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Abstract.

We show that the n-fold integrals χ(n) of the magnetic susceptibility of
the Ising model, as well as various other n-fold integrals of the “Ising class”,
or n-fold integrals from enumerative combinatorics, like lattice Green functions,
are actually diagonals of rational functions. As a consequence, the power
series expansions of these solutions of linear differential equations “Derived From
Geometry” are globally bounded, which means that, after just one rescaling of
the expansion variable, they can be cast into series expansions with integer
coefficients. Besides, in a more enumerative combinatorics context, we show that
generating functions whose coefficients are expressed in terms of nested sums
of products of binomial terms can also be shown to be diagonals of rational
functions. We give a large set of results illustrating the fact that the unique
analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is,
almost always, diagonal of rational functions. We revisit Christol’s conjecture
that globally bounded series of G-operators are necessarily diagonals of rational
functions. We provide a large set of examples of globally bounded series, or series
with integer coefficients, associated with modular forms, or Hadamard product of
modular forms, or associated with Calabi-Yau ODEs, underlying the concept of
modularity. We finally address the question of the relations between the notion of
integrality (series with integer coefficients, or, more generally, globally bounded
series) and the modularity (in particular integrality of the Taylor coefficients of
mirror map), introducing new representations of Yukawa couplings.
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operators, differential equations Derived From Geometry, elliptic curves, elliptic
integrals, nome, Hauptmoduls, modular forms, Calabi-Yau ODEs, modularity,
modular polynomial, modular equation, modularity conjecture, mirror maps, Yukawa
coupling, Schwarzian derivatives, lattice Green functions, MUM linear ODEs, Picard-
Fuchs systems, Gauss-Manin connections, embedded resolution of singularities, Mahler
measures.
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1. Introduction

The series expansions of many magnetic susceptibilities (or many other quantities,
like the spontaneous magnetisation) of the Ising model on various lattices in arbitrary
dimensions are actually series with integer coefficients [1, 2, 3]. This is a consequence
of the fact that, in a van der Waerden type expansion of the susceptibility, all
the contributing graphs are the ones with exactly two odd-degree vertices and the
number of such graphs is an integer. When series expansions in theoretical physics,
or mathematical physics, do not have such an obvious counting interpretation, the
puzzling emergence of series with integer coefficients is a strong indication that some
fundamental structure, symmetry, concept have been overlooked, and that a deeper
understanding of the problem remains to be discovered‡. Algebraic functions are
known to produce series with integer coefficients. Eisenstein’s theorem [6, 7] states
that the Taylor series of a (branch of an) algebraic function can be recast into a
series with integer coefficients, up to a rescaling by a constant (Eisenstein constant).
An intriguing result due to Fatou [8] (see pp. 368–373) states that a power series
with integer coefficients and radius of convergence (at least) 1, is either rational,
or transcendental. This result also appears in Pólya and Szegö’s famous Aufgaben
book [9] (see Problem VIII-167). Pólya [10] conjectured a stronger result, namely
that a power series with integer coefficients which converges in the open unit disk is
either rational, or admits the unit circle as a natural boundary (i.e. it has no analytic
continuation beyond the unit disk). This was eventually proved¶ by Carlson [12, 13].
Along this natural boundary line, it is worth recalling [14, 15, 16, 17, 18] that the
series expansions of the full magnetic susceptibility of the 2D Ising model corresponds
to a power series with integer coefficients†. For them, a unit circle natural boundary
certainly arises [19] (with respect to the modulus variable k), but, unfortunately, this
cannot be justified by Carlson’s theorem††.

A series with natural boundaries cannot be D-finite, i.e. solution of a linear
differential equation with polynomial coefficients [20, 21]♯. For simplicity, let us
restrict to series with integer coefficients (or series that have integer coefficients up
to a variable rescaling), that are series expansions of D-finite functions. Wu, McCoy,
Tracy and Barouch [25] have shown that the previous full magnetic susceptibility
of the 2D Ising model can be expressed (up to a normalisation factor (1 − s)1/4/s,
see [16, 26]) as an infinite sum of n-fold integrals, denoted by χ̃(n), which are actually

‡ The emergence of positive integer coefficients corresponds to the existence of some underlying
measure [4] (see also the concept of Mahler measures [5]).
¶ The Pólya-Carlson result can be used to prove that some integer sequences, such as the sequence
of prime numbers (pn) [11], do not satisfy any linear recurrence relation with polynomial coefficients.
† In some variable w [15, 14, 16, 17]. In the modulus variable k, one needs to perform a simple
rescaling by a factor 2 or 4 according to the type of (high, or low temperature) expansions.
††The radius of convergence is 1 with respect to the modulus variable k, in which the series does not
have integer coefficients, being globally bounded only (this means that it can be recast into a series
with integer coefficients by one rescaling of the variable k). If one considers the series expansion with
respect to another variable (such as w) in which the series does have integer coefficients, then the
radius of convergence is not 1.
♯ D-finite series are sometimes called holonomic. A priori, these notions differ: a function
f(x1, . . . , xr) is called D-finite if all its partial derivatives Dn1

1 · · ·Dnr
r ·f generate a finite dimensional

space over Q(x1, . . . , xr), and holonomic if the functions xα1
1 · · · xαr

r Dβ1
1 · · · Dβr

r · f obtained by
multiplying monomials in the variables and higher-order derivatives of f subject to the constraint
α1 + · · · +αr +β1 +· · · +βr ≤ N span a vector space whose dimension over Q grows like O(Nr). The
equivalence of these notions is proved by profound results of Bernštĕın [22] and Kashiwara [23, 24].
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D-finite♯. We found out that the corresponding (minimal order) differential operators
are Fuchsian [14, 16], and, in fact, “special” Fuchsian operators: the critical exponents
for all their singularities are rational numbers, and their Wronskians are N -th roots
of rational functions [27]. Furthermore, it has been shown later that these χ̃(n)’s are,
in fact, solutions of globally nilpotent operators [28], or G-operators [29, 30]. It is
worth noting that the series expansions, at the origin, of the χ̃(n)’s, in a well-suited
variable [16, 26] w, actually have integer coefficients, even if this result does not have
an immediate proof† for all integers n (in contrast with the full susceptibility).

From the first truncated series expansions of χ̃(n), the coefficients for generic n
can be inferred [28]

χ̃(n)(w) = 2n · wn2 ·
(
1 + 4n2 · w2 + 2 · (4n4 + 13n2 + 1) · w4

+
8

3
· (n2 + 4) (4n4 + 23n2 + 3) · w6 (1)

+
1

3
· (32n8 + 624n6 + 4006n4 + 8643n2 + 1404) · w8

+
4

15
· (n2 + 8) · (32n8 + 784n6 + 6238n4 + 16271n2 + 3180) · w10 + · · ·

)
.

Note that the coefficients of the expansion of χ̃(n)(w)/2n depend on n2. Note
that these coefficients are integer coefficients when n is any integer, this integrality
property [31] of the coefficients becoming straightforward to see when one remarks
that (4n4 + 23n2 + 3) and (32n8 + 624n6 + 4006n4 + 8643n2 + 1404) are of the
form n · (n2 − 1) f(n) + 3 g(n) (respectively f(n) = 4n and g(n) = 9n2 + 1, and
f(n) = 2n · (16n4 + 328n2 + 2331) and g(n) = 4435n2 + 468), and, hence, are
always divisible by 3, that (32n8 + 784n6 + 6238n4 + 16271n2 + 3180) is of the
form n · (n2 − 1) (n2 − 4) · f(n) + 3 · 5 · g(n), with f(n) = 16n · (2n2 + 59) and
g(n) = 722n4 + 833n2 + 212, hence, always divisible by 3 and 5.

These coefficients are valid up to w2 for n ≥ 3, w4 for n ≥ 5, w6 for n ≥ 7,
w8 for n ≥ 9, and w10 for n ≥ 11 (in particular it should be noted that χ̃(n) is an even
function of w only for even n). Further studies on these χ̃(n)’s showed the fundamental
role played by the theory of elliptic functions¶ (elliptic integrals, modular forms) and,
much more unexpectedly, Calabi-Yau ODEs [32, 33]. These recent structure results
thus suggest to see the occurrence of series with integer coefficients as a consequence of
modularity [34] (modular forms, mirror maps [32, 33, 34, 35], etc) in the Ising model.

Along this line, many other examples of series with integer coefficients emerged
in mathematical physics (differential geometry, lattice statistical physics, enumerative
combinatorics, replicable functions♯ . . . ). One must, of course, also recall Apéry’s
results [44]. We give, in Appendix A, a list of modular forms, and their associated
series with integer coefficients, corresponding to various lattice Green functions [45,

♯ For Ising models on higher dimensional lattices [1, 2, 3] no such decomposition of susceptibilities,
as an infinite sum of D-finite functions, should be expected at first sight.
† We are interested in this paper in the emergence of integers as coefficients of D-finite series. In
general, this emergence is not obvious: it cannot be simply explained at the level of the linear
recurrence satisfied by the coefficients, as illustrated by the case of Apéry’s calculations (see also
Appendix G below).
¶ Which is not a surprise for Yang-Baxter integrability specialists.
♯ The concept of replicable functions [36] is closely related to modular functions [37, 38], (see
the replicability of Hauptmoduls [38]), Calabi-Yau threefolds, and more generally the concept of
modularity [34, 39, 40, 41, 42, 43] (the third étale cohomology of a rigid Calabi-Yau threefold comes
from a modular form of weight 4, ...).
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46, 47, 48].This integrality is also seen in the nome and in other quantities like the
Yukawa coupling [32].

