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Abstract
Using an expansion method in the variables xi that appear in (n − 1)-
dimensional integrals representing the n-particle contribution to the Ising square
lattice model susceptibility χ , we generate a long series of coefficients for the
three-particle contribution χ(3), using an N4 polynomial time algorithm. We
give the Fuchsian differential equation of order 7 for χ(3) that reproduces all
the terms of our long series. An analysis of the properties of this Fuchsian
differential equation is performed.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
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1. Introduction

Since the work of Wu et al [1], it has been known that the expansion in n-particle contributions
to the zero-field susceptibility of the square lattice Ising model at temperature T can be written
as a sum

χ(T ) =
∞∑

n=1

χ(n)(T ) (1)

of (n − 1)-dimensional integrals [2–7], the sum being restricted to odd (even) n for the high
(low) temperature case. While the first contribution in the sum, χ(1), is obtained directly
without integration, and the second one, χ(2), is given in terms of elliptic integrals, no closed
forms for the higher-order contributions are known despite the well-defined forms of these
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(n − 1)-dimensional integrals. The χ(n) are (n − 1)-dimensional integrals of holonomic
(algebraic) expressions, and are consequently holonomic, or ‘D-finite’: they are solutions of
finite-order linear differential equations with polynomial coefficients [8, 9]. Unfortunately,
such theorems of holonomy theory do not give any lower or upper bound, or hint, as to the
order of the linear differential equation satisfied by a given χ(n).

As far as singular points are concerned (physical or non-physical singularities in the
complex plane), and besides the known s = ±1 and s = ±i singularities, Nickel showed [6]
that χ(2n+1) is singular4 for the following finite values of s = sh(2J/kT ) lying on the unit
circle (m = k = 0 excluded):

2

(
s +

1

s

)
= uk +

1

uk
+ um +

1

um
(2)

u2n+1 = 1, −n � m, k � n.

When n increases, the singularities of the higher-particle components of χ(s) accumulate on
the unit circle |s| = 1. The existence of such a natural boundary for the total χ(s) shows that
χ(s) is not D-finite (holonomic) as a function of s. To understand the analytical structure of
such a transcendental function, it is thus crucial to better understand the analytical structure of
the ‘holonomic’ χ(n) and, as a first step, to find the still unknown linear differential equation
verified by the three-particle contribution χ(3).

A significant amount of work had already been performed to generate isotropic series
coefficients for χ(n) (by Nickel [6, 7] up to order 116, then to order 257 by Guttmann et al5).
More recently, Orrick et al [10] have generated coefficients6 of χ(s) up to order 323 and 646
for high and low temperature series in s, using Perk’s non-linear Painlevé difference equations
for the correlation functions [10–14]. As a consequence of this non-linear Painlevé difference
equation and the associated remarkable recursion on the coefficients, the computer algorithm
had an O(N6) polynomial growth of the calculation of the series expansion instead of an
exponential growth that one would expect at first sight. However, in such a non-linear, non-
holonomic, Painlevé-oriented approach, one obtains results directly for the total susceptibility
χ(s) which does not satisfy any linear differential equation, and thus prevents the easily
disentangling of the contributions of the various holonomic χ(n).

In contrast, we develop here, a strictly holonomic approach. This approach enables
us to get 490 coefficients of the series expansion of χ(3), from which we have deduced
the Fuchsian differential equation of order 7 satisfied by χ(3). This Fuchsian differential
equation presents a large set of remarkable properties and structures that are briefly sketched
here and will be analysed in more detail in forthcoming publications, along with the
analytical behaviour of the solutions. The method used in this paper to obtain the Fuchsian
differential equation is not specific of the third contribution χ(3) and can be generalized,
mutatis mutandis, to the other χ(n)(n > 3), without any drastic changes in the mathematical
framework7.

2. Generating the series for χ(3)

Similarly to Nickel’s papers [6, 7], we start using the multiple integral form of the χ(n). We
focus on χ(3) and consider the double integral

4 The singularities being logarithmic branch points of order ε2n(n+1)−1 ln(ε) with ε = 1 − s/si where si is one of the
solutions of (2).
5 Private communication.
6 The short-distance terms were shown to have the form (T − Tc)

p(log|T − Tc|)q with p � q2.
7 But certainly requiring larger computer calculations.
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χ(3)(s) = (1 − s4)1/4

s
χ̃ (3)(s)

(3)

χ̃ (3)(s) = 1

4π2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 ỹ1ỹ2ỹ3

(
1 + x̃1x̃2x̃3

1 − x̃1x̃2x̃3

)
H(3)

with

x̃j = s

1 + s2 − s cos φj +
√

(1 + s2 − s cos φj )2 − s2
,

(4)
ỹj = s√

(1 + s2 − s cos φj )2 − s2
, j = 1, 2, 3, φ1 + φ2 + φ3 = 0.

Many forms [6, 7] for H(3) may be taken and are equivalent for integration purposes, e.g.,

H(3) = f23

(
f31 +

f23

2

)
, fij = (sin φi − sin φj )

x̃i x̃j

1 − x̃i x̃j

. (5)

It is straightforward to see that χ̃ (3) is only a function of the variable w = 1
2 s

/
(1 + s2). From

now on, we thus focus on χ̃ (3) seen as a function of the well-suited variable w instead of s. We
may expand the integrand in (3) in this variable w and integrate the angular part. For χ̃ (3), this
would mean there are 18 sums to carry out. We, instead, expand the integrand in the variable x̃

of (4), where we succeeded in deriving remarkable formulae for ỹx̃n carrying one summation
index. As a consequence, we are able to write χ̃ (3)(w) as a fully integrated expansion. Our
algorithm runs in a polynomial time calculations (namely O(N4)). In contrast with Orrick
et al’s calculations [10], this calculation is not based on any recursion: it allows one to obtain
any given coefficient separately without requiring the storage of all the previous data. The
details of these calculations, tricks8, and of this program will be given elsewhere [15].

