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Abstract
We show that non-linear Schwarzian differential equations  emerging from 
covariance symmetry conditions imposed on linear differential operators with 
hypergeometric function solutions can be generalized to arbitrary order linear 
differential operators with polynomial coefficients having selected differential 
Galois groups. For order three and order four linear differential operators we 
show that this pullback invariance up to conjugation eventually reduces to 
symmetric powers of an underlying order-two operator. We give, precisely, the 
conditions to have modular correspondences solutions for such Schwarzian 
differential equations, which was an open question in a previous paper. We 
analyze in detail a pullbacked hypergeometric example generalizing modular 
forms, that ushers a pullback invariance up to operator homomorphisms. We 
finally consider the more general problem of the equivalence of two different 
order-four linear differential Calabi–Yau operators up to pullbacks and 
conjugation, and clarify the cases where they have the same Yukawa couplings.

Keywords: Schwarzian derivative, Malgrange pseudo-group, modular 
correspondences, differentially algebraic functions, hypergeometric 
functions, Calabi–Yau ODEs, Yukawa couplings

1.  Introduction

In a previous paper [1] we focused on identities relating the same 2F1 hypergeometric func-
tion with two different1 algebraic pullback transformations. These identities correspond to 
modular forms, the algebraic transformations being solutions of a (non-linear) differentially 
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1 Beyond the x → 1 − x, 1/x, ... known pullback symmetries of hypergeometric functions. The correspondence 
between the two pullbacks must be an infinite order rational or algebraic transformation [1, 2].
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algebraic [3, 4] Schwarzian equation, that also emerged in a paper by Casale on Galoisian 
envelopes [5, 6]. This covariance symmetry of 2F1 hypergeometric functions could be regarded 
as the simplest illustrations of the concept of symmetries (of the renormalization group type 
[2, 7]) in physics or enumerative combinatorics, a univariate function being covariant (auto­
morphic) with respect to an infinite set of rational or algebraic transformations. This paper 
[1] was essentially focused on nFn−1 hypergeometric functions and modular forms actually 
represented as 2F1 hypergeometric function with two different algebraic pullback transforma-
tions (modular correspondences [1, 8]).

The applications of this Schwarzian equation [1] known to be associated to a quite large 
mathematical framework2 (Malgrange’s pseudogroup, Galois groupoid [10–15]), extend well 
beyond hypergeometric functions in physics. We will show, in this paper, that these differ­
entially algebraic [3, 4] Schwarzian equations do emerge in a much more general holonomic 
framework.

We will show in section 2 that the covariance symmetry condition of general order-two 
linear differential operators with polynomial coefficients automatically yields this Schwarzian 
differential equation. We will then show in sections 3 and 4 that the covariance symmetry 
condition imposed on linear differential operators having order three and order four with 
respective orthogonal and symplectic differential Galois groups, yield Schwarzian differential 
equations like the one examined in [1]. When their respective symmetric and exterior pow-
ers are of order five (instead of six), one finds that these order-three and order-four operators 
reduce to symmetric square and symmetric cube of an underlying order-two operator. In sec-
tion 5 we show that the Schwarzian condition can be derived for linear differential operators 
of arbitrary order N. The reduction of the solutions of this Schwarzian differential equation to 
only modular correspondences [8] was an open question in [1]: in section 6 a necessary condi-
tion to have such modular correspondences is derived. In section 7 generalizations of modular 
forms provide examples of pullback invariance of an operator, up to operator homomorphism. 
This invariance should be important to describing the symmetries of linear differential opera-
tors and thus, is of relevance to physics. Finally in section 8, we consider the more general 
problem already addressed in [17] where Schwarzian differential equations also occurred, of 
the equivalence of two different order-four linear differential Calabi–Yau operators [18] up 
to pullbacks and conjugation, possibly yielding the same Yukawa couplings [17], and we will 
generalize it to linear differential operators of arbitrary orders.

2.  Beyond hypergeometric and Heun functions: order-two linear differential 
operators

We will show here that non-linear ODEs involving Schwarzian derivatives (see equation (9) 
below), that we will call ‘Schwarzian ODEs’3 obtained in [1] for hypergeometric and Heun 
functions [22, 23] can be generalized to arbitrary globally nilpotent [24] linear differential 
operators having an arbitrary numbers of singularities (as opposed to three and four singulari-
ties for hypergeometric and Heun functions).

Let us consider a linear differential operator of order two

L2 = D2
x + p(x) · Dx + q(x), where: Dx =

d
dx

,� (1)

2 In Casale’s paper [5, 6] the Schwarzian equation is associated with meromorphic functions instead of the rational 
functions of our paper [1]. See also [9, 10, 11].
3 See [1, 19] for a definition. See also [20, 21].
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and let us also introduce two other linear differential operators of order two: the operator 

L(c)
2 = 1/v(x) · L2 · v(x) being the conjugate of (1) by a function v(x), and the pullbacked 

operator L( p)
2  which amounts to changing x → y(x) in (1), the head coefficient being nor

malized4 to 1. These two linear differential operators read respectively:

L(c)
2 = D2

x +
(

p(x) + 2 · v′(x)
v(x)

)
· Dx + q(x) + p(x) · v′(x)

v(x)
+

v′′(x)
v(x)

,

�

(2)

where

v′(x) =
dv(x)

dx
, v′′(x) =

d2v(x)
dx2 ,� (3)

and

L( p)
2 = D2

x +
(

p(y(x)) · y′(x) − y′′(x)
y′(x)

)
· Dx + q(y(x)) · y′(x)2,

� (4)
where:

y′(x) =
dy(x)

dx
, y′′(x) =

d2y(x)
dx2 .� (5)

The identification of these two linear differential operators L(c)
2 = L( p)

2  gives two conditions:

p(x) + 2 · v′(x)
v(x)

= p(y(x)) · y′(x) − y′′(x)
y′(x)

,� (6)

q(x) + p(x) · v′(x)
v(x)

+
v′′(x)
v(x)

= q(y(x)) · y′(x)2.� (7)

Since

v′′(x)
v(x)

=
d
dx

(v′(x)
v(x)

)
+

(v′(x)
v(x)

)2
,� (8)

one can eliminate the log-derivative v′(x)/v(x) between (6) and (7), and obtain the Schwarzian 
condition previously given in [1]

W(x)− W(y(x)) · y′(x)2 + {y(x), x} = 0,� (9)

where

W(x) =
dp(x)

dx
+

p(x)2

2
− 2 · q(x),� (10)

and where {y(x), x} denotes the Schwarzian derivative [19]:

{y(x), x} =
y′′′(x)
y′(x)

− 3
2
·
(y′′(x)

y′(x)

)2
=

d
dx

(y′′(x)
y′(x)

)
− 1

2
·
(y′′(x)

y′(x)

)2
,

where: y′′′(x) =
d3y(x)

dx3 , y′′(x) =
d2y(x)

dx2 , y′(x) =
dy(x)

dx
.

4 Throughout the paper we consider, for clarity and simplicity, this normalized form for the linear differential  
operators. The ‘true’ pullbacked operator which amounts to changing x → y(x) (see the command ‘dchange’  
in PDEtools in Maple) is in fact 1/y′(x)2 · L( p)

2  where L( p)
2  is given by (4).

Y Abdelaziz and J-M Maillard﻿J. Phys. A: Math. Theor. 50 (2017) 465201



4

Unlike in [1], the number of singularities of the second order operator (1) is arbitrary: it does 
not need to be three or four like in the hypergeometric or Heun examples in [1]. The second 
order linear differential operator L2 is a general order-two linear differential operator with 
polynomial coefficients. Introducing w(x) the wronskian of L2

p(x) = −w′(x)
w(x)

where: w′(x) =
dw(x)

dx
,� (11)

we see that the LHS and RHS of the first condition (6) are both log-derivatives. Thus one can 
immediately integrate the first condition (6) and get (up to a multiplicative factor µ) the con-
jugation function v(x) in terms of the wronskian w(x) and the pullback function y(x):

v(x) = µ ·
( w(x)

w(y(x)) · y′(x)

)1/2
.� (12)

Remark.  If the linear differential operator is not globally nilpotent [24] the wronskian is 
not necessarily an algebraic function. Introducing Lv(x), the log-derivative of the conjugation 
function v(x), one can rewrite the two conditions (6) and (7) as:

p(x) + 2 · Lv(x) = p(y(x)) · y′(x)− y′′(x)
y′(x)

,� (13)

q(x) + p(x) · Lv(x) +
dLv(x)

dx
+ Lv(x)2 = q(y(x)) · y′(x)2.� (14)

The elimination of Lv(x) in (13) and (14) gives the Schwarzian condition (9) with (10), how-
ever the conjugation function v(x) is no longer an algebraic function when y(x) is an alge­
braic function (see (12)): it is a transcendental function, and we certainly move away from a 
modular correspondence [1, 8] framework5.

3.  Order-three linear differential operators

3.1.  General order-three linear differential operators

Considering an irreducible order-three linear differential operator

L3 = D3
x + p(x) · D2

x + q(x) · Dx + r(x),� (15)

we introduce two other linear differential operators of order three defined as previously in sec-

tion 2: the operator L(c)
3  conjugated of (15) by a function v(x), namely L(c)

3 = 1/v(x) · L3 · v(x), 
and the pullbacked6 operator L( p)

3  which amounts to changing x → y(x) in L3. These two lin-
ear differential operators read respectively

L(c)
3 = D3

x +
(

p(x) + 3 · v′(x)
v(x)

)
· D2

x

+
(

q(x) + 2 · p(x) · v′(x)
v(x)

+ 3 · v′′(x)
v(x)

)
· Dx

+ r(x) + q(x) · v′(x)
v(x)

+ p(x) · v′′(x)
v(x)

+
v(3)(x)

v(x)
,

�

(16)

5 For modular correspondences see also the concept of modular equations [25–28].
6 The D3

x coefficient is normalized to 1.
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and:

L( p)
3 = D3

x +
(

p(y(x)) · y′(x) − 3
y′′(x)
y′(x)

)
· D2

x

+
(

q(y(x)) · y′(x)2 − p(y(x)) · y′′(x) − y(3)(x)
y′(x)

+ 3 ·
(y′′(x)

y′(x)

)2)
· Dx

+ r(y(x)) · y′(x)3.
�

(17)

The equality of these two order-three linear differential operators gives three conditions Cn, 
with n = 0, 1, 2, corresponding, respectively, to the identification of the Dn

x  coefficients of 

L( p)
3  and L(c)

3 . Introducing the wronskian w(x) of L3, the LHS and RHS of condition C2 being, 
again, log-derivatives, one can easily integrate condition C2 and get the exact expression of the 
conjugation function v(x) in terms of the wronskian of L3 and of the pullback y(x):

v(x) = µ ·
( w(x)

w(y(x)) · y′(x)3

)1/3
.� (18)

Similarly the elimination of the log-derivative v′(x)/v(x) between condition C2 and condition 
C1 yields the Schwarzian condition

W(x) − W(y(x)) · y′(x)2 + {y(x), x} = 0,� (19)

where this time W(x) reads:

W(x) =
1
2
· dp(x)

dx
+

p(x)2

6
− q(x)

2
.� (20)

3.2.  Symmetric Calabi–Yau condition

Let us consider the condition corresponding to imposing the symmetric square of L3 to be of 
order five instead of the generic order six. This (symmetric Calabi–Yau [35]) condition reads:

r(x) =− 2
27

· p(x)3 +
1
3
· p(x) · q(x)− 1

3
· p(x) · dp(x)

dx

+
1
2
· dq(x)

dx
− 1

6
· d2p(x)

dx2 .
�

(21)

For a globally nilpotent [24] linear differential operator, this (symmetric Calabi–Yau) con-
dition (21) together with (11) yields an order-three linear differential operator (15) simply 
conjugated to its adjoint:

L3 · w(x)2/3 = w(x)2/3 · adjoint(L3),� (22)

where the wronskian w(x) is a Nth root of a rational function.
Again for a globally nilpotent [24] linear differential operator, the exact expression (18) 

for the conjugation function v(x), becomes an algebraic function when y(x) is an algebraic 
function.

The symmetric square of an order-two linear differential operator L2 =
D2

x + A(x) · Dx + B(x) is an order-three linear differential operator (15) with the following 
coefficients:

p(x) = 3 · A(x), q(x) = 2 · A(x)2 + 4 · B(x) +
dA(x)

dx
,� (23)
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r(x) = 4 · B(x) · A(x) + 2 · dB(x)
dx

.� (24)

These coefficients (23) and (24) automatically verify the (symmetric Calabi–Yau) condition 
(21): the symmetric square of a symmetric square of an order-two linear differential opera-
tor is of order five instead of the generic order six. Conversely, the (symmetric Calabi–Yau) 
condition (21) can be parametrized7 by (23) and (24) and amounts to imposing the order-three 
linear differential operator (15) to be exactly the symmetric square of an order-two operator.