We restrict to series with integer coefficients, or, more generally, globally
bounded [49] series of one complex variable, but it is clear that this integrality property
does also occur in physics with several complex variables: they can, for instance,
be seen for the previous (D-finite§) n-fold integrals χ̃(n) for the anisotropic Ising
model [50] (or for the Ising model on the checkerboard lattice), or on the example of
the lattice Ising models with a magnetic field‡ (see for instance, Bessis et al. [4]).

One purpose of this paper is to “disentangle” the notion of series with integer
coefficients (integrality) and the notion of modularity [34, 39, 40, 41, 42, 43]. In
this down-to-earth paper we will use the wording of “modularity”, not to refer to
the modularity conjecture and other Serre’s results that certain Geometric Galois
representations are modular, but as a quick proxy word to say that a series solution of
a linear differential operator as well as the nome, and hopefully other series (Yukawa
coupling, ...) are all series with integer coefficients.

We will show that the χ̃(n)’s are globally bounded series, as a consequence of the
fact that they actually are diagonals of rational functions for any value of the integer
n. We will generalise these ideas, and show that an extremely large class of problems
of mathematical physics can be interpreted in terms of diagonal of rational functions:
n-fold integrals with algebraic integrand of a certain type that we will characterise,
Calabi-Yau ODEs, MUM linear ODEs [52], series whose coefficients are nested sums
of binomials, etc. We take, here, a learn-by-example approach: on such questions one
gets a much deeper understanding from highly non-trivial examples than from general
mathematical demonstrations [53, 54].

2. Series integrality

2.1. Globally bounded series

Let us recall the definition of being globally bounded [49] for a series. Consider a series
expansion with rational coefficients, with non-zero radius of convergence†. The series
is said to be globally bounded if there exists an integer N such that the series can be
recast into a series with integer coefficients with just one rescaling x → N x.

A necessary condition for being globally bounded is that only a finite number
of primes occurs for the factors of the denominators of the rational number series
coefficients. There is also a condition on the growth of these denominators, that must
be bounded exponentially [49], in such a way that the series has a non-zero p-adic
radius of convergence for all primes p.

When this is the case, it is easy to see that these series can be recast, with just
one rescaling, into series with integer coefficients¶.

It will be seen, in a forthcoming section (see (3) below), that the series expansion
of diagonals of rational functions [55, 56, 57] are necessarily globally bounded.

§ For several complex variables the ODEs of the paper are replaced by Picard-Fuchs systems.
‡ Along this line original alternative representations of the partition function of the Ising model in a
magnetic field are also worth recalling [51].
† A series like the Euler-series

∑∞
n=0 n! · xn which has integer coefficients is excluded.

¶ For a first set of series with integer coefficients, see Appendix A, where a set of such series with
integer coefficients corresponding to modular forms is displayed.
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2.2. Globally logarithmically bounded series

There is another notion, weaker than being globally bounded, namely the notion of
being globally logarithmically§ bounded.

As an example consider the series expansion of 2F1([1/4, 1/2], [5/4], 4 x). This
series is not globally bounded

2F1

([
1

4
,
1

2

]
,

[
5

4

]
, 4 x

)
= 1 +

2

5
x +

2

3
x2 +

20

13
x3 +

70

17
x4 + 12 x5

+
924

25
x6 +

3432

29
x7 + 390 x8 +

48620

37
x9 + · · · (2)

When looking at the denominators of the series coefficients, one finds that almost all
primes of the form 4 ℓ + 1 occur. There is no way to recast this series into a series
with integer coefficients with one rescaling.

Let us denote θ = x· d/dx. The hypergeometric function 2F1([1/4, 1/2], [5/4], x)
is solution of the operator

ω = θ ·
(
θ +

1

4

)
− x ·

(
θ +

1

4

)
·
(
θ +

1

2

)
, (3)

which clearly factors† 4 θ + 1 at the right:(
2 θ − x · (2 θ + 1)

)
· (4 θ + 1). (4)

Consequently, the action of 4 θ + 1 on 2F1([1/4, 1/2], [5/4], x) becomes the solution of
the order-one globally nilpotent operator 2 θ −x · (2 θ + 1), and is, thus, an algebraic
function (rational or N -th root of rational), namely (1− x)−1/2. The hypergeometric
function 2F1([1/4, 1/2], [5/4], x) is not globally bounded. We will see below that,
consequently, it cannot be the diagonal of a rational function, however it is not a
“wild” series, the denominators do not grow “too fast”: it is actually such that a
simple order-one operator, namely 4 θ + 1, acting on this series, changes it into a
diagonal of rational function. Other examples of globally logarithmically bounded
hypergeometric series are given in Appendix B.

3. Minimal recalls on diagonals of rational functions

Let us recall here the concept of diagonal of a “function”¶, and some of its most
important properties.

3.1. Definition of the diagonal of a rational function

Assume that F(z1, . . . , zn) = P (z1, . . . , zn)/Q(z1, . . . , zn) is a rational function,
where P and Q are polynomials with rational coefficients such that Q(0, . . . , 0) 6= 0.
This assumption implies that F can be expanded as a Taylor series at the origin

F
(
z1, z2, . . . , zn

)
= (5)

∞∑

m1 =0

∞∑

m2 =0

· · ·
∞∑

mn =0

Fm1,m2, ...,mn
· zm1

1 zm2

2 · · · zmn

n ∈ Q[[z1, . . . , zn]].

§ For a series
∑

an xn being “bounded” means bounded by 1, p-adically: |an|p ≤ 1 , i.e. an has
no p factor at the denominator.) Being logarithmically bounded means ”with logarithmic grows”,
i.e. |an|p ≤ n.
† This result can, of course, straightforwardly be generalised to 2F1([a, b], [1 + a], x).
¶ This is an abuse of language: the “functions” are in fact defined by series of several complex
variables: they have to be analytical (no Puiseux series).
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The diagonal of F is defined as the series of one variable

Diag
(
F
(
z1, z2, . . . , zn

))
=

∞∑

m=0

Fm,m, ...,m · zm ∈ Q[[z]]. (6)

More generally, one can define, in a similar way, the diagonal of any multivariate
power series F ∈ K[[z1, . . . , zn]], with coefficients in an arbitrary field K (possibly of
positive characteristic)‡.

3.2. Main properties of diagonals

The concept of diagonal of a function has a lot of interesting properties (see for
instance [59]). Let us recall, through examples, some of the most important ones.

The study of diagonals goes back, at least, to Pólya [60], in a combinatorial
context, and to Cameron and Martin [61] in an analytical context related to Hadamard
products [62]. Pólya showed that the diagonal of a rational function in two variables
is always an algebraic function. The most basic example is F = 1/(1 − z1 − z2), for
which

Diag(F) = Diag

(
∞∑

m1=0

∞∑

m2=0

(
m1 +m2

m1

)
· zm1

1 zm2

2

)

=

∞∑

m=0

(
2m

m

)
· zm =

1√
1− 4z

. (7)

The proof of Pólya’s result is based on the simple observation that the diagonal
Diag(F) is equal to the coefficient of z01 in the expansion of F(z1, z/z1). Therefore,
by Cauchy’s integral theorem, Diag(F) is given by the contour integral

Diag(F) = [z−1
1 ]F(z1, z/z1)/z1 =

1

2πi

∮

γ

F(z1, z/z1)
dz1
z1

, (8)

where [zn1 ] means† extracting the n-th coefficient of a power series, and where the
contour γ is a small circle around the origin. Therefore, by Cauchy’s residue theorem,
Diag(F) is the sum of the residues of the rational function G = F(z1, z/z1)/z1 at all
its singularities s(z) with zero limit at z = 0. Since the residues of a rational function
of two variables are algebraic functions, Diag(F) is itself an algebraic function.

For instance, when F = 1/(1 − z1 − z2), then G = F(z1, z/z1)/z1 has two
poles at s = 1

2 (1 ±
√
1− 4z). The only one approaching zero when z → 0 is

s0 = 1
2 (1 −

√
1− 4z). If p(s)/q(s) has a simple pole at s0, then its residue at s0 is

p(s0)/q
′(s0). Therefore

Diag(F) =
1

2πi

∮

γ

dz1
z1 − z21 − z

= Ress0
dz1

z1 − z21 − z
=

1

1− 2s0
=

1√
1− 4z

. (9)

When passing from two to more variables, diagonalisation may still be interpreted
using contour integration of a multiple complex integral over a so-called vanishing

‡ The definition even extends to multivariate Laurent power series, see e.g. [58].
† This is a convenient notation, very often used in combinatorics [63].



