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| first met Rodney in 1980.

Fundamental Problems in Statistical Mechanics. Proceedings, 5th
International Summer School, Enschede, Netherlands, June 23 -
July 5, 1980 E.G.D. Cohen editor.

Two years later Rodney sent me a three months (dream ...)
invitation in Canberra !! This was my first visit to Canberra, but
not the last !

The last time | saw him was in London in 2023 at the Royal
Society.
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EQUATIONS
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YBE are necessarily parametrized in terms of algebraic varieties
with a (generically) infinite set of birational automorphisms. In
the case of curves, this is the reason of the emergence of elliptic
curves (i.e. genus one), in so many YB integrable models, like the
Baxter model.
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You can actually obtain the algebraic variety from the iteration of
“baxterization”

a birational transformation: this corresponds to the so-called




Baxter model
Let us consider the parametrization of the Baxter model:

a=p- Sn(v+777 k)’ b=p- Sn(n_v) k)a c=p- Sn(2777 k))
d=p-k-sn2n, k) sn(v+n, k)- sn(n—o, k).

The iteration of a birational transformation (baxterization)
corresponds, in the spectral parameter, to v — v +2n - 7
where the modulus of the elliptic functions remains fixed. In this
talk we are not going to consider these birational symmetries, but,
rather, to infinite discrete (algebraic) transformations, in the
modulus k, and we will see that they correspond to exact
generators of the renormalization group, to modular forms and to
modular correspondences.
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Before the Baxter model: 399 solutions of the Ising model

The partition function (per site) of the (isotropic) Onsager model
can be written in terms of a 4F3 hypergeometric function

o) 33 5
In(Z) = In(2 cosh(2K)) — 7& - 4F3<[1, 15,50 12,22, kL),
2VE
where: kr = 1—i\—fk with:

k = sinh(2 K) - sinh(2 K3) = sinh(2 K)?,

k is the modulus of the elliptic functions parametrizing the 2-D
Ising model, and £ — Kk is the Landen transformation.
See for instance: The hypergeometric series for the partition
function of the Ising model, by G. M. Viswanathan, 2015
https://arxiv.org/pdf/1411.2495
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Before the Baxter model: 399 solutions of the Ising model |

On this 4F3 hypergeometric form it is crystal clear that the
partition function is D-finite (i.e. solution of a linear differential
operator with polynomial coefficients).

See also 399-th solution of the Ising model, by R.J. Baxter 1978 J.
Phys. A: Math. Gen. 11 2463

In(Z) = In(2 cosh(2 K))

1 ™ ™
+ﬁ . /0 /o ln(l — kg, - cos(q1) cos(qg)) - dqr dgo

Let us perform a derivative of the partition function in order to get
rid of the log, this Onsager's double integral form becomes similar
to Lattice Green Functions (LGF), like the hyper-cubic LGF:

_ dqi - dga -~ - dgy
Glt) = 271' / / 1 —¢t-x

A= cr+c +-- +cp, cj = COSgj

LGF are D-finite: they are diagonal of rational functions. l8/78



Is the partition function per-site of the Baxter model
D-finite ? or D — D finite or differentially algebraic ?

Recalls on the Baxter model.

‘ F(x?2) F(z?/2)
Fla/2) Flaz)

T(v) ~ Algz/z)- Alq/z/x)

0o pAm+1 00
7o) = 1] Ggmergy A0 = [La-a2"

where ¢ denotes the nome of the elliptic functions parametrizing
the model, where = and z are exponentials of the shift 7 and of
the spectral parameter u along the elliptic curve (see (10.7.9) page
225 and (10.7.19) page 226 in Baxter's book):

(-5F) (-37) (-37)
= exp|l—— Tz = exp|—— z = expl——).
q p /) P 27/ p

Infinite products of infinite products. Elliptic beta functions,
Elliptic gamma functions, Barnes functions

G(z +1)=T'(z) - G(z).
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Almost like having three periods

The three variables g, x and z are “almost” on the same footing.
At least g and x are “quite” on the “same footing”.

It is like the function had three periods (half-periods) I, I’ and 7.

Jacobi (1835) proved that a single-valued univariate function
cannot have distinct periods (Boyer and Merzbach 1991, p. 525),
thus showing that elliptic functions are the most general
multiply periodic single-valued functions possible in a single
variable.

The ""third period "" 7, is a quasi-period, it corresponds to a
covariance of the function (see the functional equation associated
with the inversion relation, together with the crossing relation
Z(z) = Z(1/2)):

Z(2) Z(x)2) = A+ A(zz)- A(x3> : A(@) A

z x3
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Selected subcases of the Baxter model: RSOS models

2n K 2wy _m-(n+v)

K - K’ u = Ta q = eXp(_T)'

T =

The Ising model is a subcase of the Baxter model corresponding
in these variables, to the condition (see (10.9.7) page 238 in
Baxter's Book and Appendix 2):

g = z
The other subcases of the Baxter model are, in the RSOS family
(see G.E. Andrews, R. Baxter and P. Forrester) which corresponds
to n = K/r (ris an integer, K is the complete elliptic integral of
the first kind), the hard hexagon model which corresponds to
n = K/5, i.e. to the condition:

when the other RSOS conditions read ¢ = " (r is an integer).
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Magnetization of the Baxter model

The magnetization of the Baxter model reads (see (10.9.10) page
238 in Baxter's book):

9 1 _q2n—1
M(q) = H W’
n=1

which is independent of x and or course z.