Thus our calculations show that the pullback-compatibility of an order-three linear differ
ential operator is equivalent to saying that this order-three operator reduces to (the symmetric 
square of) an underlying order-two linear differential operator. The Schwarzian condition 
(19) with W(x) given by (20), is thus inherited from the Schwarzian condition (9) of the under­
lying order-two linear differential operator.

4.  Order-four linear differential operators

Consider the irreducible order-four linear differential operator

L4 = D4
x + p(x) · D3

x + q(x) · D2
x + r(x) · Dx + s(x),� (25)

and introduce two other linear differential operators of order four defined as previously in sec-

tions 2 and 3.1: the linear differential operator L(c)
4  conjugated of (25) by a function v(x) and the 

(normalized) pullbacked operator L( p)
4 . These two linear differential operators read respectively

L(c)
4 = D4

x +
(

p(x) + 4 · v′(x)
v(x)

)
· D3

x

+
(

q(x) + 3 · p(x) · v′(x)
v(x)

+ 6 · v′′(x)
v(x)

)
· D2

x

+
(

r(x) + 2 · q(x) · v′(x)
v(x)

+ 3 · p(x) · v′′(x)
v(x)

+ 4 · v(3)(x)
v(x)

)
· Dx

+ s(x) + r(x) · v′(x)
v(x)

+ q(x) · v′′(x)
v(x)

+ p(x) · v(3)(x)
v(x)

+
v(4)(x)

v(x)
,

�

(26)

and:

L( p)
4 = D4

x +
(

p(y(x)) · y′(x) − 6 · y′′(x)
y′(x)

)
· D3

x

+
(

q(y(x)) · y′(x)2 − 3 · p(y(x)) · y′′(x) − 4 · y(3)(x)
y′(x)

+ 15 ·
(y′′(x)

y′(x)

)2)
· D2

x

+
(

r(y(x)) · y′(x)3 − q(y(x)) · y′(x) · y′′(x) − p(y(x)) · y(3)(x)

+ 3 · p(y(x)) · y′′(x)2

y′(x)
− y(4)

y′(x)
+ 10 · y′′(x) · y(3)

y′(x)2 − 15 ·
(y′′(x)

y′(x)

)3)
· Dx

+ s(y(x)) · y′(x)4.
�

(27)

7 Note that rewriting the exact expression of W(x) given by (20) in terms of A(x) and B(x) using (23) one recovers 
(10), p(x) and q(x) in (10) being now A(x) and B(x).
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The identification of these two order-four linear differential operators L( p)
4  and L(c)

4  gives this 
time four conditions Cn, n = 0, 1, 2, 3, corresponding, respectively, to the identification of 

the Dn
x  coefficients of L( p)

4  and L(c)
4 .

Eliminating once again the log-derivative v′(x)/v(x) between C3 and C2 one deduces a 
Schwarzian condition

W(x) − W(y(x)) · y′(x)2 + {y(x), x} = 0,� (28)

where this time:

W(x) =
3

10
· dp(x)

dx
+

3
40

· p(x)2 − q(x)
5

.� (29)

Introducing the wronskian w(x) of the order-four linear differential operator L4 with (11), 
the condition C3 just corresponds to log-derivatives and can be easily integrated giving the 
exact expression of the conjugation function v(x) as:

v(x) =
( w(x)

w(y(x)) · y′(x)6

)1/4
.� (30)

The next conditions C1 and C0 yield extremely involved non-linear differential conditions on 
the miscellaneous derivatives of the various coefficients. It turned out to be very difficult to 
proceed with such huge expressions. Yet when the linear differential operator L4 has a selected 
(symplectic) differential Galois group one can go much further in the calculations, as we will 
see in the coming subsection.

4.1.  Calabi–Yau condition (exterior square)

Imposing the Calabi–Yau condition [29, 30] in the case of an order-four linear differential 
operator gives:

r(x) =
p(x) · q(x)

2
− p(x)3

8
+

dq(x)
dx

− 3
4
· p(x) · dp(x)

dx
− 1

2
· d2p(x)

dx2 .
�

(31)

In this case the exterior square of the order-four operator L4 has order five instead of order six.
When condition (31) is verified, the order-four linear differential operator L4 has a sym-

plectic differential Galois group Sp(4, C). Note that if condition (31) is verified, the Calabi–
Yau conditions for the pullbacked and conjugated operators L( p)

4  and L(c)
4  are automatically 

verified: this is a consequence of the fact that the Calabi–Yau condition (31) is left invariant by 
conjugation and pullback8. In other words the following identification of the Dx coefficients of 

L( p)
4  and L(c)

4  is automatically verified when the Calabi–Yau condition (31) is verified.
Recall that the Calabi–Yau condition (31) together with the globally nilpotent condition 

[24] automatically yields L4 to be conjugated to its adjoint

L4 · w(x)1/2 = w(x)1/2 · adjoint(L4),� (32)

where w(x) is a N-root of a rational function.

8 To see that the Calabi–Yau condition is preserved by conjugation is straightforward. However, as remarked in [17], 
to see that the Calabi–Yau condition is preserved by pullback transformations is very hard to see by direct computa-
tion, since one gets an enormous fourth-order nonlinear differential equation.
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At the last step we consider the identification of the constant terms in Dx in L( p)
4  and L(c)

4 . 
After injecting in this ‘large’ non-linear differential equation, equation (11), the Schwarzian 
condition (28) with W(x) given by (29), and the Calabi–Yau condition (31), we eventually find 
that this last ‘large’ equation becomes independent of the pullback y(x) and reduces to a quite 
simple condition giving s(x) as a polynomial expression in the two coefficients p(x) and q(x) 
and their derivatives:

s(x) =
9

100
· q(x)2 − 1

200
· q(x) · p(x)2 +

1
4
· p(x) · dq(x)

dx
− 1

50
· q(x) · dp(x)

dx

+
3

10
· d2q(x)

dx2 − 11
1600

· p(x)4 − 9
50

· p(x)2 · dp(x)
dx

− 21
100

·
(dp(x)

dx

)2

− 1
5
· d3p(x)

dx3 − 7
20

· p(x) · d2p(x)
dx2 .

�

(33)

In order to understand what this new condition (33) coming on top of the Calabi–Yau condi-
tion (31) really means, we calculated, for various MUM9 order-four linear differential opera-
tors L4 verifying (31) and (33), the corresponding nome and Yukawa couplings [31]. The 
corresponding Yukawa couplings were actually found to be trivial: Kq = 1 !!

This amounts to saying that combining the two conditions (31) and (33) corresponds to 
a drastic reduction: the (irreducible) order-four linear differential operator L4 is not a ‘true’ 
order-four operator. Typically one can imagine that L4 reduces to an order-two operator, being 
homomorphic to the symmetric cube of an underlying order-two linear differential operator. 
In fact it is exactly the symmetric cube of an order-two operator.

Let us consider the symmetric cube of an order-two linear differential operator 
L2 = D2

x + A(x) · Dx + B(x) which is an order-four linear differential (25) with the follow-
ing coefficients:

p(x) = 6 · A(x), q(x) = 11 · A(x)2 + 4 · dA(x)
dx

+ 10 · B(x),

r(x) = 6 · A(x)3 + 7 · A(x) · dA(x)
dx

+ 30 · B(x) · A(x) +
d2A(x)

dx2 + 10 · dB(x)
dx

,

s(x) = 18 · A(x)2 · B(x) + 6 · B(x) · dA(x)
dx

+ 15 · dB(x)
dx

· A(x)

+ 9 · B(x)2 + 3 · d2B(x)
dx2 .

�

(34)

One finds straightforwardly that the coefficients given by (34) verify the Calabi–Yau condition 
(31), as well as the new condition (33). In this case the differential Galois group is no longer 
the symplectic differential Galois group Sp(4, C), but actually reduces10 to the differential 
Galois group of the underlying order-two linear differential operator, namely SL(2, C). The 
fact that the Calabi–Yau condition (31) is verified is not a surprise: the exterior square of a 
symmetric cube is naturally of order less than six. The fact that being the symmetric cube of 
an underlying order-two operator verifies automatically the new condition (33) emerging from 
a compatibility condition of an order-four linear differential operator by pullback is far less 

9 Maximal unipotent monodromy (MUM) linear operators [24, 31].
10 When an order-four linear differential operator is the symmetric cube of an underling order-two operator its sym-
metric square is no longer of order 10 but reduces to order 7.
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obvious. The ‘parametrization’ (34) necessarily yields the Calabi–Yau condition (31) and the 
new condition (33), and, conversely, (31) and (33) can be parametrized by (34).

Our large calculations thus show that the pullback-compatibility of an order-four linear 
differential operator which verifies the Calabi–Yau condition (31), amounts to saying that 
this order-four linear differential operator reduces to (the symmetric cube of) an underlying 
order-two linear differential operator. The Schwarzian condition (28) with W(x) given by 
(29), is thus inherited from the Schwarzian condition (9) of the underlying order-two linear 
differential operator.

4.2.  Reducible operators

Throughout the paper we make the assumption that the linear differential operators are irre­
ducible. The reduciblility of the linear differential operators is not an academic scenario: it 
is the situation we encounter (almost) systematically with the linear differential operators 
emerging in physics, typically in the case of the n-fold integral χ(n) of the two-dimensional 
Ising model [32–34]. When the linear differential operators are reducible, it is clear that all the 
calculations of this paper must be revisited, taking into account the miscellaneous factoriza-
tion scenarios.

Sketching the kind of situation we may encounter, let us consider an order-four linear 
differential operator L4 = D4

x + pr(x) · D3
x  + qr(x) · D2

x + · · · which factorizes into the 
product of two order-two linear differential operators:

L4 = M2 · L2, where:

L2 = D2
x + p(x) · Dx + q(x), M2 = D2

x + p̃(x) · Dx + q̃(x),

pr(x) = p(x) + p̃(x), qr(x) = p̃(x) · p(x) + q̃(x) + 2 · dp(x)
dx

+ q(x), · · · .
�

(35)

In general the exterior square of L4 is an order-six linear differential operator which is the 
product of an order-one operator, of the symmetric product of L2 and M2, and of the order-one 
linear differential operator Dx + p(x). Therefore, this reducible order-four linear differential 
operator L4 does not verify in general the Calabi–Yau condition (31).

Imposing the (normalized) pullback by y(x) of this reducible order-four linear differential 
operator L4 = M2 · L2 to be equal to a conjugation by a function v(x) of that operator, it is 
important to remember that a change of variable x → y(x) on a linear differential operator 
which is the product of two operators, is the product of these two linear differential operators 
on which this change of variable has been performed. One gets a set of equations where one 
can disentangle two Schwarzian equations

W(x)− W(y(x)) · y′(x)2 + {y(x), x} = 0,� (36)

W̃(x)− W̃(y(x)) · y′(x)2 + {y(x), x} = 0,� (37)

where W(x) and W̃(x) are the functions (10) already encountered in the analysis of order-two 
linear differential operators

W(x) =
dp(x)

dx
+

p(x)2

2
− 2 · q(x),� (38)

W̃(x) =
dp̃(x)

dx
+

p̃(x)2

2
− 2 · q̃(x),� (39)
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corresponding to the Schwarzian conditions written separately on L2 and M2, together with 
another relation which couples L2 and M2:

4 · y′′(x)
y′(x)

+ p̃(x) − p(x) =
(

p̃(y(x)) − p(y(x))
)
· y′(x).� (40)

Among the four solutions of the order-four operators L4 = M2 · L2, the two solutions of the 
order-two linear differential operator L2 transform nicely under the pullback x → y(x), pro-
vided the Schwarzian condition (36) is satisfied, but this just corresponds to a partial symme­
try. In general the set of equations (36), (37) and (40) seems to be too rigid to allow solutions 
other than trivial symmetries or partial symmetries.

It is however worth mentioning a quite curious result. If one imposes the reducible order-
four linear differential operator L4 = M2 · L2 to verify the Calabi–Yau condition (31) (i.e. 
to be such that the exterior square of that operator is order five instead of order six), one gets 
a condition that becomes remarkably simple when written in terms of the functions W(x) 
and W̃(x) given by (38) and (39). Introducing the difference ∆W(x) = W(x) − W̃(x), the 
Calabi–Yau condition (31) simply reads:

2 · d∆W(x)
dx

= ( p(x) − p̃(x)) · ∆W(x).� (41)

Therefore, if one restricts oneself to W(x) = W̃(x) which identifies the two Schwarzian 
conditions (36) and (37), one sees that condition (41) is automatically verified: condition 
W(x) = W̃(x) is thus a sufficient condition for the Calabi–Yau condition (31).