Diagonals of rational functions 8

cycle [64]. However, the result is not an algebraic function anymore. A simple example
is F = 1/(1− z2 − z3 − z1z2 − z1z3), for which

Diag(F) = 1 + 4z + 36z2 + 400z3 + 4900z4 + 63504z5 + 853776z6

+ 11778624z7 + · · · (10)

is equal to the complete elliptic integral of the first kind

Diag(F) =
∑

m≥0

(
2m

m

)2

· zm

=
2

π
·
∫ π/2

0

dϑ√
1− 16z sin2(ϑ)

= 2F1

(
[
1

2
,
1

2
], [1], 16 z

)
, (11)

which is a transcendental function.
Less obvious examples (see [65]) are

Diag

(
1

1− z1 − z2 − z3 − z1z2 − z2z3 − z3z1 − z1z2z3

)
(12)

=
1

1 − z
· 2F1

(
[
1

3
,
2

3
], [1],

54 z

(1 − z)3
,
)
,

and

Diag

(
(1− z1)(1 − z2)(1− z3)

1 − 2 (z1 + z2 + z3) + 3 (z1z2 + z2z3 + z3z1) − 4 z1z2z3

)
(13)

= 1 + 6 ·
∫ z

0
2F1

(
[
1

3
,
2

3
], [2],

27w · (2 − 3w)

(1 − 4w)3

)
· dw

(1 − 4w) (1 − 64w)
.

It was shown by Christol [66, 67, 68] that the diagonal Diag(F) of any rational
function F is D-finite, in the sense that it satisfies a linear differential equation with
polynomial coefficients¶. Moreover, the diagonal of any algebraic power series in
Q[[z1, . . . , zn]] is a G-function coming from geometry, i.e. it satisfies the Picard-Fuchs
type differential equation associated with some one-parameter family of algebraic
varieties. Diagonals of algebraic power series thus appear to be a distinguished class of
G-functions♯. It will be seen below (see (3.5)) that algebraic functions with n variables
can be seen as diagonals of rational functions with 2n variables. Thus diagonals of
rational functions also appear to be a distinguished class of G-functions. It is worth
noting that this distinguished class is stable by the Hadamard product: the Hadamard
product of two diagonals of rational functions is the diagonal of rational function.

An immediate, but important property of diagonals of rational functions in
Q[[z1, . . . , zn]] is that they are globally bounded, which means that they have integer
coefficients up to a simple change of variable z → N z, where N ∈ Z.

Furstenberg [69] showed that if K has positive characteristic, then the diagonal
of any rational power series in K[[z1, . . . , zn]] is algebraic. Deligne [64, 58] extended
this result to diagonals of algebraic functions. For instance, when F = 1/(1 − z2 −
z3 − z1z2 − z1z3), one gets modulo 3, modulo 5 and modulo 7 respectively

¶ A more general result was proved by Lipshitz [57]: the diagonal of any D-finite series is D-finite,
see also [56].
♯ Such diagonals are solutions of G-operators. They are functions that are always algebraic mod.
a prime p. They fill the gap between algebraic functions and G-series: they can be seen as
generalisations of algebraic functions.
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Diag(F) mod 3 = 1 + z + z3 + z4 + z9 + z10 + z12 + z13 + · · ·

=
1√

1 + z
mod 3,

Diag(F) mod 5 = 1 + 4 z + z2 + 4z5 + z6 + 4z7 + z10 + 4z11 + z12 + · · ·

=
1

4
√
1 − z + z2

mod 5,

Diag(F) mod 7 = 1 + 4 z + z2 + z3 + 4z7 + 2z8 + 4z9 + · · ·

=
1

6
√
1 + 4z + z2 + z3

mod 7.

More generally, for any prime p, one has

Diag(F) mod p = P (z)1/(1−p) mod p (14)

where the polynomial P (z) is nothing but [70, 71, 72]

P (z) = 2F1

(
[
1

2
,
1

2
], [1], 16 z

)1−p

mod p

=

(p−1)/2∑

n=0

(
p − 1/2

n

)2

· (16 z)n mod p. (15)

For instance, modulo 11, the polynomial (15) reads:

2F1

(
[
1

2
,
1

2
], [1], 16 z

)−10

mod 11 = 1 + 4 z + 3 z2 + 4 z3 + 5 z4 + z5 mod 11.

Interestingly enough, the polynomial modulo p

P
( λ

16

)
=

(p−1)/2∑

n=0

(
p − 1/2

n

)2

· λn, (16)

is [73, 74], up to a sign (−1)(p−1)/2, the Hasse invariant† of y2 = x · (1−x) · (λ−x).
Note, however, that the Furstensberg-Deligne result [69, 64], that we illustrate,

here, with F = 1/(1 − z2 − z3 − z1z2 − z1z3), goes far beyond the case of
hypergeometric functions for which simple closed formulae can be displayed.

3.3. Hadamard, and other products

Let us also recall the notion of Hadamard product [62, 75] of two series, that we will
denote by a star.

If f(x) =

∞∑

n=0

an · xn, g(x) =

∞∑

n=0

bn · xn, then:

f(x) ⋆ g(x) =
∞∑

n=0

an · bn · xn. (17)

† Note Igusa’s sentence “Hence the elliptic differential of the first kind has only one period, and that
is A(λ), up to an arbitrary differential constant. This version of Hasse invariant has not yet been
explicitly remarked.”
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The notion of diagonal of a function and the notion of Hadamard product are
obviously related:

Diag
(
f1(x1) · f2(x2) · · · fn(xn)

)
= f1(x) ⋆ f2(x) ⋆ · · · ⋆ fn(x). (18)

In other words, the diagonal of a product of functions with separate variables is equal
to the Hadamard product of these functions in a common variable. In particular,
the Hadamard product of n rational (or algebraic, or even D-finite) power series is
D-finite.

The Hadamard product of two series with integer coefficients is straightforwardly
a series with integer coefficients. Furthermore, the Hadamard product of two operators,
annihilating two series, defined as the (minimal order, monic) linear differential
operator annihilating the Hadamard product of these two series, is a product compatible
with a large number of structures and concepts that naturally occur in lattice statistical
mechanics. For instance, the Hadamard product of two globally nilpotent [28]
operators is also globally nilpotent.

Let us introduce another product, namely the Hurwitz (shuffle) product† of two
series which is defined as [77, 78, 76]:

HurwitzProd
(∑

n

αn · xn,
∑

n

βn · xn
)

=
∑

n

∑

m

(
n+m

n

)
· αn βm · xn+m.

A very simple example is, for instance,

HurwitzProd
( 1

1 − a · x,
1

1 − b · x
)

=
1

1 − (a + b) · x. (19)

Again, we have a remarkable compatibility property between the diagonal and the
Hurwitz product. The Hurwitz product of two series that are diagonals of two power
series A(x1, x2, . . . , xn) and B(y1, y2, . . . , ym) can itself be seen as the diagonal of
a power series [68], that is very close to the product of these two power series‡:

HurwitzProd
(
Diag(A(x1, x2, . . . , xn)), Diag(B(y1, y2, . . . , ym))

)
(20)

= Diag
(A(x1, x2, . . . , xn) · B(y1, y2, . . . , ym)

1 − t · x1 x2 · · · xn y1 y2 · · · ym

)
.

where t is an additional variable. In fact there exists an infinite number of products
that enjoy a similar property of compatibility with the diagonal. The most general
products of series compatible with the diagonal are, beyond the Hadamard and
Hurwitz products:

GeneralProd
(∑

n

αn · xn,
∑

n

βn · xn
)

=
∑

n

∑

m

p(n, m) · αn βm · xn+m,

where the p(n, m)’s are coefficients of any rational function of two variables R(x, y):

R(x, y) =
∑

n

∑

m

p(n, m) · xn ym. (21)

Special cases are Lamperti’s product [79, 76] and Trjitzinsky’s product [80].

† The Hurwitz product of two algebraic functions is not algebraic in general, e.g. the Hurwitz square
of (1 − 4z)−1/2 is equal to 2F1([1/2, 1/2], [1], 16z (1 − 4z)). However, the Hurwitz product of two
algebraic functions is actually an algebraic function modulo a prime p, cf. Prop. 8 in [76]. The
Hurwitz product of a rational and of an algebraic power series with coefficients in Q is algebraic, cf.
Prop. 3 & 7 of [76].
‡ Note a misprint in the second equation of page 68 of [68].
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3.4. Chiral Potts examples

Let us consider, for instance, the Hadamard cube of a simple algebraic function

3F2

([
1

3
,
1

3
,
1

3

]
, [1, 1] ; z

)
= Diag

(
(1 − x)−1/3 ⋆ (1 − y)−1/3 ⋆ (1 − z)−1/3

)

= 1F0([
1

3
], []; z) ⋆ 1F0([

1

3
], []; z) ⋆ 1F0([

1

3
], []; z)

= (1 − z)−1/3 ⋆ (1 − z)−1/3 ⋆ (1 − z)−1/3. (22)

It is globally bounded:

3F2

([
1

3
,
1

3
,
1

3

]
, [1, 1] ; 35 x

)
= 1 + 9 x + 648 x2 + 74088 x3 + 10418625 x4

+ 1648059777 x5 + 281268868608 x6 + 50621016116736x7 + · · ·
Other examples, related to the chiral Potts model and its associated Fermat

curves [59] are 2F1([1/2, N/3], [1], 36 t) and 2F1([1/2, N/5], [1], 100 t) which have
series expansions with integer coefficients, or, more generally:

3F2

([
t

N
,
q

N
,
s

N

]
, [1, 1] ; x

)
= (1 − x)−t/N ⋆ (1 − x)−q/N ⋆ (1 − x)−s/N .

