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Abstract
We relate the breakdown of equations  of states (EOS) for the mechanical 
pressure of generic dry active systems to the lack of momentum conservation 
in such systems. We show how net sources and sinks of momentum arise 
generically close to confining walls. These typically depend on the interactions 
of the container with the particles, which makes the mechanical pressure 
a container-dependent quantity. We show that an EOS is recovered if the 
dynamics of the propulsive forces of the particles are decoupled from other 
degrees of freedom and lead to an apolar bulk steady-state. This recovery 
of an EOS stems from the mean steady-state active force density being the 
divergence of the flux of ‘active impulse’, an observable which measures the 
mean momentum particles will receive from the substrate in the future.

Keywords: active matter, pressure, statistical mechanics

(Some figures may appear in colour only in the online journal)

Active particles convert energy stored in the environment into self-propelling mechanical 
forces. They have attracted a lot of interest in recent years [1] because of their broad applica-
bility to model systems ranging from biological [2] through granular [3, 4], to colloidal sys-
tems [5–7]. They also hold tremendous promise for making great micro-scale machines [8]. A 
key aspect of designing such machines is predicting the mechanical pressure an active system 
exerts on its boundaries, a topic that is attracting much theoretical interest [9–26].
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In standard thermodynamics, the pressure obeys an equation of state (EOS): it only depends 
on the bulk properties of the system and is independent of its boundary conditions. This has 
many implications. Consider for example a cavity filled with a fluid and separated into two 
halves by a mobile piston. The piston can only be set in motion if the fluids on each side have 
different bulk properties (e.g. densities or temperatures). This in turn constrains engine designs.

In contrast, we recently showed [13] that the pressure exerted by an active fluid on a flat 
wall need not obey an EOS. It generally depends explicitly on the potential describing the 
wall. Coming back to our container separated in two parts by a mobile piston, motion can now 
arise even when the fluids on both sides of the piston have the same bulk properties, provided 
the piston’s surfaces are different [13]. This wall dependence has since been shown exper-
imentally in shaken granular systems [26]. Importantly, [13] and [26] deal with so-called dry 
active systems, i.e. systems that do not obey detailed balance (as is generically the case for 
active systems) and have no local momentum conservation (because they push on a substrate 
or surrounding medium which acts as a momentum sink).

Note, however, that some dry active systems have been shown to admit an EOS [9, 11, 13, 
14]. The role of pressure in such systems then shares similarities with its role in standard ther-
modynamics: for instance, it is equal in coexisting phases [14]. It can also be used to define an 
isobaric ensemble and hence to control active systems [27]. However, this link to equilibrium 
physics is only partial and, for instance, the Maxwell construction in the pressure-volume 
phase diagram does not yield the correct binodals in phase-separating active systems [14].

The goal of this paper is to relate the lack of EOS to a violation of momentum conservation. 
To do so, we revisit the results of [13] for a class of microscopic models of active particles that 
explicitly account for their translational inertia, instead of studying the commonly used over-
damped models. (Our previous results are then naturally recovered in the large damping limit).

To help contextualize our results and state them more accurately, it is useful to first consider 
an equilibrium system and then a system (at equilibrium or not) with local momentum conserva-
tion. In the former, the extensivity of the free energy alone ensures the pressure only depends on 
bulk properties. In the latter, the momentum density field p obeys the conservation equation [28]

∂tp = −∇ · Jp. (1)

Here Jp is a tensorial current associated with the local conservation law for the momentum 
density (the flow of momentum for non-interacting particles). In the presence of an external 
wall, interacting with the particles through a potential Vext, momentum can be exchanged with 
the system and the dynamics (1) becomes

∂tp = −∇ · Jp − ρ∇Vext, (2)

where ρ  is the particle density. The last term describes the exchange of momentum with the 
wall. Assuming for simplicity that the wall is flat and oriented normal to the x–direction (see 
figure 1), the pressure exerted on the wall is simply given by

P =

∫ ∞

xb

dxρ ∂xVext(x) (3)

where xb refers to a point in the bulk, far away from the wall. Equations  (2) and (3) are 
exact provided ρ , p, and Jp are understood as local statistical averages of the underlying 

instantaneous fields. At steady-state, substituting (2) into (3) readily yields P =
(
Jxx

p
)

x=xb
. 

Assuming that the walls have no influence on the properties of the fluid in the bulk of the 

system, 
(
Jxx

p
)

x=xb
 is independent of the choice of xb and P is a bulk property, independent of 

the specific wall potential Vext.
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In dry active systems, the self-propulsion force acts as a local source of momentum field 
on the right-hand-side of equation  (2). Since its spatial integral has no reason to be wall 
independent, there is no reason for there to be an equation of state. In this paper, we show 
how to break down the active force field into equation-of-state-breaking and equation-of-
state-nonbreaking terms, what aspect of the particle dynamics gives rise to each, and how to 
interpret them. In section 1 we first consider the case of non-interacting particles. We show 
how torques exerted by the walls on the particles generically result in net steady-state sources 
or sinks of momentum localized close to the confining walls (sections 1.3 and 1.4). These 
momentum-non-conserving terms are wall-dependent and lead to a lack of an equation of 
state. Conversely, in the absence of such terms in the steady state, we introduce an effective 
momentum which includes a novel active impulse term, defined as the mean momentum a 
particle will receive on average from the substrate in the future (section 1.5), and related to 
the well-known swim pressure (section 1.6). This effective momentum satisfies a conservation 
law in the steady state, which restores the equation of state for the pressure of [9, 11] (section 
1.7). In section 2 we generalize this discussion to the case of interacting particles and show 
how the same reasoning allows one to understand the emergence of an equation of state for 
pairwise forces and its absence for quorum-sensing interactions. We then discuss these results 
in the context of motility-induced phase separation (MIPS) [29] in section 3.

1. Noninteracting active particles

We first consider non-interacting active particles confined between two flat walls (see fig-
ure 1). For the sake of concreteness, we first derive our results in the case of an underdamped 
active Brownian particle model, described in section 1.1, before generalizing to a much wider 
class of models in appendix.

1.1. The model

We consider active particles evolving in two spatial dimensions. Particle i, located at ri, 
evolves according to the dynamics:

Figure 1. We consider a simple setting with vertical, flat, walls confining the particles 
along the x̂ direction while periodic boundary conditions are used along the ŷ direction. 
Active particles are unaffected by the interactions with the walls in the bulk of the 
system (white background). In the gray region, active particles experience a repulsive 
potential from the wall, which makes their density vanish at the wall boundary. On the 
right, two sketches of the density profiles are shown, with or without accumulation of 
active particles depending on the details of the potential and of the active dynamics. xb 
refers to any position deep in the bulk of the system, far away from the walls.