The analysis of pullback symmetry on reducible linear differential operators is clearly an 
interesting and challenging problem in physics. It will require many more calculations to 
explore the arborescence of these various factorization scenarios.

4.3.  Symmetric Calabi–Yau condition

The condition, we called in [35, 36] symmetric Calabi–Yau condition for the order-four linear 
differential operator L4 (which correspond to impose that its symmetric square is of order 
less than 10), is a huge11 polynomial condition on the coefficients of L4 and their derivatives. 
This condition is invariant by pullback and conjugation. Provided the Schwarzian condition 
(28) with W(x) given by (29) is satisfied, this symmetric Calabi–Yau condition alone is not 
sufficient to have L p

4 = Lc
4. Similarly to what we saw with the Calabi–Yau condition (31), 

would a supplementary condition to the symmetric Calabi–Yau condition be sufficient to have 
L p

4 = Lc
4? Could one also have, in this selected subcase, a reduction of L4 to an underlying 

order-two operator? This scenario remains open.
Working with such huge polynomials will not get us far. In order to advance, let us intro-

duce a parametrization based on the ideas explained in [36], namely that an order-four linear 
differential operator L4, with an orthogonal differential Galois group SO(4, C) and such that 
its symmetric square is of order less than 10, is necessarily of the form12

L4 = (U1 · U3 + 1) · d(x),� (42)

where U1 and U3 are order-one and order-three self-adjoint linear differential operators:

11 This polynomial is the sum of 3548 monomials in the coefficients of L4 and their derivatives.
12 The differential Galois group SO(4, C) with an order-10 symmetric square situation corresponds to a decomposi-
tion L4 = (U3 · U1 + 1) · d(x), see [36].
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U3 = a(x) · D3
x +

3
2
· da(x)

dx
· D2

x + b(x) · Dx +
1
2
· db(x)

dx
− 1

4
· d3a(x)

dx3 ,
�

(43)

U1 = c(x) · Dx +
1
2
· dc(x)

dx
.� (44)

This yields a parametrization of this huge polynomial differential (symmetric Calabi–Yau) 
condition:

p(x) =
5
2
· a′(x)

a(x)
+

1
2
· c′(x)

c(x)
+ 4 · d′(x)

d(x)
,� (45)

q(x) =
b(x)
a(x)

+
3
2
· a′′(x)

a(x)
+

3
4
· a′(x)

a(x)
· c′(x)

c(x)
+ 6 · d′′(x)

d(x)

+
15
2

· a′(x)
a(x)

· d′(x)
d(x)

+
3
2
· c′(x)

c(x)
· d′(x)

d(x)
,

�

(46)

r(x) =
1
2
· c′(x)

c(x)
· b(x)

a(x)
+ 4 · d′′′(x)

d(x)
+ 4 · a′(x)

a(x)
· c′(x)

c(x)
· d′(x)

d(x)

+
3
2
· d′′(x)

d(x)
· c′(x)

c(x)
− 1

4
· a′′′(x)

a(x)
+

3
2
· b′(x)

a(x)
+

15
2

· d′′(x)
d(x)

· a′(x)
a(x)

+ 2 · d′(x)
d(x)

· b(x)
a(x)

+ 3 · d′(x)
d(x)

· a′′(x)
a(x)

,

�

(47)

s(x) =
d(4)

d(x)
+

1
2
· c′(x)

c(x)
· d′′′(x)

d(x)
+

1
2
· b′′(x)

a(x)
− 1

4
· a(4)(x)

a(x)

− 1
8
· a′′′(x)

a(x)
· c′(x)

c(x)
+

1
4
· b′(x)

a(x)
· c′(x)

c(x)
+

1
a(x) c(x)

− 1
4
· a′′′(x)

a(x)
· d′(x)

d(x)
+

3
2
· b′(x)

a(x)
· d′(x)

d(x)
+

b(x)
a(x)

· d′′(x)
d(x)

+
3
2
· a′′(x)

a(x)
· d′′(x)

d(x)
+

5
2
· a′(x)

a(x)
· d′′′(x)

d(x)

+
1
2
· c′(x)

c(x)
· d′(x)

d(x)
· b(x)

a(x)
+

3
4
· a′(x)

a(x)
· c′(x)

c(x)
· d′′(x)

d(x)
.

�

(48)

One easily verifies that this parametrization (45)...(48) is such that the polynomial encoding 
the symmetric Calabi–Yau condition, is identically equal to zero. Moreover one verifies that 
the order-four linear differential operator (42), with parametrization (45)–(48), is, generically, 
such that its symmetric square has order 9 (instead of 10), its exterior square being of order 6.

Imposing L( p)
4 = L(c)

4  for an order-four linear differential operator, corresponding to this 
parametrization (such that it verifies the symmetric Calabi–Yau condition, and such that its 
symmetric square is of order nine), one naturally finds the Schwarzian condition (28) with (29), 
as well as the exact expression (30) for the conjugation function v(x). Taking into account the 

Schwarzian condition (28), the identification of the coefficients of Dx for L( p)
4  and L(c)

4  yields 
a relation of the form Φ(x) = Φ(y(x)) · y′(x)3, where Φ(x) is a rational function. Together 
with the last condition, this gives an invariance of the form Ψ(x) = Ψ(y(x)) yielding only 

trivial cases13 for L( p)
4 = L(c)

4 .

13 See [1] for similar calculations.
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This symmetric Calabi–Yau condition, even if it is invariant by pullback and conjugation, 

is not sufficient to get L( p)
4 = L(c)

4 . We have here a situation similar to the one described in 
the previous section 4.1, with the emergence of the additional condition (33) on top of the 
Calabi–Yau condition (31). However here the calculations are way too large: finding the addi-

tional condition(s) together with the symmetric Calabi–Yau condition yielding L( p)
4 = L(c)

4 , 
is beyond our reach for now. The case, described in the previous section 4.1, where the order-
four operator (42) is the symmetric cube of an underlying order-two operator is also such that 
the symmetric square of L4 is not of the generic order 10, but, in fact, of order 7: in this case 
the coefficients of L4 verify14 the symmetric Calabi–Yau condition. Since the calculations are 
way too large, it is not possible for now to tell if the additional condition(s) to the symmetric 
Calabi–Yau condition, also gives eventually a linear differential operator that is the symmetric 
cube of an order-two operator, as described in the previous section 4.1, or whether it would 
give something else. This would mean the emergence of the ‘classic’ Calabi–Yau condition 
(31) combined with the condition (33). This remains an open question.

5.  Order-N linear differential operators

Let us now consider an irreducible order-N linear differential operator

LN = DN
x + p(x) · DN−1

x + q(x) · DN−2
x + · · ·� (49)

and let us also introduce two other linear differential operators of order N: the operator L(c)
N  

conjugated of (49) by a function v(x), namely L(c)
N = 1/v(x) · LN · v(x), and the (nor

malized) pullbacked operator L( p)
N  which amounts to changing x → y(x) in LN . The pull-

backed operator L( p)
N  reads

L( p)
N = DN

x +
(

p(y(x)) · y′(x) − N · (N − 1)
2

· y′′(x)
y′(x)

)
· DN−1

x

+
(

q(y(x)) · y′(x)2 − (N − 2) · (N − 1)
2

· p(y(x)) · y′′(x)

− N · (N − 1) · (N − 2)
6

· y(3)

y′(x)

− (N + 1) · N · (N − 1) · (N − 2)
8

·
( y(2)

y′(x)

)2)
· DN−2

x + · · ·
�

(50)

and the conjugate of (49) reads:

L(c)
N = DN

x +
(

p(x) + N · v′(x)
v(x)

)
· DN−1

x

+
(

q(x) + (N − 1) · v′(x)
v(x)

· p(x) +
N · (N − 1)

2
· v′′(x)

v(x)

)
· DN−2

x + · · · .

� (51)
We impose the identification of these two order-N linear differential operators:

1
v(x)

· LN · v(x) = pullback
(

LN , y(x)
)

.� (52)

14 This can be verified straightforwardly substituting (34) in the 3548 monomials symmetric Calabi–Yau condition.
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The identification of the DN−1
x  coefficients gives the exact expression of v(x) in terms of the 

wronskian w(x) and of the pullback y(x):

v(x) = y′(x)−(N−1)/2 ·
( w(x)

w(y(x))

)1/N
where: p(x) = − w′(x)

w(x)
.

�

(53)

Injecting this exact expression in (51), or eliminating the log-derivative v′(x)/v(x), the identi-
fication of the DN−2

x  coefficients gives the following Schwarzian equation

W(x) − W(y(x)) · y′(x)2 + {y(x), x} = 0,� (54)

where

W(x) =
6

(N + 1) · N
· dp(x)

dx
+

6 · p(x)2

(N + 1) · N2 − 12 · q(x)
(N + 1) · N · (N − 1)

,

�
(55)

i.e.

W(x) =
6

(N + 1) · N
· W(x) where:� (56)

W(x) =
dp(x)

dx
+

p(x)2

N
− 2 · q(x)

N − 1
= N · z′′(x)

z(x)
− 2 · q(x)

N − 1
,� (57)

where:

z(x) = w(x)−1/N , p(x) = −w′(x)
w(x)

.� (58)

This is in agreement with the fact that the symmetric (N−1)-th power of an order-two 
linear differential operator L2 = D2

x + A(x) · Dx + B(x) gives an order-N linear differential 
operator LN = DN

x + p(x) · DN−1
x + q(x) · DN−2

x + · · · such that

p(x) =
N · (N − 1)

2
· A(x),

q(x) =
(3 N − 1) · N · (N − 1) · (N − 2)

24
· A(x)2 +

N · (N − 1) · (N + 1)
6

· B(x)

+
N · (N − 1) · (N − 2)

6
· dA(x)

dx
,

� (59)
and thus conversely:

A(x) =
2

N · (N − 1)
· p(x),

B(x) =
6 · q(x)

(N + 1) · N · (N − 1)
− (3 N − 1) · (N − 2) · p(x)2

(N + 1) · N2 · (N − 1)2

− 2 · (N − 2)
(N + 1) · N · (N − 1)

· dp(x)
dx

.

�

(60)

Injecting (60) in the expression of W(x) for an order-two linear differential operator L2 
(see (10))

W(x) =
dA(x)

dx
+

A(x)2

2
− 2 · B(x),� (61)
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one gets again the expression (55) for W(x) for an order-N linear differential operator LN = 
DN

x + p(x) · DN−1
x  + q(x) · DN−2

x + · · ·

Remark.  The Schwarzian condition (54) and the associated function W(x) given by (55), 
correspond to an elimination of the conjugation function v(x) in (52). If one changes the order-
N linear differential operator LN  by conjugation, LN → L̃N = 1/ρ(x) · LN · ρ(x), one gets 
again (52), LN  being replaced by L̃N  and v(x) being replaced by ṽ(x):

v(x) −→ ṽ(x) =
v(x) · ρ(y(x))

ρ(x)
.� (62)

Consequently one gets again the same Schwarzian condition (54) with the function W(x) given 
by (55), since they are obtained by elimination of the conjugation functions v(x) or ṽ(x). There-
fore W(LN , x) given by (55), which is invariant by the conjugation LN → 1/ρ(x) · LN · ρ(x), 
is left invariant by:

p(LN , x) −→ p(LN , x) + N · ρ′(x)
ρ(x)

,� (63)

q(LN , x) −→ q(LN , x) + (N − 1) · ρ′(x)
ρ(x)

· p(LN , x) +
N · (N − 1)

2
· ρ′′(x)

ρ(x)
.

�

(64)

Conversely imposing this invariance by conjugation (63) and (64), on a function of the form 
W(x) = αN · p′(x) + βN · p(x)2 + γ · q(x) gives (55) up to an overall constant factor.

6.  Solutions of the Schwarzian conditions

Let us study the solutions y(x) of the Schwarzian equation (54) that emerge for any pull-
back-symmetry condition of linear differential operators of arbitrary order N . This should 
provide valuable information on the pullbacks that are symmetries of linear differential 
operators.