3.5. Furstenberg’s result on algebraic functions

It was shown by Furstenberg [69] that any algebraic series in one variable can
be written as the diagonal of a rational function of two variables (however, this
representation is, by no means unique). For instance,

f =
x√
1− x

= x +
1

2
x2 +

3

8
x3 +

5

16
x4 +

35

128
x5 +

63

256
x6 + · · · (23)

is the diagonal of (2 x y − cx+ cy)/(x + y + 2) for any rational number c.
The basis of Furstenberg’s result is the fact that if f(x) is a power series without

constant term, and is a root of a polynomial P (x, y) such that Py(0, 0) 6= 0, then

f(x) = Diag

(
y2 · Py(xy, y)

P (xy, y)

)
where: Py =

∂P

∂y
. (24)

When Py(0, 0) = 0, this formula is not true anymore. For instance, it does not
apply to the algebraic function f = x/

√
1− x, annihilated by P = (x− 1) y2 + x2,

since the diagonal of y2 Py(xy, y)/P (xy, y) = 2y (xy − 1)/(x2 + xy − 1) is zero.
However, Furstenberg’s result still holds. A way of seeing this on our example is to
observe that g = f − x − 1

2x
2 is an algebraic series annihilated by a polynomial

Q such that Q(0, 0) = 0 and Qy(0, 0) 6= 0. This reasoning, which extends to the
general situation, yields the following rational function whose diagonal equals f :

x y · P(x, y)Q(x, y) where: (25)

P(x, y) = 16 x3y5 + 4 · (3x− 4) · x2y4 + 4 · (3 + x) · x2y3

+ (12x− 24 + x2) xy2 + 5 yx2 + 6 x − 16,

Q(x, y) = 8 x2y3 + 8 · (x− 1) · xy2 + 2 · (x+ 4) · xy + 6 x − 16.

When compared to (2 x y − cx+ cy)/(x + y +2), whose diagonal is also f , this shows
that Furstenberg’s proof does not necessarily produce the easiest rational function.
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Furstenberg’s result has been generalised to algebraic power series in an arbitrary
number of variables: any power series ¶ in Q[[x1, ..., xn]] algebraic over Q(x1, ..., xn)
is the diagonal of a rational function with 2n variables (see Denef and Lipshitz [81]).

4. Selected n-fold integrals are diagonals of rational functions

Among many multiple integrals that are important in various domains of mathematical
physics, let us consider the n-particle contribution to the magnetic susceptibility of
the Ising model which we denote χ̃(n)(w). They are given by (n − 1)-dimensional
integrals [14, 82]:

χ̃(n)(w) =
(2w)n

n!

( n−1∏

j=1

∫ 2π

0

dΦj

2π

)
· Y · 1 +X

1−X
· Xn−1 · G , (26)

where, defining Φ0 by
∑n−1

i=0 Φi = 0, we set

X =

n−1∏

i=0

xi, xi =
2w

Ai +
√
A2

i − 4w2
, Y =

n−1∏

i=0

yi, yi =
1√

A2
i − 4w2

,

G =
∏

0≤i<j≤n−1

2 − 2 cos (Φi − Φj)

(1 − xi xj)2
, where: Ai = 1 − 2w cos(Φi). (27)

The integrality property (1) had been checked [15] for the first χ̃(n) and inferred [28]
for generic n. We are going to prove it‡ for any integer n, showing a much fundamental
result, namely that all the (n−1)-fold integrals χ̃(n)’s are very special: they are actually
diagonals of rational functions.

4.1. χ̃(3)’s as a toy example

At first sight the χ̃(n)’s are involved transcendental holonomic functions. Could it be
possible that they correspond to the distinguished class [58] ofG-functions, generalising
algebraic functions, which have an interpretation as diagonals of multivariate algebraic
functions (and consequently diagonals of rational functions with twice more variables)?
If this is the case, then the series of the χ̃(n)’s must necessarily reduce modulo any
prime to an algebraic function (see (??)). The χ̃(1) and χ̃(2) contributions being too
degenerate (a rational function and a too simple elliptic function), let us consider the
first non-trivial case, namely χ̃(3). Its series expansion has already been displayed
in [14]. It reads χ̃(3)/8 = w9 · F (w) with:

F (w) = 1 + 36w2 + 4w3 + 884w13 + 196w5 + 18532w6 + 6084w7 + · · ·
Since we have obtained the exact ODE satisfied by χ̃(3) we can produce as many
coefficients as we want in its series expansion. Let us consider this series modulo the
prime p = 2. It now reads the lacunary series

F (w) mod 2 = 1 + w8 + w24 + w56 + w120 + w248 + w504 + w1016 + · · · ,
¶ In the one-variable case, Puiseux series could be considered but only after ramifying the variable.

‡ Actually we only prove global boundedness for the Taylor expansion χ̃(n)(w) =
∑

ak wk.
However, looking et the process more carefully, and, in particular, adding corresponding properties
on the set Tn below, one can find out that only powers of 2 appear in the denominators of the ak :
the rescaling factor (“Eisenstein constant”) is 2 or 4 according to the fact that one considers high or
low temperature series [15, 27], and that

∑
akw

k do converge for |w| < 1/4.
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solution of the functional equations on F (w) or, with z = w8, on G(z) =
1 + w8 · F (w)

F (w) = 1 + w8 · F (w2), G(z) = z + G(z2), (28)

where one recognises, with equation G(z) = z + G(z2), Furstenberg’s example [69]
of the simplest algebraic function in characteristic 2§. In fact H(w) = w9 F (w) is
solution of the quadratic equation:

H(w)2 + w · H(w) + w10 = 0 mod 2. (29)

The calculations are more involved modulo p = 3. Indeed, H(w) = χ̃(3)(w)/8
satisfies, modulo 3, the polynomial equation of degree nine

p9 · H(w)9 + w6 · p3 · H(w)3 + w10 · p1 · H(w)

+ w19 · p(1)0 · p
(2)
0 = 0, (30)

where:

p9 = (w + 1)3 (w2 + 1)18 (w − 1)24,

p3 = (w2 + 1)18 (1− w)15 (w4 − w2 − 1), p1 = (w2 + 1)20 (1− w)13,

p
(1)
0 = w6 + w5 + w4 − w2 − w + 1, (31)

p
(2)
0 = w37 − w36 + w35 − w33 + w31 − w30 + w28 + w27 + w24 − w23 + w22

− w21 − w18 − w16 + w14 − w12 − w11 − w10 + w7 − w5 − w3 − 1.

The calculations are even more involved modulo larger primes. The series for
χ̃(3) mod. 5 reads:

χ̃(3) = w9 + w11 + 4w12 + 4w13 + w14 + 2w15 + 4w16 + · · · (32)

The (minimal order) linear differential operator annihilating the χ̃(3) series mod. 5,
reads†:

(x+ 1) (x2 + x+ 1) (x+ 2) · x4 · D4
x + 2 x3 · (x3 + 2 x2 + 4 x+ 4) (x+ 4) · D3

x

+ x2 · (x4 + 3 x3 + 4) · D2
x + 4 · (x4 + 3) · x · Dx + 3 (33)

If one can easily get this linear differential operator, finding the minimal polynomial
of χ̃(3) modulo 5, generalising (29) or (30), such that P (χ̃(3)(w), w) = 0 mod. 5,
requires a very large number of coefficients. Since the series (32) starts with w9, it is
more convenient to consider the polynomial P̃ (κ, w), relating κ = χ̃(3)(w)/w9 and
w. This (minimal) polynomial‡ is a polynomial of degree 50 in κ, and degree 832 in
w, sum of 4058 monomials. This (minimal) polynomial of the form:

P̃ (κ, w) = P
(832)
50 (w) · κ50 + P

(652)
30 (w) · κ30 + P

(612)
26 (w) · κ26

+ P
(601)
25 (w) · κ25 + P

(472)
10 (w) · κ10 + P

(432)
6 (w) · κ6 + P

(421)
5 (w) · κ5

+ P
(392)
2 (w) · κ2 + P

(381)
1 (w) · κ + P

(369)
0 (w), (34)

where the P
(m)
n (w)’s are polynomials of degree m in w, and where the head

polynomial reads:

P
(832)
50 (w) = w382 · (w + 2)20 (w2 + 2w + 4)75 (w + 1)70 (w + 4)20

× (w2 + 3w + 4)75 (w4 + 4w3 + w + 1)10. (35)

§ Modulo the prime p = 2, the previous functional equation becomes G(z) = z + G(z)2.
† This operator is of zero 5-curvature [28].
‡ This polynomial has been checked with a series (32) of 380000 coefficients.
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This (minimal) polynomial is a factor of a much larger polynomial (in 1, κ, κ5,

κ52 , and κ53) of a more “p-adic nature”, which is of degree 125 in κ, sum of 3559
monomials, and of degree 1941 in w.

