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Preface

This book constitutes the proceedings of the International Conference on
Integrable Systems in memory of J.-L. Verdier. It was held on July 1-5,
1991 at the Centre International de Recherches Mathématiques (C.I.R.M.)
at Luminy, near Marseille (France). This collection of articles, covering
many aspects of the theory of integrable Hamiltonian systems, both finite-
and infinite-dimensional, with an emphasis on the algebro-geometric meth-
ods, is published here as a tribute to Verdier who had planned this confer-
ence before his death in 1989 and whose active involvement with this topic
brought integrable systems to the fore as a subject for active research in
France.

The death of Verdier and his wife on August 25, 1989, in a car accident
near their country house, was a shock to all of us who were acquainted with
them, and was very deeply felt in the mathematics community. We knew
of no better way to honor Verdier’s memory than to proceed with both
the School on Integrable Systems at the C.LM.P.A. (Centre International
de Mathématiques Pures et Appliquées in Nice), and the Conference on
the same theme that was to follow it, as he himself had planned them.
D. Bennequin, P. Cartier and A. Chenciner agreed to join O. Babelon and
Y. Kosmann-Schwarzbach to form a new organizing committee, chaired
by P. Cartier. The final list of speakers at the Conference was very close
to the original list of invitations discussed with Verdier himself, and the
invited participants included ten students chosen from among those who
had attended the C.I.LM.P.A. School, as originally planned by Verdier.

The refereed articles in this volume represent the advances in the field
of complete integrability that were reported at the Luminy conference. In
many cases, articles have been updated for publication. In two instances,
where the results had been previously published, only summaries with ref-
erences appear here. The articles represent very diverse methods and report
very diverse results. This is a reflection of the complexity and richness of
the field of research that is referred to as the theory of completely integrable
systems.

In his preliminary text, D. Bennequin takes us into “the garden of
integrable systems.” He surveys the evolution of the subject, from Abel
onwards, explaining the connections with the classical theory of elliptic
functions, describing how algebraic curves and the infinite Grassmannian
came to play a prominent role in the theory. He then analyzes the important
contributions that Verdier made in this area.

The first part of this book contains articles that make essential use of
Riemann surfaces and their theta functions in order to construct classes of
solutions of integrable systems, and articles dealing with the tau-funections
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that generalize the classical theta functions. The first three papers in this
part exemplify the algebro-geometric methods, while the next four deal
more specifically with the tau-functions in their various guises.

A. Treibich, who was a close collaborator of Verdier, studies the family
of elliptic solitons of the Kadomtsev—Petviashvili hierarchy associated with
a projective curve, showing that if I" is a tangential cover of an elliptic
curve E, then its compactified Jacobian covers a symmetric power of E.

In an article written with B. van Geemen, E. Previato, who also col-
laborated with Verdier, describes recent work on the space of higher-order
nonabelian theta functions over a Riemann surface of genus at least two,
whose dimension is given by the Verlinde numbers, arising in the fusion
rules of conformal field theory, and some connections of nonabelian theta
functions with the Schottky problem.

The lecture of H. Knorrer, describing his work with N. Ercolani and
E. Trubowitz, deals with the immersed submanifolds of R® with constant
mean curvature. The link with integrable systems lies in the fact that
such immersions can be found by solving the elliptic sinh—Gordon equa-
tion, quasi-periodic solutions of which can be constructed by means of the
Riemann theta function of hyperelliptic curves.

In the following articles the tau-functions of various integrable systems
play a prominent part.

L. Takhtajan’s paper shows that classical modular forms generate a
tau-function for several integrable reductions of the self-dual Yang-Mills
equations, and therefore general classes of solutions of many equations, in
0+1,1+1, and 2+ 1 dimensions.

G. Wilson reviews the generalized Ablowitz—Kaup-Newell-Segur equa-
tions associated with a simple Lie algebra, g, namely the evolution equa-
tions equivalent to the zero-curvature equation for a connection obtained
from a “bare” connection by the dressing action of the associated loop
group. He shows that, when g is simply laced, solutions of the gAKNS
equations can be obtained in terms of tau-functions, which he defines by
means of the canonical trivialization of the fibration of the central extension
of the loop group over the “big cell” in the loop group.

By redefining the tau-function of Segal and Wilson, L. Dickey is able
to determine a tau-function for the hierarchies generated by matrix first-
order differential operators which generalize the AKNS equations and for
the multi-component KP hierarchies.

P. van Moerbeke studies the blowing-up of a solution of the Korteweg—
de Vries equation with respect to a complexified time variable, and, more
generally, the compactification of isospectral manifolds of differential oper-
ators. He then poses and answers analagous questions for the isospectral
families of periodic Jacobi matrices.

In the second part of the book, the main emphasis is on the Hamilton-
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ian formalism, and for the last two papers in this part, on the bihamiltonian
formalism, while the first one is an illustration of the interplay of the Hamil-
tonian and the algebro-geometric methods in the study of integrability.

The joint work of N. M. Ercolani, H. Flaschka and S. Singer was pre-
sented in Flaschka’s lecture on the geometry of the Kostant-Toda lattice,
whose Lax matrix has entries below, on and just above the diagonal, the
latter being all equal to 1. Using ideas from complex algebraic geometry,
they prove the complete integrability of this system, and they determine its
constants of motion, which are rational (rather than polynomial) functions
on the phase-space.

Studying the vertex set of a Hamiltonian action of a compact commu-
tative Lie group on a compact symplectic manifold, i.e., the image under
the moment map of the set of fixed points, V. Guillemin proves a local
rigidity theorem for Hamiltonian actions.

In his short contribution, A.T. Fomenko states a conjecture regarding
the determination of all the integrable geodesic flows on two-dimensional
compact manifolds.

P.J. Olver uses his classification of bihamiltonian structures based on
the double Darboux theorem of Turiel in order to draw a list of canonical
forms for bihamiltonian systems, and he obtains criteria for both the local
and global integrability of such systems.

In the lecture of F. Magri, written in collaboration with P. Casati and
M. Pedroni, the theory of soliton equations is presented from the Hamilto-
nian point of view, the hierarchies of bihamiltonian equations being gener-
ated by the Casimir functions of a pencil of Poisson brackets. It is shown
that Sato’s operator corresponds to the differential of a Casimir function
expressed in terms of pseudodifferential operators, and Sato’s equations to
the vanishing of Poisson brackets on one-forms.

The third part of the book contains two papers that deal with the
theory of two-dimensional solvable lattice models in which the quantum
Yang-Baxter equation plays a fundamental role.

E. Date’s contribution is a summary of his work on the finite-dimen-
sional cyclic representations of the quantum groups at roots of unity and
their relation with the two-dimensional lattice models associated with higher
genus algebraic curves.