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003
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ṙi = vi

mv̇i = −γ̃vi + fiu(θi)−∇ri Vext(ri) +
√

2γ̃2Dtηi.
 (4)

Here γ̃  is the friction coefficient, or inverse mobility, of the active particles, fi’s are their pro-
pulsive forces, Vext is the potential exerted by the confining walls, and ηi’s are Gaussian white 

noises satisfying 〈ηαi (t)〉 = 0 and 〈ηαi (t)η
β
j (t

′)〉 = δi,jδα,βδ(t − t′). Angular brackets denote 

an average over noise realizations. u(θi) is a unit vector along the orientation θi of particle i. It 
evolves according to the overdamped dynamics

θ̇i = Γi(ri, θi) +
√

2Drζi (5)

where Γi(ri, θi) is the torque exerted on the particle by the wall scaled by the rotational mobil-
ity, and ζi is a Gaussian white noise with 〈ζi(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 = δi,jδ(t − t′). Note that 
we consider underdamped dynamics, i.e. we retain the translational inertia of the particles, 
instead of the standard overdamped dynamics that we studied previously [13]

vi =
1
γ̃

fiu(θi)−
1
γ̃
∇ri Vext(ri) +

√
2Dtηi. (6)

A system of N such particles can always be characterized by its exact microscopic number 
density and momentum density fields

ρ̂(r) =
N∑

i=1

δ(r − ri) p̂(r) =
N∑

i=1

mviδ(r − ri). (7)

These fields are fluctuating quantities whose averages with respect to noise realizations and 
initial conditions are defined by

p(r) = 〈p̂(r)〉 ρ(r) = 〈ρ̂(r)〉. (8)

1.2. Momentum and pressure

To proceed, we consider the dynamics of the momentum and density fields. The density field 
evolves according to

∂tρ̂(r) =
∑

i

ṙi · ∇riδ(r − ri) = − 1
m
∇ · p̂(r). (9)

Here the subscript ri signals that the first gradient acts on the coordinates of particles i whereas 
the absence of a subscript in the last divergence signals that it acts on the position r where the 
density is measured. This notation is used throughout the paper. Similarly, the dynamics of the 
momentum density field read

∂tp̂ =
∑

i

(
−γ̃vi −∇ri Vext + fiu(θi) +

√
2γ̃2Dtηi

)
δ(r − ri) +

∑
i

mvi(vi · ∇ri)δ(r − ri)

= −γp̂ − ρ̂∇Vext +
∑

i

fiu(θi)δ(r − ri) +
√

2γ̃2Dtρ̂Λ−∇ · [J ].

 

(10)

Here γ ≡ γ̃/m, and the tensor J  is defined by

J ≡
∑

i

mviviδ(r − ri) (11)

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003



5

where vivi implies a tensor product5. The (i, j) component of the tensor J  is the 
flux along ı̂  of momentum along ̂ . In addition, we have defined the Gaussian 

white noise 
√

2γ̃2Dtρ̂Λ ≡
∑

i

√
2γ̃2Dtηiδ(r − ri) which can be verified to obey 

〈Λα(r, t)Λβ(r′, t′)〉 = δαβδ(r − r′)δ(t − t′). Equation  (10) lists the various contributions 
leading to momentum density changes in r: (i) loss of momentum due to dissipation, −γp̂; (ii) 
forces due to the walls, −ρ̂∇Vext; (iii) active forces propelling the particles, 

∑
i fiu(θi)δ(r − ri); 

(iv) fluctuations, 
√

2γ̃2Dtρ̂Λ; (v) advection of momentum as particles arrive in and depart 
from r, −∇ · [J ].

At steady state, in the confining potential shown in figure  1, equation  (9) implies that 
p(r)  =  0. Since the system is invariant under translations along ŷ we integrate equation (10) 

along the y coordinate and define ρ(x) =
∫ 1

0 dyρ(x, y). Here, to keep the notation simple, we 
set the extent of the system in the y direction to be unity and we silently omit the (lack of) 
dependence on y of the observables. This gives

0 = −ρ(x)∂xVext(x) + 〈
∑

i

fi cos θiδ(x − xi)〉 − ∂x[〈J xx(x)〉] (12)

where J xx =
∑

i δ(x − xi)m(vx
i )

2. Equation (12) states that the momentum flux is enhanced or 
suppressed as it travels through the system by either the wall force or the active forces.

The mechanical pressure exerted on the wall is then given by integrating equation  (12) 
from a point xb deep in the bulk of the system to x = +∞

P ≡
∫ ∞

xb

dxρ ∂xVext = 〈J xx(xb)〉+
∫ ∞

xb

〈
∑

i

fi cos θiδ(x − xi)〉dx. (13)

The total change of the momentum flux from its bulk value 〈J xx〉 to zero beyond the wall is the 
result of the total force exerted by the wall and of the total active force exerted in the x > xb 
region. Alternatively, equation (13) means that the pressure is equal to the momentum flux 
entering the x > xb region plus the total active force exerted in this region. Note that, since 
∂xVext vanishes in the bulk, P, as defined in (13), does not depend on the choice of xb.

To have an EOS, the right-hand side of equation (13) has to solely depend on bulk quanti-
ties. This is clearly the case for 〈J xx(xb)〉 which originates from the divergence of the momen-
tum flux. On the contrary, the total active force exerted in the x > xb region has no reason to 
depend only on bulk properties. While in the bulk the isotropy of the steady-state implies that 
〈
∑

i fi cos θiδ(x − xi)〉 is zero, it is well known that near the wall a non-trivial orientational 
order develops which depends explicitly on the potential shape Vext. It is thus natural to expect 
that the mean active force should generically give a wall-dependent contribution to the pres-
sure, hence leading to a lack of equation of state. Note that neither the damping force −γp̂ nor 
the Langevin force 

√
2γ̃2Dtρ̂Λ conserve momentum either. However, they average to zero in 

steady state and therefore do not affect the pressure directly.
Expectedly, setting fi = 0 in our model gives back the equilibrium dynamics of under-

damped colloidal particles. Equation (13) then expresses the mechanical pressure in terms of 
a purely bulk quantity, 〈J xx(xb)〉; this fleshes out the argument presented in the introduction 
after equation (3) and shows such equilibrium systems to admit an EOS.

We next illustrate how the active force influences the pressure for the system described by 
equations (4) and (5).

5 Note that 〈J 〉 is non-zero even in steady-state due to the trivial correlations between velocities and momenta.

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003



6

1.3. The breakdown of the EOS: momentum sources and sinks

Using Itō calculus, the dynamics of the mean active force density is given by

∂t〈
∑

i

fi cos θiδ(x − xi)〉 = −〈
∑

i

fiΓi sin θiδ(x − xi)〉 − Dr〈
∑

i

fi cos θiδ(x − xi)〉

− ∂x[〈
∑

i

vx
i fi cos θiδ(x − xi)〉]

 

(14)

which in the steady state, gives the balance equation

〈
∑

i

fi cos θiδ(x − xi)〉 = −〈
∑

i

fi
Dr

Γi sin θiδ(x − xi)〉 − ∂x[〈
∑

i

vx
i

Dr
fi cos θiδ(x − xi)〉].

 (15)
This states that the local active force is the sum of a torque-dependent term and a torque-inde-
pendent one, the latter being the derivative of a local quantity. This local quantity is respon-
sible for the advection of active forces and we discuss in details its physics in section 1.5.

The force balance equation (12) now becomes

ρ(x)∂xVext(x) = −
∑

i

〈 fi
Dr

Γi sin θiδ(x − xi)〉 − ∂x

[∑
i

〈 vx
i

Dr
fi cos θiδ(x − xi)〉+ 〈J xx(x)〉

]
.