One can imagine, in a first step that the χ̃(3) series mod. any prime p are also
algebraic functions, and, in a second step, that χ̃(3) may be the diagonal of a rational
function. In fact we are going to show, in the next section, a stronger result: the
χ̃(n)’s are actually diagonals of rational functions, for any integer n.

4.2. The χ̃(n)’s are diagonals of rational functions

Let us, now, consider the general case where n is an arbitrary integer.
With the change of variable zi = exp(ιΦi) (where ι2 = −1), one clearly gets

n−1∏

i=0

zi = 1 ,
dzj
zj

= ι dΦj , (36)

2 cos(Φi) = zi +
1

zi
, 2 cos(Φi − Φj) =

zi
zj

+
zj
zi

,

and (26) becomes

χ̃(n)(w) =
(2w)n

n!

( n−1∏

j=1

1

2ιπ

∮

C

dzj
zj

)
· F (w, z1, . . . , zn−1) , (37)

where C is the path “turning once counterclockwise around the unit circle” and where
F is algebraic over Q(w, z1, . . . , zn−1) and reads:

F (w, z1, . . . , zn−1) = Y · Xn−1 · 1 + X

1 − X
· G. (38)

Now, let us suppose that F is analytic† at the origin, namely that it has a Taylor
expansion (5). Then applying (n− 1) times the residue formula, one finds

χ̃(n)(w) = Diag
((2 z1 · · · zn)n

n!
· F (z1 · · · zn−1zn, z1, . . . , zn−1)

)
. (39)

To check that this is actually true, we introduce an auxiliary set, namely Tn the subset
of Q[z1, . . . , zn−1, z

−1
1 , . . . , z−1

n ][[w]], consisting of series

f(w, z1, . . . , zn−1) =

∞∑

m=0

Pm · wm,

where Pm belongs to Q[z1, . . . , zn−1, z
−1
1 , . . . , z−1

n ] and is such that f̃(z1, · · · , zn)
belongs to Q[z1, ..., zn−1][[zn]] ⊂ Q[[z1, ..., zn]], where f̃ is defined by:

f̃(z1, · · · , zn) = f(z1 · · · zn, z1, · · · , zn−1) (40)

In other words, we ask the degree of Pm, in each of the z−1
i , to be at most m.

Then to prove that F̃ has a Taylor expansion, we only have to verify that F belongs

† One could consider Laurent, instead of Taylor, expansions, but this is a slight generalisation. The
rational function 1/(x+xy) would become allowed but rational functions like 1/(x+y) would remain
forbidden. For similar purposes, B. Adamczewski and J. P. Bell [58] recently used a generalised notion
of Laurent expansions in the several variables case due to Sathaye [83], see also [84] for various other
generalisations.
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to Tn. Checking this is a straightforward step-by-step computation on auxiliary
functions:

Ai = 1 − w · (zi +
1

zi
), for: 1 ≤ i ≤ n− 1,

Ai = 1 − w ·
( 1

z1 · · · zn−1
+ z1 · · · zn−1

)
, for: i = 0, (41)

Ãi = 1 − z1 · · · zi−1 · zi+1 zn · (z2i + 1), for: 1 ≤ i ≤ n− 1,

Ãi = 1 − zn ·
(
1 + z21 · · · z2n−1

)
, for: i = 0.

Hence Ai ∈ Tn. The set Tn being clearly a Q[w]-algebra, A2
i − 4w2 ∈ Tn. But

Tn is complete for the w-adic valuation. In particular, it is stable by the operations‡

f(w) −→ 1

1 + w · f(w) = 1 − w · f(w) + · · · , and: (42)

f(w) −→
√
1 + w · f(w) = 1 +

1

2
w · f(w) + · · · (43)

So to be sure that the inverse or the square root of some function in Tn is also in Tn
we have only to check that its first Taylor coefficient is actually 1:

A2
i − 4w2 = 1 − 2w · (zi +

1

zi
) + w2 · (zi −

1

zi
)2, (44)

hence
√
A2

i − 4w2 = 1 + · · · ∈ Tn,

yi =
1√

A2
i − 4w2

= 1 + · · · ∈ Tn, Y = 1 + · · · ∈ Tn,

xi =
2w

Ai +
√
A2

i − 4w2
= w + · · · ∈ Tn, xi xj = w2 + · · · ∈ Tn,

X = wn + · · · ∈ Tn,
1 +X

1−X
= 1 + · · · ∈ Tn,

G =
∏

0≤i<j≤n−1

(zi − zj)
2

(1 − xixj)2 · zi zj
=

∏

0≤i<j≤n−1

(zi − zj)
2

zi zj
+ · · · ∈ Tn.

From the definition of Φ0 which implies
∏n−1

i=0 zi = 1 we also have

∏

0≤i<j≤n−1

zizj =
( n−1∏

i=0

zi

)n−1

= 1, (45)

enabling to rewrite G in other ways.
Thus, F belongs to Tn and it makes sense to take its diagonal. As F is algebraic,

χ̃(n) is the diagonal of an algebraic function of n variables and, consequently, the
diagonal of a rational function of 2n variables.

We thus see that we can actually find explicitly the algebraic function such that
its diagonal is the n-fold integrals χ̃(n): it is nothing but the integrand of the n-fold
integral, up to trivial transformations, namely (38).

Remark : χ̃(n) is a solution of a linear differential equation, and has a radius
of convergence equal to 1/4 in w. Among the other solutions of this equation, there

‡ More generally it is stable by the operations f → (1 + w f)δ for δ ∈ Q.
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is the function obtained by changing the radical appearing in xi into its opposite. A
priori there are 2n ways to do this, hence 2n new solutions but, not all distinct. At
first sight, for these new solutions, the xi’s are no longer in Tn.

In fact, we find some quite interesting structure. Let us consider, for instance, the
case of χ̃(3). If one considers other choices of sign in front of the nested square roots
in the integrand, the series expansions of the corresponding n-fold integrals read:

w + 6w2 + 28w3 + 124w4 + 536w5 + 2280w6 + 9604w7 + 40164w8

+167066w9 + 692060w10 + 2857148w11 + · · ·
w2 + 6w3 + 30w4 + 140w5 + 628w6 + 2754w7 + 11890w8 + 50765w9

+214958w10 + 904286w11 + · · · (46)

These two series expansions (46) are solutions of the same order-seven operator [14]
L7 as χ̃(3).

We know that other forms (equivalent for integration purposes) of G exist
(see [85, 86, 87]). For these forms, other choices of sign in front of the nested square
roots give

S(+,−,+) = w + 6w2 + 28w3 + 126w4 + 552w5 + 2388w6 + 10192w7

+ 43238w8 + 181936w9 + 762836w10 + 3180800w11 + · · ·

S(+,+,−) = w − 2w2 − 20w3 − 110w4 − 552w5 − 2536w6 − 11428w7

− 49898w8 − 216016w9 − 920776w10 − 3905764w11 + · · ·

S(−,−,+) = w + 6w2 + 8w3 + 14w4 − 84w5 − 596w6 − 4004w7 − 19610w8

− 99148w9 − 447332w10 − 2068492w11 + · · ·
S(−,+,−) = w + 10w2 + 44w3 + 202w4 + 848w5 + 3672w6 + 15200w7

+ 64310w8 + 264424w9 + 1104872w10 + 4523656w11 + · · ·

S(+,−,−) = w2 + 3w3 + 13w4 + 47w5 + 189w6 + 707w7 + 2800w8

+ 10637w9 + 41865w10 + 160535w11 + · · ·

S(−,+,+) = w4 + 4w5 + 25w6 + 103w7 + 496w8 + 2042w9 + 9013w10

+ 36931w11 + · · ·
to be compared with χ̃(3) = S(+,+,+) = S(−,−,−). These alternative series
are not solutions of the order-seven operator [14] L7 annihilating χ̃(3), however,
some linear combination of these series are solutions of L7. For instance the
linear combination S(+,+,−)− S(−,+,+)− S(+,−,+), which is actually equal to
S(−,+,−) + 4S(+,−,−)− S(−,−,+), is solution of L7.

Another form of G (again equivalent for integration purposes) gives:

S̃(+,−,+) = w + 8w2 + 36w3 + 164w4 + 704w5 + 3041w6 + 12786w7

+ 54067w8 + 224864w9 + 939709w10 + 3881708w11 + · · ·

S̃(+,+,−) = w + 2w2 − 6w3 − 48w4 − 314w5 − 1555w6 − 7626w7

− 34461w8 − 155898w9 − 678199w10 − 2957648w11 + · · ·
S̃(−,+,+) = w2 + 3w3 + 14w4 + 51w5 + 214w6 + 810w7 + 3296w8

+ 12679w9 + 50878w10 + 197466w11 + · · ·
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Again, these other alternative series are not solutions of L7, but the linear combination
2 S̃(−,+,+) + S̃(+,−,+)− S̃(+,+,−) is solution of L7.

All these alternative series are, in fact, solution of a higher order linear differential
operator that L7 rightdivides.

One does remark that all these alternative series are, as χ̃(3), series with integer
coefficients.