In his lecture, J.-M. Maillard presented his joint work with M. Bellon
and C. M. Viallet, showing that the quantum Yang-Baxter equation admits
a symmetry group which acts by birational projective transformations on
the algebraic varieties which parametrize the solutions of the equation,
and he discussed the generalization of these results to the tetrahedron and
hyper-simplicial equations that are the analogues of the QYBE for lattices
of dimension 3 or more.
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In the concluding article, B. Dubrovin shows the interrelations of many
aspects of the integrability of the hierarchies of Hamiltonian systems with
topological field theory (TFT). He defines the limiting or “averaging” pro-
cess of a hierarchy and of the tau-function which yields a system of partial
equations whose coefficients induce a Frobenius structure on the invariant
manifolds of the hierarchy, and hence a solution of the Witten-Dijkgraff-E.
Verlinde-H. Verlinde (WDVV) equations from 2-dimensional TFT. The bi-
hamiltonian structure of the integrable hierarchy is used in the calculation
of higher genus corrections, and the WDVV equations are shown to specify
the periods of the Abelian differentials of Riemann surfaces as functions on
moduli spaces of these surfaces, so that both the bihamiltonian approach
and the algebro-geometric methods enter the theory.

The Conference was funded by the C.I.R.M. and by the Société Mathé-
matique de France. Additional support was provided by the French Min-
istry of Foreign Affairs, and grants were offered by the University of Paris
VII, the U.F.R. de Mathématiques et Informatique of the University of
Paris VII and the C.N.R.S. research unit U.R.A. 212 (Théories Géomé-
triques). Financial support also came from the Fédération Francaise des
Sociétés d’Assurances and is hereby gratefully acknowledged. We thank in
particular our friend and colleague, Prof. M. Flato, who helped us with the
fundraising even though he was not free to participate in the Conference.

It is a pleasure to thank the C.I.LR.M. and its director, G. Lachaud, for
a well-organized and very pleasant conference in the beautiful surroundings
of Luminy, and the C.I.LM.P.A. and its managing director, J.-M. Lemaire,
for providing financial support for the students of the School on Integrable
Systems who participated in the Conference.

We thank the editors of the series Progress in Mathematics for offering
to publish this volume, and the staff of Birkhduser Publishing Company
for their help and efficient work,

The long-term planning and organizational work were performed with
the secretarial assistance of Madame Claudine Roussel, from the University
of Paris VII, who joined us at Luminy to handle some of the day-to-day
needs of the conference. She also assisted us in the editing of this volume
and the forthcoming volume of the courses given at the C.I.M.P.A. school.
In the name of all the participants in the conference, we thank her for her
expert and invariably cheerful collaboration.

Paris, February 1993

0. Babelon

P. Cartier

Y. Kosmann-Schwarzbach




Infinite Discrete Symmetry Group
for the Yang—Baxter Equations
and their Higher Dimensional Generalizations *

M. Bellon, J.-M. Maillard, and C. Viallet

Abstract. We show that the Yang-Baxter equations for two dimensional
vertex models admit as a group of symmetry the infinite discrete group
Agl). The existence of this symmetry explains the presence of a spectral
parameter in the solutions of the equations. We show that similarly, for
three-dimensional vertex models and the associated tetrahedron equations,
there also exists an infinite discrete group of symmetry. Although generaliz-
ing naturally the previous one, it is a much bigger hyperbolic Coxeter group.
We indicate how this symmetry can help to resolve the Yang-Baxter equa-
tions and their higher-dimensional generalizations and initiate the study
of three-dimensional vertex models. These symmetries are naturally rep-
resented as birational projective transformations. They may preserve non
trivial algebraic varieties.

Key-words: Yang-Baxter equations, Star-triangle relations, Tetrahedron
equations, Inversion relations, Integrable models, Coxeter groups, Weyl
group, Automorphisms of algebraic varieties, Birational transformations,
Cremona transformations, Iteration of mappings.

1. Introduction

The Yang-Baxter equations, which appeared twenty years ago?, have
acquired a predominant role in the theory of integrable two-dimensional
models in statistical mechanics [6, 7] and field theory (quantum or classi-
cal). They have actually outpassed the borders of physics and have become
fashionable in some parts of the mathematics literature. They in particular
support the construction of quantum groups 8, 9].

The Yang-Baxter equations [7] and their higher dimensional generaliza-
tions are now considered as the defining relations of integrability. They are
the “Deus ex machina” in a number of domains of Mathematics and Physics

1work supported by CNRS

2In fact, fifty years ago, Lars Onsager was totally aware of the key role played by
the star-triangle relation in solving the two-dimensional Ising model, but he preferred
to give an algebraic solution emphasizing Clifford algebras (1,2, 3,4,5).
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(Knot Theory [10], Quantum Inverse Scattering [11], S-Matrix Factoriza-
tion, Exactly Solvable Models in Statistical Mechanics, Bethe Ansatz (12],
Quantum Groups [13, 9], Chromatic Polynomials [14] and more awaited de-
formation theories). The appeal of these equations comes from their ability
to give global results from local ones. For instance, they are a sufficient and,
to some extent, necessary [15] condition for the commutation of families
of transfer matrices of arbitrary size and even of corner transfer matrices.
From the point of view of topology, one may understand these relations by
considering them as the generators of a large set of discrete deformations
of the lattice. This point of view underlies most studies in knot theory [10]
and statistical mechanics (Z-invariance [16, 17]).

We want to analyze the Yang-Baxter equations and their higher dimen-
sional generalizations (18, 19, 20, 21] without prejudice about what should
be a solution, that is to say proceed by necessary conditions.

We will exhibit an infinite discrete group of transformations acting
on the Yang-Baxter equations or their higher dimensional generalizations
(tetrahedron, hyper-simplicial equations).

These transformations act as an automorphy group of various quanti-
ties of interest in Statistical Mechanics (partition function,...), and are of
great help for calculations, even outside the domain of integrability (critical
manifolds, phase diagram,...) [22].

We show here is that they form a group of symmetries of the equa-
tions defining integrability. They consequently appear as a group of au-
tomorphisms of the algebraic varieties parametrizing the solutions of the
Yang-Baxter or tetrahedron equations. We will denote this group Aut.

The existence of Aut drastically constrains the varieties where solu-
tions may be found. In the general case, it has infinite orbits and gives
severe constraints on the algebraic varieties which parametrize the possible
solutions (genus zero or one curves, algebraic varieties which are not of
the general type [23]). In the non-generic case, when Aut has finite order
orbits, the algebraic varieties can be of general type, but the very finiteness
condition allows for their determination [24].