At present, we have obtained9 the expansion of χ̃ (3) up to w490. As expected, this
expansion is in agreement with the previous results published by Nickel [6, 7] using a numerical
method of integration, as well as the improved unpublished results (up to w257) by Guttmann
et al10. In terms of the well-suited variable w, the first terms of the expansion of χ̃ (3)(w) read

χ̃ (3)(w)

8
= w9 + 36w11 + 4w12 + 884w13 + 196w14 + 18 532w15 + 6084w16 + · · · . (6)

3. The Fuchsian differential equation satisfied by χ̃(3)(w)

Given the expansion of χ̃ (3)(w) up to w490, the next step will be to encode all the numbers
in this long series into a linear differential equation. Note that such an equation should exist
[8, 9], though its order is unknown. Using a dedicated program for searching such a linear
differential equation with polynomial coefficients in w and steadily increasing the order, we
succeeded finally in finding the following linear differential equation of order 7 satisfied by
the 490 terms we have calculated for χ̃ (3)

7∑
n=0

an

dn

dwn
F(w) = 0 (7)

with

a7 = w7(1 − w)(1 + 2w)(1 − 4w)5(1 + 4w)3(1 + 3w + 4w2)P7(w)

8 For instance, our calculations also underline the important role played by hypergeometric functions.
9 We can get a new coefficient every two days.
10 Private communication.
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a6 = w6(1 − 4w)4(1 + 4w)2P6(w)

a5 = w5(1 − 4w)3(1 + 4w)P5(w)

a4 = w4(1 − 4w)2P4(w), a3 = w3(1 − 4w)P3(w)

a2 = w2P2(w), a1 = wP1(w), a0 = P0(w) (8)

where P7(w), P6(w), . . . , P0(w) are polynomials of degree respectively 28, 34, 36, 38, 39,
40, 40 and 36 in w. These quite large polynomials are given in the appendix.

Note that the series of χ̃ (3)(w) up to order 359 is sufficient to identify the differential
equation when the order q = 7 and the successive degrees 47, 46, 45, 44, 43, 42, 41 and 36
of the polynomials in front of the F (n)(w) are imposed. Within this framework, and since our
series has 490 coefficients, we have here 131 verifications of the correctness of this differential
equation.

At this point, let us remark that if one had worked with variable s, instead of w, the series
in s up to order 699 would be needed to obtain the seventh-order differential equation satisfied
by χ̃ (3)(s).

Since the singular points of this differential equation correspond to the roots of the
polynomial corresponding to the highest order derivative F (7)(w), namely a7, we give the
exact expression of P7(w):

P7(w) = 1568 + 15 638w − 565 286w2 − 276 893w3

+ 34 839 063w4 + 100 696 470w5 − 1 203 580 072w6

− 5 514 282 112w7 + 18 005 067 728w8 + 110 343 422 816w9

− 140 604 884 224w10 − 1 825 536 178 688w11 + 920 432 273 408w12

+ 28 913 052 344 320w13 + 38 181 758 402 560w14

− 112 307 319 603 200w15 − 544 140 071 665 664w16

− 1 144 172 108 054 528w17 − 1 027 222 993 371 136w18

− 1 992 177 026 596 864w19 − 2 948 885 085 421 568w20

+ 2 211 524 294 737 920w21 + 8 204 389 336 481 792w22

+ 675 795 924 156 416w23 − 2 882 636 020 187 136w24

− 5 364 860 829 302 784w25 − 222 238 787 764 224w26

+ 158 329 674 399 744w27 + 39 582 418 599 936w28. (9)

The differential equation (7) is an equation of the Fuchsian type since there are no singular
points, finite or infinite, other than regular singular points. With this property, using the
Frobenius method [16], it is straightforward to obtain, from the indicial equation, the critical
exponents, in w, for each regular singular point. These are given in table 1.

At this point, it is worth recalling the Fuchsian relation on Fuchsian type equations.
Denoting w1, w2, . . ., wm,wm+1 = ∞, the regular singular points of a Fuchsian type equation
of order q and ρj,1, . . . , ρj,q (j = 1, . . . , m + 1) the q roots of the indicial equation
corresponding to each regular singular point wj , the following Fuchsian relation holds:

m+1∑
j=1

q∑
k=1

ρj,k = (m − 1)q(q − 1)

2
. (10)

The number of regular singular points is here m + 1 = 36 corresponding respectively to the
28 roots of P7, the two roots of 1 + 3w + 4w2, five regular singular points, and the point at
infinity w = ∞. The Fuchsian relation is actually verified here with q = 7, m = 35, the sum
of all the ρj,k being actually 714.
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Table 1. Critical exponents for each regular singular point. wP is any of the 28 roots of P7(w).
We have also shown the corresponding roots in the s variable11.

w = 0 s = 0 ρ = 9, 3, 2, 2, 1, 1, 1
w = −1/4 s = −1 ρ = 3, 2, 1, 0, 0, 0,−1/2
w = 1/4 s = 1 ρ = 1, 0, 0, 0,−1, −1,−3/2
w = −1/2 1 + s + s2 = 0 ρ = 5, 4, 3, 3, 2, 1, 0
w = 1 2 − s + 2s2 = 0 ρ = 5, 4, 3, 3, 2, 1, 0
1 + 3w + 4w2 = 0 (2s2 + s + 1)(s2 + s + 2) = 0 ρ = 5, 4, 3, 2, 1, 1, 0
1/w = 0 1 + s2 = 0 ρ = 3, 2, 1, 1, 1, 0, 0
w = wP , 28 roots s = sP , 56 roots ρ = 7, 5, 4, 3, 2, 1, 0

Let us comment on the singularities appearing in (7). The well-known ferromagnetic and
antiferromagnetic critical points correspond respectively to w = 1/4 and w = −1/4, while
w = 0 corresponds to the zero or infinite temperature points. The value w = ∞, or s = ±i,
is known as a non-physical singularity. The values w = 1 and w = −1/2 correspond to the
non-physical singularities (11) described by Nickel for n = 1 (m = k = 0 excluded):

1

w
= uk +

1

uk
+ um +

1

um
u3 = 1, −1 � m, k � 1. (11)

Furthermore, besides the known singularities mentioned above, we remark on the
occurrence of the roots of the polynomial P7 of degree 28 in w, and the two quadratic
numbers 1 + 3w + 4w2 = 0 which are not of the form (11). The two quadratic numbers are
not on the s-unit circle: |s| = √

2 and |s| = 1/
√

2.
To analyse the local solutions of the differential equation, let us recall that, in general, it

is known [16] that for a set of k local exponents such that the difference, in absolute value,
between any two of them is an integer, the local solutions may contain logarithmic terms up to
logk−1. In fact, the Fuchsian equation (7) is such that the occurrence of logarithmic terms, in
the local solutions near a given regular singular point, is due only to the occurrence of multiple
roots in the corresponding indicial equation: a root of multiplicity p inducing logarithmic
terms up to logp−1, i.e., at most log2 for (7), as it is shown also in the monodromy matrices
(see below).