4.3. More n-fold integrals of the Ising class and a simple integral of the Ising class

It is clear that the demonstration we have performed on the χ(n)’s can also be
performed straightforwardly, mutatis mutandis, with other n-fold integrals of the
“Ising class” like the n-fold integrals ΦH in [82], which amounts to getting rid of the

fermionic term G (see (41)), the χ
(n)
d ’s corresponding to n-fold integrals associated

with the diagonal† susceptibility [18, 33] (the magnetic field is located on a diagonal

of the square lattice), the Φ
(n)
D ’s in [17] which are simple integrals, and also for all the

lattice Green functions displayed in [48, 52], and the list is far from being exhaustive.

For instance, the simple integral Φ
(n)
D is the diagonal of the algebraic function:

2

n!
· (1− t2)−1/2 · Gn F

n−1
n

Gn F
n−1
n − (2w t)n

− 1

n!
, where: (47)

Fn = 1 − 2w + (1− 4w + 4w2 − 4w2 t2)1/2, (48)

Gn = 1 − 2w t · Tn−1

(1
t

)
+
((

1 − 2w t · Tn−1

(1
t

))2 − 4w2 · t2
)1/2

,

and where Tn−1(t) is the (n− 1)-th Chebyshev polynomial of the first kind. The way
we have obtained these Chebyshev results (47) is displayed in Appendix C.

The integral Φ
(n)
D (w) is the diagonal of an algebraic function of two variables,

and also the diagonal of a rational function of four variables, and this independently
of the actual value of n.

4.4. More general n-fold integrals as diagonals

More generally the demonstration we have performed on the χ̃(n)’s can be performed
for any n-fold integral that can be recast in the following form:

∫

C

∫

C

· · ·
∫

C

dz1
z1

dz2
z2
· · · dzn

zn
· A
(
x, z1, z2, · · · , zn

)
, (49)

where the subscript C denotes the unit circle, and where A denotes an algebraic
function of the n variables, which (this is the crucial ingredient), as a function of
several variables x and the zi’s, has an analytical expansion at (x, z1, z2, · · · zn) =
(0, 0, 0, · · · , 0):

A
(
x, z1, z2, · · · , zn

)
= (50)

∞∑

m=0

∞∑

m1 =0

∞∑

m2 =0

· · ·
∞∑

mn =0

Am,m1,m2, ··· ,mn
· zm1

1 zm2

2 · · · zmn

n · xm.

† Of course this “diagonal wording” should not be confused with the notion of diagonal of a function.
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Consequently, an extremely large set of n-fold integrals occurring in theoretical
physics (lattice statistical mechanics, enumerative combinatorics, number theory,
differential geometry, ...) can actually be seen to be diagonal of rational functions.
Consequently these n-fold integrals correspond to series expansions (in the variation
parameter x) that are globally bounded (can be written after one rescaling into series
with integer coefficients), and are solutions of globally nilpotent [28] linear differential
operators.

Such a general n-fold integral is, thus, the diagonal of an algebraic function (or
of a rational function with twice more variables [81]) which is essentially the integrand
of such n-fold integral. Furthermore, such a general n-fold integral is solution of a
(globally nilpotent) linear differential operator, that can be obtained exactly from the
integrand, using the creative telescoping method (see Appendix D).

Finally, in the case of Calabi-Yau ODEs (see below), these functions can
be interpreted as periods of Calabi-Yau varieties, these algebraic varieties being
essentially the integrand of such n-fold integrals. The integrand is thus the key
ingredient to wrap, in the same bag, algebraic geometry viewpoint, differential
geometry viewpoint and analytic and arithmetic approaches (series with integer
coefficients).

5. Calabi-Yau ODEs

Calabi-Yau ODEs have been defined in [88] as order-four linear differential ODEs
that satisfy the following conditions: they are maximal unipotent monodromy [89, 90]
(MUM), they satisfy a “Calabi-Yau condition” which amounts to imposing that the
exterior squares of these order-four operators are of order five (instead of the order
six one expects in the generic case), the series solution, analytic at x = 0, is globally
bounded (can be reduced to integer coefficients), the series of their nome and Yukawa
coupling are globally bounded‡. In the literature, one finds also a cyclotomic condition
on the monodromy at the point at ∞, x = ∞, and/or the conifold† character of one
of the singularities [92].

Let us recall that a linear ODE has MUM (maximal unipotent monodromy [32,
91]) if all the exponents at (for instance) x = 0 are zero.

In a hypergeometric framework the MUM condition amounts to restricting to
hypergeometric functions of the type n+1Fn([a1, a2, · · · an], [1, 1, · · · 1];x), since the
indicial exponents at x = 0 are the solutions of ρ (ρ + b1 − 1) · · · (ρ + bn − 1) =
ρn+1 = 0, where the bj are the lower parameters which are here all equal to 1.

Let us consider a MUM order-four linear differential operator. The four solutions
y0, y1, y2, y3 of this order-four linear differential operator read:

y0, y1 = y0 · ln(x) + ỹ1, y2 = y0 ·
ln(x)2

2
+ ỹ1 · ln(x) + ỹ2,

y3 = y0 ·
ln(x)3

6
+ ỹ1 ·

ln(x)2

2
+ ỹ2 · ln(x) + ỹ3,

where y0, ỹ1, ỹ2, ỹ3 are analytical at x = 0 (with also ỹ1(0) = ỹ2(0) = ỹ3(0) = 0).

‡ The instantons numbers are integers.
† The local exponents are 0, 1, 1, 2. For the cyclotomic condition on the monodromy at ∞ see
Proposition 3 in [91].
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The nome of this linear differential operator reads:

q(x) = exp
(y1
y0

)
= x · exp

( ỹ1
y0

)
. (51)

Calabi-Yau ODEs have been defined as being MUM, thus having one solution
analytical at x = 0. As far as Calabi-Yau ODEs are concerned, the fact that this
solution analytical at x = 0 has an integral representation, and, furthermore, an
integral representation of the form (49) together with (50), is far from clear, even if
one may have a “Geometry-prejudice” that this solution, analytical at x = 0, can be
interpreted as a “Period” and “Derived From Geometry” [29, 30, 93].

Large tables of Calabi-Yau ODEs have been obtained by Almkvist et al. [91,
94, 95]. It is worth noting that the coefficients An of the series corresponding to
the solution analytical at x = 0, are, most of the time, nested sums of product
of binomials, less frequently nested sums of product of binomials and of harmonic
numbers¶ Hn, and, in rare cases, no “closed formula” is known for these coefficients.

Let us show, in the case of An coefficients being nested sums of product of
binomials, that the solution of the Calabi-Yau ODE, analytical at x = 0, which is
by construction a series with integer coefficients, is actually a diagonal of rational
function, and furthermore, that this rational function can actually be easily built.

5.1. Calculating the rational function for nested product of binomials

For pedagogical reasons we will just consider, here, a very simple example§ of a series
S(x), with integer coefficients, given by a sum of product of binomials

S(x) =

∞∑

n=0

n∑

k=0

(
n

k

)3

· xn

= HeunG(−8,−2, 1, 1, 1, 1, 8 x) = HeunG(−1/8, 1/4, 1, 1, 1, 1, −x)
= 1 + 2 x + 10 x2 + 56 x3 + 346 x4 + 2252 x5 + 15184 x6 + 104960 x7

+ 739162 x8 + 5280932 x9 + 38165260 x10 + · · · (52)

This is the generating function of sequence A in Zagier’s tables of binomial coefficients
sums (see p. 354 in [96]).

The reader can easily get convinced that the calculations of this section can
straightforwardly (sometimes tediously) be generalised to more complicated [97] nested
sums of product of binomials†.

The diagonal of a rational function P/Q is written using Deligne’s trick

Diag
(P
Q

)
=

( 1

2 i π

)m
·
∫

C

P

Q
· dz1
z1
· dz2
z2
· · · dzm

zm
, (53)

where C a vanishing† cycle [98], which is, with everyday words, the n-variables residue
formula. Finding that a series is a diagonal of a rational function amounts to framing
it into a residue form like (49). In order to achieve this, we write the binomial

(
n
k

)
as

the residue (
n

k

)
=

1

2 i π
·
∫

C

(1 + z)n

zk
· dz
z
, (54)

¶ The generating function of Harmonic numbers is H(x) =
∑

Hn · xn = − ln(1 − x)/(1 − x).
§ See Proposition 7.3.2 in [90].
† Not necessarily corresponding to modular forms as can be seen on (81), (82).
† Cycle évanescent in french.
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and, thus, we can rewrite S(x) as
(2 i π)3 · S(x) =

=
∞∑

n=0

∫ ∫ ∫ n∑

k=0

1

(z1 z2 z3)k
·
(
(1 + z1) (1 + z2) (1 + z3) · x

)n
· dz1 dz2 dz3

z1 z2 z3

=

∫ ∫ ∫ ∞∑

n=0

1 −
(
1/(z1 z2 z3)

)(n+1)

1 −
(
1/(z1 z2 z3)

) ·
(
(1 + z1) (1 + z2) (1 + z3) · x

)n
· dz1 dz2 dz3

z1 z2 z3

= −
∫ ∫ ∫ ∞∑

n=0

z1 z2 z3
1 − z1 z2 z3

·
(
(1 + z1) (1 + z2) (1 + z3) · x

)n
· dz1 dz2 dz3

z1 z2 z3

+

∫ ∫ ∫ ∞∑

n=0

1

1 − z1 z2 z3
·
( (1 + z1) (1 + z2) (1 + z3) · x

z1 z2 z3

)n
· dz1 dz2 dz3

z1 z2 z3

=

∫ ∫ ∫
R(x; z1, z2, z3) ·

dz1 dz2 dz3
z1 z2 z3

, (55)

where R(x; z1, z2, z3) reads:

z1 z2 z3(
1 − x · (1 + z1)(1 + z2)(1 + z3)

) (
z1 z2 z3 − x · (1 + z1)(1 + z2)(1 + z3)

) .