In the framework of infinite group representations, it is crucial to rec-
ognize the essential difference between what these symmetry groups are
for the Yang-Baxter equations and what they are for the higher dimen-
sional tetrahedron and hyper-simplicial relations: the number of involu-
tions generating our groups increases from 2 to 24! when passing from
two-dimensional to d-dimensional models and the group jumps from the
semi-direct product Z x Zy to a much larger group, i.e., a group with an
ezponential growth with the length of the word?®.

31t is worth recalling that for the Zamolodchikov solution [19, 21] of the tetrahedron
relation, the partition function is similar to the one of the two-dimensional checkerboard
Ising model. This example seems to indicate that three-dimensional integrability can
only occur when the 22~ generators of the group satisfy additional relations allowing
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The existence of Aut as a symmetry of the Yang-Baxter equations
has the following consequence: we may say that solving the Yang-Baxter
equation is equivalent to solving all its images by Aut. These images gener-
ically tend to proliferate, simply because Aut is infinite. Considering that
the equations form an overdetermined set, it is easy to believe that the total
set of equations is “less overdetermined” when the orbits of Aut are of finite
order. One can therefore imagine that the best candidates for the integra-
bility varieties are precisely the ones where the symmetry group possesses
finite orbits: the solutions of Au-Yang et al. 25, 26, 27] seem to confirm
this point of view [28, 29].

A contrario, if one gets hold of an apparently isolated solution, the
action of Aut will multiply it until building up, in experimentally not so
rare cases, a continuous family of solutions from the original one. This is
the solution to the so-called baxterization problem [30].

We first show that the simplest example of Yang-Baxter relation which
is the star-triangle relation (7] has an infinite discrete group of symmetries
generated by three involutions. These involutions are deeply linked with
the so-called inversion relations [31, 32, 33, 34].

This analysis can be extended to the “generalized star-triangle rela-
tion” for Interaction aRound the Face models without any major difficul-
ties [6, 35].

2. The star-triangle relations

2.1 The setting

We consider a spin model with nearest neighbour interactions on square
lattice. The spins o; can take g values. The Boltzmann weight for an
oriented bond (ij) will be denoted hereafter by w(o;,05). The weights
w(o:, o) can be seen as the entries of a ¢ x g matrix. In the following we will
introduce a pictorial representation of the star-triangle relation. An arrow
is associated to the oriented bond (ij). The arrow from i to j indicates that
the argument of the Boltzmann weight w is (01, 0;) rather than (o;,0:).
This arrow is relevant only for the so-called chiral models [25], that is to
say that the ¢ x g matrix describing w is not symmetric. An interesting
class of ¢ x g matrices has been extensively investigated in the last few
years [25, 27, 26]: the general cyclic matrices. It is important to note that
we do not restrict ourselves to this particular class of matrices. Let us give
the following non cyclic nor symmetric 6 x 6 matrix as another illustrative

for a mere polynomial growth of the size, and possibly reducing to a semi-direct product
of finite groups and Z, factors.
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example:

NoN e N R
e N R
2 NN R e n

e R N Nw
SR N NEe N
B N @ e NN

2.2 The relations

We introduce the star-triangle equations both analytically? and pictorially:

Eﬂh(dh o) wy(o,09) - wi(o,03) = A Wy (03, 03) - Wa(o1, 03) - Wa (o1, 032).

(2)

(st1.1)

(3)

One should note that satisfying equation (2) together with the relation
(st1.2) obtained by reversing all arrows, is a sufficient condition for the
commutation of the diagonal transfer matrices of arbitrary size M with
periodic boundary conditions T (ws, W,) and T s (s, wa) :

Note that for cyclic matrices ([25, 27, 26]) the star-triangle relations
(st1.1) and (st1.2) give the same equations since one exchanges (st1.2) and
(st1.1) by spin reversal.

One could obviously imagine many other choices for the arrows on
the six bonds, however only three of them lead to the commutation of

4Since the w; and W; are homogeneous variables, there will always be a global mul-
tiplicative factor A floating around in the star-triangle equations.




Symmetry Group for the Yang-Baxter Equation 281

diagonal transfer matrices. We therefore have three systems of equations
to study. For example, if the Boltzmann weights are given by the 6 X 6

matrix (1), these three systems of equations are respectively made of 20
different equations or 35 or 36.

3. The Yang-Baxter relation for vertex models

We shall not get here into the arcanes of this relation, which appears in
the theory of integrable models (9], the theory of factorizable S-matrix in
two-dimensional field theory, the quantum inverse scattering method [11],
knot theory and has been given a canonical meaning in terms of Hopf
algebras [36] (quantum groups [8, 9, 37, 38, 39]) and the list is far from
exhaustive. We just want to fix some notations for later use.

We consider a vertex model on a two-dimensional square lattice. To
each bond is associated a variable with ¢ possible states and a Boltzmann
weight w(i, j, k, 1) is assigned to each vertex

l

J

In order to write the Yang-Baxter relation, the ¢* homogeneous weights
w(i, j, k, ) are first arranged in a g% x g* matrix R:

Ry = w(iy .k, 1). 3)

The Yang-Baxter relation is a trilinear relation between three matrices

R(1,2), R(2,3) and R(1,3):

Y R (LRIE(LNRZE(23) = Y, RER@IRLIRET (L),
ay,0g,08 ﬂ'l .ﬁﬂnﬁ!

(4)
The assignation (3) is arbitrary and we may specify it by complementing
the vertex with an arrow and attributing numbers to the lines

Jd
] R i ] igi
g Jg =Rj:,j1(g!d)'

ig
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With these rules relation (4) has the following graphical representation

Ja 1 Ja
14 a2 % J2
a3 = .63
; - (5)
N i
i3 2/ i3
3 3

The lines carry indices 1,2,3.

Some especially interesting solutions depend on a continuous param-
eter called the “spectral parameter”. The presence of this parameter is
fundamental for many applications in physics, as for example the Bethe
Ansatz method [40, 5, 11, 12). One of the main issues in the full resolu-
tion of (4) is precisely to describe what is this parameter and the algebraic
variety on which it lives, although its presence may obscure the algebraic
structures underlying the Yang-Baxter equation (the discovery of quantum
groups was allowed by forgetting this parameter [39, 8, 41, 9]). The problem
of building up continuous families of solutions from an isolated one, known
as the bazterization (10}, is made straightforward by our study. Indeed our

results ezplain the presence of the spectral parameter in the solution of the
equation (see also [24]).