More precisely for P7, near any of its roots, all the local solutions carry no logarithmic
terms and are analytical since the exponents are all positive integers. The roots of P7 are thus
apparent singularities [16] of the Fuchsian equation (7). Note that the ‘apparent’ character
of P7 means that, to ensure the absence of logarithmic terms in the general solution, there are
q(q − 1)/2 = 21 relations between the various Pn at each root of P7 (for more details see
[16]).

The two unexpected quadratic numbers correspond to singularities of solutions of (7)
which behave locally like (1 + 3w + 4w2) ln(1 + 3w + 4w2)q1 +q2, where q1 and q2 are analytic
functions near the two quadratic roots 1 + 3w + 4w2 = 0. This ‘weakly’ singular behaviour
can also be seen on the monodromy matrix (see below) associated with these two roots, where
one finds a nilpotent matrix of order 2 (no log2 term).

Details on the local solutions of (7) around each regular singular point, together with
the constants giving the particular physical solution χ̃ (3), will be given in a forthcoming
publication.

We will sketch here the analysis of the Fuchsian equation by focusing on the local solutions
of (7) around w = 0. Recall that the exponents near w = 0 are respectively: 9, 3, 2, 1 and

11 In the variable s, the local exponents for w = ±1/4, are twice those given.
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again 2, 1, 1, all of them integers. Besides the χ̃ (3)/8 solution of the Fuchsian differential
equation which behaves, near w = 0, like (6), (which we will denote, from now on, by S9,
since its leading term behaves like w9), one expects solutions with leading terms behaving
like w, w2 and w3, because of the previous integer exponents near w = 0. Furthermore,
because of the singularity confluence (repetition of same exponents) and the occurrence of
integer exponents, one also expects solutions with the above-mentioned logarithmic terms.

Actually, we have found two remarkable rational and algebraic solutions of (7), namely

S1 = w

1 − 4w
, S2 = w2

(1 − 4w)
√

1 − 16w2
(12)

a solution behaving like w3, that we denote by S3:

S3 = w3 + 3w4 + 22w5 + 74w6 + 417w7 + 1465w8 + 7479w9 + 26 839w10 + · · · (13)

and three solutions S
(2)
1 , S

(2)
2 and S

(3)
1 with logarithmic terms, behaving, at small w, as

S
(2)
1 = w ln(w)c1 − 32w4c2 (14)

S
(2)
2 = w2 ln(w)d1 + 8w4d2 (15)

S
(3)
1 = 3w ln(w)2e1 − 12w3 ln(w)e2 − 19w4e3 (16)

where c1, c2, d1, d2, e1, e2, e3 denote functions that are analytical at w = 0. However, these
functions are not all independent. They can also be written in terms of S1, S2, S3 and S9 as
follows:

S
(2)
1 = ln(w)(S1 − 4S2 + 16S3 − 216S9) − 32w4c2

S
(2)
2 = ln(w)(S2 − 2S3 + 24S9) + 8w4d2 (17)

S
(3)
1 = −3 ln(w)2(S1 + 5S2 − 2S3) − 6 ln(w)

(
2S3 − S

(2)
1 − 9S

(2)
2

) − 19w4e3

where

c2 = 1 +
167

96
w +

2273

96
w2 +

6977

120
w3 +

19 371

40
w4 + · · ·

d2 = 1 +
5

2
w +

103

4
w2 +

315

4
w3 +

2191

4
w4 + · · ·

e3 = 1 +
7693

456
w +

575 593

11 400
w2 +

2561 473

5700
w3 +

127 434 803

93 100
w4 + · · · .

Denoting � = 2iπ , one immediately deduces from the previous relations (17), the monodromy
around w = 0:

S
(2)
1 → S

(2)
1 + �(S1 − 4S2 + 16S3 − 216S9)

S
(2)
2 → S

(2)
2 + �(S2 − 2S3 + 24S9)

S
(3)
1 → S

(3)
1 − 6�

(
2S3 − S

(2)
1 − 9S

(2)
2

)
+ 3�2(S1 + 5S2 − 2S3).

This calculation is a straight consequence of the fact that one only have a ‘logarithmic’
monodromy, which just amounts to changing ln(w) into ln(w) + �, in the previous expressions.
Denoting by Id7 the 7 × 7 identity matrix, and taking the following order S1, S2, S3, S9,
S

(2)
1 , S

(2)
2 , S

(3)
1 for our seven-dimensional basis of solutions of (7), one can see that any nth

power of the 7 × 7 monodromy matrix M,Mn = Mn, satisfies M3
n − 3M2

n + 3Mn − Id7 = 0,
and can be written as the following sum of the identity matrix, and the two first powers of the
order-3 nilpotent matrix N (N3 = 0):

Mn = Id7 + n�N +
(n�N)2

2
= exp(n�N), (18)
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where

N =




0 0 0 0 1 0 0

0 0 0 0 −4 1 0

0 0 0 0 16 −2 −12

0 0 0 0 −216 24 0

0 0 0 0 0 0 6

0 0 0 0 0 0 54

0 0 0 0 0 0 0




.

As it should, one can check that the form (18), valid for any positive or negative integer
n, is such that Mn · Mm = Mm+n.

The monodromy matrices corresponding to the other regular singular points yield very
similar results. Those corresponding to w = ±1/4 are matrices of determinant −1, while all
the others are of determinant +1. The monodromy around the 28 roots of P7 is of course trivial
(apparent singularities). The monodromy matrices corresponding to the other regular singular
points verify very simple relations like the previous relation M3

n − 3M2
n + 3Mn − Id7 = 0

or M2
n − 2Mn + Id7 = 0, and also M6

n − 3M4
n + 3M2

n − Id7 = 0 for those corresponding to
w = ±1/4. This is a straight consequence of the fact that, in a Jordan form, only very simple
Jordan blocks occur12, such as

J2 =
[

1 1
0 1

]
, J3 =


1 1 0

0 1 1
0 0 1


 . (19)

For instance, the monodromy matrices around the points w = 0 and w = ∞ are on the same
footing, both requiring one J3 Jordan block, one J2 block, and the 2×2 identity matrix. There
is another set of monodromy matrices corresponding to the points w = 1, w = −1/2 and the
two roots of 1 + 3w + 4w2 = 0 (associated with J2 blocks). More precisely, the monodromy
matrices for w = 0 and w = ∞ verify M3

n − 3M2
n + 3Mn − Id7 = 0, but for w = −1/2 and

w = 1 they verify M2
n − 2Mn + Id7 = 0, as well as for the two roots of 1 + 3w + 4w2 = 0.