 (16)
Equation (10) identified the active forces as momentum sources, in agreement with the idea 
that each particle is receiving momentum from the substrate. Equations (15) and (16) show 
that the steady-state mean active force density can be split between a ‘momentum-conserving’ 
part, i.e. the divergence of a local tensor, and a torque-dependent ‘non-conserving’ term, i.e. 
a steady-state momentum source or sink. Note that this ‘effective momentum conservation’ is 
restricted to the steady-state and we discuss it in more detail in sections 1.5 and 1.7. For now, 
we focus on the pressure, which can be written as

P = 〈J xx(xb)〉+
∑

i

〈 vx
i

Dr
fi cos θiδ(xb − xi)〉 −

∫ ∞

xb

dx〈 fi
Dr

Γi sin θiδ(x − xi)〉,
 

(17)

where xb is a point deep in the bulk of the system. The first two terms depend only on bulk 
properties of the fluid, while the latter is responsible for a wall-dependent contribution to 
the pressure. The breakdown of the equation of state thus arises from wall-dependent active 
sources. Equation (15) shows that these sources can be measured by removing the contrib-
ution of the advective active-force term from the total contribution of the active force. Namely, 
by looking at

∆fact(x) ≡ 〈
∑

i

fi cos θiδ(x − xi)〉+ ∂x〈
vx

i

Dr
fi cos θiδ(x − xi)〉〉. (18)

The relation is, as will become clearer later, more general and can be used to identify the 
presence of steady-state momentum sources for any model of active Brownian particles. For 
the model we consider here, in the presence of wall torques, the non-conserving terms are 
given by

∆fact(x) = −
∑

i

〈 fi
Dr

Γi sin θiδ(x − xi)〉. (19)

Figure 2 offers a more intuitive picture of the way wall torques affect the pressure. The 
active pressure comes from the transmission of the momentum received by the particles from 

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003
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the substrate to the walls. If torques are such that particles align and move along the wall, 
the momentum they transmit to the wall is reduced (compared to say, torque-less particles). 
Conversely, if torques force the particle to face the walls, the transmission of active force to 
the wall is enhanced.

All in all, equation (13) shows the pressure to be related to the mean active forces experi-
enced by the particles. Even though each of these forces injects momentum into the system, 
equation  (15) shows the mean active force in steady state to be composed of two contrib-
utions: a torque-dependent source, measured in equation (18), and a momentum-conserving 
one. Before focusing on the torque-free case (section 1.5) and showing how to interpret those 
results in terms of an effective momentum conservation (section 1.7), let us numerically illus-
trate our results so far.

1.4. Numerical measurement of sources and sinks

We consider self-propelled particles evolving under the dynamics (4) and (5), confined by 
harmonic walls modelled by the repulsive potentials

VR(x) = λR
(x − xw)

2

2
Θ(x − xw) and VL(x) = λL

(x + xw)
2

2
Θ(−x − xw)

 
(20)

for right and left walls, respectively. Here Θ(x) denotes a Heaviside function. The particles 
are modeled as ellipses with principle axes a and b and self-propulsion along the a axis. We 
consider the limit in which the particles are ‘point-like’ (i.e. much smaller than their penetra-
tion length into the wall potential) so that the torques they experience from the walls can be 
computed explicitly as

ΓR(x, θ) = λR κΘ(x − xw) sin 2θ and ΓL(x, θ) = λL κΘ(−x − xw) sin 2θ
 

(21)

where κ = µr(a2 − b2) measures the anisotropy of the particles and µr is a rotational mobil-
ity [13]. In practice, we took xb = 0 in all our simulations (See equation (13)), making sure 
that the system size was large enough that a moderate change in xb did not change our results.

The three contributions to the pressure P defined in equation (17) are shown in the left 
panel of figure 3 for walls with λR = λL = λ. The figure shows that only the torque-dependent 
contributions depend on the wall stiffness λ. The corresponding wall-dependent sources and 
sinks ∆fact(x) are shown in the right panel of figure 3 for three stiffnesses.

Figure 2. Impact of wall torques on the active contribution to the mechanical pressure. 
(a) Torques that make active particles align their propulsive forces along the wall 
diminish their contributions to the overall force exerted on the wall. (b) On the contrary, 
torques making the active particles face the wall increase the contributions of the active 
forces to the mechanical pressure.

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003
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An important consequence of those sources appears when the particles are confined by left 
and right walls with different stiffnesses λR �= λL. Integrating equation (12) over the whole 
space shows that the difference between the pressures measured on the left and right walls is 
equal to the total active force in the system:

PR − PL ≡
∫ ∞

−∞

∑
i

〈 fi cos θiδ(x − xi)〉dx. (22)

This shows that when the system is confined between two walls with different stiffnesses there 
may be a net force acting on the boundaries. Equation (16) then shows this total active force 
to be given by the torque-dependent sources

PR − PL =

∫ ∞

−∞
∆fact(x)dx = −

∫ ∞

−∞

∑
i

〈 fi
Dr

Γi sin θiδ(x − xi)〉dx, (23)

as illustrated in figure 4. This validates our interpretation of ∆fact  as the net steady-state 
sources and sinks of momentum.

So far, we have shown that the existence of an EOS depends on the fact that the dynamics 
of the momentum density field takes the form of a conservation equation in steady-state. We 
now discuss in more detail the underlying physical interpretation.

Figure 3. Brownian dynamics simulations of self-propelled ellipses with bulk density 
ρ0 = 1 confined between harmonic walls located at x = ±xw for xw = 10, fi = 1, 
Dr = 0.1, Dt = 0, γ̃ = 1, m = 1, κ = 1. Left: wall pressure and its various contributions 
as a function of the wall stiffness λ. The pressure measured from the definition 
equation (13) (purple triangles) matches the one obtained from equation (17) (yellow 
triangles). Of the three contributions to the latter (green triangles, blue circles, red 
squares), only the one due to wall torques (red squares) depends on the wall stiffness, 
leading to a breakdown of the EOS. Right: spatial profiles of the wall-dependent 
momentum sources defined by equation (18) for three different values of λ showing its 
localization in the vicinity of the walls. The three values of λ appear as vertical dotted 
lines in the left panel.

Y Fily et alJ. Phys. A: Math. Theor. 51 (2018) 044003
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1.5. Torque-free active gas: active impuse and the emergence of an equation of state

We now consider torque-free active particles and discuss why an equation of state is recov-
ered in this case. In particular, we show this to be a property shared by all systems where the 
dynamics of the active force fiui are decoupled from other degrees of freedom and lead to 
〈 fiui〉 = 0 in steady-state. In the main text, we consider the case of torque-free rotational dif-
fusion while a more general case is addressed in appendix.

The contribution of the activity to the pressure stems from the momentum transferred to 
the particles through the active forces. This can be quantified by the ‘active impulse’ which 
measures the momentum the active particle will receive on average from its active force in the 
future. For the case of pure, torque-free rotational diffusion, this can be readily computed as

∆pa
i (t) ≡

∫ ∞

t
fiu[θi(s)]ds =

fi
Dr

u[θi(t)] (24)

where the overline denotes an average with respect to histories of the system in the time inter-
val [t,+∞) for a given value of θi(t). In (24), the active impulse simply depends on the initial 
angle θi(t) because the dynamics of the active force f ui is independent of all other degrees of 
freedom. For a more general discussion, we refer the reader to appendix.