6.1.  Solutions of the Schwarzian equation that are diffeomorphisms of the identity:  
a condition on W (x)

The Schwarzian condition (9) has been shown in [1] to be compatible under the composition 
of the pullback-functions y(x) verifying (9). The fact that the composition of two solutions 
y(x) of the Schwarzian condition (9) is also a solution15 of the Schwarzian condition (9), is 
crucial to describe the set of solutions y(x) of (9). Once a solution y(x) of the Schwarzian con-
dition (9) is known, the nth composition y(n)(x) = y(y( · · · y(x) · · · )), yields automatically a 
commuting set of solutions16 of (9). By obtaining the series expansions of these solutions, one 
can extend to non integer complex values of n, and in order to build a one-parameter family 
of commuting solution series, consider the infinitesimal composition [2]:

yε(x) = x + ε · F(x) + · · · .� (65)

15 See appendix D in [1].
16 Cum grano salis: when the pullbacks y(x) are algebraic functions, they are multivalued functions. The composi-
tion of multivalued functions is limited to their analytic series expansions (setting aside Puiseux series).
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The one-parameter family of commuting solution series y(n)(x) commutes with (65) yielding 
the functional equations [2]:

F(x) · dy(n)(x)
dx

= F(y(n)(x)), F(x) · dyε(x)
dx

= F(yε(x)).� (66)

Inserting (65) in the Schwarzian condition (9), one sees that F(x) is actually holonomic being 
solution of the linear differential equation of order-three:

d3F(x)
dx3 − 2 · W(x) · dF(x)

dx
− dW(x)

dx
· F(x) = 0,� (67)

whose corresponding order-three linear differential operator L3 is exactly the symmetric 
square of an underlying order-two linear differential operator17 L2:

L3 = D3
x − 2 · W(x) · Dx − dW(x)

dx
= Sym2

(
D2

x − W(x)
2

)
.� (68)

Conversely W(x) can be expressed in terms of F(x) as follows:

W(x) =
F′′(x)
F(x)

− 1
2
·
(F′(x)

F(x)

)2
+

λ

F(x)2� (69)

=
d
dx

(F′(x)
F(x)

)
+

1
2
·
(F′(x)

F(x)

)2
+

λ

F(x)2 .� (70)

This last result (69) is easily obtained by multiplying the LHS of (67) by F(x) and integrating 
the result. One gets this way18:

F(x) · d2F(x)
dx2 − 1

2
·
(dF(x)

dx

)2
+ λ − F(x)2 · W(x) = 0,� (71)

which is (69). Thus, for a given pullback y(x), or for a given one-parameter family of com-
muting solution series (65), or for a given F(x), one has a one-parameter family (69) of W(x) 
in the Schwarzian equation (9). Conversely, for a given W(x), one has at least a one-parameter 
family of commuting solution series (65).

6.1.1.  Selected subcase of the Schwarzian equation.  Let us consider an order-two linear 
differential operator L2 = D2

x + A(x) · Dx + B(x) (where A(x) and B(x) are rational func-
tions), such that its corresponding function W(x) = A′(x) + A(x)2/2 − 2 B(x) (see (10)) in 
the Schwarzian equation (9), is of the form (see section 6.2 of [1])

W(x) =
dAR(x)

dx
+

AR(x)2

2
,� (72)

where AR(x) is a rational function. Introducing the rational function C(x) = (A(x)− 
AR(x))/2, the identification of the expression of W(x), namely W(x) = A′(x) + A(x)2/ 
2 − 2 B(x) with (72), gives B(x) in terms of AR(x) and C(x)

17 The reduction of L3 to a symmetric square (68) does not mean that F(x) is solution of a second order linear 
differential (Liouvillian) equation F′′(x)/F(x) = W(x)/2.
18 This ‘gauge’ W(x) → W(x) + λ/F(x)2 in (69) corresponds to the fact that because of (66) one has 
λ/F(x)2 − λ/F(y(x))2 · y′(x)2 = 0 which allows to change W(x) → W(x) + λ/F(x)2 in the Schwarzian equa-
tion (9), as well as in the third order linear differential ODE (67). One easily verifies that inserting (69) in (67)  
gives an identity.

Y Abdelaziz and J-M Maillard﻿J. Phys. A: Math. Theor. 50 (2017) 465201



16

B(x) =
dC(x)

dx
+ C(x) · (C(x) + AR(x)),� (73)

which is the condition for the order-two linear differential operator L2 to factorize into two 
order-one linear differential operators:

L2 =
(

Dx + AR(x) + C(x)
)
·
(

Dx + C(x)
)

.� (74)

In other words, condition (72) with AR(x) a rational function, is the condition of factoriza-
tion of the order-two linear differential operator L2. In this case, the Schwarzian equation (9) 
reduces to a simpler second order non-linear differential equation (that was studied exten-
sively in [1, 2]):

d2y(x)
dx2 = AR(y(x)) ·

(dy(x)
dx

)2
− AR(x) ·

dy(x)
dx

.� (75)

Seeking the following one-parameter solutions (65), yε(x) = x + ε · F(x) + · · ·, one finds 
that F(x) verifies a linear differential equation of order two [2]

d2F(x)
dx2 − AR(x) ·

dF(x)
dx

− dAR(x)
dx

· F(x) = 0,� (76)

corresponding to the linear differential operator of order two19:

LF = D2
x − AR(x) · Dx − dAR(x)

dx
= Dx ·

(
Dx − AR(x)

)
.� (77)

Introducing the wronskian w(x), AR(x) reads AR(x) = −w′(x)/w(x). Thus the linear 
differential operator (77) has two solutions: 1/w(x) which is the solution of the right factor 
Dx − AR(x), and another (transcendental) solution that we denote SF . The function F(x) cor-
responds to this last (transcendental) solution, and not the 1/w(x) solution. Conversely AR(x) 
can be expressed20 in terms of F(x) as follows:

AR(x) =
F′(x)
F(x)

+
µ

F(x)
.� (78)

One easily verifies that by inserting (78) in (76) ones gets an identity, and that by inserting 
(78) in (72) one recovers (70) with λ = µ2/2. Here the µ/F(x) term is crucial, because when 
µ = 0 condition (78) with AR(x) = −w′(x)/w(x) yield the trivial result, F(x) = 1/w(x) 
which is different from the transcendental (holonomic) function we are looking for. For 
instance in the example detailed in [2], we had the condition (78) verified with µ �= 0, namely 
µ = 1/4:

F(x) = x · (1 − x)1/2 · 2F1

(
[
1
2

,
1
4
], [

5
4
], x

)
, AR(x) =

3 − 5 x
4 x (1 − x)

.

�

(79)

Now let us describe this one-parameter family of commuting solution series (65) of the 
Schwarzian equation (9).

19 In fact the order-two operator LF  is the adjoint of the operator Ω = (Dx + AR(x)) · Dx  (see [2]). When 
AR(x) = −w′(x)/w(x) the linear differential operator LF  is conjugated by the wronskian w(x) to the linear differ
ential operator Ω, namely Ω · w(x) = w(x) · LF.
20 Just integrate the LHS of (76).
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6.2.  Solutions of the Schwarzian equation that are diffeomorphisms of the identity:  
the general formal solution

Let us consider (65) as a series in ε:

yε(x) = x + ε · F(x) +

∞∑
n=2

εn

n!
· F(x) · Qn(x),� (80)

solution of the functional equation (66). This is sufficient to find, order by order in ε, the solu-
tion (80) of (66) where the Qn(x) are given by

Q1(x) = F(x), Q2(x) = F(x) · dQ1(x)
dx

= F(x) · dF(x)
dx

,

Q3(x) = F(x) · d
dx

Q2(x) = F(x) ·
(

F(x) · F′′(x) + F′(x)2
)

,

Q4(x) = F(x) · d
dx

Q3(x), Q5(x) = F(x) · d
dx

Q4(x),

· · · Qn+1(x) = F(x) · d
dx

Qn(x),
�

(81)

the most general solution (80) of (66) corresponding to linear combinations of the Qn’s which 
amounts to changing ε in (80) into:

ε −→ ε · (1 + λ1 · ε + λ2 · ε2 + λ3 · ε3 + · · · ).� (82)

Note that all the Qn’s are polynomial expressions of F(x) and its derivatives.
The functional equation  (66) corresponds to the one-form dΘ = dx/F(x) = dy/F(y) 

giving:

Θ(x) =

∫ x dx
F(x)

,
d

dΘ
= F(x) · d

dx
.� (83)

Seeing x  as a function of Θ, one finds that the series (80) together with the recursion (81), 
gives the well-known Taylor expansion

yε(x(Θ)) = x(Θ) +

∞∑
n=1

εn

n!
· dn x(Θ)

dΘn = x(Θ + ε),� (84)

meaning that x → yε(x) is just a shift in Θ

Θx −→ Θy = Θx + ε,� (85)

corresponding to the integration of the one-form dΘ = dx/F(x) = dy/F(y). The two trans-
formations yε1(x) and yε2(x) of the one-parameter family clearly commute21:

yε1(yε2(x(Θ))) = yε1(x(Θ + ε2)) = x(Θ + ε1 + ε2).� (86)

One verifies order by order in ε, that the one-parameter family of commuting series (80) 
with (81) is solution of the Schwarzian equation

W(x) − W(yε(x)) · y′ε(x)
2 + {yε(x), x} = 0,� (87)

where W(x) is given by (69). In terms of Θ, the expression (69) for W(x) can be written using 
the Schwarzian derivative:

21 This can also be checked directly using (80) with (81) for any rational function F(x).
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W(x) + {Θ(x), x} − λ ·
(dΘ(x)

dx

)2
= 0.� (88)

Recalling the chain rule for the Schwarzian derivative of a composition of functions22 and 
the fact that dΘ(y(x))/dx = dΘ(x)/dx, one finds that the Schwarzian condition (87) cor-
responds to the equality of the two Schwarzian derivatives:

{Θ(y(x)), x} = {Θ(x), x},

which is verified since dΘ(y(x))/dx = dΘ(x)/dx. This is another way to see that the one-
parameter family of commuting series (80) (with the Qn’s given by (81)) is solution of the 
Schwarzian equation.

6.3.  A simple modular form example

We have considered in [1, 29–31, 37] many examples of modular forms represented as pull-
backed 2F1 hypergeometric functions. Each time the one-parameter commuting series com-
bined with the modular correspondences [8] series yields one-parameter series of the form 
yn(x) = an · xn + · · · , n = 2, 3, 4, · · · that are solutions of the Schwarzian equation (87).

In [1] the pullback symmetry of the order-two linear differential operator was given as a 
covariance of its solution, namely a hypergeometric function with two different23 pullbacks 
related by modular equations24

2F1

(
[

1
12

,
5

12
], [1], y(x)

)
= A(x) · 2F1

(
[

1
12

,
5
12

], [1], x
)

,� (89)

the pullback y(x) being solution of the Schwarzian condition (87).
In this example, the pullback yε(x) is solution of the Schwarzian solution (87) with w(x) 

and F(x) given by25:

W(x) = −32 x2 − 41 x + 36
72 x2 · (x − 1)2 , F(x) = x · (1 − x)1/2 · 2F1

(
[

1
12

,
5

12
], [1], x

)2
.

�

(90)

One can also check that these expressions (90) verify (69) with26 λ = 0, thus providing a 
quite non-trivial (non-linear differential) identity between the rational function W(x) and the 
holonomic function F(x).

The one-parameter commuting family (65) solution of the Schwarzian equation  (87)  
can be expressed using the two (mirror maps) differentially algebraic [3, 4] functions  
P(x) and Q(x) described in [1] and in appendix A, as y1(a1, x) = P(a1 · Q(x)):

y1(a1, x) = a1 · x − 31 a1 · (a1 − 1)
72

· x2 +
a1 · (9907 a1

2 − 30 752 a1 + 20 845)
82 944

· x3

− a1 · (a1 − 1) · (4386 286 a1
2 − 20 490 191 a1 + 27 274 051)

161 243 136
· x4 + · · ·

� (91)

22 Namely {Θ(y(x)), x} = {Θ(y(x)), y(x)} · y′(x)2 + {y(x), x}.
23 We exclude the trivial well-known changes of variables on hypergeometric functions x → 1 − x, 1/x, ... The 
transformation x → y(x) must be an infinite order transformation symmetry.
24 The emergence of a modular form [29, 38, 30] corresponds to the emergence of a selected hypergeometric  
function having an exact covariance property [39, 40] with respect to an infinite order algebraic transformation (the 
modular correspondences).
25 One can easily check that these expressions (90) for W(x) and F(x) verify (67).
26 This selected value of λ has to be compared with the value µ = 1/4 in (79).
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where a1 = exp(ε).
Besides this one-parameter commuting family (65), the Schwarzian equation (87) has a 

remarkable (infinite) set of algebraic functions solutions [1] y(x) defined by the corresponding 
modular equations [25, 41–45]. Their series expansions near x = 0 read:

yn(x) = P(Qn(x)) = 1728 ·
( x

1728

)n
+ · · ·� (92)

where n is an integer n = 2, 3, 4, · · · These series expansions commute for different values 
of the integer n. This is a consequence of the fact that, up to the previous change of variables 
P(x), Q(x), these modular correspondences (92) correspond to taking the nth power of the 
nome: q → qn (see [1] for more details).