Note, however, that written in terms of the modulus & of elliptic
functions, instead of the nome ¢ of elliptic functions, the
spontaneous magnetization has the remarkably simple algebraic
form

Mg) = (1K)
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Calabi-Yau manifolds, Calabi-Yau equations, mirror
symmetries, series with integer coefficients.

With the elliptic functions and modular forms, and the two
previous k versus ¢, modulus versus nome descriptions, we have

the simplest illustration of the mirror symmetry. In the *g-world”

the automorphy properties (infinite products), the modular group
symmetries are obvious, we have diffentially algebraic equations,
but the D-finite (holonomic) linear structures are hidden. In the
“k-world” we have (or we may have ...) linear differential
equations, D-finite functions, but the automorphy properties
(infinite products), the modular group symmetries are hidden.
We need the two complementary descriptions.
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Polarization of the Baxter model.
On the other hand, the polarization of the Baxter model (see
(10.10.24) page 245 in Baxter's book) reads:

o

Plg,7) = H (1 +q" 1 x2n>2'

g 2
o 1 —qg* 14 z"

At first sight, it seems difficult to imagine that, similarly to the
spontaneous magnetization, this last infinite product exact
expression could also reduce, possibly in the isotropic case, to an
algebraic expression, or just a D-finite function in k. In fact, it is
algebraic, when ¢ and z are “commensurate”, i.e. if there exist
two positive integers N and M such that:
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To be D-finite in the modulus % or (differentially algebraic)
in the nome ¢ ?

The spontaneous magnetization is clearly D-finite in the modulus
k (it is algebraic ...), but it is not D-finite in the nome ¢: it is
differentially algebraic, which means solution of a non-linear
differential equation. The ¢ «> k transformation is differentially
algebraic.

Corresponds to the concept of mirror-map.

X(q) = q¢ — 744 4> + 356652¢> — 1403611524 + ---
and the nome which is its compositional inverse:

Q(z) = = +7442% 475042023 + 8727696322 + ---

We will come to this in a few slides ...
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Calabi-Yau manifolds, Calabi-Yau equations, mirror
symmetries, series with integer coefficients.

With the elliptic functions and the modular forms, and the two
previous k versus ¢, modulus versus nome descriptions, we have

the simplest illustration of the mirror symmetry. In the *g-world”

the automorphy properties (infinite products), the modular group
symmetries are obvious, we have diffentially algebraic equations,
but the D-finite (holonomic) linear structures are hidden. In the
“k-world” we have (or we may have ...) linear differential
equations, D-finite functions, but the automorphy properties
(infinite products), the modular group symmetries are hidden.
We need the two complementary descriptions.
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Ising n-fold integrals : the y(")’s |

The full susceptibility of the two-dimensional Ising model can be
written as an infinite sum of n-folds integrals which are
holonomic functions (w = s/2/(1 + s?), k = 52,

s = sinh(2 K)):

Yw) = 5 " (w).

n=1

All these n-fold integrals (™ are actually diagonals of rational
functions !!

In the contrast, the magnetic susceptibility, y, is not a
holonomic function, it is not D-finite: y is not solution of a
linear differential equation. It is much more involved: is it
differentially algebraic ?

The full susceptibility x has a (unit circle) natural boundary, in
the complex k-plane: |k| = 1 is a natural boundary of x(k).

y
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The well-suited framework: diagonal of rational functions |

We also found in enumerative combinatorics, lattice statistical
mechanics, many other solutions of selected linear differential
operators, which have special differential Galois groups. All
these linear differential operators are globally nilpotent: they are
not only Fuchsian, they are such that their p-curvatures are
nilpotent, and all their critical exponents are rational numbers,
... They are “Derived from Geometry”: they annihilate n-fold
integrals of algebraic integrands (in mathematician's wording
“Periods”). These n-fold integrals are (or can be recast into)
series with integer coefficients (globally bounded series). These
two set of properties are, in fact, the consequence of the fact that
these holonomic functions are actually diagonal of rational
functions. As Monsieur Jourdain talked prose, without knowing it,
n-fold integrals in physics are, without knowing it, diagonal of
rational functions, which corresponds to a quite remarkable set.
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((Diagonal of rat. func.) solutions of high order linear
differential operators

As seen in “Experimental mathematics on the magnetic
susceptibility of the square lattice Ising model’, or “High order
Fuchsian equations for the square lattice Ising model: x(®)", with
A J Guttmann, the X(”)'s are solutions of linear differential
operators of quite large order, which factorize into products and
direct sums of many factors:

(O-0-0)e(0-0~0)e -

where each factor has highly selected function solutions: elliptic
functions, modular forms, derivatives of modular forms, and
other remarkable functions with modularity properties
(Calabi-Yau but that's another story, ...).
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At this step: Modular forms are just “involved” elliptic
functions.