From this last result one deduces immediately that (52) is actually the diagonal of:

1(
1 − z0 · (1 + z1)(1 + z2)(1 + z3)

)
·
(
1 − z0 z1 z2 z3 (1 + z1)(1 + z2)(1 + z3)

) .

Note that, as a consequence of a combinatorial identity due to Strehl and
Schmidt [99, 100, 101], S(x) can also be written as

S(x) =

∞∑

n=0

n∑

k=0

(
n

k

)2(
2 k

n

)
· xn =

∞∑

n=0

n∑

k=[n/2]−1

(
n

k

)2(
2 k

n

)
· xn. (56)

Calculations similar to (55) on this other binomial representation (56), enable to
express (52) as the diagonal of an alternative rational function:

1(
1 − z0 · (1 + z1)(1 + z2)(1 + z3)2

)
·
(
1 − z0 z1 z2 · (1 + z1)(1 + z2)

) . (57)

We thus see that we can actually get explicitly, from straightforward calculations,
the rational function (56) for the Calabi-Yau-like ODEs (occurring from differential
geometry or enumerative combinatorics) when series with nested sums of binomials
take place, and, more generally, for enumerative combinatorics problems (related or
not to Calabi-Yau manifolds) where series with nested sums of binomials take place.

Remark: These straightforward effective calculations guarantee to obtain an
explicit expression for the rational function (56), however the rational function is far
from being unique, and worse, the number of variables the rational function depends
on is far from being the smallest possible number. Finding the “minimal” rational
function (whatever the meaning of “minimal” may be) is a very difficult problem.
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Recalling the well-known Apéry series A(x), and its rewriting due to Strehl and
Schmidt [99, 100, 101],

A(x) =

∞∑

n=0

n∑

k=0

(
n

k

)2(
n+ k

k

)2

· xn =

∞∑

n=0

n∑

k=0

k∑

j=0

(
n

k

)(
n+ k

k

)(
k

j

)3

· xn

= 1 + 5 x + 73 x2 + 1445 x3 + 33001 x4 + · · · , (58)

A(x) is known to be the diagonal of the rational function in five variables 1/R1/R2

where R1, R2 read [66]:

R1 = 1 − z0, R2 = (1 − z1)(1 − z2)(1 − z3)(1 − z4) − z0z1z2,

as well as the diagonal of the rational function in five variables 1/Q1/Q2 where Q1, Q2

read [67, 49]:

Q1 = 1 − z1 z2 z3 z4, Q2 = (1 − z3)(1 − z4) − z0 · (1 + z1)(1 + z2),

and also the diagonal of the rational function in six variables 1/P1/P2/P3 where
P1, P2, P3 read [66]:

P1 = 1 − z0 z1, P2 = 1 − z2 − z3 − z0 z2 z3, P3 = 1 − z4 − z5 − z1 z4 z5.

A yet different diagonal representation for the Apéry series, due to Delaygue†, is
provided by the diagonal of the rational function in eight variables:

1

(1 − z4z5z6z7) · (1 − z0 · (1 + z4)) · (1 − z1 · (1 + z5)) · (1− z2 − z6) · (1 − z3 − z7)
.

Calculations similar to (55) on these new binomial expressions provides two new
rational functions such that (58) can be written as the diagonal of one of these two

rational functions. One is a rational function of five variables, of the form 1/Q
(5)
1 /Q

(5)
2

Q
(5)
1 = 1 − z0 z1 z2 z3 z4 · (1 + z1) (1 + z2) (1 + z3) (1 + z4),

Q
(5)
2 = 1 − z0 · (1 + z1) (1 + z2) (1 + z3)

2 (1 + z4)
2, (59)

and the other one, is a rational function of six variables, of the form 1/Q
(6)
1 /Q

(6)
2 /Q

(6)
3

Q
(6)
1 = 1 − z0 z3 z4 z5 · (1 + z1) (1 + z2)

2 (1 + z3) (1 + z4) (1 + z5),

Q
(6)
2 = 1 − z0 z1 z2 z3 z4 z5 · (1 + z1) (1 + z2),

Q
(6)
3 = 1 − z0 · (1 + z1) (1 + z2)

2 (1 + z3) (1 + z4) (1 + z5). (60)

We thus see that, when a given function is a diagonal of a rational function, the
rational function is far from being unique, the “simplest” representation (minimal
number of variables, lowest degree polynomials, ...) being hard to find.

Similar computations show that the generating function of sequence E in Zagier’s
list [96]:

E(x) =

∞∑

n=0

⌊n/2⌋∑

k=0

4n−2k ·
(
n

2k

)(
2k

k

)2

· xn

= 1 + 4 x + 20 x2 + 112 x3 + 676 x4 + 4304 x5 + 28496 x6 + 194240 x7

+ 1353508 x8 + 9593104 x9 + 68906320 x10 + · · · (61)

† Private communication.
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is the diagonal of the rational function in four variables

1

(1− 4z0z1z2z3 · (1 + z1)) · (1 − z20z2z3 · (1 + z2)2(1 + z3)2(1 + z1)2)
,

while the generating function of Zagier’s sequence B

B(x) =

∞∑

n=0

⌊n/3⌋∑

k=0

(−1)k · 3n−3k ·
(
n

3k

)(
3k

k

)(
2k

k

)
· xn

= 1 + 3 x + 9 x2 + 21 x3 + 9 x4 − 297 x5 − 2421 x6 − 12933 x7

− 52407 x8 − 145293 x9 − 35091 x10 + · · · (62)

is the diagonal of the rational function in four variables

1

(1 − 3 z0z1z2z3 · (1 + z1)) · (1 + z30z
2
2z

2
3 · (1 + z1)3(1 + z2)3(1 + z3)2)

. (63)

Such calculations can systematically be performed on any series defined by nested
sums of product of binomials. We have performed such calculations on a large number
of the series corresponding to the list of Almkvist et al [91], that are given by such
nested sums of product of binomials.

In fact, any s-nested sum of products of binomials raised to powers ℓ1, . . . , ℓt can
be written as the diagonal of a rational function in ℓ1 + · · · + ℓt + 1 variables, of
the form ((1 −Q0)(1−Q1) · · · (1 −Qs))

−1
, where the Qi’s are products of powers

of the variables zi and of the linear forms 1 + zi.
For instance, when s = 1, it is easy to prove using the same technique that the

power series
∞∑

n=0

n∑

k=0

p∏

i=1

can+bk ·
(
αin + βik

γin+ δik

)
· xn, (64)

is the diagonal of the rational function in p+ 1 variables

1

(1 − cau · z0 z1 · · · zp) · (1 − ca+b · u v z0 z1 · · · zp)
, (65)

where u and b read:

u =

p∏

i=1

(1 + zi)
αi

zγi

i

, v =

p∏

i=1

(1 + zi)
βi

zδii
. (66)

The same machinery provides in some cases diagonal representations for algebraic
power series (as diagonals of bivariate rational functions) that are much simpler than
those produced by Furstenberg’s result sketched in Section 3.5. For instance, using
the fact that (

2n− 2

n− 1

)
=

1

2 i π
·
∫

C

(1 + z)2n−2

zn−1
· dz
z
, (67)

the algebraic function

f =
z√
1− z

= 4 ·
∞∑

n=0

(
2n− 2

n− 1

)(z
4

)n
, (68)

is readily seen to be the diagonal of the rational function
z0 z1

1 − z0 · (1 + z1)
2
/4

, (69)
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which is much simpler than (25).
Similarly, the power series

∞∑

n=0

(
sn

n

)
· xn, (70)

is seen to be the diagonal of the rational function

1

1 − z0 · (1 + z1)s
. (71)

6. Comments and speculations

6.1. Christol’s theorem

In [49] (page 61 Theorem 12, see also Proposition 7 in page 50 of [68] ) it is proved
that any power series with an integral representation (as defined in (72) see below)
and of maximal weight for the corresponding Picard-Fuchs linear differential equation
(denoted by LV below) is the diagonal of a rational function and, in particular, is
globally bounded.

The technical nature of the original papers is such that the result itself is
difficult to find. This paragraph is devoted to explain, in down-to-earth terms, the
somewhat esoteric expressions used in its wording, and to explain what it means on
explicit examples. As the original proof is very obfuscated its principle is sketched in
Appendix E.