6.3.1.  A pre-modular concept.  The composition of the one-parameter series (65) (which cor-
responds to q → a1 · q) and of the modular correspondences (92), yields an infinite set of 
one-parameter series yn(x) = an · xn + · · · , n = 2, 3, 4, · · · for instance [1]:

y3 = a3 · x3 +
31 a3

24
· x4 +

36 221 a3

27 648
· x5 − a3 · (23 141 376 a3 − 66 458 485)

53 747 712
· x6 + · · · .

These one-parameter series do not commute but verify [1] the simple composition formulae27:

yn(an, ym(am, x)) = ynm(anan
m, x), n, m = 1, 2, 3, · · · .� (93)

When the an are arbitrary rational numbers the corresponding series yn(an, x) are not globally 
bounded series [31] in general. Therefore, they cannot be the series expansion of an algebraic 
function: they are differentially algebraic [3, 4] since they are solutions of the Schwarzian 
equation (87).

In general, finding the Schwarzian equation (87) is easy, and getting solutions order by 
order as series expansions is also easy. However finding the selected values of the rational 
numbers an such that the differentially algebraic [3, 4] series yn(an, x) are globally bounded 
and thus can be algebraic functions, and, possibly, modular correspondences, is a quite dif-
ficult task28.

We will call ‘pre-modular’29 the existence of an infinite set of one-parameter differentially 
algebraic series (solution of the Schwarzian equation) of the form yn(x) = an · xn + · · · 
which verify (93), but for which one does not know if there exist some selected values of the 
parameter an such that these differentially algebraic series [3, 4] become algebraic functions.

In the next section, we will characterize the Schwarzian equations corresponding to these 
‘pre-modular’ structure, thus finding conditions that are necessary for the emergence of mod-
ular forms.

6.4.  Schwarzian equation: conditions for modular correspondence

In the previous sections it was shown that the pullback symmetry condition of arbitrary order-
two linear differential operators yields Schwarzian equation (87). The solutions of these order-
two linear differential operators are much more general than hypergeometric functions and 

27 Consequence of the fact, in the nome, they correspond to the composition of transformations like q → an · qn.
28 Similar to finding the selected values of the parameters so that a quantum Hamiltonian becomes integrable, or 
finding modular forms among Beukers’ second order differential equations depending on three parameters [46]  
(36 cases emerging of a numerical exploration of 10 millions triples).
29 Of course, this ‘pre-modular’ term should not be confused with the term premodular in ‘premodular categories’ 
(i.e. ribbon fusion categories). Here we mean prerequisites for the emergence of modular forms.
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Heun functions [1]: they can have an arbitrary number of singularities. Let us see which 
Schwarzian equation  (87), or equivalently, which function W(x) gives relations (93) corre
sponding to rigid constraints necessary to have modular correspondences [1].

Series calculations give the conditions on W(x) such that series solutions of the form 
yn(x) = an · xn + · · · are solutions of the Schwarzian equation with these yn(x)’s verifying 
relations (93). These constraints are conditions on the Laurent series of W(x). For the solution 
series of the Schwarzian equation to have the pre-modular structure (93), i.e. the same struc-
ture as modular correspondences, the Laurent series of W(x) must be of the form:

W(x) = − 1
2 x2 +

b1

x
+

∞∑
m=0

am · xm.� (94)

One easily verifies that this is the case for the previous modular form example where W(x) 
reads (90), as well as for all the other modular forms emerging in physics or enumerative 
combinatorics we mentioned in previous papers [29–31, 35, 37].

Condition (94) is a result whose scope transcends the hypergeometric functions frame-
work. In order to show this, let us apply this result on the open problem of finding Heun 
functions30 that could be modular forms [38], or pullbacked 2F1 functions [16, 50]. The Heun 
function HeunG (a, q, α, β, γ, δ, x) is solution of a linear differential operator of order two 
L2 = D2

x + A(x) · Dx + B(x) where A(x) and B(x) read:

A(x) =
(α+ β + 1) · x2 − ((δ + γ) · a + α − δ + β + 1) · x + γ · a

x · (x − 1) · (x − a)
,

�

(95)

B(x) =
α β · x − q

x · (x − 1) · (x − a)
.� (96)

The corresponding function W(x) is easily deduced from the formula (10) given by 
W(x) = A′(x)A2(x)/2 − 2 B(x). It has the following Laurent series expansion:

W(x) =
γ · (γ − 2)

2 x2 − a δ γ + αγ + β γ − δ γ − γ2 + γ − 2 q
a x

+ · · · ,

�

(97)

and has the form (94) given by −1/2/x2 + · · · only when γ = 1. Thus a general analytical 
constraint like (94) yields a simple exact constraint on the intriguing problem of the classifica-
tion of the Heun functions that can be modular forms, and more specifically on the necessary 
conditions for the Heun functions to have a ‘pre-modular’ structure.

6.4.1.  Rank-two condition (75) and pre-modular structures.  The factorization of the order-
two linear differential operator which corresponds to W(x) of the form (72), yields the rank-
two non-linear differential equation (75) (see section 6.1.1). We would like to know when the 
modular correspondences structures (existence of solutions series yn(x) = an · xn + · · · , 
n = 2, 3, 4, · · · such that (93), thus requiring W(x) = −1/2/x2 + · · ·) are compatible with 
a factorization of the order-two linear differential operator and thus with condition (72). 
Imposing

30 Finding the selected values of the parameters of a Heun function [47] (in particular the accessory parameter [48]) 
such that its series expansion is a series with integer coefficients (or more generally is globally bounded [31]), or 
such that the corresponding order-two linear differential operator is globally nilpotent [24] is a difficult problem. 
These classification problems are closely related to finding the Heun functions reducible to pullbacked hypergeo-
metric functions [49], and to modular forms [46].
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W(x) =
dAR(x)

dx
+

AR(x)2

2
= − 1

2 x2 + · · ·� (98)

where AR(x) is a rational function, one finds that AR(x) must have the following Laurent series 
expansion:

AR(x) =
1
x

+
∞∑

m=0

rm · xm.� (99)

This result (99) can be directly obtained by looking for the Laurent series for AR(x) with 
a pre-modular structure, i.e. such that the series yn(x) = an · xn + · · · , n = 2, 3, 4, · · · 
are solutions of condition (75). As a byproduct, one finds that in the case (99) the solutions 
yn(x) = an · xn + · · · are such that (93). In particular the solution y1(x) = a1 · x + · · · is 
a one-parameter family of commuting series.

The case W(x) = −1/2/x2, or AR(x) = 1/x, corresponds to the simple order-two linear 
differential operator θ2 where θ is the homogeneous derivative θ = x · Dx. It also corre-
sponds to a trivialization of the mirror map (the nome reduces to the x  variable).

7.  Pullback symmetry of an operator up to equivalence of operators

With the aim of generalizing covariance (89), we introduce the derivative of 
2F1([1/12, 5/12], [1], x)

Φ(x) =
d
dx

(
2F1

(
[

1
12

,
5

12
], [1], x

))
=

5
144

· 2F1

(
[
13
12

,
17
12

], [2], x
)

,
�

(100)

which does not correspond to a modular form, since the derivative of a modular form is not a 
modular form. A derivative of the simple covariance identity (89) gives

Φ(y(x)) · y′(x) = A(x) · Φ(x) + A′(x) · 2F1

(
[

1
12

,
5
12

], [1], x
)

.� (101)

Using the order-two linear differential equation verified by 2F1([1/12, 5/12], [1], x), one can 
rewrite the 2F1([1/12, 5/12], [1], x) in the RHS of (101), as a linear combination of Φ(x) and 
its derivative Φ′(x). One then deduces from relation (101) a slightly more general relation than 
the initial simple covariance (89)

Φ(y(x)) =
(
AΦ(x) ·

d
dx

+ BΦ(x)
)
· Φ(x),� (102)

where AΦ(x) and BΦ(x) read in this particular example31:

AΦ(x) =
144 · x · (x − 1) · A(x)

5 · y′(x)
, BΦ(x) =

5 · A(x) + 72 · (2 − 3 x) · A′(x)
5 · y′(x)

.

Recalling two Hauptmoduls p1(x) and p2(x)

p1(x) =
1728 · x
(x + 16)3 , p2(x) =

1728 · x2

(x + 256)3 ,� (103)

31 If instead of the simple derivative (100) we had introduced Φ(x) =L1( 2F1([1/12, 5/12], [1], x)) where L1 is an 
arbitrary order-one linear differential operator, we would have also obtained a relation of the form (102) but where 
AΦ(x) and BΦ(x) are much more involved expressions.
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one can also write relation (102) in a more ‘balanced’ form (see equation (7) in [2]). Introducing 
the two algebraic functions A1(x) and A2(x)

A1(x) =
(

1 +
x

16

)−1/4
, A2(x) =

(
1 +

x
256

)−1/4
,� (104)

one has the (modular form) hypergeometric identity:

A1(x) · 2F1

(
[

1
12

,
5

12
], [1], p1(x)

)
= A1(x) · 2F1

(
[

1
12

,
5

12
], [1], p2(x)

)
.

�

(105)

After performing calculations of a similar nature of the ones previously seen, one deduces the 
1 ↔ 2 balanced relation on Φ(x):

144 · p1(x) · ( p1(x) − 1) · dA1(x)
dx

· Φ′( p1(x))

+
(

72 · (3 p1(x) − 2) · dA1(x)
dx

− 5 · A1(x) ·
dp1(x)

dx

)
· Φ( p1(x))

= 144 · p2(x) · ( p2(x) − 1) · dA2(x)
dx

· Φ′( p2(x))

+
(

72 · (3 p2(x) − 2) · dA2(x)
dx

− 5 · A1(x) ·
dp2(x)

dx

)
· Φ( p2(x)),

�

(106)

which should be viewed as a (rational) parametrization of the relation having the form (102).
The interested reader shall find in appendix B a detailed (and we hope pedagogical) analy-

sis of the more general relation (102) given for a selected hypergeometric function32 solution 
2F1([−1/4, 3/4], [1], x).

Let us provide an example of the relevance of the relation (102) in the context of integra-
ble models in physics. In the case of the two-dimensional Ising model, the covariance (102) 
is instantiated on χ̃(2), the simplest of the low-temperature n-fold integrals χ̃(n) occurring in 
the decomposition of the susceptibility of the square Ising model [32–34] (see section 5.1 in 

[54]). When applied to χ̃(2), the Landen transformation k → kL = 2
√

k
1 + k, which provides an 

exact representation of a generator of the renormalization group [2, 7, 53], gives the following 
covariance relation (see equation33 (64) in [54]):

χ̃(2)
( 2

√
k

1 + k

)
= 4 · 1 + k

k
· d χ̃(2)(k)

dk
,� (107)

where: χ̃(2)(k) =
k4

43 · 2F1

(
[
3
2

,
5
2
], [3], k2

)
.� (108)

This relation (107) can also be written as

χ̃(2)(k) =
1
4
·
(

k · (k − 1) · d
dk

+
k2 + k + 2

k + 1

)
χ̃(2)

( 2
√

k
1 + k

)
,� (109)

or, introducing the inverse Landen transformation (descending Landen transformation):

32 We thank Guttmann for showing us this remarkable hypergeometric function emerging in a dual context of  
combinatorics and random-matrix theory, counting the number of avoiding permutations [51, 52].
33 Note a misprint in the expression of the Landen transformation in the unlabelled equation above equation (62) 
in [54].
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1 − (1 − k2)1/2

1 + (1 − k2)1/2 =
k2

4
+

k4

8
+

5
64

k6 +
7

128
k8 +

21
512

k10 + · · · ,

�

(110)

χ̃(2)
(1 − (1 − k2)1/2

1 + (1 − k2)1/2

)
=

( (k2 − 2) · (1 − k2)1/2 + 2
4 k2

)
· χ̃(2)(k)

+
k2 − 1

4 k
·
(

1 − (1 − k2)1/2
)
· dχ̃(2)(k)

dk
.

�

(111)

Remark.  Note that the premodular condition (94), W(x) = −1/2/x2 + · · · , has no rea-
son to be verified for such generalizations of modular forms (100) and (102). For instance for 
χ̃(2) given by (109), the function W(x) = p′(x) + p(x)2/2 − 2 q(x) (see (10)) has the follow-
ing Laurent series expansion (here x = k):

W(x) =
3
2
· x2 − 5

x2 · (x2 − 1)
=

15
2

· 1
x2 + 6 + 6 x2 + 6 x4 + · · · .