In the following, we will focus on modular forms, modular curves,
modular correspondences ... At this step, just see a modular form
as an “automorphic function” ®(x) for a “symmetry” = — y(z):

cp(y(x)) = Alz)- 3(2).

Spoiler: in physics the symmetry x* — y(z) will be a generator of
the renormalization group.

4
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Zy in x® or x®): a modular form

The solution of the linear differential operator Z5 can be expressed

in terms of the 9 F} hypergeometric function up to a modular
invariant pull-back M,:

1/12 1 5
S = (Q . Mm) X oF) <[E’ ﬁ]’ [1]; ./\/lx), where:
g oL (1-4z)%(1—x)8

1728 z- (1 + 3z +422)2(1+22)8’
(1 +3z +422)2(1 +22)%1 -42)%(1 -2)8

x-
L= 1728 :
M (1+7z+422)3 - P3

P = 1+237Tx + 145522 + 4183 2° + 5820 2* + 3792 2° + 64 5.

It is a modular form.

Be careful not any oFi([a, ], [1], p(z)) corresponds to a modular

form ...

4
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Simple (automorphy) covariance is too simple: the full
susceptibility of the Ising model

Remarkably long series expansion (5000 coefficients !!!) were
obtained for the low-temp. full susceptibility of the Ising model
(here w = s/(1+ s?)/2):

xp(w) = 4w? +80w’ +1400w® + 23520 w'® + 388080 w'?

+6342336 w' + 103062976 w'% + 1668639424 w'®
426948549680 w* + ..

to be compared with the series for Y% (w) namely :

35 )
= 31,18, 16w )

= 4wt +80w’® +1400w® + 23520 w'® + 388080 w'?
+6342336 w' + 103062960 w'® + 1668638400 w'®
426948510160 w?° + ---

W = 4wt R (]
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From modular forms to derivatives of modular forms.

The hypergeometric function X(LQ) is “not exactly” of the

automorphic form (I)(y(x)) = A(z)- ®(z) but rather

where L(z) is a linear differential operator. The hypergeometric
function )Z(L2) can, in fact, be written as an order-one linear diff.

operator £q acting on a modular form:

- 1 11
W =~ L oF(l5 50 [, 16w?).
2 d 2
Ly = w- (8w —1)-% + 8w”.

and we have a rather simple generalization of the previous
automorphy relation:

4
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Simple (automorphy) covariance is too simple:
Renormalization group

~(2)( 2\/Ek) _ 4. 1 —]: k- df(ii?;(k)
1+ ’
k4
43

i @) = -2F1<[g, g], 3], #).

Conversely, this relation can also be written as

1 d k2 +k +2 2k
@Dy - L (o ey, & LR A2 gy 2VE
X7(k) = g (k k=1 o+ %71 ) X (1+k>’

or, introducing the inverse (descending) Landen transformation:

/1 — V1 —k2 (k2 —2)-vV1 — k2 + 2\ _
X(2)<1 +m> B ( 4 k2 )’X(g)(k)

k2 -1 ——\  dx@(k)

LYy '<1_ 1_k2>' dk
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Landen transformation and renormalization group.

The Landen transformation, or the inverse Landen transformation,
is an exact generator of the renormalization group. An exact
generator of the renormalization group must be compatible with
the elliptic parametrization of the Ising (resp. Baxter) model. It
must have the critical point, £ = 1, as a fixed point, but, beyond,
one must have k = 0, 1, co preserved by such a generator. At this
step, an infinite number of functions can be generator of the
renormalization group. However one must impose that the lattice
of periods is actually compatible with such generator of the
renormalization group. The only such transformations are
isogenies of the elliptic curves: they are algebraic
transformations, corresponding to modular correspondences. We
are going to study these modular correspondences in detail, in
the following.
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Landen transformation.

The Landen transformation is the simplest example of such a
transformation. Naively one expects simple covariance

<I>< 2vk

TrE) = AR k),

like, for instance, in the simplest example of elliptic function (and
modular form ...), namely the (complete elliptic integral) EllipticK
function (2/m - K(k) = 2F1([3, 31, [1], k%)):

K (2E

1+k> = (1+k)- Kk).

With ¢(®) we see that we have a “slight” generalization of these
automorphy relations (derivative of modular form).
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Modular forms

The Ising model seems to be nothing but the theory of elliptic
curves and other modular forms, and also derivatives of modular
forms, what else ?

Let us focus on modular forms, modular curves, modular
equations, modular correspondences.

We need to understand modular forms, modular
correspondences.
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Modular Forms. Crash course.

Let us consider the second order linear differential operator

d? (> +56t+1024) d 240

at? +t-(t+16)(t+64)'dt - (t+16)2(t+64)

which has the (modular form) solution:

1 5 t
Fi([=, =], [1], 1728 ——
2P (750 15 [1; (Hm)g,)
t + 256\ —1/4 1 5 t2
= 2. P (=, —], [1], 1728 ————
(t—i—l(j) 2 1<[12’12]’H’ 78(t+256)3

This looks like one identity: in fact it is an infinite number of
identities.

