter-
parts [74,75] where, for example, the swimming mechanism
of Ref. [74] is controlled with an external laser field and
can thus be quenched instantaneously. Systems of shaken
granular matter [76,77] are also promising candidates, as the
activity may be changed rapidly, e.g., by modifying the shaking
protocol.
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APPENDIX A: ADSORPTION COEFFICIENT FOR PLATES
IN A PASSIVE IDEAL GAS

We show here how the coefficient α of Sec. III A, which
controls the magnitude of the PQFs induced by density, can
be computed for plates embedded in an ideal gas. We consider
here the inside of the plates, which are separated by a distance
L. The plates are modeled by a confining potential V (z) =
V1(z) + V2(z), where V1 is nonzero only for z < 0 and V2 only
for z > L. This is the setup used in simulations with V1(z) =
λWz2/2 and V2(z) = λW (z − L)2/2.

Before the quench, the system is in equilibrium at temper-
ature TI and bulk density ρ0 so that the density profile reads

ρI (z) = ρ0e
−V (z)/kBTI . (A1)

At infinite time, the system is again in equilibrium at the
quench temperature TF and a different bulk density ρ1 (due to
adsorption/desorption), such that

ρF (z) = ρ1e
−V (z)/kBTF . (A2)

Imposing the requirement that particle number is conserved
gives the final bulk density as

ρ1 = ρ0
1 + 2RI/L

1 + 2RF /L
, (A3)

where RI/F = ∫ 0
−∞ dze−V1(z)/kBTI/F is a measure of the charac-

teristic width of the boundary layer near a plate. We thus get

that when L � RI ,RF

ρ1 = ρ0

[
1 + 2(RI − RF )

L
+ O

(
R2

L2

)]
, (A4)

from which we can read directly the coefficient α = RI − RF

using Eq. (15).

APPENDIX B: ANALYTICAL RESULTS FOR THE FORCE
BETWEEN TWO INCLUSIONS IN A BATH OF PASSIVE,

NONINTERACTING PARTICLES

We consider first the one-dimensional problem and later
generalize to higher dimensions. In the presence of an inclusion
with the potential V (z) at the initial temperature TI , the
density is ρI (z) = ρ0e

−βI V (z). After quenching to TF , ρ(z,t) =
ρI (z) + �ρ(z,t) evolves according to the (density-conserving)
Smoluchowski equation [54],

∂tρ(z,t) = �ρ(z,t), (B1)

with � = D0[∂2
z + βF ∂zV

′(z)], subject to �ρ(z,t = 0) =
�ρ(z = ±∞,t) = 0, with D0 = μ0kBT as before. One finds

∂t�ρ(z,t) = ��ρ(z,t) + Ṽ (z), (B2)

where the effective potential Ṽ (z) = �ρI (z) must vanish when
TI = TF .

The specific case of a Gaussian inclusion at z = 0, modeled

by the potential in Eq. (23), V (z) = V0√
2π

e
− z2

2σ2 will now be
addressed. Linearizing Eq. (B2) in V0 and considering large
TF , i.e., βF → 0, one finds

∂t�ρ(z,t) = D0∂
2
z �ρ(z,t) + ρ0D0

V0√
2π

βI e
− z2

2σ2
(σ 2 − z2)

σ 4
,

(B3)

where ρ0 is the homogeneous density in the absence of V . By
using Fourier and Laplace transformations, this equation can
be solved analytically, yielding

�ρ(z,t) = ρ0
V0βI√

2π

⎡
⎣e−z2/2σ 2 − e

− z2

2σ2(1+2D0 t/σ2)√
1 + 2D0t/σ 2

⎤
⎦. (B4)

A second inclusion at z = L, with the potential V2(z,L) =
V0√
2π

e
− (z−L)2

2σ2 , experiences the force

F (t) =
∫ ∞

−∞
dz V ′

2(z,L)ρ(z,t). (B5)

In d = 1 this gives

F (t) = ρ0
βIV

2
0 L

4
√

πσ

e
− L2

4σ2[1+D0 t/σ2]

(1 + D0t/σ 2)3/2
. (B6)

We now identify the change in the size of the inclusion,
α = −σV0βI [using Eq. (19) to linear order in V0], and the
volume of the inclusion, V2 = ∫

dzV2(z) = σV0. Further we
express the width of the potentials in terms of the separation
of the inclusions, σ ≡ γL, where γ � 1 is a dimensionless
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FIG. 10. The function �(1)(t∗,γ ) from Eq. (B7) (i.e., d = 1) for
various values of γ = σ/L. For γ �= 0 the force begins at some
nonzero value, since the potentials overlap appreciably. As γ → 0,
the curves collapse onto the red master curve, which begins at 0.

constant. This yields

F (t) = ρ0
αV2

L2

e
− 1

4(γ 2+t∗)

4
√

π (γ 2 + t∗)3/2
, t∗ = D0t/L

2. (B7)

The second term in the 1D solution for �ρ(x,t) in Eq. (B4)
is the solution of the diffusion equation given a Gaussian peak
(width = σ ) as initial condition. The extension to d dimensions
with radial symmetry (r ∈ Rd ) is

ρ0
V0βI

(2π )d/2

e
− r2

2σ2(1+2D0 t/σ2)

(1 + 2D0t/σ 2)d/2
, (B8)

and the corresponding force in d dimensions is

F (t) = ρ0
αV2

Ld+1

e
− 1

4(γ 2+t∗)

2(4π )d/2(γ 2 + t∗)(d+2)/2︸ ︷︷ ︸
≡�(d)(t∗,γ )

. (B9)

FIG. 11. Force between two inclusions modeled by Eq. (23) in
d = 1 after a quench from infinite temperature to a finite TF for a
passive ideal gas. The theory curve is given by Eq. (B7). σ = 1, L = 6
(i.e., γ = 1/6), kBT = 5.

These analytical results thus confirm and generalize the ar-
guments of Sec. III B. Indeed, the agreement between Eqs. (22)
and (B9) is clear for γ = 0. For finite sized inclusions (γ > 0)
the time-scale t∗ is shifted, as was also observed in simulations
(recall Fig. 6). This is shown for d = 1 in Fig. 10.

APPENDIX C: FORCE ON INCLUSIONS:
CONVERGENCE WITH SYSTEM SIZE

We check in Fig. 11 that the measured force on inclusions
converges to the analytical prediction as the size of the
simulation box is increased. At fixed distance L = 6 between
the inclusions, and high temperatures kBT = 5, we see that
with increasing the system size, the measured force approaches
the theoretical prediction. In particular, smaller system sizes
act as a cutoff on the long-time tail of the force.
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