�

(112)

More generally these (hypergeometric) examples provide simple illustrations of a more 
general pullback symmetry, where one imposes the pullback of an order N linear differential 
operator to be homomorphic to that operator. In this case there exists two intertwiners (of 
order N − 1 in general) LN−1 and MN−1, such that:

MN−1 · LN = pullback
(

LN , y(x)
)
· LN−1.� (113)

The pullback symmetry up to conjugation studied in sections 2–6 is appropriate for modular 
forms [29–31, 37], but not for derivatives of modular forms that also occur in physics (see 
for instance the previous relation (107) on the square Ising model). The emergence of such 
generalized covariance (113) for the representation of the Landen transformation (and more 
generally the modular correspondences providing exact representations of the generators of 
the renormalization group) on the other n-fold integrals χ̃(n)’s of the susceptibility of the Ising 
model [32–34] is a challenging open problem, that will require one to consider reducible op­
erators (see section 4.2).

Analyzing these more general constraints (113) will require many additional assumptions 
(beyond the one of having selected differential Galois group) on the linear differential opera-
tor LN  to be able to perform more calculations.

8.  Schwarzian conditions for different Calabi–Yau operators with the same 
Yukawa couplings

In the previous sections  we have analyzed the question of the covariance under algebraic 
pullbacks of a linear differential operator of arbitrary order N, i.e. the question of linear differ
ential operators with algebraic pullback symmetries. Let us consider here the more general 
problem of the equivalence under pullbacks up to conjugations of two different linear differ­
ential operators, which is an enlightening sieve when one tries to classify selected linear 
differential operators in theoretical physics (Calabi–Yau linear differential operators [17, 18]). 
The interested reader will find in appendix C an illustration of this important question where 
we revisit in detail some calculations of a paper by Almkvist, van Straten and Zudilin [17]. 
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This calculation reexamines the question of pullback equivalence up to conjugation, of two 
selected order-four operators L4 and L4 verifying the Calabi–Yau condition:

v(x) · L4 ·
1

v(x)
= pullback

(
L4,

−4 x
(1 − x)2

)
,� (114)

with: v(x) =
(x · (1 + x)

1 − x

)1/2
.� (115)

One finds that a Schwarzian equation verified by these two order-four linear differential opera-
tors L4 and L4 reads:

ÛR(x)− UM(y(x)) · y′(x)2 + {y(x), x} = 0,� (116)

where UM(x) and ÛR(x) are given by (29), and where p(x) and q(x) are the coefficients of D3
x 

and D2
x  for respectively L4 and L4, (see (C.12) and (C.13) in appendix C).

One sees on this example that the nome and Yukawa couplings, expressed in terms of the x  
variable, are related (see (C.16) and (C.18)) by the pullback transformation. Yet, the Yukawa 
couplings of the two linear differential operators expressed in term of the nome, are related in 
an even simpler and ‘universal’ way: Kq(L4) = Kq(L4)(−4 · q), as shown in appendix E of 
[31]. For a pullback y(x) with a series expansion of the form

y(x) = λ · xn + · · ·� (117)

the nome and Yukawa couplings expressed in terms of the x  variable, of two order-four opera-
tors such that

v(x) · L4 ·
1

v(x)
= pullback

(
L4, y(x)

)
,� (118)

are simply related through the relations

qx(L4)
n =

1
λ
· qx(L4)

(
y(x)

)
, Kx(L4) = Kx(L4)

(
y(x)

)
.� (119)

The Yukawa couplings expressed in terms of the nome34, are related in an even simpler ‘uni­
versal’ way as so:

Kq(L4) = Kq(L4)(λ · qn).� (120)

The previous example (114) corresponds to n = 1 and λ = −4. In the case n = 1 and 
λ = 1, the pullback is a deformation of the identity y(x) = x + · · · and the Yukawa cou-
plings expressed in terms of the nome, of the two linear differential operators are equal. Thus 
one recovers proposition (6.2) of Almkvist et  al paper [17] where the Yukawa couplings 
coincide.

Since the Schwarzian equation (116) corresponds to the equivalence of two linear differ
ential operators by pullback with remarkably simple relations (120) on their Yukawa cou-
plings expressed in terms of the nome, the Schwarzian equation  (116) can be seen as a 
condition to have simply related Yukawa couplings. In the case of deformation of the identity 
y(x) = x + · · · pullbacks, it can be seen as a condition of preservation of the Yukawa cou-
plings (seen as functions of the nome). These results are not restricted to order-four opera­
tors (see appendices E of [31] and [sec12]C). For instance, one can impose that two different 

34 This function is often viewed as a function of the nome q = eτ, since its q-expansion in the case of degenerating 
family of Calabi–Yau 3-folds is supposed to encode the counting of rational curves of various degrees on a mirror 
manifold.
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pullbacks of the same order-N linear differential operator LN  are homomorphic, i.e. there 
exist two intertwiners (of order N − 1 in general) LN−1 and MN−1 such that:

pullback
(

LN , p1(x)
)
· LN−1 = MN−1 · pullback

(
LN , p2(x)

)
.� (121)

This last generalization turns out to be instructive for physics and enumerative combinatorics.

9.  Conclusion

In a previous paper [1] we focused on identities relating the same 2F1 hypergeometric function 
with two different algebraic pullback transformations

A(x) · 2F1

(
[a, b], [c], x

)
= 2F1

(
[a, b], [c], y(x)

)
,� (122)

along with the existence of nFn−1 analogues of the previous relation. Such remarkable identi-
ties correspond to modular forms that emerged in the analysis of multiple integrals related to 
the square Ising model [29–31, 35] or in other enumerative combinatorics context [37]. They 
can be seen as a simple occurence of infinite order35 covariance symmetries in physics [2] or 
enumerative combinatorics.

The current paper generalizes these previous results beyond hypergeometric functions36, 
analyzing the conditions for order-N linear differential operators with an arbitrary number of 
singularities37 to be pullback invariant up to conjugations:

1
v(x)

· LN · v(x) = pullback
(

LN , y(x)
)

.� (123)

One finds that the pullbacks y(x) are differentially algebraic [3, 4], being necessarily solutions 
of the same Schwarzian equations as in [1]

W(x) − W(y(x)) · y′(x)2 + {y(x), x} = 0,� (124)

where the function W(x) encoding the Schwarzian equation (124) is a simple expression of 
the first two coefficients of the linear differential operator (see (55)). For order-two linear 
differential operators this Schwarzian condition turns out to be sufficient. In the case of linear 
differential operators with selected differential Galois groups however, we showed, for orders 
three and four, that the ‘Calabi–Yau’ conditions (see section 4.1) are rigid enough to force the 
pullbacked-invariant (up to conjugation) operators (see (123)) to reduce to symmetric powers 
of an order-two linear differential operator.

The reduction of the solutions of this Schwarzian differential equation to modular corre­
spondences was an open question in [1]. Modular correspondences require the existence, for 
any integer n, of solutions of the Schwarzian equation (124) of the form yn(x) = an · xn + · · · 
such that, for any integer m and n, the following ‘pre-modular’ condition is satisfied:

yn(an, ym(am, x)) = ynm(anan
m, x).� (125)

We derived in this paper a necessary and sufficient condition to obtain such ‘pre-modular’ 
solutions for the ‘Schwarzian condition’ (124). This condition turns out to be a simple condi-
tion on the Laurent series of W(x) encoding the Schwarzian condition:

35 We have for instance in mind to provide exact representations of the renormalization group [2, 7, 53].
36 Or even Heun functions, see [1].
37 Far beyond operators with hypergeometric solutions, or pullbacked hypergeometric solutions.
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W(x) = − 1
2 · x2 +

b
x

+
∞∑

m=0

am · xm.� (126)

In light of what we have discussed so far, the current paper generates more questions than 
answers that give directions for further research. We have seen for example that (126) is a 
necessary and sufficient condition for obtaining ‘pre-modular’ solutions for the ‘Schwarzian 
condition’, corresponding, in general, to a transcendental38 declination of modular corre­
spondences. To have modular correspondences one needs the existence of selected values of 
the parameters such that the solution series yn(x) = an · xn + · · · (see (93)) actually reduce 
to algebraic functions. Is it only in the case of modular correspondences that such algebraic 
reductions for selected values take place? 

Then we showed that an order-two linear differential operator emerging in the context 
of avoiding permutations counting [51, 52], provides a good illustration of a generalization 
of the pullback-covariance (122) or of the pullback invariance up to conjugation (123): the 

2F1

(
[−1/4, 3/4], [1], x

)
 that comes up in the context of avoiding permutations counting [51, 

52], verify a relation (see (B.9) and (B.11)), whose general form is given by

Φ(y(x)) =
(
A(x) · d

dx
+ B(x)

)
· Φ(x),� (127)

giving a non-trivial explicit example of a pullback invariance of an operator up to operator 
homomorphisms (see (113))

MN−1 · LN = pullback
(

LN , y(x)
)
· LN−1.� (128)

Equation (107) providing an exact representation of the Landen transformation (generator of 
the renormalization group) on χ̃(2), together with the explicit calculations of section 7, make 
quite clear that conditions like (127) provide a natural and interesting generalization of modu­
lar forms, going beyond the Schwarzian equation (124).

At last, we examined the equivalence of two different linear differential operators, under 
pullback and conjugation, yielding again some Schwarzian condition relating these two linear 
differential operators (see relation (C.26)), and we discussed the consequence of such equiva-
lence on the corresponding Yukawa couplings. These results revisiting and complementing 
the results of [17], provide powerful tools to analyze various symmetry and classification 
problems of selected linear differential operators, in particular linear differential operators of 
the Calabi–Yau type [18] (not necessarily of order four [31]).

When dealing with linear differential operators, we have seen the emergence of Schwarzian 
derivatives, consequence of the fact that the Schwarzian derivative is appropriate for the com­
position of functions [19] (see the chain rule of the Schwarzian derivative of the composition 
of function). Do higher order Schwarzian derivatives [55–57, 58] occur for pullback-symme-
tries of non-linear ODE’s, or, more generally, for functional equations? 

Restraining oneself to the univariate linear differential operators case, let us remark that 
if condition (122), or (123), describe effectively all the modular forms that often occur in 
physics [29, 30, 35], or enumerative combinatorics [37], a pullback symmetry up to conjuga-
tion constraint like (123) could be restrictive in some sense since it seems to yield systematic 
reduction39 to order-two linear differential operators. In contrast the simple hypergeometric 

38 The series yn(x) (see (125)) are differentially algebraic, but, not necessarily algebraic functions.
39 At least in the case where the operators verify Calabi–Yau conditions and thus have selected differential Galois 
groups.
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example of section 7 seems to provide a natural generalization of modular forms: the pullback 
invariance of an operator up to operator homomorphisms condition (128) promises to cover a 
larger ensemble of exact representations of symmetries in physics or enumerative combinato-
rics. In particular the emergence of conditions like (127) of higher order, namely generalized 
covariance (128) for the representation of the Landen transformation40 on the other n-fold 
χ̃(n)’s of the Ising susceptibility (see [32–34]), together with their corresponding large order 
reducible linear differential operators, is a challenging open problem.
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Appendix A.  Mirror maps for 2F1([1/12, 5/12], [1], x)

The modular correspondences x → y(x) are infinite order algebraic transformations such that

2F1

(
[

1
12

,
5

12
], [1], y(x)

)
= A(x) · 2F1

(
[

1
12

,
5

12
], [1], x

)
,� (A.1)

where A(x) is an algebraic function. The modular correspondences y(x) are solutions of the 
Schwarzian condition (87), where W(x) simply related to the function F(x) (see (67)) are 
given by equation (90). These modular correspondences have series expansion at x = 0 of 
the form

yn(x) = P(Qn(x)) = 1728 ·
( x

1728

)n
+ · · · n = 2, 3, 4, · · ·

� (A.2)
where P(x) and Q(x) are such that P(Q(x)) = Q(P(x)) = x, corresponding to the ‘simplest’ 
examples of mirror maps [1]. More precisely, the well-known ‘mirror maps’ [61–63] are often 
described as series with integer coefficients [64]. These series correspond to a rescaling of 
P(x) and Q(x) by 1728, namely [1]:

Q(1728 · x)
1728

= x + 744 x2 + 750 420 x3 + 872 769 632 x4 + 1102 652 742 882 x5 + · · ·

and:

P(1728 · x)
1728

= x − 744 x2 + 356 652 x3 − 140 361 152 x4 + 49 336 682 190 x5 + · · · .