).
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Fundamental modular curve. Symmetry x — y = y(z).

The two pull-backs in the previous modular form
t t2 212
YT+ 16)3 Y= +256)3 x(T)
are related by a simple involution t < 2'2/t, and

correspond to a rational parametrization of the (fundamental)
modular curve Ps(z, y) = Pa(y, z) = 0:

157464000000000 - 22 4> — 8748000000 - 22 - (z 4 y)
+10125 - zy - (1622 — 4027z y + 16 y?)
—(x+y) (2> +1487Tzy+¢%) +zy = 0.
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Modular Forms. Crash course.

2Fi([55, 75 (1), 1728 )
= Az)- m(%, %], [1], 1728 x)

This looks like one identity: in fact it is an infinite number of
identities. = — y(z) — yy(x)) — ---

Let us introduce another rational parametrization where the
elliptic function parametrization of the Ising (resp. Baxter model)
plays a crucial role, thus underlining the Landen transformation as
an exact generator of the renormalization group.
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Isogenies, Landen transformations, modular curve.

We will denote k the modulus of the elliptic functions in the
parametrization of the Ising (resp. Baxter model), and j(k) the
j-invariant of the corresponding elliptic curve.

The previous modular curve has another rational
parametrization

N = — y:

1
j(k)’ j(kr) 1+k

2 4\3
_ e (LA 14R 4R

(1—k? + k)3 (zx/E)

o
i) = 256 "G e I\

(1—k2)%- k2
These two rational parametrizations are actually related by the
following change of variables:

k2 (k2 —-1)2 . 1 -k

t = 256 - m or: 16- T ie: k— m
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Isogenies, Landen transformations, Modular curve.

The modular curve is thus an algebraic representation of the
Landen transformation & — 2vk/(1 + k), and in the same
time, since this curve is x < y symmetric, of its compositional
inverse, the inverse Landen transformation. The algebraic
function y = y(z) is a “multivalued function”, but we can single
out the series expansions:

yp = 2% + 148823 +2053632z* + 2859950080 2° + - --
and its compositional inverse series (with w? = 1):

yijp = w-at/? —744- 22?7 +357024- w- 2% + -
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More correspondences.

1 5 ¢
2F1<[E7 E]’ [1], 1728 (t+27) - (t+3)3)
1 5 t*
= A(t)- 2F1([Ea ﬁ]v [1], 1728 (t +27) - (t—|—243)3)’

where A(t) is an involved algebraic function. The elimination of ¢
between the two pullbacks

_ t _ t3 30
T w2 ¢ +33 YT tron) (tr2433 x(?)

gives another modular curve P;(z,y) = Ps(y, z) = 0
y3 = 20 +22322% 43911868 2° + 63800138162° + - --
and its compositional inverse series (with w3 = 1):

Y1/3(w, T) = w- g'/3 — 744 W% 23 4356652 233 +
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More generally: N prime.

Another example:

1 5 t
Fi([—=, —], [1], 1728
2 1<[12’ 120 1L (t2+10t+5)3>

1 5 2
= A ° F (77 b 17 1 2 )’
(&) 2F1([55 35l (1], 1728 (t2 + 250 + 3125)3

where A(t) is an involved algebraic function.

More generally, we have an infinite number of modular curves
Pn(z, y) = Pn(y, ) = 0 with modular correspondences

x — y(z):

y = vV + ... and: y = /N + ...

In the nome this just amount to writing ¢ — ¢"¥ and

G — 9o G with WV = 1.
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N not prime: N = 4.

1 5 t- (t+16)
Fi([=, —=], [1], 172
2 1<[12’ o) 1L, 1728 (t2 + 16t +16)3)
1 5 th. (t+16)
= A(t)- oF ([=, —], [1], 172
®)- 2 1<[12’ 120 1L (t2 + 2561 —|—4096)3>’

where A(t) is an involved algebraic function. The elimination of ¢
between the two pullbacks

t- (t+16) - th. (t+16)

T (#2116t 1162 7T (2 +256¢ + 4096)3’

gives another modular curve Py(z, y) = Py(y, z) = 0.
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N not prime: N = 4.

ys = xt +29752° 4 6322896 2% + 118381511424 27 + ---

and its compositional inverse series (with w? = 1):

Yi/aw, T) = w- o/t — 744 - W - 2% + 356652 23/t + ...

and also the (involutive series):

Yy = —x —14882% — 221414423 — 3337633792 2% + - --
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N not prime: N = 4 as composition of N = 2

The modular curve Py(x, y) = Py(y, x) = 0 can be obtained
“composing” the modular curve Pa(z, y) = P(y, ) = 0 with
itself. Composition of algebraic functions is a “slippery terrain”
(taking resultant), but there is no problem composing the
algebraic series solutions of the modular curve

Py(z,y) = Pa(y, z) = O:

yp = a2 + 148823 +2053632z* + 2859950080 2° + - --
and its compositional inverse series (with w? = 1):
yrg = w- /% — 744 2¥% £ 357024 w232 + ...