By construction, the dynamics of the active impulse obey

∂t∆pa
i (t) = −fiu[θi(t)]. (25)

In turn, the dynamics of the mean active-impulse field 〈∆pa(x)〉 = 〈
∑

i ∆pa
i δ(r − ri)〉 is 

given by:

∂t〈∆pa(x)〉 = −〈
∑

i

fiu[θi(s)]δ(r − ri)〉 − ∇ · 〈
∑

i

vi∆pa
i δ(r − ri)〉 (26)

Figure 4. Brownian dynamics simulations of self-propelled ellipses confined between 
harmonic walls with stiffnesses λR = 1 on the right and λL on the left. All other 
parameters are identical to figure 3. Left: pressure difference between the two walls 
as a function of λL. Different stiffnesses (λL �= λR) lead to a difference of pressure 
between the two walls (blue triangles). It is fully accounted for by the torque-dependent 
contribution to the total active force (green squares). Right: spatial profile of the density 
(top) and the wall-dependent momentum source defined by equation (18) (bottom) for 
three different values of λL, indicated by vertical dotted lines in the left panel.
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where the divergence ∇ is contracted with the velocities vi. This gives in the steady state

〈
∑

i

fiu[θi(s)]δ(r − ri)〉 = −∇ · 〈
∑

i

vi∆pa
i δ(r − ri)〉 (27)

= −∇ · 〈
∑

i

vi
fi

Dr
u(θi)δ(r − ri)〉. (28)

Despite each active force injecting momentum into the system, equation (28) shows that 
their average contribution in the steady state takes a momentum-conserving form, namely 
the mean local active force can be written as the divergence of a local tensor. This can be 
understood as follows. In any volume element, the mean active force decays to zero because 
of rotational diffusion. A non-vanishing mean local active force can thus only be sustained by 
incoming fluxes of particles which carry their active force with them. This is quantified by the 
tensor measuring the flux of active impulse

G ≡
∑

i

vi
fi

Dr
u(θi)δ(r − ri). (29)

〈G(r)〉 is non-zero because of the correlations between the velocities of the particles and their 
active forces.

With the above results, expression (13) for the pressure can now be written as

P = 〈J xx(xb)〉+
∫ ∞

xb

〈
∑

i

fi cos θiδ(x − xi)〉dx = 〈J xx(xb)〉+ 〈Gxx(xb)〉.

 (30)
This expression clearly depends solely on bulk quantities and constitutes the EOS of the 
mechanical pressure in the absence of torques. The correlators appearing in (30) can be com-
puted using Itō-calculus. Let us first compute

∂t〈
∑

i

fi cos θivx
i δ(x − xi)〉 = − γ̃

m
〈
∑

i

fi cos θivx
i δ(x − xi)〉+ 〈

∑
i

1
m

f 2
i cos2 θiδ(x − xi)〉

− Dr〈
∑

i

fi cos θivx
i δ(x − xi)〉 − ∂x〈

∑
i

fi cos θi(vx
i )

2δ(x − xi)〉.

Since all particles have the same propulsive force fi = f , one finds in a homogeneous, isotro-
pic bulk of density ρ0, where 〈cos2 θi〉 = 1/2, that

(
Dr +

γ̃

m

)
〈
∑

i

f cos θivx
i δ(x − xi)〉 =

ρ0 f 2

2m
. (31)

We then consider

∂t〈
∑

i

m(vx
i )

2

2
δ(x − xi)〉 = −γ̃〈

∑
i

(vx
i )

2δ(x − xi)〉+ 〈
∑

i

fivx
i cos θiδ(x − xi)〉

+
γ̃2Dt

m

∑
i

δ(x − xi)− ∂x〈
∑

i

m(vx
i )

3

2
δ(x − xi)〉
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which yields in the steady-state of the homogeneous bulk

〈
∑

i

(vx
i )

2δ(x − xi)〉 =
γ̃ρ0Dt

m
+

1
γ̃
〈
∑

i

fivx
i cos θiδ(x − xi)〉. (32)

Using both the definitions (11) and (29) and the results (31) and (32), one then finds

〈Gxx(xb)〉 = ρ0
f 2

2Dr(mDr + γ̃)
and 〈J xx(xb)〉 = ρ0

(
γ̃Dt +

mf 2

2γ̃(γ̃ + mDr)

)

 

(33)

leading to the previously known expression for the pressure of a torque-less dry active system

P = ρ0

(
γ̃Dt +

f 2

2Drγ̃

)
. (34)

Despite 〈Gxx(xb)〉 and 〈J xx(xb)〉 both depending on the mass of the particles, equation (34) 
shows the overall pressure to be independant of the mass. (This is illustrated in figure 5 for 
the system introduced in section 1.4). Overdamped and underdamped dynamics thus have the 
same pressure.

It is illuminating to restate the above discussion for the appearance of an equation of state 
from both a global and a local picture.

1.5.1. Global picture of the EOS. Equation (30) relies on the fact that the total active force 
exerted in the x > xb region is equal to the flux of free active impulse through the x = xb plane. 
In the absence of any bias in the dynamics of the active force, an active particle experiences on 
average a vanishing active force in steady-state. The presence of a wall at the right end of the 
system may alter its trajectory, but not the statistics of its active force. The only contribution 
that makes the mean active force non-zero in the x > xb region is thus that particles entering 
(leaving) this region typically have a positive (negative) component of their propulsive force 

Figure 5. Brownian dynamics simulation of self-propelled disks with γ̃ = 2, 
fi = 1, Dr = 1, ρ0 = 1, λ = 1, Dt = 0. The mean momentum and active impulse fluxes 
〈J xx(0)〉 and 〈Gxx(0)〉 depend on the particles mass m but their sum, which yields the 
pressure, remains constant. Solid lines correspond to the theoretical predictions (33) 
and (34) while symbols stem from numerical measurements.
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Figure 6. Brownian dynamics simulations of self-propelled disks confined by walls 
of different stiffness (λ = 0.5, 2, 4) for fi = 1, Dr = 1, Dt = 0, γ̃ = 2, m = 1, ρ0 = 1. 
Left: momentum (red) and active impulse (green) fluxes. The wall force (yellow) is 
exactly balanced by the divergence of the incoming momentum and active impulse 
fluxes. Top right: number density showing wall-dependent boundary layers. Middle 
right: the average active force is given by (minus) the divergence of the incoming active 
impulse flux. Bottom right: numerical measurements of the pressure, 〈Gxx(0)〉, 〈J xx(0)〉 
and their sum (symbols), compared with their theoretical predictions (solid lines) for 
varying wall stiffness.
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along x. The magnitude of the mean active force in this region is thus directly measured by the 
flux of active impulse through the x = xb interface.

1.5.2. Local picture of the EOS. Let us now discuss what happens in the vicinity of a confin-
ing wall at the right end of the system. In the bulk, the flux of momentum 〈J xx〉 and of active 
impulse 〈Gxx〉 are uniform. In the presence of an external force, equations (12) and (28) and 
(29) lead to

ρ∂xVext = −∂x [〈J xx + Gxx〉] . (35)

This states that the force (density) exerted by the wall generates a decay of the incoming 
fluxes of momentum and active impulse. This can be easily understood: for a passive system, 
the wall stops the particles by applying forces that decrease their momentum. The overall 
drop of the momentum flux from its bulk value to zero is then nothing but the pressure. For 
active particles, in addition to decreasing the momentum of the active particles, the wall has to 
compensate the momentum they gain due to the active force, i.e. it has to ‘consume’ the active 
impulse of the particles.

Equation (35) shows the wall force to generate a non-zero divergence of the momentum and 
active impulse fluxes. In turn, the latter yield a layer of active force density close to the wall, 
according to equations (28) and (29). The shape of this layer will typically depend on the confin-
ing potential, but since the integrated action of the wall potential is to bring the incoming fluxes 
from their bulk value to zero, the total active force, and hence its contribution to pressure, will not 
depend on the wall potential. This is illustrated in figure 6 for the system described in section 1.4.

1.6. Active impulse and swim pressure

Before we discuss in more detail the connection between the EOS and the effective conserva-
tion of momentum, we note that the flux of active impulse 〈G〉 can be expressed in a slightly 
different manner. To do so, we use

∂t〈ri fiu(θi)〉 = 〈vi fiu(θi)〉 − Dr〈ri fiu(θi)〉. (36)

Therefore, in the steady state one can express 〈G〉 as

〈G(r)〉 = 〈δ(r − ri)ri fiu(θi)〉. (37)

This expression was introduced in [11] and termed the swim-pressure. It can also be found 
using an approach generalizing the virial theorem [19, 23] or following Irving and Kirkwood 
[9]. Note, however, that the discussion above makes it clear that this does not, in general, 
provide the expression for the pressure unless an effective momentum conservation within the 
active fluid is present in the steady state. Moreover, the equality between the active force and 
G , whether its expressions (29) or (37), only holds in the steady state. Last, conservation laws 
are typically defined dynamically, whereas our derivation only holds in the steady-state, we 
now discuss a more precise definition of what we mean by effective momentum conservation 
in the steady-state.