A detailed analysis of the monodromy group will be performed elsewhere. However, such
an analysis of the Galois group13 becomes easier to perform when taking into account some
remarkable factorization and decomposition properties that are sketched in the next section.

4. Algebraic properties of the Fuchsian equation

Let us define

λ = w2(1 + 3w + 4w2)5(1 + 2w)3(−1 + 4w)47/2(1 + 4w)31/2(1 − w)3

f = (1 − w)(1 + 2w)(1 − 4w)5(1 + 4w)3(1 + 3w + 4w2).

12 We thank Jacques-Arthur Weil for this result.
13 The main difficulty is to find a global structure like the monodromy Galois group from the knowledge of all these
local monodromy matrices expressed in the different well-suited local basis associated with each regular singular
point.
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We denote by L7 the seventh-order linear differential operator, corresponding to the Fuchsian
differential equation (7):

L7 = d7

dw7
+

1

a7(L7)

6∑
k=0

ak(L7)
dk

dwk
(20)

where the ak(L7) are the polynomials ak defined in (8). Polynomial a7(L7) reads a7(L7) =
w7f P7, where we distinguish the ‘actual’ and the apparent singularities.

We now give some remarkable factorization properties of the linear differential operator
L7. The fact that the very simple expression S1 (see (12)) is a solution of the differential
operator L7 and that it is also solution of the first-order differential operator L1:

L1 = d

dw
− 1

w(1 − 4w)
(21)

implies the following factorization of L7 (or more precisely the right-division of L7 by L1):

L7 = M6L1. (22)

Similarly, the fact that S2 is a solution of L7 and that it is also clearly a solution of a first-order
differential operator N1:

N1 = d

dw
− 2(1 + 2w)

w(1 − 16w2)
(23)

implies the existence of another factorization of L7:

L7 = N6N1. (24)

The linear differential operators of order 6 read (X6 denoting M6 or N6)

X6 = d6

dw6
+

1

a6(X6)

5∑
k=0

ak(X6)
dk

dwk
(25)

where ak(X6) are polynomials in w and a6(M6) = a6(N6) = w4f P7(w).
These two factorizations are consequences of the existence of remarkable simple algebraic

solutions of L7. Besides this, there exists another factorization of L7 related to the adjoint
differential equation of (3.1). This is explained as follows. One can also see that the adjoint
of L7, denoted by L∗

7, admits the following rational solution14:

S∗
1 = f Q6(w)

w3P7
(26)

with

Q6 = 1 + 19w − 368w2 − 3296w3 + 17 882w4 + 272 599w5

+ 160 900w6 − 6 979 208w7 + 7 550 800w8 + 203 094 872w9

− 278 920 192w10 − 3 959 814 304w11 − 2 115 447 424w12

+ 20 894 729 472w13 + 39 719 728 128w14 + 20 516 098 048w15

+ 256 763 363 328w16 − 327 065 010 176w17 − 8 810 227 761 152w18

+ 414 933 057 536w19 + 116 411 936 538 624w20

+ 296 827 723 186 176w21 + 317 648 030 138 368w22

+ 179 148 186 189 824w23 + 194 933 533 179 904w24

+ 112 931 870 081 024w25 − 55 246 164 328 448w26

+ 11 063 835 754 496w27 + 1 511 828 488 192w28 (27)

14 We thank Jacques-Arthur Weil for the remarkable results (26) and (28).
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yielding immediately the following factorization (or more precisely the left-division of L7

by M1):

L7 = M1L6, where L6 = L5N1 (28)

with

M1 = d

dw
+

1

S∗
1

dS∗
1

dw
(29)

and where L5 and L6 are linear differential operators of order 5 and 6 respectively, which read

Lq = dq

dwq
+

1

aq(Lq)

q−1∑
k=0

ak(Lq)
dk

dwk
, q = 5, 6 (30)

with

a6(L6) = w6f Q6(w)

a5(L6) = w5(1 − 4w)4(1 + 4w)2Q5(w) (31)

a5(L5) = w3(1 − 4w)(1 + 4w)2f Q6(w).

The roots of polynomial Q6(w) are apparent singularities of the differential equations
associated with the operators L6 and L5.

One can also see that M6 in (22) can also be decomposed as follows:

M6 = M5T1 with M5 = d5

dw5
+

1

a5(M5)

4∑
k=0

ak(M5)
dk

dwk

where

a5(M5) = w4(1 − 4w)5(1 + 4w)4f P7(w), and T1 = d

dw
− 1 + 4w + 48w2

w(1 − 16w2)
.

Calculations seem to show that L5 (resp. M5) is irreducible: we have not found any further
factorizations like L5 = L4A1 or L5 = B1L4, or even L5 = L3A2 or L5 = B2L3.

One can also be interested in the Wronskians of L7 and L6. They can be written as
follows:

W(L7) = P7

λ
, W(L6) = f Q6(w)

w3λ
, (32)

thus checking the following relation on the Wronskians of L7, L6 and M1, deduced from (28),
namely

W(L7) = W(M1)W(L6). (33)

From these factorizations, and/or decompositions, relations, corresponding to the
existence of rational, or algebraic (square root of rational), expressions, one should not
be surprised to find that the Wronskians of all the various operators we define here, are
remarkable rational, or algebraic (square root of rational), expressions (see (32)). The fact
that the squares of the Wronskians (32) are rational functions corresponds to the following
identities between P7 and P6 (resp. Q6 and Q5):

P ′
7

P7
− λ′

λ
+

(1 − 4w)4(1 + 4w)2

wf

P6

P7
= 0 (34)
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Q′
6

Q6
− 3

w
+

f ′

f
− λ′

λ
+

(1 − 4w)4(1 + 4w)2

wf

Q5

Q6
= 0. (35)

The Wronskians (or their inverse for the adjoints) of all the differential operators
L7, L

∗
7,M6,M

∗
6 , M5,M

∗
5 can be expressed as simple powers of P7 divided by a simple

expression similar to λ in (20). Similarly, the Wronskians (or their inverse for the adjoints) of
all the differential operators L6, L

∗
6, L5, L

∗
5 can be expressed as simple powers of Q6 divided

by a simple λ-like expression. All these Wronskians are thus rational (L5, L
∗
5,M5,M

∗
5 ) or

such that their square is rational (L7, L
∗
7, L6, L

∗
6, M6,M

∗
6 ). Of course, there are relations

between these Wronskians which are in agreement with the operator factorizations previously
described (see (33)).