4. Infinite discrete symmetry group for the star-triangle relation

4.1 The inversion relation

Two distinct inverses act on the matrix of nearest neighbour spin interac-
tions: the matrix inverse / and the dyadic (element by element) inverse J.
We write down the inversion relations both analytically and pictorially:

Z’ﬂ)(o’i,ﬂ) ! I{w)(gagj) = K 6:!.'6_3'1 (6)
w(oi,0;) - J(w)(os,05) = 1. (7)
where §,,,, denotes the usual Kronecker delta.
w I(w) _
———a—>—9 - [ ]

a; a a; 0 = 0;
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and ad; a; [ ] ) ®
J(w)

The two involutions I and J generate an infinite discrete group I' (Cox-
eter group) isomorphic to the infinite dihedral group Z; x Z. The Z part of
T is generated by I.J. In the parameter space of the model, that is to say
some projective space CP,,_; (n homogeneous parameters), I and J are bi-
rational involutions. They give a non-linear representation of this Cozeter
group by an infinite set of birational transformations [24]. It may happen
that the action of T' on specific subvarieties yields a finite orbit. This means
that the representation of I identifies with the p-dihedral group Z; x Z,.

4.2 The symmetries of the star-triangle relations

The two inversions I and J act on the star-triangle relation. Let us give a
pictorial representation of this action, starting from (st1.1) as an example:

— J(1) (tst)
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The transformed equation reads:

A D T(wi)(r,00)Wa(01,05)Ws (01, 02) = wa(r, 02) wa(r, 03)-J (1) (072, 05).

51
(8)
We get an action on the space of solutions of the star-triangle relation.
If (w1, wa, w3, Wy, Wa, W3) is a solution of eq(2) (see picture (st1.1) for
the specific arrangement of arrows), then (I(w,), @3, W5, J (T1), ws, ws) is
also a solution of eq(2), at the price of a permitted redefinition of A. In
this transformation, the weights w; and @, play a special role.
At this point, it is better to formalize this action by introducing some
notations. We may choose as a reference star-triangle relation ST, the
symmetric configuration:

(2) (2)
t3 52
(1) =(1) s1 (8T)
83
t2
(3) (3)

Any configuration may be obtained by reversing some arrows and per-
muting some bonds. With evident notations, we will denote by Rs1, Rsz,
Rsa, Ryy, Rig, Reg the reversals of arrows, and by Fsisjs Pritjs Priytj the per-
mutations of bonds. Moreover J and J act on the bonds as I, Ls, ...
The action of I and J described above (where 1 was playing a special role)
identifies with the action of

K1 = RsaRyals) Jy1 Peo 43 Pa 2. (9)

It is easy to check that X, is an involution.

We may construct two similar involutions K> and K3, obtained by
cyclic permutation of the indices 1, 2, 3. The involutions Ki(i =1,2,3)
ve[ri)fy the defining relations of the Weyl group of an affine algebra of type
A5 [42):

(iCIJCZ)“ = (K2E3)3 = (K3K, )3 =1. (10)

We denote Aut the group generated by the three involutions Ki(:=1,2,3).
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5. Infinite discrete symmetry group for the Yang-Baxter
equation

5.1 The inversion relations.

The R-matrix appears naturally as a representation of an element of the
tensor product A ® A of some algebra A with itself. This algebra is a nice
Hopf algebra in the context of quantum groups. We shall not dwell on this
here but recall some simple operations on R.

In A® A we have a product inherited from the product in A:

(a®b)(c®d) =ac® bd. (11)

R is an invertible element of A ® A for this product and we shall denote
by I(R) the inverse for this product:

R-I{(R)=I(R)-R=1@1. (12)
In terms of the representative matrix this reads:
> R, I(R): = 6,63 = ) I(R)jp R3. (13)
lﬁ ﬂlﬁ
This is nothing else but the so-called inversion relation for vertez mod-
els [31, 32, 35, 43, 23]. On A® A we have a permutation operator o:

ola®b) = b®aq, (14)
(cR)4 = RI,, for the matrix R. (15)

Note that the representation of o is just the conjugation by the permutation
matrix P:

Pl = 6udp, (16)
oR = PRP. (17)

In the language of matrices we have a notion of transposition. Let us
define partial transpositions t, and t4 by:

(LR = R, (18)
(taR)Y, = Ryjs (19)

and the full transposition
t = tyty = taty. (20)

We shall in the sequel use another inversion J defined by:

J =tgIty = talty, (21)
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or equivalently:
D Rey J(R)SE =6, 80 =Y J(R)Y RS (22)
o, B

These operators verify straightforwardly:
P = =1 It=tl, Jt=tJ,
o = =1, ol =1Io, oJ=Jo,
(0ty)? = (ota)®=t, ataty=1. (23)

Each of these operations has a graphical representation. For the inversion
1 or more precisely for o1 it is:

the inversion J reads:

R

(

/ |

j/ (24)
j

// :

(25)
and the transposition reads:

l l

i ki A k
atgA
J J

Note that the two inversions I and J do not commute. They generate
an infinite discrete group I, the infinite dihedral group, isomorphic to the
semi-direct product Z x Z;. This group is represented on the matrix ele-
ments by birational transformations [24, 44, 45] acting on the projective
space of the entries of the matrix R. Remark that for the vertez models,
the birational transformations associated to the two involutions I and J
are naturally related by collineations (see (21): this should be compared
with the situation for nearest neighbour interaction spin models [24, 46].
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5.2 The symmetries of the Yang-Baxter equations.

At the price of the redefinitions:

A = tR(2,3), (26)
B = ot4R(1,3), (27)
C = R(Q,2), (28)

we may picture the Yang-Baxter relation in a more symmetric way:

1
V \ N
A
1
C . C
2
B A
N (29)
2
3 3
o B
‘We may bracket (29) with , where C = aI(C). We get
2

A B A
¥
"B AN

(30)

s
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that is to say

1
V \tdB
i tgA
tI(C) tI(C)
2
taB
¢ t,A
\ % (31)
2
3 3
This relation is nothing but (29) after the redefinitions
A — tgA,
B — 4B,
cC — tIC (32)

We may denote by K3 the operation (32). We have two other similar
operations K7 and K

Ky: A—-ilA Ko: A—tyA
B —t,B i B —tIB
C — t4C C—ath

The discrete group Aut generated by the K;’s (¢ =1,2,3) is a symmetry
group of the Yang-Baxter equations. These generators K; (i=1,2,3) are
involutions. The K;’s satisfy the relation (K;K2K3)? = 1. Actually, the
operation K;K3Kj is just the inversion I on R. Among the elements of
the discrete group generated by the K;’s we have in particular:

(K1Ka)?: A — It It,A=tIJA, (33)
B — t,ItIB = tJIB, (34)
cC — C. (35)

Since 1J is of infinite order, we have generated an infinite discrete group of
symmetries. This is exactly the phenomenon that we described in section
4.2 for the star-triangle equations.