The two functions P(x) and Q(x) are differentially algebraic [3, 4], but not holonomic 
functions. Introducing the function Q(x) = exp(Θ(x)), equation (69) with λ = 0 yields the 
following Schwarzian relations on Q(x)

W(x) + {Q(x), x} +
1
2
·
(Q′(x)

Q(x)

)2
= 0, or:� (A.3)

40 And more generally the modular correspondences providing exact representations of the generators of the renor-
malization group [2, 53].
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W(x) + {ln(Q(x)), x} = 0 where:
Q′(x)
Q(x)

=
1

F(x)
,� (A.4)

when P(x) the (composition) inverse of Q(x) verifies the functional equation and Schwarzian 
equation:

x · dP(x)
dx

= F(P(x)), {P(x), x} − 1
2 · x2 − W(P(x)) = 0.� (A.5)

Note that the one-parameter commuting family (65) solution of the Schwarzian equation (87), 
can be expressed using these two functions P(x) and Q(x) as y1(a1, x) = P(a1 · Q(x)) where 
a1 = exp(ε).

Appendix B.  Pullback invariance up to operator homomorphisms:  
a simple hypergeometric example

Let us consider the order-two linear differential operator

L2 = D2
x +

3 x − 2
2 · x · (x − 1)

· Dx − 3
16 · x · (x − 1)

,� (B.1)

which has the hypergeometric function solution 2F1([−1/4, 3/4], [1], x). We have the follow-
ing homomorphism of the type (121) between L2 pullbacked by two simple different rational 
functions p1(x) and p2(x):

pullback
(
L2, p1(x)

)
· L1 · α(x) = α(x) · M1 · pullback

(
L2, p2(x)

)
,

� (B.2)

where: p1(x) =
− 64 x

(1 − x) · (1 − 9 x)3 , p2(x) =
− 64 x3

(1 − x)3 · (1 − 9 x)
,

�
(B.3)

α(x) = x3 ·
( 1 − x

1 − 9 x

)1/2
, M1 = 8 · (1 − 9 x)

(1 − x) · x2 · Dx +
171 x2 − 142 x + 19

(1 − x)2 · x3 ,

and: L1 = 8 · (1 − 9 x)
(1 − x) · x2 · Dx − 189 x2 − 226 x + 21

(1 − x)2 · x3 .

� (B.4)
Denoting A and B the two rational pullbacks p1(x) and p2(x) in (B.2) one finds that they are 
related by the following rational algebraic curve:

Γ3(A, B) = 4096 · A B · (A2B2 + 1) − 4608 · A B · (AB + 1) · (A + B)

− (A4 − 900 A3B + 28 422 A2B2 − 900 AB3 + B4) = 0.
�

(B.5)

The two Hauptmoduls parametrizing the modular equation41 corresponding to the representa-
tion of τ → 3 τ , are given as follows:

P1(x) =
1728 x

(x + 27) · (x + 3)3 , P2(x) =
1728 x3

(x + 27) · (x + 243)3 .� (B.6)

41 See equation (108) in section 5.1 of [1].
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Note that we have the following relations between p1(x) and p2(x), and the two Hauptmoduls 
P1(x) and P2(x):

p1(x) = P1(−27 x), p2(x) = P2(−243 x),� (B.7)

which explain the compatibility between the two relations:

p2(x) = p1

( 1
9 x

)
, P2(x) = P1

(729
x

)
.� (B.8)

Relation (B.2) yields the following identity on the 2F1 hypergeometric function

2F1

(
[−1

4
,

3
4
], [1], p1(x)

)
= L1

(
2F1

(
[−1

4
,

3
4
], [1], p2(x)

))
,� (B.9)

where: L1 =
8 · (1 − 9 x)1/2

3 · (1 − x)1/2 · x · d
dx

+
1 − 3 x − 45 x2 − 81 x3

(1 − x)3/2 · (1 − 9 x)3/2 ,

�

(B.10)

2F1

(
[−1

4
,

3
4
], [1], p2(x)

)
= L2

(
2F1

(
[−1

4
,

3
4
], [1], p1(x)

))
,� (B.11)

where: L2 = − 8 · (1 − x)1/2

3 · (1 − 9 x)1/2 · x · d
dx

+
1 + 5 x + 3 x2 − 9 x3

(1 − x)3/2 · (1 − 9 x)3/2 .

�

(B.12)

Introducing the order-two linear differential operator H1 annihilating the pullbacked hyper-
geometric function 2F1([−1/4, 3/4], [1], p1(x)):

H1 = D2
x +

(1 − 3 x)2

x · (1 − x) · (1 − 9 x)
· Dx +

12
x · (1 − x)2 · (1 − 9 x)2 ,

�

(B.13)

the compatibility between relation (B.9) and (B.11) is a consequence of the identity

L1 · L2 = 1 − 64 x2

9
· H1,� (B.14)

namely that the product L1 · L2 is equal to 1 modulo H1. Of course introducing the order-
two linear differential operator H2 annihilating the pullbacked hypergeometric function 
2F1([−1/4, 3/4], [1], p2(x)) one also has a very similar identity:

L2 · L1 = 1 − 64 x2

9
· H2,� (B.15)

which means that the product L2 · L1 is equal to 1 modulo H2.
Relation42 (B.11) can be seen as a particular case of a generalized pullback symmetry 

condition of the form

2F1

(
[α, β], [γ], y(x)

)
=

(
A(x) · d

dx
+ B(x)

)
· 2F1

(
[α, β], [γ], x

)
,

�
(B.16)

where A(x) and B(x) are algebraic functions. Identities like (B.9) can be seen as generaliza-
tions of the identities 2F1([α, β], [γ], y(x)) = A(x) · 2F1([α, β], [γ], x) analysed in [1].

42 Or relation (B.9).
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B.1.  Representation of the composition of the algebraic transformations x → y(x)

We want to see the algebraic transformations x → y(x) as symmetries. In particular we want 
to have a representation of the composition of these algebraic transformations, like:

2F1

(
[α, β], [γ], y(y(x))

)
=

(
A2(x) ·

d
dx

+ B2(x)
)
· 2F1

(
[α, β], [γ], x

)
.

�

(B.17)

Let us show here that by building on the previous example we can actually provide identities 
of the type (B.17). Introducing

q1(x) =
−1728 · x · (1 − 81 x + 2187 x2)

(1 − 81 x)9 · (1 − 27 x) · (1 + 2187 x2)
,� (B.18)

q2(x) = q1

( 1
2187 x

)
=

−1728 · 324 · x9 · (1 − 81 x + 2187 x2)

(1 + 2187 x2) · (1 − 27 x)9 · (1 − 81 x)
.

�

(B.19)

one has the new pullback symmetry relation similar to (B.9):

2F1

(
[−1

4
,

3
4
], [1], q1(x)

)
= L̂1

(
2F1

(
[−1

4
,

3
4
], [1], q2(x)

))
,� (B.20)

where:

L̂1 =
32
9

· x · (1 − 81 x + 2187 x2) · U1(x)
(1 − 81 x) · (1 − 27 x)5 · Dx

+
V1(x)

(1 − 108 x + 2187 x2) · (1 − 81 x) · (1 − 27 x)5 ,
�

(B.21)

U1(x) = 1 − 81 x + 4374 x2 − 177 147 x3 + 4782 969 x4,� (B.22)

V1(x) = 1 − 26 244 x2 + 3779 136 x3 − 277 412 202 x4 + 12 397 455 648 x5

− 311 486 073 156 x6 + 3012 581 722 464 x7 + 22 876 792 454 961 x8.
�

(B.23)

One also has the new pullback symmetry relation similar to (B.11)

2F1

(
[−1

4
,

3
4
], [1], q2(x)

)
= L̂2

(
2F1

(
[−1

4
,

3
4
], [1], q1(x)

))
,� (B.24)

L̂2 = −32
9

· x · (1 − 81 x + 2187 x2) · U2(x)
(1 − 81 x)5 · (1 − 27 x)

· Dx

+
V2(x)

(1 − 108 x + 2187 x2) · (1 − 81 x)5 · (1 − 27 x)
,

�
(B.25)

U2(x) = 1 − 81 x + 4374 x2 − 177 147 x3 + 4782 969 x4,� (B.26)

V2(x) = 1 + 288 x − 65 124 x2 + 5668 704 x3 − 277 412 202 x4 + 8264 970 432 x5

− 125 524 238 436 x6 + 22 876 792 454 961 x8.
�

(B.27)
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Let us introduce the order-two linear differential operator Ĥ1 annihilating the pullbacked 
hypergeometric function 2F1([−1/4, 3/4], [1], q1(x)):

Ĥ1 = D2
x +

α1(x)
(1 − 81 x) · (1 − 27 x) · (1 + 2187 x2) · (1 − 81 x + 2187 x2) · x

· Dx

− 324
x · (1 − 81 x + 2187 x2) · (1 + 2187 x2)2 · (1 − 81 x)2 · (1 − 27 x)2 ,

�

(B.28)

where

α1(x) = 1 + 2187 x2 − 354 294 x3 + 23 914 845 x4 − 774 840 978 x5 + 10 460 353 203 x6.

The compatibility between relation (B.9) and (B.11) is a consequence of the identity:

L̂1 · L̂2 = 1 + R1,2(x) · Ĥ1, where:� (B.29)

R1,2(x) = − 1024
81

· x2 · (1 − 81 x + 2187 x2)4 · (1 + 2187 x2)2

(1 − 81 x)6 · (1 − 27 x)6 .� (B.30)

Of course introducing the order-two linear differential operator Ĥ2 annihilating the pullbacked 
hypergeometric function 2F1([−1/4, 3/4], [1], q2(x)), one also has a similar identity with the 
same rational function R1,2(x):

L̂2 · L̂1 = 1 + R1,2(x) · Ĥ2.� (B.31)

Again we have that L̂1 and L̂2 are obtained from each other by the (involutive) change of vari-
able x ←→ 1/2187/x:

−9 · L̂1 = pullback
(

L̂2,
1

2187 x

)
, L̂2 = −9 · pullback

(
L̂1,

1
2187 x

)
.

�

(B.32)

Note that the two pullbacks q1(x) and q2(x) (see (B.18) and (B.19)) are related to the two 
previous pullbacks p1(x) and p2(x) (see (B.3)):

q1(x) = p1

(
27 · x · (1 − 81 x + 2187 x2)

)
,� (B.33)

q2(x) = p2

( 19 683 · x3

1 − 81 x + 2187 x2

)
= p1

(1 − 81 x + 2187 x2

177 147 · x3

)
.� (B.34)

Recalling Φ(x) = 2F1([−1/4, 3/4], [1], p1(x)) the new identities (B.20) and (B.24) read

Φ
(

27 · x · (1 − 81 x + 2187 x2)
)

= L̂1

(
Φ
(1 − 81 x + 2187 x2

177 147 · x3

))
,� (B.35)

Φ
(1 − 81 x + 2187 x2

177 147 · x3

)
= L̂2

(
Φ
(

27 · x · (1 − 81 x + 2187 x2)
))

,� (B.36)

or, introducing Ψ(x) = 2F1([−1/4, 3/4], [1], q1(x)):

Ψ(x) = L̂1

(
Ψ
( 1

2187 · x

))
, Ψ

( 1
2187 · x

)
= L̂2

(
Ψ(x)

)
.� (B.37)

Denoting A and B the two pullbacks in (B.35) and (B.36),
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A = 27 · x · (1 − 81 x + 2187 x2), B =
1 − 81 x + 2187 x2

177 147 · x3 ,� (B.38)

one sees that they are related by the simple A, B symmetric algebraic curve:

9 A3B3 − 30 A2B2 + 12 AB · (A + B) − A2 − AB − B2 = 0.� (B.39)

Let us consider the algebraic equation  (B.5), that we denote Γ3(A, B) = 0 because it is so 
closely related to the modular equation representing τ → 3 τ  (see their close relation with the 
Hauptmoduls (B.6) and (B.8)). Performing the resultant in B of the polynomial Γ3(A, B) with the 
same one Γ3(B, C) one gets a new algebraic equation Γ9(A, C) = 0. The two pullbacks q1(x) 
and q2(x) are actually a rational parametrization of that new algebraic equation Γ9(A, C) = 0. 
In other words, if we think identity (B.11) as a symmetry transformation identity of the type (B.16), 
the new identity (B.20) must be seen as the identity for the iteration of that transformation:

2F1

(
[α, β], [γ], y(y(x))

)
=

(
A2(x) ·

d
dx

+ B2(x)
)
· 2F1

(
[α, β], [γ], x

)
.

�

(B.40)

We are very close to a modular form, the previous algebraic curve (B.5) playing the role of the 
modular equation43 (see (B.8)), and the algebraic curve Γ9(A, C) = 0 playing the role of 
the modular equation corresponding to τ → 9 · τ .

Note that if one calculates the function W(x) = A′(x) + A(x)2/2 − 2 B(x) corresponding 
to the order-two operator L2, one gets

W(x) =
x − 4

8 · (x − 1) · x
= − 1

2 x2 − 7
8 x

− 5
4

− 13
8

x − 2 x2 + · · ·
�

(B.41)

which is also of the form W(x) = −1/2/x2 + · · ·.