Besides the ‘fundamental’ singularities w = 0,−1/2,±1/4, 1 and the ‘unexpected’
quadratic numbers singularities solutions of 1 + 3w + 4w2 = 0, one could say that a large part
of the ‘arithmetic complexity’ of the operator L7 arises from the two polynomials of degree
28 in w,P7 and Q6.

The occurrence of the apparent singularities, associated with the quite large polynomial
P7, can be considered slightly unpleasant or disturbing: one would like to exchange the
seventh-order Fuchsian equation (7) for another differential equation (or a differential system)
where these ‘spurious’ singularities have disappeared. This is the so-called desingularization
problem for differential equations [17, 18]. We have performed such ‘desingularization’:
the ‘price’ to be paid is that one has no longer a seventh-order differential equation, but an
eighth-order differential equation. The associated eighth-order differential operator reads

L8 = d8

dw8
+

1

a8(L8)

7∑
k=0

ak(L8)
dk

dwk
with

(36)
a8(L8) = wn1(1 − 4w)n2(1 + 4w)n3(1 + 2w)n4(1 − w)n5(1 + 3w + 4w2)n6

n1, . . . , n6 being positive integers. The other polynomials, ak(L8), are quite large and will not
be given here. Let us sketch this desingularization procedure. Recall the exponents associated
with the roots of P7 (see table 1). They are 0, 1, 2, 3, 4, 5, 7; one sees that the exponent 6
is missing. Basically, the method amounts to building a differential equation having all the
solutions of (7), together with a solution15 associated with this missing exponent 6, in order to
‘fill the gap’ and make the roots of P7 ordinary points for the homogenous differential equation
associated with L8. Note too that the desingularized differential equation, or equivalently
the operator L8 are far from being unique. The various eighth order L8 operators are, by
construction, of the form L8 = L̃1L7, where the first-order operator L̃1 is quite involved16.
From a desingularized form like (36) one can also introduce a differential system17:

θY = AY, Y = (y, θy, θ2y, θ3y, . . .) with

A = A0

w
+

A1

w − 1/4
+

A2

w + 1/4
+

A3

w + 1/2

+
A4

w − 1
+

A5w + A6

w2 + 3/4w + 1/4
+ P(w)Id8 (37)

15 The solution S = P 6
7 is too naive; it picks out the apparent singularities of P7 but introduces new spurious apparent

singularities.
16 As far as the solutions of L8 are concerned, the differential operator L8 adds to the known solutions of L7, a
solution with a strong exponential behaviour.
17 See for instance chapter 6 of [19].
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where Id8 denotes the 8 × 8 identity matrix, P(w) denotes a polynomial in w, and where the
An matrices are very simple 8 × 8 matrices, simply related to the monodromy matrices, and
where θ denotes the ‘well-suited’ derivation associated with the ‘true’ singularities:

θ = w(1 − w)(1 + 2w)(1 − 4w)(1 + 4w)(1 + 3w + 4w2)
d

dw
.

A form like (37) is clearly much simpler, and more canonical: the calculations one has in
mind (Galois group, rigidity index (see below)) should be much simpler to perform with this
canonical system form (37). Details will be given elsewhere.

5. Comments and speculations

A better understanding of the total susceptibility χ certainly requires an exhaustive knowledge
of the singularities of the successive Fuchsian differential equations associated with the
n-particle contributions χ(n). Besides the apparent singularities associated with the roots
of the polynomial P7, we have noted the occurrence of the two rather unexpected quadratic
number solutions of 1 + 3w + 4w2 = 0, which, also, are not of Nickel’s form (11). The elliptic
parametrization of the Onsager model is well known. Recalling the exact expression of the
modular invariant M for the Ising model (see for instance [20]):

M = 1

1728

(1 − 16w2 + 16w4)3

w8(1 − 16w2)
(38)

it can be seen that the two quadratic numbers correspond to a rational value of the modular
invariant: M = −125/64, while w = 1 also corresponds to a rational value M = −1/25 920,
that w = ±1/4, 0,∞ correspond to M = ∞, and that w = −1/2 corresponds to the rational
value M = 32/81. Could this mean that the Fuchsian equation (7) could be ‘canonically’
associated with an elliptic curve? One can, for instance, recall the period mappings and
Picard–Fuchs equations (and beyond mirror symmetries) associated with a family of elliptic
curves [21, 22]. The Picard–Fuchs equation

144s(s − 1)2

(
s

d2f

ds2
+

df

ds

)
+ (31s − 4)f = 0 (39)

is associated with the family of elliptic curves:

y2 = 4x3 +
27

1 − s
x +

27s

1 − s
.

We now make a few comments on the physical solution S9. The Fuchsian equation is highly
non-trivial and structured: from the previous factorizations, and/or decompositions, one
might imagine that S9 = χ̃ (3)/8 is in fact a solution of a sixth-order homogeneous differential
equation, or even a fifth-order homogeneous differential equation. This is not the case.
Relation (28) means that S9 = χ̃ (3)/8 can be seen as a linear combination of S1 and of a
solution of a sixth-order linear homogeneous differential equation, S(L6), associated with the
operator L6. The solution S9 = χ̃ (3)/8 is actually such a linear combination S9 = αS1 +S(L6),
α being different from zero18. The three-particle contribution, χ̃ (3), is thus a solution of the
seventh-order differential equation (7) and not of a homogeneous linear differential of smaller
order.