Under this form it is not so evident to find the actual structure of the
group. Let us introduce K4, K and K, which are simply related to the
K;’s by the transposition of two vertices:

Ky: A—otiA Kg: A—-oat,C Kg: A—tyoB
B = t,oC | B —gtIB B — ot A
C — ot B C —t,oA C —atiC
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It is easily verified that:
Ki=Kz=Ki=1, (36)

and
(KaKg)® = (KpKc)® = (KcKa)® =1, (37)

with no other relations. We recover the affine Coxeter group Agl} we already
encountered in section 4.2.

A fundamental remark: Beware that, due to the different arrangement of
indices, the relations we consider are not the Yang-Baxter equations that
one considers in the study of quantum groups (shortly RRR = RRR)
but rather its avatar ABC = CBA. The relevance of these relations is
detailed in the standard literature on integrable models [9] and quantum
groups [37, 38, 39].

We have here a very powerful instrument for two purposes: it defines
adeguate patterns for the matrix R [47]. It permits the so-called bazter-
ization of an isolated solution just acting with tIJ. Indeed if a set of
relations among the entries of R are preserved by IJ (or at least by t1J),
they will stay for every transforms of the initial Yang-Baxter relation. We
shall illustrate in section 7.1.1 the baxterization on the Baxter eight-vertex
model [48, 16] and show in section 7.1.2 how to introduce a spectral pa-
rameter for the solutions of the Yang-Baxter equations associated to sl(n)
algebras.

6. The tetrahedron equations and their symmetries
This equation is a generalization of the Yang-Baxter equation to three

dimensional vertex models [19, 18, 21]. We give a pictorial representation
of the three-dimensional vertex by

The Boltzmann weights of the vertex are denoted w(3, j, k,!,m, n) and may
be arranged in a matrix of entries

R9* = (i, ], k,I,m,n). (38)

lmn
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The tetrahedron equation has a pictorial representation:

3 6
3
_ 2
1
2
4
's 5
The algebraic form is
Ry23R543 R516 Rage = Raog Rs16Rsq3Ri03. (39)
We may here again introduce an inverse I
2. UR)ginis, - Rosmnd = gasimsia (40)
Gg,0tm 0y
We also introduce the partial transpositions tg, tm and t4 with
igimi jgimi
(tgR), e = Rilimia (41)

and similar definitions for t,,, and 4.
We redefine

A=Riz3, B=t4Rss3, C=1tytmRs15, D =tRass, (42)

where ¢ is the full transposition t,t,,t4. Equation (39) then takes the more
symmetric form

E t11213 Disisjs Visiiie Mjadeds _ T4T2Tg AT5T1Te QPTET4TE AT1T2Ty
As:-ﬂzsaBassuaCS.-muDsuzﬂs - D; G B; A;

igi2is “isiije * jsiaiz < jijaga

81,...,86 T1y00,T6
(43)
We may multiply the previous equation by (TA);53% and (t1 A)52e and

sum over (iy,iz,43) and (41, J2,73). This amounts to a bracketing of the
tetrahedron equations by two times the same vertex, in a procedure trivially
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generalizing the one for the Yang-Baxter equation (30). We recover (43)
with A, B, C and D transformed by

Ki: A — tIA

B — t4B

C = 1,0

D — taD. (44)
We have in a similar way the operations

Ky: A—tqA Ks: A—t,A Ki: A—-tinA
B—tIB B—t,B B—t,B
C—t,C C—tiC ° C —t4C
D —t,D D —tyD D —tlD

Each of these four operations is an involution. They satisfy various rela-
tions, for instance (K3 KoK3K4)? = 1. The K;’s generate a group Autg
which is o symmetry group of the tetrahedron eguations. This group is
“monstrous” since the number of elements of length smaller than ! is of
exponential growth with respect to [, unlike the case of the affine Coxeter
groups (as Agl) for the Yang-Baxter equation) where this number is of
polynomial growth.

The operations playing a role similar to the one of I and J in the
two-dimensional Yang-Baxter equations are the four involutions

I, J=tgltmts, K= tmitatg, L =taltgtm. (45)

We call T3 the group generated by these four involutions. I's is also a
symmetry group for the three dimensional vertex model even if [33] the
model does not satisfy the tetrahedron equation.

In order to precise the algebraic structure of the group I'; generated
by I, J, K and L, it is simpler to consider as generators two of the partial
transpositions ty and t4, I and the full transposition t. The third partial
transposition can be recovered as the product tfyty and ¢ commutes with
all other generators and so contributes a mere Z, factor in the group. We
are thus considering the Coxeter group generated by three involutions i,
t4 and I, with two of them commuting: this is represented by the following
Dynkin diagram

For this group again, the number of elements of length smaller than ! is
greater than 2'/2. This is in fact a hyperbolic Coxeter group [49].
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7. Consequences of this symmetry group

7.1 The baxterization

The problem of the baxterization is to introduce a spectral parameter into
an isolated solution of the Yang-Baxter equations [10]. We have solutions
of this problem by acting with the symmetry group I'.

7.1.1 Baxterization of the Baxter model

Consider the matrix of the symmetric eight vertex model

0 0 d
b ¢ 0
c b 0
0 0 a

Notice that this form is preserved by I and J and that tR = R. The action
of I'is

R= (46)

oo

a b
@ = b — P (47)
—c -d
¢~ pEmg Y- aop (48)
and the action of J is 5
B = e by (49)
a? - c2 b? — a2
—c —d
¢ = a? — 2 d — b2 — g2 (50)

We shall look at the solutions of the Yang-Baxter equations for matrices R
of the form (46). The leading idea is that the parametrization of the solu-
tions is just the parametrization of the algebraic varieties preserved by tI.J
in the projective space CPj3 of the homogenous parameters (a,b,c,d). The
remarkable fact is that not only these varieties exist but can be completely
described. We use the visualization method we have already used [24, 50]
for spin models, that is to say just draw the orbits obtained by numerical
iteration and look.