1.7. Effective steady-state momentum conservation

Let us first consider the torque-free non-interacting active particles of section 1.5. In this case, 
the dynamics of the mean momentum density field can be obtained from equation (10)

∂tp = −γp − ρ∇Vext + 〈
∑

i

fiu(θi)δ(r − ri)〉 − ∇ · [〈J 〉]. (38)
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There are three sources of momentum for the active particles in the steady state: the external 
wall, through −ρ∇Vext, the friction with the substrate, through −γp, and the active forces. 
Using the definition of the active impulse (24) and its dynamics (26), the mean active force 
density can always be replaced by

〈
∑

i

fiu[θi(s)]δ(r − ri)〉 = −∂t〈∆pa(x)〉 − ∇ · 〈
∑

i

vi∆pa
i δ(r − ri)〉 (39)

so that the dynamics of the momentum field can be written as

∂tp = −γp − ∂t〈∆pa(x)〉 − ρ∇Vext −∇ · [〈J + G〉]. (40)

In steady-state, the first two terms on the right-hand side vanish and the sole non-vanishing 
momentum source is the external wall. Outside steady-state, however, p is not conserved even 
in the absence of external walls. Note that equation (40) can be rewritten as

∂t[p + 〈∆pa(x)〉] = −γp − ρ∇Vext −∇ · [〈J + G〉]. (41)

This equation states that, apart from the friction force and the external forces, the sum of the 
momentum of the particles p and of their active impulse ∆pa is conserved. The latter acts as a 
momentum reservoir for the particles: when the active impulse varies, it is through a transfer 
of momentum to the active particles via the active forces. Since the friction term −γp vanishes 
in steady-state, this is probably the cleanest way of expressing what we mean by effective 
steady-state conservation of momentum in this system.

The breakdown of the equation of state in the case with external torques can then be under-
stood from two different viewpoints. First, one can keep the definition of the active impulse of 
a particle as an intrinsic property:

∆pa
i (t) ≡

fi
Dr

u(θi(t)) (42)

which corresponds to the active impulse of a particle in the absence of any external wall (say, 
for periodic boundary conditions). In the presence of wall torques, equation (41) then becomes

∂t[p + 〈∆pa(x)〉] = −γp − ρ∇Vext −
∫ ∞

xb

dx〈 fi
Dr

Γi sin θiδ(x − xi)〉 − ∇ · [〈J + G〉].

 (43)
This highlights a new source of momentum for the particles stemming from wall torques.

An alternative view can be obtained if one keeps the definition of the active impulse as

∆pa
i (t) ≡

∫ ∞

t
fiu[θi(s)]ds, whence ∆pa

i (t) �=
fi

Dr
u[θi(t)]. (44)

The last equality does not hold since encounters between a particle and the wall changes its 
orientation and hence its momentum and active impulse: the active impulse is then not a local 
quantity anymore. This can be understood by noting that the definition (44) is non-local in 
time. This translates into a non-locality in space because of the motion of the particles during 
[t,+∞) and the active impulse of a particle in the bulk of the system depends on its fate upon 
future encounters with the walls. With this definition, one can then still relate the pressure to 
the fluxes of momentum and of active impulse through

P = 〈J xx + Gxx〉 with G ≡
∑

i

vi∆pa
i δ(r − ri). (45)
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But G  is not given anymore by the local tensor (29) and becomes a non-local quantity, which 
depends on the wall stiffness so that (45) does not yield an equation of state anymore. Both 
interpretations are equally valid, but (42) makes the role of wall torques as momentum sources 
more explicit and this is the path we follow in this article.

Now that we have extensively discussed the case of non-interacting active particles, we 
show our results to extend to interacting active particles in section 2 and discuss their implica-
tions for phase-separating systems in section 3.

2. Interacting active particles

In what follows we now include interactions between particles and study their effect on the 
existence or absence of an equation  of state. To do this, we consider torque-free particles 
and look at two models—quorum sensing interactions and pairwise interactions. In the over-
damped limit, it is known that the first does not admit an equation of state while the latter does 
[13, 14]. As shown below this also holds for the underdamped model and is, as in the non-
interacting case, directly related to the presence or absence of momentum sources and sinks 
in the steady state.

The equations of motion, allowing for both quorum sensing and pairwise interactions, are:

ṙi = vi

mv̇i = −γ̃vi + fi({r})u(θi) + Fi({r})−∇ri Vext +
√

2γ̃2Dtηi

θ̇i =
√

2Drζi,

 (46)

where {r} = {r1, r2, . . .} is the collection of coordinates of all the particles. Note that we 
allow the magnitude of the active force fi({r}) to depend on the locations of the other par-
ticles. In addition we consider inter-particle forces Fi({r}). All these interactions are assumed 
to be short ranged. It is a straightforward exercise to extend the model to include a dependence 
of the active force fi and the force Fi on the orientations of all the particles or to include inter-
particle aligning torques (see [13] for a discussion of this case in the overdamped limit). Since 
such angular dependences do not alter our conclusions qualitatively, we do not detail here the 
results concerning these cases.

As before, we consider the dynamics of the momentum density field, which is now given 
by

∂tp = −γp − ρ∇Vext +
∑

i

〈 fi({r})u(θi)δ(r − ri)〉+
∑

i

〈Fi({r})δ(r − ri)〉 − ∇ · 〈J 〉

 (47)
where we use the notations of the previous section. For the flat wall geometry of figure 1, one 
gets

P = 〈J xx(xb)〉+
∫ ∞

xb

〈
∑

i

fi({r}) cos θiδ(x − xi)〉dx +
∫ ∞

xb

〈
∑

i

Fx
i({r})δ(x − xi)〉dx,

 (48)
where Fx

i  is the x–component of the force Fi and we use the convention introduced before 
equation (12) so that an integration over the ŷ direction is carried out. To look for a possible 
effective momentum conservation which, much like in the non-interacting case, will lead to an 
equation of state, one needs to analyze the last two terms in equation (48). Note that, as before, 
we assume that the bulk steady-state is uniform.
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In what follows it will be helpful to use the relation

∂t〈 fi cos θiδ(x − xi)〉 =
∑

j

〈vj · (∇rj fi) cos θiδ(x − xi)〉+ 〈vx
i fi cos θi∂xiδ(x − xi)〉

− Dr〈 fi cos θiδ(x − xi)〉,
 

(49)

which gives in the steady state

〈 fi cos θiδ(x − xi)〉 =
∑

j

〈vj · (∇rj

fi
Dr

) cos θiδ(x − xi)〉 − ∂x〈vx
i

fi
Dr

cos θiδ(x − xi)〉

 

(50)

=
∑

j

〈vj · (∇rj

fi
Dr

) cos θiδ(x − xi)〉 − ∂x〈Gxx〉. (51)

This shows that, due to the dependence of the self-propulsion force fi on the rj’s, the density of 
active forces is not purely given by the divergence of the flux of the active impulse G  defined 
in (29). Together with equation (48), this suggests a potential breakdown of the equation of 
state. The measure of active sources ∆fact , defined in equation (18), is now given by

∆fact(x) = 〈
∑

i

fi cos θiδ(x − xi)〉+ ∂x〈
vx

i

Dr
fi cos θiδ(x − xi)〉〉 (52)

=
∑

j

〈vj · (∇rj

fi
Dr

) cos θiδ(x − xi)〉. (53)

Let us first treat the case of pure quorum sensing and discuss afterwards interparticle forces 
Fi({r}).