Coming back to the analysis of the Galois monodromy group [23–25] of the Fuchsian
equation (7), it is clear that the previous factorizations, and/or decompositions, impose severe

18 The coefficient α characterizing the ‘projection’ of S9 on S1, can easily be calculated writing L6(S9 − αS1) = 0.
One finds α = 1/24.
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reductions of the group. From these various factorizations, or decompositions, of the linear
operator L7 = M1L6 = M1L5N1, one can deduce that the Galois monodromy group is
isomorphic to Gal(L6), the Galois monodromy group of L6. Introducing Gal(L5), the Galois
monodromy group of L5, one deduces from L6 = L5N1 that the operator N1 injects Gal(L5)

in Gal(L6). This does not mean that Gal(L6) is isomorphic to Gal(L5), but that knowledge
of Gal(L5) is required to describe Gal(L6). Recalling the rationality of the Wronskian of
L5, one deduces that Gal(L5) is a subgroup of SL(5, C) and not GL(5, C) (the rationality
of the Wronskian means that all the monodromy matrices of L5 have +1 determinants).
The monodromy matrices of L6 (as well as the one of the Fuchsian equation (7)) have ±1
determinants. The Galois group Gal(L6) is, up to a Z2-graduation, a subgroup of SL(6, C).
Therefore the Galois group of the Fuchsian equation (7) is represented by 6 × 6 matrices
with ±1 determinants, most of its structure requiring the analysis of a Gal(L5) subgroup of
SL(5, C). Of course, one can also understand the Galois group of the Fuchsian equation (7)
from the analysis of the Galois group of M5, namely Gal(M5) which is also a subgroup of
SL(5, C) (isomorphic to Gal(L5)). It seems that L5 is not self-adjoint19 (modulo conjugation
by an operator) and irreducible (see section 4). The two facts seem to rule out the existence
of a symplectic structure. A more detailed analysis of the Galois group of the Fuchsian
equation (7), that is, of the Galois groups Gal(L5), and Gal(L6), will be given in forthcoming
publications.

Let us now focus again on the ‘physical’ solution of the Fuchsian equation (7),
S9 = χ̃ (3)/8, and on its successive derivatives S ′

9, S
′′
9 , S

(3)
9 , . . . . We have seen that, as far as

the linear dependence of these expressions is concerned, we have a seven-dimensional vector
space (S9 is not a solution of a homogeneous sixth-order differential equation20). However,
to better understand the ‘true nature’ of the susceptibility χ , one would like to characterize
the ‘degree of transcendence’ of S9 = χ̃ (3)/8, that is the minimal number of successive
derivatives of S9 satisfying an algebraic non-linear relation21. The Galois monodromy group
gives a valuable information about this ‘degree of transcendence’. Let us consider the orbit of
S9 under the Galois monodromy group: one gets an algebraic variety dense in the subspace
of solutions. The dimension of this algebraic variety is actually this degree of transcendence.
This analysis, however, requires an exact knowledge of the Galois monodromy group.

The susceptibility χ has been shown to be a transcendental (non-holonomic, non-D-finite)
function: it cannot be a solution of a linear differential equation, but this does not mean that it
cannot be a solution of a differential equation. Along the previous ‘non-linear’ line, one should
emphasize that the possibility that χ could be a solution of some (Painlevé-like?) non-linear
differential equation, is not yet totally ruled out !

Within the ‘linear’ Picard–Vessiot Galois monodromy group framework, one can also try
to evaluate the ‘index of rigidity [26, 27]’ of our Fuchsian differential equation, or the ‘index
of rigidity’ of the operators L6 or L5. Roughly speaking, this index of rigidity corresponds
to the number of parameters that can be introduced to deform the linear differential equation,
keeping the local monodromy matrices fixed22. For instance, the hypergeometric functions
are totally rigid: as a consequence, ‘almost everything’ can be calculated on such functions23.

19 However it can be shown that L6 is not self-adjoint (modulo conjugation by an operator). L6 has S2 as a solution.
If it were self-adjoint, L∗

6 would have a similar quadratic solution which is not the case.
20 To be totally rigorous one should add that the minimal operator of S9 is a factor of L7, and since these factors are
of order 1 or 6, and that S9 does not vanish on these factors, it must vanish on L7.
21 For instance the Weierstrass P function verifies the non-linear relation P ′2 = 4P3 + g2P + g3.
22 See the notion of rigid local systems [27, 28]. Basically it amounts to calculating the dimensions of the centralizers
of all the monodromy matrices.
23 In the case of totally rigid systems, N Katz has shown that the solutions have a geometric interpretation: they can
be seen as periods of some algebraic varieties [27].
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The differential operators L7, L6 or L5 have many integer exponents, and, thus, their solutions
have logarithmic behaviours (w − w0)

n(ln(w − w0))
m around each regular singular point

w0. However, recalling (14)–(16), and, more generally, considering the behaviour near all
the singular points, one sees that only ln(w − w0) and (ln(w − w0))

2 behaviours occur24,
thus downsizing (see for instance (4.31) in chapter 4 of [19]) the index of rigidity of these
differential equations. This is a strong indication that the Fuchsian differential equation (7),
or the differential equations associated with L6 or L5, are extremely rigid. This can also be
seen on the various monodromy matrices. The calculation of the index of rigidity, or in other
words, the calculation of the ‘small’ number of deformation parameters of (7) (resp. L6, L5)
will be performed elsewhere. This remarkable rigidity is not a surprise, when recalling the
well-known isomonodromy theory of the Ising model, and in particular the occurrence of
Painlevé equations for the correlation functions of the Ising model. Does the deformation
theory of (7) in this ‘small’ number of deformation parameters actually yield Painlevé-like
equations? This is an open question. From a more down-to-earth viewpoint, this rigidity can
be seen as ‘inherited’ from the ‘total’ rigidity of hypergeometric functions: our calculations
for generating the w-series of χ̃ (3) are actually ‘flooded’ by linear combinations (with binomial
coefficients) of products of hypergeometric functions (see [15] for more details).

6. Conclusion

The linear differential equation we have found for the three-particle contribution, χ(3)(w),
to the susceptibility of the square lattice Ising model, is a highly structured and remarkable
Fuchsian differential equation. We have sketched many of its remarkable properties and
symmetries. It is also worth recalling that the 28 roots of the polynomial P7 are apparent
singularities. We have been able to desingularize the Fuchsian equation (7), in order to get rid
of these apparent singularities related to the quite involved polynomial P7. A deeper analysis
of this Fuchsian equation (monodromy group, critical behaviour of the solutions around the
various singular points, . . . ) will be given in forthcoming publications.