Appendix C.  Schwarzian conditions for different Calabi–Yau operators  
with related Yukawa couplings

C.1.  Revisiting a Calabi–Yau operator in [17]

Following Almkvist, van Straten and Zudilin [17], let us consider the order-four linear differ
ential operator L4 such that its exterior square annihilates44

5F4

(
[
1
2

, a, 1 − a, b, 1 − b], [1, 1, 1, 1], x
)

.� (C.1)

This order-four linear differential operator such that its exterior square is order-five (it verifies 
the Calabi–Yau condition (31)) reads

L4 = D4
x + P(x) · D3

x + Q(x) · D2
x + R(x) · Dx + S(x),� (C.2)

where P(x) and Q(x) read:

P(x) =
4 − 5 x

x · (1 − x)
,

Q(x) =
(3 x − 2) · (11 x − 10)

8 · x2 · (x − 1)2 +
a · (1 − a) + b · (1 − b)

2 · x · (x − 1)
.

�
(C.3)

43 Given by equation (108) in section 5.1.1 in [1].
44 See also [59].
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The other rational functions R(x) and S(x) are more involved rational functions that will not be 
given here. The operator L4 can be seen as the ‘exterior (or antisymmetric) square root45’ of the 
order-five linear differential operator that annihilates the 5F4 hypergeometric function (C.1).

Remark.  In [17] the authors introduce a proxy of the exact ‘exterior square root’ L4 namely 
the so-called Yifan Yang pullback, given in general by the equations in the section ‘definition’ 
p 10 of [60]46 and, in this example, by equation (3.11), p 278 in [17], which reads

M4 = D4
x + PYY(x) · D3

x + QYY(x) · D2
x + RYY(x) · Dx + SYY(x),� (C.4)

where PYY(x) and QYY(x) read:

PYY(x) =
2 · (3 − 5 x)
x · (1 − x)

,

QYY(x) =
99 x2 − 122 x + 28

4 · x2 · (x − 1)2 +
a · (1 − a) + b · (1 − b)

2 · x · (x − 1)
,

�
(C.5)

the other rational functions RYY(x) and SYY(x) being more involved rational functions that will 
not be given here. The ‘Yifan Yang pullback’ M4 is related to the exact ‘exterior square root’ 
L4 by a simple conjugation M4 · u(x) = u(x) · L4, with u(x) = x−1/2 · (1 − x)−3/4. In gen-
eral one may prefer to introduce the Yifan Yang pullback defined pp 10 and 11 of [60] instead 
of the exact ‘exterior square root’, because the corresponding formulae are simpler. It does not 
make any difference however since the two operators are simply conjugated.

Let us consider the order-four linear differential operator L4 given on page 284 of [17] 
which annihilates the Hadamard product of two simple 2F1 hypergeometric functions:
( 1

1 − x
· 2F1([a, 1 − a], [1], x)

)
�
( 1

1 − x
· 2F1([b, 1 − b], [1], x)

)
.� (C.6)

This order-four operator L2 reads

L4 = D4
x + P̂(x) · D3

x + Q̂(x) · D2
x + R̂(x) · Dx + Ŝ(x),� (C.7)

where:

P̂(x) = 2
5 x2 + 4 x − 3

x · (x + 1) (x − 1)
,

Q̂(x) = 2 · a · (1 − a) + b · (1 − b)
x · (x − 1)2 +

25 x4 + 40 x3 − 16 x2 − 32 x + 7
x2 · (x + 1)2 (x − 1)2 .

�

(C.8)

Introducing the pullback y(x) and the function v(x)

y(x) =
−4 · x
(1 − x)2 , v(x) =

(x · (1 + x)
1 − x

)1/2
,� (C.9)

one has the relation

45 See the concept of Yifan Yang pullback introduced in [60].
46 The author of [60] has benefited from an unpublished result by Yifan Yang. Note that there is a misprint in [60] in 
the ‘definition’ of Yifan Yang pullback: on top of page 11, the term b3 b4/25 should be replaced by b3 b′4/25. With 
this correction the exact ‘exterior square root’ L4 and the Yifan Yang pullback M4 are related by a simple conjuga-
tion M4 · u(x) = u(x) · L4, where 3/10 · b4 = −u′(x)/u(x).
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v(x) · L4 ·
1

v(x)
= pullback

(
L4,

−4 x
(1 − x)2

)
.� (C.10)

and one verifies that a Schwarzian equation (C.11) is actually verified for (C.5) and (C.8)

ÛR(x) − UM(y(x)) · y′(x)2 + {y(x), x} = 0,� (C.11)

with:

UM(x) = −Q(x)
5

+
3

40
· P(x)2 +

3
10

· dP(x)
dx

,� (C.12)

ÛR(x) = − Q̂(x)
5

+
3

40
· P̂(x)2 +

3
10

· dP̂(x)
dx

.� (C.13)

This Schwarzian equation (C.11), together with the definitions (C.12) and (C.13), are exactly 
the Schwarzian equation (6.5) together with definition (6.4), p 290 of [17].

C.1.1.  Schwarzian conditions for Calabi–Yau operators and Yukawa couplings.  Let us cal-
culate the series expansion of the nome and Yukawa couplings [31] of L4 and L2. In order to 
perform the calculations for arbitrary values of a and b, let us introduce the same variables s 
and p as the one introduced by [17]:

s = a · (1 − a) + b · (1 − b), p = a · b · (1 − a) · (1 − b).� (C.14)

Considering the subcase a = 3 and b = 5, the nome of L4 reads

qx(L4) = x + (2 p − s + 1) · x2

2

+ (93 p2 − 98 ps + 26 s2 + 112 p − 60 s + 40) · x3

128
+ · · · ,

�

(C.15)
while the nome of L4 reads:

qx(L4) =− 1
4
· qx(L4)

( −4 · x
(1 − x)2

)
= x − 2 · (2 p − s) · x2

+
(

93 p2 − 98 ps + 26 s2 − 16 p + 4 s
)
· x3

8
+ · · · ,

�

(C.16)

The respective Yukawa couplings of L4 and L4 read:

Kx(L4) = 1 − (5 p + 1 − 2 s) · x

+
(

825 p2 − 638 ps + 120 s2 + 244 p − 80 s
)
· x2

64
+ · · · ,

� (C.17)

Kx(L4) = Kx(L4)
( −4 · x
(1 − x)2

)
= 1 + 4 · (5 p − 2 s + 1) · x

+
(

825 p2 − 638 ps + 120 s2 + 404 p − 144 s + 32
)
· x2

4
+ · · · ,

�

(C.18)

In terms of the nome the Yukawa couplings read:

Kq(L4) = 1 − (5 p − 2 s + 1) · q

+
(

1145 p2 − 926 ps + 184 s2 + 468 p − 176 s + 32
)
· q2

64
+ · · · ,

�

(C.19)
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and

Kq(L4) = Kq(L4)(−4 · q) = 1 + 4 · (5 p − 2 s + 1) · q

+
(

1145 p2 − 926 ps + 184 s2 + 468 p − 176 s + 32
)
· q2

4
+ · · · .

�

(C.20)

On this example we see that the nome and Yukawa couplings expressed in terms of the 
x  variable, are simply related (see (C.16) and (C.18)) by the pullback transformation. The 
Yukawa couplings expressed in term of the nome of the two linear differential operators are 
related in an even more simple and ‘universal’ way: Kq(L4) = Kq(L4)(−4 · q). This is a 
general result (see appendix E of [31]). For a pullback y(x) with a series expansion of the form

y(x) = λ · xn + · · · ,� (C.21)

the nome and Yukawa couplings expressed in terms of the x  variable of two order-four linear 
differential operators such that

v(x) · L4 ·
1

v(x)
= pullback

(
L4, y(x)

)
,� (C.22)

are simply related as follows:

qx(L4)
n =

1
λ
· qx(L4)

(
y(x)

)
, Kx(L4) = Kx(L4)

(
y(x)

)
.� (C.23)

Their Yukawa couplings, expressed in terms of the nome, are related in an even simpler ‘uni­
versal’ way:

Kq(L4) = Kq(L4)(λ · qn).� (C.24)

The previous example corresponded to the case n = 1 and λ = −4. In the case n = 1 and 
λ = 1, the pullback is a deformation of the identity y(x) = x + · · · and the Yukawa cou-
plings expressed in terms of the nome of the two operators are equal. One thus recovers propo-
sition (6.2) of [17] where the Yukawa couplings coincide.

C.2.  Schwarzian conditions for Calabi–Yau operators related by pullback and conjugation

In fact the Schwarzian condition (C.11) can be obtained in a totally general framework where 
two order-four linear differential operators are equal up to pullback and conjugation. Let us 
consider two order-four operators L4 and M4 such that

v(x) · M4 ·
1

v(x)
= pullback

(
L4, y(x)

)
.� (C.25)

A straightforward calculation similar to the one performed in section 4 yields the Schwarzian 
relation47

W(M4, x) − W(L4, y(x)) · y′(x)2 + {y(x), x} = 0,� (C.26)

where the W(M4, x) and W(L4, x) are given by (29), the p(x) and q(x) being the ones of the 
corresponding operators M4 and L4:

W(M4, x) =
3

10
· dp(M4, x)

dx
+

3
40

· p(M4, x)2 − q(M4, x)
5

,� (C.27)

47 This result is the same as the one in [17].
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W(L4, x) =
3
10

· dp(L4, x)
dx

+
3

40
· p(L4, x)2 − q(L4, x)

5
.� (C.28)

Remark C.1.  There is nothing specific with order-four linear differential operators. One has 
the same result for two operators of arbitrary orders N equal up to pullback and conjugation 
(see (C.25)): the expressions of W(MN , x) and W(LN , x) being the ones given in (55) and (56). 
One also has:

W(MN , x) − W(LN , y(x)) · y′(x)2 + {y(x), x} = 0.� (C.29)

Remark C.2.  The expressions of W(MN , x) and W(LN , x) are related by (C.29). Let us 
assume that W(LN , x) is compatible with the modular correspondences structures (existence 
of solutions of the Schwarzian equations of the form y(x) = an · xn + · · · with (93)). One 
thus has W(LN , x) = −1/2/x2 + · · · Is this condition automatically satisfied for W(MN , x) 
as a consequence of (C.29)? For pullbacks of the form y(x) = an · xn + · · · , the function 
W(MN , x) deduced from (C.29), reads:

W(MN , x) = W(LN , y(x)) · y′(x)2 − {y(x), x}

=
(
− n2

2 x2 + · · ·
)

+
(n2 − 1

2 x2 + · · ·
)

= − 1
2 x2 + · · · .

�

(C.30)

The condition (94) for the modular correspondences structures is thus preserved by pullbacks.

C.3.  More general framework

For arbitrary orders we observed that the functions W(x) that occur in the Schwarzian condi-
tions are left invariant under conjugations of the operators (63) and (64). More generally, one 
can consider operators that are not conjugated by a function ρ(x), yet homomorphic, in the 
sense of the equivalence of operators48. For a given operator LN  of order-N, one can easily 
obtain operators L̃N  homomorphic to LN . For instance, for an order-two linear differential oper-
ator L2 = D2

x + A(x)Dx + B(x), introducing the order-one operator L1 = η(x)Dx + ρ(x), an 
order-two operator L̃2 homomorphic to L2 is easily obtained performing49 the rightdivision by 
L1 of the LCLM of L2 and L1. If one now compares the functions W(x) corresponding respec-
tively to L2 and L̃2, one sees that they are quite different, except when η(x) = 0, in which case 
one reduces the operator equivalence to a conjugation by a function ρ(x). The analysis of the 
conditions for two order-N operators LN  and MN  to be homorphic up to pullback

MN−1 · MN = pullback
(

LN , y(x)
)
· LN−1,� (C.31)

is a much more general problem corresponding to massive calculations even if one restricts to 
operators that are homomorphic to their adjoint (thus corresponding to selected, orthogonal 
or symplectic, differential Galois groups)50. Performing such calculations will require new 
tools and ideas. This cannot be performed in general (like we did in the first section of this 
paper) but could be considered on particular problems emerging from physics or enumerative 
combinatorics, where the operators will be of some ‘selected’ form.

48 Two linear differential operators LN  and L̃N  of order N are homomorphic [35, 36] when there exists operators 
(intertwiners) of order at most N − 1, such that MN−1 LN − L̃N M̃N−1 = 0.
49 In Maple just to rightdivision(LCLM(L2, L1),L1).
50 In that general framework (C.31), we do not have the Calabi–Yau, or symmetric Calabi–Yau, equations that help 
us to perform our calculations.
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