2.1. Quorum sensing

In models of quorum sensing the active force of a particle is modulated according to the 
density of particles in a region around it. To make the discussion clearer we assume that 
Fi({r}) = 0. Using equation (50) one finds that the pressure is given by

P = 〈J xx(xb)〉+ 〈Gxx(xb)〉+
∫ ∞

xb

〈
∑

j

vj · (∇rj)
fi

Dr
cos θiδ(x − xi)〉dx (54)

= 〈J xx(xb)〉+ 〈Gxx(xb)〉+
∫ ∞

xb

∆fact(x)dx (55)

where as before xb is a point in the bulk of the system. The only term which may act as a 
momentum source/sink is the last one. At any position xb in the bulk, the system is isotropic 
in the steady-state and

∆fact(xb) = 〈
∑

j

vj · (∇rj)
fi

Dr
cos θiδ(xb − xi)〉 = 0 (56)

because of the angular average. This, however, is not true in the presence of an external poten-
tial and hence near the wall. As we now show, this leads to the absence of an equation of state. 
We consider a model for quorum sensing with
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fi({r}) = f0 +
f1 − f0

2

[
tanh

( ρ̃(ri)− ρm

Lf

)
+ 1

]
 (57)

ρ̃(r) =
∫

dyK(|r − y|)ρ̂(y); K(r) = Z−1 exp
[
− 1

1 − r2

]
Θ(1 − r).

 (58)
Here, ρ̃(ri) is a measure of the particle density ρ̂(ri) using a coarse-graining kernel K; Z is a 
normalisation constant such that 

∫
drK(|r|) = 1. The constants f0, f1, ρm  and Lf control the 

dependence of fi on the local density.
Figure 7 shows the results of simulations of active Brownian particles interacting through 

(57). The left panel shows the different terms in the equation for the pressure in equation (55) 
as a function of the wall strength λ = λR = λL for the potential of equation (20). As can be 
seen the pressure depends on the wall potential and ∆fact  entirely accounts for this depend-
ence. On the right panel we plot ∆fact(x) which is non-zero near the walls and depends on the 
wall potential. As for wall torques, the terms which do not conserve momentum in steady-state 
account for the breakdown of the equation of state.

2.2. Pairwise forces

We now turn to the case where fi({r}) = fi and consider momentum- and energy-conserving 
short-range pairwise forces Fi({r}). This case was already studied in [24]. Our derivation 
is distinct and we focus here on the role of momentum fluxes. For constant self-propelling 
forces, equation (50) for the local density of active forces reduces to the non-interacting case 
(28). The expression for the pressure is then:

P = 〈J xx(xb)〉+ 〈Gxx(xb)〉+
∫ ∞

xb

〈
∑

i

Fx
i ({r})δ(x − xi)〉dx. (59)

By the conserving nature of the pairwise forces, Newton’s third law implies that the last 
term in the equation measures the forces across the plane x = xb. Since the forces are assumed 

Figure 7. Brownian dynamics simulations of self-propelled disks interacting 
through equation  (57) with f0 = 4, f1 = 1, ρm = 2.5, Lf = 1.25, Dr = 1, γ̃ = 1, 
m = 1, dt = 5. 10−4, Dt = 0, ρ0 = 0.64, xw = 10. Left: the pressure and its different 
contributions are shown for various wall stiffness. The momentum source ∆fact  is 
shown to account for the entire wall dependence of the pressure. Right: steady-state 
momentum sources ∆fact(x) for three different wall stiffness.
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to be short ranged this quantity is local. Let us now show this explicitly for the case of con-
servative pairwise forces Fi({r}) = −

∑
j ∇ri V(ri − rj). Remembering that equation  (59) 

contains an average over y, the last term can be expressed as
∫ ∞

xb

〈
∑

i

Fx
i δ(x − xi)〉dx = −

∑
xi>xb

∑
xj<xb

〈∂xi V(ri − rj)〉 −
∑
xi>xb

∑
xj>xb

〈∂xi V(ri − rj)〉,

 

(60)

where xi denotes the x–coordinate of particle i. The second term clearly vanishes so that
∫ ∞

xb

〈
∑

i

Fx
i δ(x − xi)〉dx = −〈

∑
xi>xb

∑
xj<xb

∂xi V(ri − rj)〉 (61)

which can be rewritten in terms of the density-density correlator

PD(xb) ≡
∫ ∞

xb

〈
∑

i

Fx
i δ(x − xi)〉dx = −

∫

w1>xb

dw1

∫

w2<xb

dw2 〈ρ̂(w1)ρ̂(w2)〉∂w1 V(w1 − w2),

 (62)
with w1 (w2) the x–component of w1 (w2). PD(xb), as stated above, is the force exerted across 
the x = xb plane. It is essentially the usual equilibrium contribution from pairwise forces to 
the pressure, and was identified in active particles in the overdamped regime [14]. All in all, 
this yields for the pressure

P = 〈J xx(xb)〉+ 〈Gxx(xb)〉+ PD(xb). (63)

For short-range interactions, this is a bulk property of the fluid, and hence independent of the 
wall potential. Note that (63) simply states that the effectively conserved momentum is trans-
fered along the system by both the flux of particles, which carry with them their momentum pi 
and active impulse ∆pa

i , and by interparticle forces; this overall momentum is then absorbed 
by the wall. It is straightforward to extend this derivation to cases with multi-particle conserv-
ing forces or to conserving forces which depend on the particles’ relative orientations.

3. Momentum sources in motility induced phase separation

One of the most remarkable features of active particles is their generic tendency to phase 
separate even in the presence of purely repulsive interactions [11, 14, 25, 29–44]. It was 
recently shown that depending on the type of interactions considered, active particles under-
going MIPS lead to coexisting phases with either equal or unequal mechanical pressures [27]. 
It is thus natural to probe the mechanical equilibrium between coexisting phases, i.e. ask for 
the presence or absence of momentum sources at the interface.

For simplicity, in what follows, we focus our discussion on a flat interface between two 
phases whose direction is normal to the x axis. In this case, the dynamics of the momentum 
density field (47) leads in steady state to the balance equation:

∑
i

〈 fi({r})u(θi)δ(r − ri)〉+
∑

i

〈Fi({r})δ(r − ri)〉 = ∇ · (〈J (r)〉) . (64)

Its projection on the one-dimensional geometry, obtained as in equation (12), is given by
∑

i

〈 fi({r}) cos(θi)δ(x − xi)〉+
∑

i

〈Fx
i ({r})δ(x − xi)〉 = ∂x〈J xx〉. (65)
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As above we consider two representative cases, quorum sensing and pairwise interactions, 
separately. Before doing so, it is useful to consider the equilibrium case where fi = 0. For 
concreteness we assume, a high density phase at x < 0 and a low density phase at x > 0 with 
an interface between the two phases in the vicinity of x = 0. Integrating equation (65) from a 
point x� < 0 to xr > 0, assuming that the distance between x� and xr is much larger than both 
the interaction range and the width of the interface, gives

PD(x�) + 〈J xx(x�)〉 = PD(xr) + 〈J xx(xr)〉. (66)

Namely, by integrating the momentum balance equation  over the interface, we obtain the 
equality of mechanical pressures between the two phases (which each have different values 
of PD and 〈J xx〉).

We now turn to the two active models.