All these results can be generalized, mutatis mutandis, to deduce the Fuchsian equations
corresponding to the other n-particle contributions χ(n). The building of a computer program
with a polynomial growth algorithm which can be generalized, mutatis mutandis, for the other
χ(n), was the key ingredient to get our Fuchsian equation. The ideas developed to create such
polynomial growth programs underline the role played by hypergeometric functions, coming
from a large number of remarkable identities on the underlying variables of the problem.
One may also think that quite complicated ‘fusion-type’ relations on these hypergeometric
functions can exist. This is crystal clear in the case of the two-particle contribution χ(2) [15].
This however remains to be done in full.

Clearly, beyond χ(3), a global understanding of the structure of the hierarchy of all the χ(n)

could be contemplated. A better understanding of the total susceptibility χ certainly requires
an exhaustive knowledge of the singularities of the successive n-particle contributions χ(n),
or equivalently, of the corresponding successive Fuchsian equations. As far as analytical
properties are concerned, we saw the occurrence in (7) of unexpected quadratic numbers
singularities, 1 + 3w + 4w2 = 0 (these two singularities are not on the s-unit circle:
|s| = √

2, 1/
√

2). Curiously these unexpected singularities correspond to a rational value of
the modular invariant. Could this mean that the Fuchsian equations for the successive χ(n) are

24 This can be seen directly on the very simple Jordan blocks for the monodromy matrices (see (19)).
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‘canonically25’ associated with an elliptic curve? Should we rather understand this hierarchy
of Fuchsian equations in a monodromy deformation theory framework?
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Appendix. Polynomials Pn(w) in the Fuchsian equation

Polynomial P7(w) is given by (9) in section (3). The other polynomials Pn(w) appearing in
the Fuchsian differential equation (7) read