One can see that y(z) = y2(y2(2)), v1/a(x) = v1/2(y1/2(2))
and

y1(z) = y1/2(y2(2)), Y2(y12(2)) = z.
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Simple covariance: modular form.

Revisiting the previous 9 F} identities, corresponding to modular
correspondence series, one can write:

1 5

2F1([ LD ; 172831) = A(z)- 2F1([12 1

12’ 12] 1]
where A(z) is an algebraic function. The relation P(y, z) = 0 is
one of the previous modular equations. Introducing

5

2
— = [],1728-.7;) :

F(z) = - (1 —1728- z)/2. QFL([

the previous covariance relation on oF7 can, in fact, be written

A Fy) = F(x) - Zi or: . Fd(j“) = FSZ(Z)

20,0l 172835),
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Modular form: Schwarzian condition.

Eliminating A(x) (on the corresp. ODE's) one gets the following
Schwarzian differentially algebraic equation condition:

W(z) —Wye)- y'@)? + {y@),z} = 0

where W (z) is the rational function:

F'(z) 1 (F’(m))Q_ 1 1 —1968z + 2654208 x>
- -

F(x) F(x) 9 22 (1 —17282)2

and where {y(z), z} denotes the Schwarzian derivative:

_ V) 3 )y
v@. s = Gy~ 1 ()

This non-trivial condition coincides exactly with one of the
conditions G. Casale obtained in a classification of Malgrange's
D-envelope and D-groupoids on P;.
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The Schwarzian equation encapsulates all the modular
equations of the theory of elliptic curves: the infinite number
of correspondences, x — z" 4 .-, are actually solutions of
the same Schwarzian equation.

Are the solutions of the Schwarzian equations only modular
correspondences ?

40/78



Beyond the modular correspondence = — 2" + ---, a
one-parameter series. Replicable functions.

A one-parameter series is actually solution of the previous
Schwarzian equation:
y(a,z) = a-z —T44-a- (a—1) 2
436 a- (a—1)- (9907 a — 20845) - z°

32-a- (a—1)- (4386286 a2 — 20490191 a 4 27274051) - z*

46 -a- (a—1)- (8222780365 a® — 61396351027 o>

+171132906629 a -183775457147) -2° + ---
We have a one-parameter family of commuting series:

y(a,y(a', :v)) = ylad, 7).

This one-parameter series is (at first sight ...) a bit “mysterious” ...

V.
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In the ¢ — 0 Ilimit

Q(z) = lim yla, @) _ r +7442% + 75042023

a—0 a
+872769632 2% 4 1102652742882 2° +

In the a — oo limit

X = lim y(a, E) — & — 7442 + 35665245
a

a—r 0

140361152z + 49336682190 ° +

yla, 2) = X(a- Q@) or Q(yla, v)) = a- Q(a).

Since y(1, z) = x, one deduces that j{ must be the
compositional inverse of (). X and @ are differentially

algebraic: they are also solutions of some Schwarzian equations.
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Similarly the two previous algebraic series, y2 and y;/, can be
written respectively (w? = 1):

X(Q(w)2> and: X(w . Q(:z:)l/z).

In other words ¢ — ¢2, q — ¢/

1 5 2
2. gy (1 — 1728 yo)¥/2. Qpl([ﬁ, =1, [1], 1728 y2)
1 5 2 d
= z-(1-1728- 2)/2. 2F1<[E’ =1, [1], 1728- x) : %,
dy
2- Flyp) = Fla): —

More generally, for N prime, the modular correspondence series
read (W = 1):

X(Q(:L‘)N) and: X(w- ~(:E)I/N).
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N-th root values of the parameter

Note that y(a, z) for a’ = 1 is such that its N-th compositional
iterate is the identity. Such a series must be “special”. Let us

consider the modular curve T'y having X(Q(:ﬂ)N) and
X(w- Q(m)l/N> as solution series. In the nome Q(z) T'y

amounts to writing in the same time Q — QY and

Q — w- QYN Performing the resultant of T'x with itself, in
order to get I'y2, amounts to performing Q — QN — QN
Q — w- QYN — QN put also

Q— Q¥ — w @)V,

namely Q — w- Q with w = 1.
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N-th root values of the parameter

In other words y(a, =) for a”¥ = 1 is not only a series of order-IN

with respect to the composition of function, it is an algebraic
series, solution of a modular curve: it is a correspondence. We
thus have an infinite number of algebraic series solutions of the
Schwarzian equation.

The one-parameter y(a, x) series encapsulates an infinite
number of modular correspondence series, namely the infinite
number of correspondences, z — w-z + ---, w? =1, which
are actually subcases of the one-parameter y(a, x) series.
Remark: when the parameter “a” is an integer y(a, z) is a
differentially algebraic series with integer coefficients !!
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More generally

In the a — 1 limit, let us denote ¢ = a — 1. The one-parameter
series y(z) = y(a, ) can, thus, be seen as an e-expansion:

where Bi(z) = F(z)

e = - - (42 —3)

S % F(z) - (dlf;f) - dzlf) +1),
By(z) = i. Fl)- (d%;(x) - dB;éx) +db;1$(x) ),
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More generally.