This is best illustrated by Figure 1. This figure shows the orbit of point
(*), which is a matrix of the form (46). It is drawn by the iteration of I.J
acting on the initial point (*). The resulting points densify on the elliptic
curve given by the intersection of the two quadrics A, = constant and
Az = constant (Clebsch’s biquadratic), with A; and As the I invariants
a? +b%2 2 _ g

ab+ cd ’
ab — ed

A = Sia (51)

Ay, =
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T T T T T T T T T l ¢ T T T T T T T T
2 =
I v ’
1 _
L ” |
0 7 -
A - =
2 -
_l I 1 1 1 1 l 1 1 i 1 I 1 ] 1 L l 1 1 L 1 I I_
-2 -1 0 1 2

Figure 1. Baxterization of the poinl *
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Similar calculations can be performed for a very general 16-vertex
model for which the 4 x 4 R-matrix is symmetric:

=9 A

(52)

ST I~

-~

f
c
bf
h

o o on
=]

Amazingly the baxterization of this 16-vertex model leads to curves.
These curves are also intersection of quadrics (even in the general case for
which their is no solution for the Yang-Baxter equations) [51].

7.1.2 Baxterization of the R matrix of sly(n)

Another example corresponds to the baxterization of solutions associated
to sl(n) algebras [13]. There are special solutions generally denoted R, and
R_. For the simplest four-dimensional representation of the 51(2) case, we
have

g 0 0 0

_ 101 g-q¢g' o0
Re=119 o 1 0 (53)

00 0 q

and a similar expression for R_ [13]. Looking for a family containing both
A4 and R_ our baxterization procedure leads to the well-known [5] six-
vertex model R-matrix R = AR, + 1/AR_.

We let as an exercise for the reader to treat the sl(3) case. In a forth-
coming publication we will show that these ideas can be generalized to
all the universal R-matrices [9] for every representation [52]. This group
appears in field theory, in the analysis of classical R-matrices [53].

7.2 A strategy for the resolution of a star-triangle equation

We may use the symmetry group Aut (or more simply I on each Boltzmann
weight) to find the integrability varieties. In general, I' points towards
specific algebraic varieties in the parameter space (the varieties where the
orbits lie), and Aut sometimes allows to reduce the number of unknowns
in the original equations (sections 4.2 and 5.2). We may in certain instance
bring these equations to a handable “isotropic” form (ABC = CBA —
RRR = RRR form), and find particular isotropic solution of the equations.

This is best exemplified [54] with the chiral model, with five homoge-
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neous parameters w(k), k=0,1,2,3,4 and weight matrix

w(0) w(l) w(2) w(3) w(4)
w(4) w0) w(l) w(2) w()
w(d) w(@) w(0) w(l) w(2) (54)
w(2) w(d) w(4) w(0) w(l)
w(l) w(2) w(3) w(4) w(0)

For the non-chiral model obtained by setting w(1) = w(4) and w(2) =
w(3), the exact result of Fateev-Zamolodchikov [55] is recovered in [54]
without prejudice on the properties of the solution (e.g. self-duality). One
can go further and look at the integrability varieties of the general chiral
Potts model [27].

The above (non-chiral) “isotropic” point is a particular solution of the
star-triangle relation for this model (isotropic star-triangle). We use the
non-homogeneous variables z(k) = w(k)/w(0), k =1,...,4. We introduce
the infinitesimal perturbation X;(k) of z;(k), and X;(k) of T;(k), with
obvious notations.

The linearized star-triangle relations yield a homogeneous linear system
for X;(k), X:(k). This system is not only compatible, but it has a four
dimensional space of solutions.

The solutions verify:

X1 (k)+ X (k)4 Xa(k) = X1(k)+X2(k)+Xa(k) =0, k=1,...,4. (55)

If we introduce the symmetric and antisymmetric vectors X* and X° (resp.
—. —a

X’ and X°)

1 1

8 xa a "X'a _
s —a

1 -1

il
X' = % | (56)

— 0] o] =t

_ 2—4c(2) — c(4) +c(6) + 7e(8) — Te(10) — ¢(12) — 3¢(14)
$= 272" 4c(2) + 8c(d) — c(6) + 2¢(8) — 4¢(10) + c(12) — 2c(14)
—2 4 4e(2) + c(4) — c(6) — 9c(8) + 9¢(10) + ¢(12) — c(14)

@ = 26+ 2¢(2) + 8c(d) + 17¢(6) — 42¢(8) + 2¢(10) + 23¢(12) + 22¢(14)
2+ 10¢(2) — 12¢(4) + 7¢(6) — Tc(8) + 3¢(10) + 4c(12) — 2¢(14)

10 — 15¢(2) + 11¢(4) — 9¢(6) + 2c(10) + ¢(12) + 4c(14)
10— 4e(2) — 12c(4) + 18¢(6) — 26¢(8) + 14c(10) + 8c(12) — 8c(14)
@ = 11 ¥ 20c(2) — 60c(4) + 68¢c(6) — 90c(8) + 50c(10) + 32¢(12) — 50c(14)

=18

with ¢(p) = cos(pf), i.e., numerically:
s~ —58.928463... a~ —1.0308189..., 5~ —1.834537..., @~ 4.543390...
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and set
X; X' +a; X° (57)
X; = s X +&X  i=123, (58)
we get
s1+382+383 = ar+az+az=0,
5 = -as;,
a1 = f(ag—a3),
a; = ﬁ(aﬂ —al),
a3 = [(a - aq), (59)
with
1
28 38 20 118
s — —_ ~ .01
B m 31c(1) + 93c(3) + o e(7) 08158287 (61)

This proves® the existence of a four parameter family of solutions of the
star-triangle equations containing the isotropic point. This family contains
in particular the previously mentioned Fateev-Zamolodchikov solution [55].
It is remarkable that I.J is of finite order on this curve (the order is five).
We have the prejudice that the integrability surface is of the same nature,
ie. is a locus of points where (IJ)> = 1. Notice that such a locus is
automatically invariant by both I and J. Such a surface is given by the two
equations:

A (w(l)w(3)w(4)2 = 3w(2)*w(4)? + 2w(1)w(2)w(4)w(0) (62)

+ w(3)w(2)*w(0) — 3w(1)w(3)2w(0) + 2w(4)w(2)w(3)2)

|

4w(2)*w(4)? — dw(1)w(3)?w(0) + 3w(3)w(2)%w(0)
Bu(Lw(3)w(4)® + w(@)w(2)w(3)? + w(1)w(2)w(d)w(0) = 0

-+

and

A (—21.!}(3)21.1)(0)2 = 2w()w(2)w(4)? — w(d)w(3)?w(1) (63)

5Asa consequence of the implicit function theorem and the algebraicity of the solu-
tions of the star-triangle equations
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+ Bw(0)w(3)w(4)? + 3w(2)w(1)w(3)w(0) — w(2)w(0)2w(4))

— w)w(2w4)* + 2w(2)w(0)*w(4) - w(0)w(3)w(4)?
+ 2uw(@)w(3)?w(l) — w(3)*w(0)* — w(2)w(1l)w(3)w(0) =0

with A = 3(-1+ /5). The vectors X*, X", X%, X" are tangent to this
surface for A = 1(—1+ v/5).