P6(w) = 3136 + 6230w − 1 288 476w2 − 7 772 841w3

+ 277 143 780w4 + 732 977 973w5 − 18 314 746 506w6

− 101 718 010 128w7 + 452 850 229 584w8 + 5 020 805 303 808w9

+ 4 377 337 992 544w10 − 73 511 705 229 376w11 − 186 599 549 300 224w12

+ 688 266 934 443 264w13 + 2 381 942 017 561 600w14

− 13 406 576 297 476 096w15 − 77 552 054 198 255 616w16

− 62 473 896 968 192 000w17 + 566 118 199 235 182 592w18

+ 2 369 604 602 508 869 632w19 + 4 584 125 159 341 817 856w20

+ 4 971 774 665 178 480 640w21 + 3 170 276 040 215 887 872w22

+ 1 261 285 614 288 896 000w23 − 8 024 300 542 522 032 128w24

− 31 609 194 971 091 959 808w25 − 29 166 209 814 268 739 584w26

+ 24 411 784 646 567 657 472w27 + 51 268 404 625 232 887 808w28

+ 10 909 442 606 601 601 024w29 − 17 298 536 175 450 980 352w30

− 22 524 507 245 688 913 920w31 − 803 311 991 346 167 808w32

+ 643 451 796 760 559 616w33 + 146 929 937 842 962 432w34

P5(w)/6 = −3920 − 50 036w + 657 618w2 + 2 310 157w3

+ 57 981 516w4 + 181 765 533w5 − 11 381 944 688w6

− 33 790 012 308w7 + 657 375 534 560w8 + 3 674 875 492 384w9

− 15 457 278 513 824w10−174 877 902 064 256w11−206 023 873 360 512w12

+ 2 321 200 148 914 432w13 + 7 637 039 509 704 192w14

− 10 941 480 730 198 016w15 − 57 737 025 315 979 264w16

+ 333 899 549 028 417 536w17 + 2 028 881 272 344 543 232w18

+ 1 222 238 943 086 247 936w19 − 18 595 611 014 197 673 984w20

25 See for instance the Picard–Fuchs equation (39) associated with a family of elliptic curves [21, 22].



The Fuchsian equation of the 2-D Ising χ(3) susceptibility 9665

− 73 371 220 994 829 582 336w21 − 136 060 398 285 342 375 936w22

− 130 703 266 473 798 795 264w23 − 33 617 340 512 551 829 504w24

+ 47 269 092 026 654 654 464w25 + 245 063 107 203 464 953 856w26

+ 871 739 136 776 752 594 944w27 + 840 904 901 895 399 669 760w28

− 705 023 849 231 934 291 968w29 − 1 481 188 430 646 115 041 280w30

− 248 371 837 196 692 357 120w31 + 505 171 752 077 683 064 832w32

+ 650 337 237 640 855 683 072w33 + 21 867 227 990 697 443 328w34

− 17 401 908 960 159 596 544w35 − 3 837 066 882 519 662 592w36

P4(w)/6 = −7056 − 13 104w + 2 506 404w2 + 1 259 339w3

− 359 569 248w4 − 428 625 637w5 + 8 930 176 742w6

+ 69 389 677 460w7 + 920 192 243 600w8 + 525 802 739 312w9

− 66 986 033 783 136w10−321 567 362 559 104w11+1507 253 461 327 104w12

+ 15 854 341 774 929 408w13 + 19 827 226 028 548 096w14

− 208 498 487 994 075 136w15 − 800 525 602 082 496 512w16

+ 379 859 514 866 270 208w17 + 5 816 896 580 823 547 904w18

− 14 688 677 131 958 616 064w19 − 137 800 861 295 028 207 616w20

− 109 673 724 325 574 737 920w21 + 1 354 846 365 315 969 843 200w22

+ 5 431 000 042 449 334 697 984w23 + 9 682 487 489 883 942 158 336w24

+ 7 749 700 391 834 618 953 728w25 − 2 836 837 181 330 888 327 168w26

− 10 485 165 507 686 497 779 712w27 − 19 367 241 815 023 243 231 232w28

− 61 606 957 967 732 285 374 464w29 − 62 643 820 304 216 178 556 928w30

+ 51 399 211 277 287 142 981 632w31 + 110 092 134 743 407 020 998 656w32

+ 14 704 654 025 943 970 480 128w33 − 36 421 957 747 996 203 417 600w34

− 46 895 199 293 473 812 381 696w35 − 1 463 841 015 681 251 278 848w36

+ 1 169 710 924 017 684 185 088w37 + 247 301 662 738 168 676 352w38

P3(w)/24 = 1176 + 39 165w − 111 851w2 − 1 452 994w3

− 90 264 295w4 + 972 420 723w5 + 7 178 728 056w6

− 70 427 808 098w7 − 317 540 045 900w8 + 888 133 573 032w9

+ 4 217 523 435 760w10 + 23 547 919 136 672w11 + 401 845 338 005 952w12

+ 712 331 078 523 008w13 − 16 653 133 041 821 440w14

− 74 889 208 419 079 168w15 + 120 983 404 722 343 936w16

+ 1 366 892 656 163 995 648w17 + 1 829 356 747 554 029 568w18

− 9 248 788 319 075 762 176w19 − 24 093 227 195 123 630 080w20

+ 127 341 774 687 128 518 656w21 + 525 164 234 385 471 307 776w22

− 644 362 399 842 190 753 792w23 − 6 429 747 279 373 369 606 144w24

− 13 753 237 664 850 887 311 360w25 − 11 960 934 773 929 684 238 336w26

+ 10 341 155 047 878 439 206 912w27 + 31 548 255 587 180 394 577 920w28
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+ 21 693 775 230 535 695 597 568w29 + 80 462 590 470 670 803 533 824w30

+ 133 478 662 641 301 713 846 272w31 − 46 344 436 740 351 141 609 472w32

− 207 592 709 560 542 819 254 272w33 − 36 213 581 400 524 839 714 816w34

+ 44 445 693 989 421 790 003 200w35 + 85 438 178 092 213 447 163 904w36

+ 2 909 091 172 100 717 150 208w37 − 1 891 728 016 277 722 103 808w38

− 399 487 301 346 272 477 184w39

P2(w)/72 = −1176 − 16 821w + 839 088w2 − 2 878 234w3

− 71 167 476w4 + 109 739 861w5 + 6 432 618 268w6

− 21 417 815 362w7 − 254 004 975 528w8 + 1 030 191 905 368w9

+ 8 000 380 525 216w10 − 13 987 657 721 184w11 − 219 692 635 648 128w12

− 417 714 927 227 008w13 + 1 674 667 676 301 824w14

+ 15 330 153 372 840 960w15 + 61 497 900 657 864 704w16

− 108 873 249 301 118 976w17 − 1 185 903 579 503 919 104w18

− 498 853 942 809 591 808w19 + 4 365 043 032 530 354 176w20

+ 11 674 438 159 933 898 752w21 + 5 472 466 729 424 650 240w22

− 337 576 830 221 284 278 272w23 − 414 945 238 559 185 960 960w24

+ 3 113 569 948 545 201 471 488w25 + 8 126 785 668 395 210 637 312w26

+ 7 805 558 664 896 966 557 696w27 − 8 675 362 761 934 406 418 432w28

− 40 254 564 885 047 208 312 832w29 − 17 663 002 412 421 715 329 024w30

− 38 277 737 546 064 114 745 344w31 − 117 625 478 085 203 210 534 912w32

− 6 012 197 099 489 206 468 608w33 + 184 415 824 559 553 757 839 360w34

+ 36 963 534 321 273 456 820 224w35 − 16 913 165 943 698 375 049 216w36

− 70 229 132 589 215 514 624 000w37 − 2 453 777 249 773 560 004 608w38

+ 1 374 858 894 243 665 018 880w39 + 283 618 690 133 284 356 096w40

P1(w)/144 = 1176 + 16 821w − 768 528w2 + 1 899 102w3

+ 56 695 732w4 + 163 586 783w5 − 4 480 702 956w6

− 13 818 112 782w7 + 157 508 067 656w8 + 584 220 528 520w9

− 2 535 531 982 304w10 − 20 821 129 786 656w11 + 6 679 807 576 960w12

+ 371 148 445 353 600w13 + 955 941 942 180 352w14

+ 785 650 593 293 312w15 − 14 505 053 424 140 288w16

− 117 899 907 678 912 512w17 − 153 119 877 068 947 456w18

+ 1 420 625 324 053 364 736w19 + 3 040 635 334 768 197 632w20

− 7 193 741 764 733 173 760w21 − 7 973 580 760 814 714 880w22

+ 18 405 525 037 504 266 240w23 − 10 951 758 401 377 402 880w24

+ 187 576 386 178 953 248 768w25 + 305 700 612 663 177 904 128w26

− 503 386 718 550 834 020 352w27 − 1 383 072 333 737 664 446 464w28

− 3 780 852 827 519 851 692 032w29 − 2 230 104 054 258 024 316 928w30
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− 2 250 983 642 905 414 991 872w31 − 6 782 647 014 847 754 010 624w32

− 412 473 237 357 748 813 824w33 + 13 047 063 298 849 892 204 544w34

+ 2 535 930 506 801 169 039 360w35 − 745 586 680 909 881 409 536w36

− 4 195 130 074 493 381 246 976w37 − 119 111 202 944 694 878 208w38

+ 75 228 128 175 596 765 184w39 + 13 835 058 055 282 163 712w40

P0(w)/144 = −1176 − 16 821w + 768 528w2 − 2 087 262w3

− 58 935 060w4 − 159 320 031w5 + 4 757 419 020w6

+ 12 149 431 566w7 − 164 975 954 696w8 − 382 313 175 368w9

+ 3 160 132 542 624w10 + 13 583 301 151 264w11 − 47 535 172 103 808w12

− 319 412 544 892 544w13 + 211 706 943 961 600w14

+ 2 610 513 380 346 880w15 + 5 790 941 980 340 224w16

+ 14 136 566 976 020 480w17 − 26 366 616 404 557 824w18

− 218 243 250 597 134 336w19 − 348 350 268 790 538 240w20

− 527 584 581 302 353 920w21 − 1 152 148 919 510 106 112w22

+ 5 019 232 088 025 464 832w23 + 20 995 090 120 504 770 560w24

− 2 862 851 276 960 432 128w25 − 45 728 966 345 075 195 904w26

− 19 865 512 629 325 791 232w27 + 14 110 731 441 708 990 464w28

+ 60 954 514 514 413 355 008w29 + 6 199 491 584 732 430 336w30

− 40 858 450 222 481 670 144w31 − 20 303 410 194 697 682 944w32

+ 15 185 715 731 028 246 528w33 + 8 460 504 481 224 720 384w34

+ 2 428 566 099 059 539 968w35 + 243 194 379 878 006 784w36.
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