3.1. Pairwise forces

As we showed before in this case, where fi({r}) = fi, an equation of state for the pressure 
exists. In addition, it is well known that, at coexistence, there is an orientational ordering of 
the particles at the interface between the two phases [32, 33]. Therefore, naively, the term ∑

i〈 fi({r}) cos(θi)δ(x − xi)〉 in equation (65) might lead one to conclude that there are steady-
state momentum sources in the system. However, similarly to the ordering at confining walls, 
this is not the case. In fact, using equations (15) and (29) we can rewrite equation (65) as

∑
i

〈Fx
i ({r})δ(x − xi)〉 = ∂x [〈J xx + Gxx〉] . (67)

This equation implies that the forces between the particles, which in equilibrium systems are 
compensated only by the momentum flux, are here compensated by both impulse and momen-
tum fluxes. Repeating the steps leading to equation (66) now gives an equality of mechanical 
pressures between the two phases

PD(x�) + 〈J xx(x�) + Gxx(x�)〉 = PD(xr) + 〈J xx(xr) + Gxx(xr)〉. (68)

Despite the presence of a layer of active forces localized at the interface, the mechanical pres-
sures of coexisting phases are equal. This highlights again the effective momentum conserva-
tion in this system, as discussed in 1.7, and the absence of momentum sources in steady state.

To illustrate these results we have carried out numerical simulations of self-propelled parti-
cles evolving under the dynamics (46) with constant fi. The interaction force derives from the 
pairwise repulsive potential

V(r) =
k
2
(2a − |r|)2 Θ(2a − |r|) (69)

corresponding to harmonic repulsion with stiffness k between disks of radii a. We use peri-
odic boundary conditions in both directions, a high Péclet number known to yield MIPS 
( fi/(γ̃aDr) = 100), and a slab geometry that favors vertical phase boundaries. Figure 8 shows 
that, in steady-state, coexisting phases have equal pressures, in accordance with (68).
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3.2. Quorum sensing

We now turn to the case of quorum sensing. Recall that in this case there was no equation of 
state for the pressure. Using equations (50) and (65), along with the definition given in equa-
tion (29), we obtain for quorum sensing particles

〈
∑

j

vj · (∇rj)
fi

Dr
cos θiδ(x − xi)〉 = ∂x [〈J xx + Gxx〉] . (70)

At a location x in the interfaces between the coexisting phases the term 〈
∑

j vj · (∇rj)
fi

Dr

cos θiδ(x − xi)〉 is in general non-zero, much like in the vicinity of a confining wall. Moreover, 
repeating the procedure leading to equation (66) now gives

〈J xx(x�) + Gxx(x�)〉+∆ = 〈J xx(xr) + Gxx(xr)〉 (71)

with

∆ =

∫ xr

x�
〈
∑

j

vj · (∇rj)
fi

Dr
cos θiδ(x − xi)〉dx =

∫ xr

x�
∆factdx (72)

accounting for the contribution of the steady-state momentum sources localized at the interface. 
Equation (71) relates the bulk properties of the two phases through J xx and Gxx. Importantly, 
the relation involves Δ which depends on the detailed structure of the interface—quite in con-
trast to the equilibrium case and to the case of active particles interacting via pairwise forces. 
Once again, we can relate the breakdown of standard mechanical relations to the momentum 
sources measured by ∆fact .

Figure 8. Brownian dynamics simulations of 10 000 self-propelled disks with pairwise 
repulsive forces in a phase separated state. Periodic boundary conditions are used in 
both directions. The mean packing fraction is φ = 0.4. The repulsive potential is given 
by equation (69) with a = 1 and k = 20. The other parameters are fi = 1, Dr = 0.01, 
Dt = 0, γ̃ = 1, m = 1. Spatial profiles are averaged over 100 persistence times and 100 
noise realizations starting from the equilibrated initial configuration shown in the 
bottom panel. Top: spatial profile of the three contributions to the pressure shown in 
equation (68). Their sum (light blue line) remains constant across phase boundaries. 
Middle: density profile.
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To illustrate these results we have carried out numerical simulations of self-propelled disks 
interacting via (57) and undergoing MIPS (See figure 9). In steady state, one observes coexist-
ing phases of low and high densities such that equation (71) holds: momentum sources and 
sinks, localized at the interface, make the combined flux of momentum and active impulse 
〈J + G〉 unequal in coexisting phases. The lack of effective momentum conservation in the 
steady-state means that coexisting phases have unequal mechanical pressures, which contrasts 
with the case of pairwise forces.

4. Conclusion

This paper studies the existence of equations of state for the pressure in dry active systems. 
Since these systems do not conserve momentum and are out of equilibrium, the existence of 
an equation of state is far from obvious. In fact, depending on prior biases, one might con-
sider either the existence or absence of an equation of state in such systems to be a surprise. 
Reference [13] studied several overdamped dry active systems and showed that there is no 
universal answer: depending on the model, an equation of state may or may not exist. It is 
therefore natural to ask for the conditions under which an equation of state emerges.

Here, we addressed this question by considering a class of underdamped dry active sys-
tems, from which the overdamped limit is easily extracted. The main advantage of the under-
damped model is that the momentum field may be studied with ease allowing us to relate the 
properties of the momentum field and the existence of an equation of state. We show that, 

Figure 9. Brownian dynamics simulations of self-propelled disks interacting via (57) 
and undergoing MIPS. Bottom: density profile averaged along the ŷ direction. In steady 
state, we observe the coexistence between a high-density phase and a low-density one. 
Top: steady-state momentum sources and sinks ∆fact  localized at both interfaces make 
the sum of momentum and active impulse fluxes 〈Gxx + J xx〉 unequal in coexisting 
phases. Parameters: f0 = 4, f1 = 1, ρm = 25, Lf = 12.5, Dr = 2, γ = 1, dt = 5. 10−4, 
system size 60 × 10.
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generically, the lack of momentum conservation leads to the existence of steady-state momen-
tum sources or sinks near the boundaries of the system which in turn implies that an equa-
tion of state for the pressure does not exist. Nonetheless, there is a class of models for which 
an effective conservation of momentum emerges in the steady state. For this class of systems, 
an equation of state exists. The effective momentum conservation can be related to the mean 
density of active forces being the divergence of the field of active impulse, an observable that 
measures the momentum a particle will receive on average from the substrate in the future. 
When the dynamics of the active force leads to a vanishing mean force in the steady state and 
is independent of the other degrees of freedom, the active impulse is a local quantity, hence 
leading to an equation of state.

Finally, note that this paper describes only the mechanical properties of the active particles 
and not the fate of the momentum source from which they are receiving their active impulse. 
This is relevant for dry systems such as bi-dimensional layers of shaken granulars [26] or any 
other system in which particles are pushing on a hard boundary [7]. When the active parti-
cles exchange momentum with a fluid, we argue that our results extend to the description of 
osmotic pressure [13, 45], although experiments in this case are lacking, as well as explicit 
treatments from first principles of the coupling between the active particles and the fluid.
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Appendix. Sufficient condition for the existence of an equation of state

In this appendix we show that if the dynamics of the active force fi of particle i does not 
depend on the other degrees of freedom and leads to a vanishing mean active force in the 
steady state, then the pressure admits an equation of state. Note that 〈fi〉 = 0 in the steady state 
does not preclude the existence of regions of space in which a local density of active force ∑

i fiδ(r − ri) is non-zero on average. The latter only relies on correlations between orienta-
tions of the particles and their positions.