The consequences of equation (59) on the commutation of transfer
matrices T; = Ty (i, w;) are the following: locally near the isotropic point
T; depends on (si,a;,5;,@;). The commutation of T} and T3 is obtained
by imposing relations (59). We first need 3, = —a s which allows three
parameters for Tj. At this point (59) fixes ap and @3 and the only free
parameter for T is 53, giving a one parameter family of commuting transfer
matrices.

The integrability surface is actually the locus of points where (IJ)E =
e [28, 56, 57, 58, 59, 60]. In general, we believe that the varieties corre-
sponding to finite dimensional orbits of the group I' are good candidates
for integrability [54].

In support of our inclination for finite orbits, we recall the asymmetric
eight-vertex model ((52) with e = f = g = h = 0) for which the free
fermion condition aa’ 4 bb' — ¢® — d* = 0 implies both the integrability and
the finiteness of the orbits of I' (hint: I and J reduce to linear permutations
up to signs). It is actually easy to find explicitly the subvarieties where I’
is of finite order [24]

When searching for isolated solutions of the Yang-Baxter equations,
the group I' can be used to get necessary conditions on the R-matrices.
From the equation RRR = RRR, we deduce an infinite set of other rela-
tions of the kind Rg(R)h(R) = h(R)g(R)R, where g and h belong to T,
leading to the commutation of the transfer matrices with periodic bound-
ary conditions Ty (R) and Ty (g(R)). Even for N =1and g = I, this leads
to non-trivial necessary conditions. For the 16 vertex model (52), this gives
one quartic condition with 72 terms.

7.3 Three-dimensional models

Our strategy for finding solutions of the tetrahedron equations is to seek
for patterns of the Boltzmann weights of the three dimensional vertex com-
patible with the symmetry group T's. By this we mean that its form should
be preserved by I's.
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7.3.1 A first model

We will therefore consider a simple model where i, j, k, [, m and n take
only two values +1 and —1. The matrix (38) is an 8 x 8 matrix. We will
require that its pattern is invariant under the inverse I [47] and the various
partial transpositions t,, t,, and t;. We aim at having a generalization of
the Baxter eight-vertex model and we impose the following restrictions:

H?(Zl,j, k,l,m,n) = w("i! _j|~k| _Iy_ml_n’)| (64)
w(i,j,k,,mmn) = 0 if ijklmn=—1. (65)

These constraints amount to saying that the 8 x 8 matrix splits into two
times the same 4 x4 matrix. It is further possible to impose that this matrix
is symmetric since, in this case, t,R (and any other partial transpose) is
also symmetric. Let us introduce the following notations for the entries of
the 4 x 4 block of the R matrix

e d do dj
d1 bl C3 Ca
d2 C3 bg (3]
d3 ¢ ¢ by

(66)

The four rows and columns of this matrix correspond to the states (+,+,+),
(+,==) (—,+,-) and (-, —,+) for the triplets (i, 4, k) or (I,m,n). The
R-matrix can be completed by spin reversal, according to the rule (64). tg
simply exchanges ¢z with dy and c3 with ds, t,, and £ can be similarly
defined and I acts as the inversion of this 4 x 4 matrix.

For this three dimensional model, the coefficients of the characteristic
polynomial of the 4 x 4 matrix (66) give a good hint for invariants under
I'3. They are

O'gad) = a+by + by + b3, (67)

Ugsd) = ﬂ(bl + by + ba) + bibg + babs + baby (68)
(+cd+d+di+d2+d2),....

Since aéad} is invariant by t,, t,, amd ¢4 and takes a simple factor (the

inverse of the determinant) under the action of I , the variety agad) =01is

invariant under I's. Given the hugeness of the group I'z, it is already an
astonishing fact to have such a covariant expression. In fact we can exhibit
five linearly independent polynomials with the same covariance, which give
four invariants, as follows:

Gbl + b2b3 = cf — d%, 62d2 = C_'jd.’i, (69)

and the ones deduced by permutations of 1, 2 and 3. They form a five
dimensional space of polynomials. Any ratio of the five independant poly-
nomials is invariant under all the four generating involutions. In other




Symmetry Group for the Yang-Baxter Equation 299

Figure 2.




M. Bellon, J.-M. Maillard and C. Viallet

300

o Yo

it

SIS LTI 400 1 s g

PR

-~ S

Ly \%\%.u\\\.\%\,.&..:_.:z mﬁ.ﬁ. T
4, ol P IS
s \@\\\Q\k:\ﬁ\\wm&e‘t\t. i
Wrend i/ & W AN

...ﬁmasu\uns \ﬁ“\n\t\\\.: rirs _\}A\.&,_A-_M.\\hst\w«%\ﬁ 5

TR 113 AR Y Pt

Figure 3.



Symmetry Group for the Yang-Baxter Equation 301

ey

Figure 4.




302 M. Bellon, J.-M. Maillard and C. Viallet

words CPy is foliated by five dimensional algebraic varieties invariant un-
der I';.

To have some flavour of the possible (integrable ?) algebraic varieties
invariant under Iy, we study its orbits [24, 50]. We start with the study
of the subgroup generated by some infinite order element namely I.J. This
element gives a special role to axis 1. The transformation I.J does preserve
the symmetry under the exchange of 2 and 3. If the initial point is symmet-
ric under the exchange of 2 and 3, the orbit under 1.7 is thus a curve. Other
starting points lead to orbits lying on a two dimensional variety given by
the intersection of seven quadrics (see figure 2,3,4). However, what we are
interested in are the orbits of the whole I'y group. The size of this group
prevent us from studying exhaustively the full set of group elements of a
given length even for quite small values of this length. We have neverthe-
less explored the group by a random construction of typical elements of
increasingly large length [30]. This confirms that we generically only have
the four invariants described previously.

7.3.2 A second model

We also consider a simple model where i, j, k, |, m and n take only two
values +1 and —1 and which is also a generalization of the Baxter eight
vertex model. The Boltzmann weights w(i, j, k, 1, m, n) are given by:

w(i,j, k,l,m,n) = f(i,5,k) 6 6%, 6% + g(i, 5, k) 6, 67, 6* (70)

—m “—n

f(i!j! k) = f(_is _jw _k) and Q(I,Ja k) = g(_’-':, _j! _'k) (71)
Equations (71) are symmetry conditions reducing the numbers of homoge-

neous parameters from 16 to 8.