(n+1)- Bpy1 +n-B, = F(x)-

83, Bnt1- ! i 0% Bn- "
Oe ‘ Oe
0 B,(x) - €
_ b, (PEalale) @y
y(a,z) _ 9y(a, x)
¢ da Fle) or

The series y(a, x) is solution of the Schwarzian equation with:

Wie) = I;(%) _%' (I;((f)))z'

This remains valid for any function F(x).
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Polynomial example

Flz) = z-(1-373-x2)- (1 —371- x).

W(zx) = —=

1 1 —830298 22 + 411827808 z° — 57449564067 z*

2 22 (1 —=373x)%2- (1 —371x)?

yla,z) = a-x —T44-a- (a—1)- 22
1
+5 - a- (12454550 — 968689) - (a — 1) - o+

~ (1 —3712)371/2 dx
QW = = T 3mgpen = eXp(/ ):

a- Q@) = Qya2), w2 = X(a Q).

Finding the (simple) algebraic expressions of Q(z) and X (z)
from large series expansions is quite hard !

4
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Polynomial truncation of the hypergeometric function.

F(z) = = — T442% — 3937684° = x - (1 - x) (1 g x)
with:

p = 372 +6- 1478212 g = 372 —6- 147822
~ - (1 —p- z)P/lep)

Qz) = 0 g adan = ° + 744 1% + 750420 23

4097211834177216 4
5 r +

+753621408 z* + 782312864472 z° +

Q(:U) is D-finite, but the linear differential operator is not globally
nilpotent and the series for Q(z) is not globally bounded.

With this simple example we see that the integer character of the
coefficients of the modular correspondence series is not automatic.
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Differentially algebraic series.

With y(a, x) associated with canonical correspondences, we had
an infinite number of algebraic functions for y(a, x) with

a™ = 1, and an infinite number of differentially algebraic series
with integer coefficients for y(a, z) with a € Z.

The A-extensions of the two-point correlation functions of the
square Ising model have very similar properties. These series are
solutions of (sigma-form of) Painlevé equations, they are, thus,
differentially algebraic. For selected values (A = cos(mm/n),
which can also be written as N-th root of unity) these series
actually become algebraic series, and for integer values of A\ we
have differentially algebraic series with integer coefficients.

We thus have the same remarkable properties with different
kinds of differentially algebraic series (Schwarz versus Painlevé,
Replicable functions versus isomonodromy).

A lot remains to be understood on such selected differentially
algebraic series !
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So many people have a defeatist attitude towards non-linear
differential equations: they think nothing can be done on
non-linear differential equations.

As far as globally bounded differentially algebraic series are
concerned:

this is defeatist nonsense.
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Fourier believed the main goal of Mathematics is being used to the
public and explain natural phenomena, but a philosopher like him
should know that the only goal of Science is the honor of the
human spirit and that a question about numbers is as important as
a question about the world system.

Letter of Gustav Jacobi to Adrien-Marie Legendre.

V.
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ask.

Additional slides to answer the questions the public did not

J

Do
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One finds, more frequently in the literature, the exact expression of
the free-energy (instead of the partitition function) in terms of
these three ¢, x, z variables, namely (see (10.8.47) page 237 in
Baxter's book):

_/Bf = 1H(C> +Z(q,.’1}72)7

(2 =) (&7 + o = 27 = )

mz™ (1 —q2™) (1 4 22™)

The double infinite product form is more illuminating as far as the
symmetries and structures are concerned.

First infinite product — elliptic functions.

The other infinite product — covariance emerging from the
inversion relation.
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o0 1 _q2n 2
F(Q) = nl;[O<1+q2n>
= Q- 2 K(b)

The Landen transformation ¢ — ¢'/2 amounts to introducing the
other eulerian product F(¢'/?) which reads:

o0

1 L —q"\2
F(¢"?) = 7[10(1 +Zn>
N: VB
E- () ) =)
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F(q'?)
F(q)

The same calculations for the inverse Landen transformation yield

- -

F(¢) _ A=k +0+kK
F(q) 2- (1 —k)1S
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D-finite polarization.
The expression of the polarization of the Baxter model, can be
written in terms of the function F(q):
F(z)
F(q'/?)’

P(g,z) =

Recalling that all the ratio F'(¢*/?)/F(q), F(¢*)/F(q) and more
generally F(qV)/F(q), F(¢"/N)/F(q), F(¢")/F(g"), ... are not
only solutions of linear ODEs but are actually algebraic
functions (associated with modular curves), one easily sees that
the polarization P(q,z) = F(z)/F(q'/?), is an algebraic
function, not only in the Ising case ¢ = z*, but more generally
when ¢ and x are “commensurate” namely, there exist two
positive integers N and M such that:

57/78



Remark on D-finite functions.

n(Zrea) = 4Fs([1. 1 g 2], 2,2,2) z),

is D-finite. Its exponential is also D-finite (the exponentional
function exp(z) is D-finite and the composition of two D-finite
is D-finite). For instance, the function Z = exp(In(Z,.q)) is
actually solution of an order-four linear differential operator

Ly = Ly- (0 +2)- (0 +2), where § = z- - s the
homogeneous derivative, and where the order-two linear differential
operator Lo has the oI} hypergeometric solution:

Sol(Ly) = m([%, g], 3], 2).
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Definition of the diagonal of series of several complex
variables

Definition:

.7:<z1,22,...,zn> =

00 00 0o
m m m
Z Z Z le,mz,...,mn‘ 211222 Znna
m1 =0 m2=0 —)
o
‘ m
Dzag(]—“(z1,m,...,zn>) = Z Fov o - 2™

Extracting the diagonal terms is like extracting the constant terms
in a Laurent/Taylor series. This amounts to residue calculations in
several variables:

dz1 dzs dz
C C 21 22 Zn
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The result: if the algebraic, or rational, integrand of a n-fold
integral has a multi-Taylor expansion, then this n-fold integral is
the diagonal of a rational function.

Two by-products: Diagonal of rational functions are (or can be
recast into) series with integer coefficients, which actually
reduce modulo any prime to algebraic functions !!
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Lattice Green functions are obviously diagonal of rational
functions and, thus, are D-finite.

Let us introduce the complex variables z; = exp(2im - ¢;). The
lattice Green function can be rewritten

1
—(27-(-)71 / / R(Cl, C2, ** ,Cp; t) . dql 0 dq2 dqn

dz1 dz dz
_)// R(Z]_,ZQ,,Zn,t)_l_2_n
C C Z1 22 Zn

where it is crystal clear that the lattice Green function is a diagonal
of a rational function, and thus is D-finite, solution of a linear
differential operator with polynomial coefficients (in t).
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Accumulation of the singularities of the linear ODEs for the
(™ in the k complex plane

the full susceptibility is clearly a quite involved function !
Remark: for a holonomic function, there is a difference between
the singularities of that function, and the singularities of the
linear differential operator annihilating the function !!

But this is another story ...
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Is the full susceptibility of the Ising model differentially
algebraic ?

We also considered the full susceptibility of the square Ising model,
in order to see if it could be differentially algebraic:

Automata and the susceptibility of the square lattice Ising model
modulo powers of primes, A.J. Guttmann and JMM, 2015 J. Phys.
A: Math. Theor. 48 474001

Lacunary series mod. 32, 64 and thus reduce to algebraic series
mod. 25, 2%: L(u?) +u = L(u) — L(u)? +u = L(u).

Lw) = 1 +u +u? +ub +ub +ul £ 82 4 ubt g ol28
256 4 512 4 1024 4

More generally, the full susceptibility series reduces to algebraic
series mod. 2.

However the full susceptibility series does not seem to reduce to
algebraic series modulo other integers. We have only some
properties of the diagonal of rational functions.

= . =
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Modular form, Eisenstein series

E4=1+240§:n3.q(72”)_2ﬂ([1 5][1]@)4
=1

1—q(r)" 12’ 12

In terms of k the modulus of the elliptic functions, the Ej
Eisenstein series can also be written as:

4. (1 _ 1.2\2
2F1<[1 5][1] 27 k* - (1 k:)>4

127127 4 (R — K2+ 1)3
= (-R k) A(l, 510, #)
Bo= 0+ (-2 (1-5) om (2, 5 . )’
k2
= (1+KY)- (1 -2k (1 —5>
9 | L4\—3/2 1 5 27 k*- (1 —Kk%)2\6
< (=K K2R (157 b U T e ap)

=
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A pedagogical example of diagonal of rational functions.
Let us consider the rational function of three complex variables
F = 1/(1 — 29 — 23 — 2122 — z123). lts diagonal reads:

1 +4z +3622 +4002° +4900z* + 635042° + ---

which is nothing but the complete elliptic integral (first kind):

= () = (B

m>0

This diagonal modulo any prime reduces to an algebraic
function, for instance:

Diag(F) mod7 =

= 1 44z +22 +2%+42" +228 +42° + ...

1
= mod 7.

V1 +4z + 22 + 23

il =T = = =



Another example of diagonal of rational functions.

A less obvious example corresponds to the modular form:

1
(1—21—22—23—21Z2—2223—Z3Z1—2122Z3
1 1 2 94 z
- LA A w2E).
T 2Bl gk (1 —2)3

Such diagonals of rational functions are highly selected

functions: modulo any prime they reduce to algebraic functions.

They can be seen as the simplest (transcendental)
generalisations of algebraic functions.

The integrands of the x(™ n-fold integral of the Ising model have
a multi-Taylor expansion and are, thus, diagonals of a rational
function.
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Ising n-fold integrals : ()

The five-particle contribution (5 of the susceptibility of the Ising
model is solution of an order-33 linear differential operator which
has a direct-sum factorization (DFactorLCLM in Maple): the
selected linear combination

-6) _ 1.3 o)
X 2 * 150 120

is solution of an order-29 (globally nilpotent) linear differential
operator

Log = Ls-Lip-Ly- Ly,
where:

L1 = (ZQ-Nl)@VQGB(Fg)-FQ‘Lf).
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Ising n-fold integrals : y(®)
Similarly () is solution of an order-52 linear differential operator

which has a direct-sum factorization: the selected linear
combination

- 2 _

(6) _
X 45

[SCRN )

is solution of an order-46 (globally nilpotent) linear differential
operator

Ly = Le-Log- L1z,

where: L17 = I~/5 D L3 ©® (L4 : I)g . LQ),

~ d 1

Ls = (d - ) @ <L1,3 - (L12® L1 @ Dz))
X x
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The “Quarks” in x(® and Y(©

Quasi-trivial order-one (globally nilpotent) linear differential

I dIn(R
operators: L1, Ny, L§, L1, — Dy —% - H(T(fc))

Vo, Lo, L3, Ls and Lg are respectively equivalent
(homomorphic) to Ly, to the symmetric square of Lx and to the
symmetric fourth and fifth power of L, where Lk is the second
order linear differential operator annihilating the complete elliptic
integral K = 2Fi([1/2, 1/2], [1], k?).

F, Fj, [~/3 do correspond to modular forms: Fj and ig are
homomorphic to the symmetric square of order-two operators
associated with the (fundamental) modular curve X(2), and F»
is related to Zs (and thus hg, Apéry, ...).

Remains to understand the ‘“very nature” of:
Ly and: L2, Lo
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L4 is a Hadamard product of two elliptic curves:
it is a Calabi-Yau operator !

Seeking for 4F5 hypergeometric functions up to homomorphisms,
and assuming an algebraic pull-back with the square root
extension, (1 — 16 - w?)/2, we actually found that the solution of
L4 can be expressed in terms of a selected 4F3

4F3<[1/2, 1/2,1/2,1/2],[1,1,1]; z>

- 2F1<[1/2, 1/2], [1]; z)* 2F1<[1/2, 1/2],[1]; z),
L VISt _
1-— m> B

where the pull-back z is nothing but the fourth power of the
modulus k of the elliptic functions !

where: z = (
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The x(™’s are diagonal of rational functions.

Let us consider the series of () /8/w?
1 4+ 36w” + 4w’ + 884w + 196w° + 18532w’ + .-

Let us now consider this very series modulo the prime p = 2. It
reads the lacunary series

1+ w® + w? 4w’ 4 w20 28 5 4 qpl06

In fact,modulo the prime p = 2, H(w) = x©®)/8 is, actually, an
algebraic function, solution of the quadratic equation:

Hw)? +w- Hw) +w'® = 0 mod 2.

Modulo p = 3. Indeed, H(w) satisfies a polynomial equation of
degree nine (the p,, are polynomials of degree less that 63):

po- Hw)® + w® p3- Hw)®> + w' pr- Hw) + po.
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Elimination of the automorphic prefactor A(z)

A(@) - 2F1 ([o B, b, ) = 2Fi([a 81, b, 9(@))),

The Gauss hypergeometric function oFi([e, B], [7], ) is solution
of the second order linear differential operator of wronskian w(x):

d2 d af
Q = - +A@) —— + B@), B)= L
_ (e+p+l) -z -y W)
Ale) = z-(x —1) o w()’

A straightforward calculation gives the algebraic function A(x) in
terms of the algebraic function pullback y(z):

Alx) = (w(y(:n)) ) y/(gj))il/z

w(z)
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The set of solutions of the Schwarzian condition has a
closure property for composition of functions

A(@)- oFi([, B, ) =) = 2Fi([a 81, D, 9(a)),

B(@) - 2F1 ([ B, b, 2) = 2B ([, B, D), 2())),

By(@)) - 2B ([, B, b, y(@) = 2Fi ([ 8], [, 2(y(@)))
= By(z)) A)- zFl([a, Bl 1, rr)

The set of solutions of the Schwarzian condition must have a
closure property for composition of functions. It works: see the
Schwarzian derivative of a composition of function:

{z(y(@), 2} = {2(9), Yhy=y(w) - ¥'(2)* + {y(2), 7}
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Non-holonomic functions ratio of holonomic functions

Along this line it is fundamental to recall that the ratio (not the
product !) of two holonomic functions is non-holonomic

d2

TAR@) - y=0, 7@=", (72,2} = 2R@.
dz Y2
The Chazy Ill equation is a third-order non-linear differential
equation (it can also be rewritten using a Schwarzian derivative)
that has a natural boundary for its solutions:

= wgh - (2)

dx
It has the quasi-modular form Eisenstein series Fy has a solution

1 A1
_ .2 _ ..
Y= 9" A 5

where A is a selected holonomic function: a modular form.

= —
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Schwarzian derivative and natural boundary

It can be rewritten in terms of a Schwarzian derivative:

f(4) _ 2fl2‘ {f’ I‘} _ 2f/f//l _Sf”2 with: y =

df

%.

It was introduced by Jean Chazy (1909, 1911) as an example of a
third-order differential equation with a movable singularity that has

a natural boundary for its solutions. It is also worth recalling
Halphen-Ramanujan differential system:

P2 —Q

PQ —R H__PR—Q2
12 7 B

3 ’ 2 ’
where P = F», Q = E;, R = Eg and X’ denotes here the
homogeneous derivative ¢ - dX , and E,, the Eisenstein series.

P =

Q =

the
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