We consider non-interacting particles evolving according to

ṙi = vi; mv̇i = −γ̃vi + fi −∇ri Vext +
√

2γ̃2Dtηi. (A.1)

We require the evolution of the active force fi to be independent of the other degrees of free-
dom and to be given by an unspecified master equation

Ṗ f
i (fi) = KiP

f
i (fi) (A.2)

for the probability P f
i (fi, t) that particle i has a force fi at time t. The fact that the dynamics of 

fi is independent of other degrees of freedom means that the linear operator Ki solely involves 
fi. The joint master equation describing the dynamics of particle i is then given by
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Ṗi(ri, vi, fi, t) = −∇ri · [viPi]−∇vi · [−γviPi +
fi

m
Pi −

∇ri Vext

m
Pi − γ2Dt∇vi Pi] + KiPi.

 (A.3)
As before, we define the active impulse through

∆pa
i (r0, v0, f0, t) ≡

∫ ∞

t
fi(s)ds =

∫ ∞

t
ds

∫
df fPi(f, s|r0, v0, f0, t) (A.4)

where Pi(f, s|r0, v0, f0, t) is the probability of the active force on particle i being f at time 
s > t , given that the particle was at ri = r0 at time t with velocity vi = v0  and active force 
fi = f0. Again, ∆pa

i (r0, v0, f0, t) is the total momentum a particle at r0 with velocity v0 and 
active force f0 will receive, on average, during the rest of its history. Note that the impulse is 
only finite if the dynamics of fi lead to a vanishing mean active force in the steady state, a case 
to which we restrict our discussion from now on.

We then use the fact that the dynamics of f are homogenous in time and do not depend on 
the other degrees of freedom to rewrite (A.4) in the simpler form:

∆pa
i (f0) ≡

∫ ∞

0
ds

∫
df fP f

i (f, s|f0, 0). (A.5)

Let us now consider the action of the operator K†
i  on the function ∆pa

i (f0):

K†
i ∆pa

i ( f0) =
∫ ∞

0
ds

∫
df fK†

i P f
i (f, s|f0, 0) (A.6)

=

∫ ∞

0
ds

∫
df f∂sP

f
i (f, s|f0, 0) (A.7)

Figure A1. Brownian dynamics simulations of self-propelled disks undergoing 
dynamics (4) and (A.12) for m = 1, γ̃ = 2, fi = 1, ρ0 = 1, dt = 5. 10−3, Lx = 20. 
Straight lines are guides for the eyes and show that this system also admits an equation of 
state for the mechanical pressure. To measure Gxx(0), we use equation  (A.11). Left: 
here, the active impulses of the particles, ∆pa

i , are measured using the definition (A.4) 
and ε = 0.2. Right: here, the active impulse of the particles, ∆pa

i , are measured from 
(A.19) and ε = 0.4.
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= −
∫

df fP f
i (f, 0|f0, 0)

= −
∫

df fδ(f − f0)

K†
i ∆pa

i ( f0) = −f0.

 

(A.8)

Note that K†
i  acts on f0 and we used the backward equation to go from (A.6) and (A.7). Then, 

we consider the evolution of the active impulse of particle i over time, ∆pa
i (fi(t)). The dynam-

ics of its average is given by

d
dt
〈∆pa

i ( fi(t))〉 =
d
dt

∫
dfi∆pa

i (fi)P
f
i (fi, t)

=

∫
dfi∆pa

i (fi)KiP
f
i (fi, t)

=

∫
dfiK

†
i ∆pa

i (fi)P
f
i (fi, t)

= 〈K†
i ∆pa

i (fi(t))〉
= −〈fi(t)〉.

Similarly, we can introduce the field of active impulse density:

∆pa(r) =
∑

i

∆pa
i (fi(t))δ(r − ri(t)). (A.9)

For non-interacting particles, the joint probability P(r1, v1, f1, . . . , rN , vN , fN) factorizes as

P(r1, v1, f1, . . . , rN , vN , fN) =

N∏
i=1

Pi(ri, vi, fi) (A.10)

so that the dynamics of 〈∆pa(r)〉 are given by:

∂t〈∆pa(r)〉 =
∑

i

∫
dridvidfiṖi(ri, vi, fi)∆pa

i (fi)δ(r − ri)

=
∑

i

∫
dridvidfi∆pa

i (fi)δ(r − ri) [−∇ri · viPi(ri, vi, fi) + KiPi(ri, vi, fi)] .

Note that the term involving ∇vi  in the master equation (A.3) vanishes upon integration over 
vi and that the integrals over the other particles gives 

∫
drjdvjdfjPj(rj, vj, fj) = 1 . Integrating 

by parts, one then gets

∂t〈∆pa(x)〉 =
∑

i

∫
dridvidfi

[
−∇r · vi∆pa

i ( fi)δ(r − ri)Pi(ri, vi, fi)

+ Pi(ri, vi, fi)K
†
i ∆pa

i (fi)δ(r − ri)
]

= −∇r ·
∑

i

〈vi∆pa
i (fi)δ(r − ri)〉+

∑
i

〈K†
i ∆pa

i (fi)δ(r − ri)〉

= −∇r · 〈
∑

i

vi∆pa
i (fi)δ(r − ri)〉 − 〈

∑
i

fiδ(r − ri)〉

where we used equation (A.8). In the steady state, one thus has
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〈
∑

i

fiδ(r − ri)〉 = −∇r · 〈
∑

i

vi∆pa
i (fi)δ(r − ri)〉 = −∇r〈G〉 (A.11)

which then leads to an EOS as in section 1.5.

A.1. Example with multiplicative noise

To illustrate the above results, we consider an active force fi = fiui(θi), where 
ui(θi) = (cos θi, sin θi) as in the main text. Position and velocities evolve with equation (4). 
The angle θi undergoes rotational diffusion through the following Itō-Langevin dynamics:

θ̇i =
√

2Dr(θi) ηi. (A.12)

which leads to the Fokker–Planck equation

∂tP
f
i (θi) =

∂2

∂θ2
i

Dr(θi)P
f
i (θi). (A.13)

Here, K†
i = Dr(θi)

∂2

∂θ2
i

 so that the impulse can be computed from equation (A.8) through

∂2

∂θ2
i
∆pa

i (θi) = − fi
Dr(θi)

u(θi) (A.14)

which we solve for a given example below.
Following the previous section or directly using Itō calculus, it is easy to show that the 

dynamics of the density of free active impulse is then given by

∂t〈
∑

i

∆pa
i (θi(t))δ(r − ri)〉 = −〈

∑
i

fiu(θi(t))δ(r − ri)〉 − ∇ · 〈
∑

i

vi∆pa
i (θi(t))δ(r − ri)〉

 (A.15)
so that, in steady-state, the local force density is given by the divergence of the flux of active 
impulse

〈
∑

i

fiu(θi(t))δ(r − ri)〉 = −∇ · 〈G〉; G =
∑

i

vi∆pa
i (θi(t))δ(r − ri).

 (A.16)
For concreteness, we consider

Dr(θ) =
1

1 + ε cos(2θ) (A.17)

which is such that the steady-state P(θ) is anisotropic but such that 〈u(θ)〉 = 0. Then, the 
equation for ∆pa

i (θ) is

∂2
θi
∆pa

i (θi) = fi(1 + ε cos(2θi))u(θi) (A.18)

whose solution is

∆pa
i = fiu(θi) + fi

ε

2

(
cos θi +

1
9 cos 3θi

− sin θi +
1
9 sin 3θi

)
. (A.19)

Figure A1 shows that, indeed, the pressure is given in this case by P = 〈Gxx(xb) + Jxx(xb)〉 
with xb = 0, hence satisfying an equation of state: it is independent of the stiffness of the 
confining potential.
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