As for the previous model, there exists an invariant of the action of the
whole group I';:

f{+v +, +)f(+a ) _)f(—: +, ")f(_l T +)
g(+v +, +)g(+\ ™ _)9(_v + _)g(_| T ‘+)

(72)

Considering the subgroup of I'y generated by the infinite order element
IJ, one can easily find other invariants, namely

f(+1 +, +)f(+| T _)
a(+.+ H)g(+,-,-)

(73)
and
[l 1)+ 4 = =) — g+, )2 = g+, =, )2
g{++ +g(+,—, -)

(74)

For this model [61], the trajectories under I.J are curves in CP;.
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8. Conclusion

An important problem in statistical mechanics and field theory, is the
understanding of the role of the dimension of the lattice on both the alge-
braic aspects and the topological aspects. All this touches various fields of
mathematics and physics: algebraic geometry, algebraic topology, quantum
algebra. Indeed the Coxeter groups we use are at the same time groups of
automorphisms of algebraic varieties, symmetries of quantum Yang-Baxter
equations (and their higher dimensional avatars). They also provide an
extension to several complez variables functions of the notion of the fun-
damental group II; of a Riemann surface, with of course a much more
involved covering structure (33, 50].

We believe moreover that the space of parameters seen as a projective
space is the appropriate place to look at, if one wants to substantiate the
deep topological notion embodied in the notion of Z-invariance [16] and
free the models from the details of the lattice shape.

Actually, we have exhibited an infinite discrete symmetry group for the
Yang-Baxter equations and their higher dimensional generalization acting

on this parameter space. This group is the Coxeter group A(zl) (semi-direct
product of Z x Z by some finite group). We have shown that this symmetry
is responsible for the presence of the spectral parameter. In other words,
the discrete symmetry gives rise to a continuous one (see [54]). A similar
study for the generalized star-triangle relation of the Interaction aRound a
Face model, sketched in [35], can be performed rigorously along the same
lines, leading to the same result. Also note that the same groups generated
by involutions appear in the study of semi-classical r-matrices [53]. An
interesting point will be to exhibit the action of our symmetry group on
the underlying quantum group for the Yang-Baxter equations [52].

Our symmetry group is a group of automorphisms of the integrability
varieties. This should give precious informations on these varieties. In
particular one should decide if, up to Lie groups factors (which cannot
be excluded because of the existence of “gauge” symmetries, weak graph
duality [62], ... ), these varieties can be anything else than abelian varieties,
or even product of curves: can they be for example K3 surfaces, are they
homological obstructions to the occurence of anything but curves ?

For three-dimensional vertex models, the symmetry group, though gen-
eralizing very naturally the previous group (generated by four involutions
with similar relations) is drastically different: it is so “large”® that the
chances are quite small that it leaves enough room for any invariant inte-
grability varieties. It is not useless to recall the unique non-trivial known so-
lution of the tetrahedron equations (Zamolodchikov’s solution) [19, 18, 21].

60ne should keep in mind that very “large” sets of rational transformations may
preserve algebraic curve of genus zero or one. Just think of the transformations on the
circle generated by {# — 6+ A, 6 — 24, 6 — 30} [63]
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For this model the three axes are not on the same footing, so that we do not
have a “true” three dimensional symmetry for the model (two-dimensional
checkerboard models coupled together). Is there still any hope for a three-
dimensional exactly solvable model with genuine three-dimensional sym-
metry? We think that the group of symmetries we have described gives
the best line of attack to this problem. We will show that I'; and even
more Autz are generically too “large” to allow any non-trivial solution of
the tetrahedron equations with genuine three dimensional symmetry [64].

Acknowledgments: We would like to thank J. Avan, O. Babelon,
and M. Talon, for very stimulating discussions and comments.

L’un de nous (JMM), désire rendre hommage ¢ la mémoire de Jean-
Louis Verdier. Il y a plus de diz ans de cela, travailler sur les modéles
intégrables était plutot mal vu dans la communauté de la physique théorique
frangaise. Alors que je travaillais avec M.-T. Jaekel, Jean-Louis Verdier
nous consacra une aprés-midi de discussion chaque semaine et ce, durant
des années. Nous discutions d’équation de Yang-Bazter, de ses avatars
(groupes de tresses, algébre de Hecke, relations d’entrelacement, ... ), de
relations tetraédre, de relations d’inverse, de modéle de Potts, toujours
dans un esprit de géométrie algébrique.

J'ai un merveilleur souvenir de ces discussions: il y avait de part et
d’autre un réel effort pour communiquer et pour montrer & ’autre, au dela
des considérations adventices qui trop souvent encombrent, l'idée la plus
intrinséque, le concept, la structure qui font réellement marcher les choses.
1y avait le dialogue profond et honnéte de gens qui ont compris que derriére
ces idées se trouve quelque chose de passionnant. Je peuz témoigner de la
patience, de la générosité, du désintéressement de Jean-Louis Verdier: tout
ce temps consacré d deut jeunes chercheurs plutét marginaux ne servait en
Tien 4 sa carTiére.

A Uheure ou Uintégrabilité recoit une reconnaissance institutionnelle a
travers trois médailles Fields, mais ot les phénomeénes de mode tendent &
remplacer les idées par des campagnes d’influence et le savoir-faire par le
faire-savoir, d cette heure je tiens & dire que Jean-Louis Verdier me manque
profondément.

Appendix: Symmetry group of the star-triangle relation

The three involutions generating the symmetry group of the star-triangle
relations read:

Ki = RoRglaJuPawpPagp, Ki=1 (1)
Ka = RgRulpJuPsuPag, Ki=1 (2)
Ks = RaRolaliaPagePay, Ki=1 (3)
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If o is the cyclic permutation, ¢ = ¢,0¢ with o, = Py, 5o P, 5, 80d 0p =
Py, 1o Piy 1, the involutions KC; are related by

K:z = 62K1G', na = JEK:‘ZO' (4)

This symmetry group contains an action of I.J . It may be obtained
by successively operating with the previous involutions: first act with Ky,
then with K3, then operate with K, and finally with K;. This sequence of
operations, when used on relations (st1.1), yields:

—  JI) (1Jst1.1)

This sequence of transformations amounts to acting with the product
G = 0K1K2K3Ky = R Rz R Riea(J a1 (17)s2(1)e1 (J D)2 (5)
We may define similarly
Gy = 0G30° = ReaRaRuaRa(JDsa(I0)a(IT)es(I)u (6)
Gi = 0G20® = RaaRaRuaRe(I1)sa(JDs2(J)ea(I)a (7)
We have the relations:
G1G2G3 =1 (8)
G,'Gj = GJ'G,' VI,] = 1, 2, 3. [9)

The symmetry group Aut is the semi-direct product of the Weyl group
of an A (finite dimensional simple of rank 2) Lie algebra by a bidimensional
lattice translation group Z x Z.
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