A function f , analytic near 0, is said to have an “integral representation” if it can
be written in the following form†:

f(x) =

∫

C

F (x; x1, . . . , xn) · dx1 · · · dxn, (72)

where F is an algebraic function, hence living on some (projective) complex (n + 1)-
fold V , and C is a “cycle”, namely an (oriented) compact (i.e. without boundary) real
n-fold contained in V . In (72) x must be seen as a parameter. Then one integrates
the n-differential F (x; . . .) dx1 · · · dxn, that depends on x, on a “constant” cycle‡ C.
If it exists, the integral representation is far from unique. Formula (49) shows that
any diagonal of a rational function has an integral representation for which C is the
so-called “vanishing [104] cycle”. This is straightforwardly extended to diagonals of
algebraic functions.

In practical examples, to obtain a cycle, one often needs to complete the
integration domain by means of symmetries in the usual way when dealing with the
method of residues. That happens for instance for the hypergeometric function f(x) =
B(a2, b1 − a2) · 2F1([a1, a2], [b1]; x) (B is the beta function, ℜ(b1) > ℜ(a2) > 0),
which has the following Euler integral representation:

f(x) =

∫ 1

0

xa2−1
1 · (1− x1)

b1−a2−1 · (1 − xx1)
−a1 · dx1. (73)

† Following [102] or, better, its version with parameter [103], one could define integral representations
by integrating in (72) on domains C defined by polynomial (in x1, . . . , xn) equalities or inequalities.
Actually the case C = {xi ∈ [0, 1] ; 1 ≤ i ≤ n} would be enough. To connect this definition with
ours, one needs to use the Stokes theorem. However, the dimension n of the underlying complex
manifold is basic for our next definitions and it is unfortunately not preserved by Stokes theorem.
‡ One could, more generally, integrate an m-differential for m < n. But Lefschetz theorems assert
that, up to taking hyperplane sections, one can reduce to the case n = m.
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More generally the only hypergeometric functions pFq having an (Euler) integral
representation are the n+1Fn with rational♯ parameters [105, 106] ai, bj :

n+1Fn([a1, a2, · · · , an, an+1], [b1, b2, · · · , bn], x)

= ρ ·
∫ 1

0

· · ·
∫ 1

0

xa1

1 · · · xan

n · (1 − x1)
b1−a1−1 · · · (1 − xn)

bn−an−1

× (1 − x1 x2 · · · xn · x)−an+1 · dx1

x1
· · · dxn

xn
. (74)

Moreover, the integration cycle C of (72) can involve points at infinity (we are
dealing with projective geometry).

As C is a cycle, adding an exact differential to F dx1 · · · dxn clearly do not change
f . But a famous Grothendieck’s theorem [107] asserts that n-differentials on V up to
exact ones built up a finite C(x)-space. Moreover¶ differentiation under the integral
endows this space with a connection, namely the Gauss-Manin one. In other words, f
is solution of an ordinary linear differential equation (ODE) LV , namely the Picard-
Fuchs differential equation. This ODE depends only on V and do not involve any
cycle but choosing a particular cycle C amount to choosing a particular solution f of
LV .

The Picard-Fuchs ODE LV is known to have only regular singularities with
rational exponents. Now L being a linear ODE for which 0 is a regular singularity,
solutions near 0 of L are endowed with a “monodromy‡ weight”: f is of weight W if
L has W + 1 solutions that are built in the following way:

f(x) , f(x) · log(x) + f1(x) , · · · , (75)

f(x) · log
W (x)

W !
+ f1(x) ·

logW−1(x)

(W − 1)!
+ · · · + fW (x),

where the fi are analytic near 0, and no solution involving f(x) · logW+1(x). For
instance, a MUM (maximal unipotent monodromy) ODE L of order µ has a unique (up
to a multiplicative constant) analytic solution near 0 and this solution is of logarithm
weight µ − 1.

Geometric considerations imply that, for solutions of LV , the maximum
monodromy weight is n − 1. So we will say that f is of maximal weight for LV if
it is of weight n− 1.

The Picard-Fuchs linear ODE is difficult to determine and, moreover, depends on
the particular integral representation. What is well defined is the minimal linear ODE
Lf of which f , with an integral representation, is solution. Then its Picard Fuchs
ODE LV = M Lf is a left multiple of Lf and the monodromy weight of f for LV

is at least the monodromy weight of f for Lf (it is likely that the two monodromy
weights are actually the same). The order of Lf is smaller, and often much smaller,
than the order of LV .

♯ The parameters have to be rational for the n-form in the integral representation (72) be
algebraic. More deeply, when globally bounded, the hypergeometric function is a G-function and the
corresponding linear differential operator is globally nilpotent hence it has only regular singularities
with rational exponents. The parameters ai and bj are directly linked to exponents at 0 and ∞.
¶ See [108] specially § 1 and § 4 for instance but notice that the weight filtration used there and the
monodromy weight we will use are quite distinct even if both constructions could look similar.
‡ The monodromy operator T , “turning once counterclockwise around 0”, acts on the space S of
solutions of L by T (x) = x e2iπ = x and T (log(x)) = log(x) + 2iπ. The solution f is of weight W
if and only if it is in the image (T − 1)W (S) but not in (T − 1)W+1(S).
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There is absolutely no reason for the order of Lf to be the number n of variables
of the integral representation, but this effectively do happen in examples, notably for
hypergeometric functions n+1Fn and for certain Calabi-Yau linear ODE. Under these
circumstances, if Lf is MUM then f is of maximum weight for LV and the theorem
asserts that f is the diagonal of a rational function. Let us remark that in that case
f is the unique (up to a multiplicative constant) analytic solution near 0 of Lf .

Disappointingly, when this result can be applied to n+1Fn, it becomes somewhat
trivial. More precisely, the hypergeometric function is of maximal weight if and only
if bj = 1 for all j (there is only n!’s in the denominator of coefficients). In that case
it is obviously the Hadamard product of algebraic functions:

nFn−1([α1, α2, · · · , αn], [1, 1, · · · 1], x) (76)

= (1 − x)−α1 ⋆ (1 − x)−α2 · · · ⋆ (1 − x)−αn .

Therefore, we now have (at least) three sets of problems yielding diagonal of
rational functions: the n-fold integrals of the form (49) with (50), the Picard-Fuchs
linear ODEs with solution of maximal monodromy weight and, finally, the problems
of enumerative combinatorics where nested sums of products of binomials take place.
Diagonal of rational functions, thus, occur in a quite large set of problems of theoretical
physics.

6.2. Christol’s conjecture

The diagonal of a rational function is globally bounded (i.e. it has non zero radius of
convergence and integer coefficients up to one rescaling) and D-finite (i.e. solution of
a linear differential equation with polynomial coefficients)‡.

The reciprocal statement is the “Christol’s conjecture” [49] saying that any D-
finite, globally bounded series is necessarily the diagonal of a rational function.

A fantastic Chudnovski theorem ([110] page 267) asserts that the minimal
linear differential operator of a G function (and in particular of a D-finite globally
bounded series) is a G-operator (i.e. at least conjecturally, a globally nilpotent
operator) [28, 29, 30]. “Christol’s conjecture” amounts to saying something more:
if the solution of this globally nilpotent linear differential operator is, not only a G-
series, but a globally bounded series, then it is the diagonal of a rational function.

Conversely the solution, analytical at 0, of a globally nilpotent linear differential
operator is necessarily a G-function [29, 30]. Moreover, a “classical” conjecture, with
numerous avatars, claims that any G-function comes from geometry i.e. roughly
speaking, it has an integral representation§.

To test the validity of Christol’s conjecture we look for counter-examples not
contradicting classical conjectures. Then we search D-finite power series with integer
coefficients which are not algebraic but have an integral representation and are not of
maximal weight for the corresponding Picard-Fuchs linear ODE.

As a first step let us limit ourself to hypergeometric functions n+1Fn. The
monodromy weight W is exactly the number of 1 among the bi.

When n+1Fn is globally bounded and has no integer parameters bi (W = 0), its
minimal ODE has a p-curvature zero for almost all primes p. However, a Grothendieck

‡ The series expansion of the susceptibility of the isotropic 2-D Ising model can be recast into a series
with integer coefficients (see [15, 27, 109, 19]), but it cannot be the diagonal of rational functions
since the full susceptibility is not a D-finite function [109].
§ Bombieri-Dwork conjecture see for instance [30].
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conjecture, proved for 3F2 in [108], and generalised to n+1Fn in [111], asserts that,
under these circumstances, the hypergeometric function is algebraic.

So we are looking for globally bounded hypergeometric functions satisfying
1 ≤ W ≤ n− 1. In general such hypergeometric functions are G-series but are very
far from being globally bounded. The hypergeometric world extends largely outside
the world of diagonal of rational functions.

Such an example in the first case n = 2, W = 1 was given in [49]:

3F2

([
1

9
,
4

9
,
5

9

]
,

[
1

3
, 1

]
, 36 x

)
= 1 + 60 x + 20475 x2 + 9373650 x3

+ 4881796920 x4 + 2734407111744x5 + 1605040007778900x6 + · · · (77)

The integer coefficients read with the rising factorial (or Pochhammer) symbol

(1/9)n · (4/9)n · (5/9)n
(1/3)n · (1)n · n!

· 36n =
ρ(n)

ρ(0)
, (78)

where:

ρ(n) =
Γ(1/9 + n) Γ(4/9 + n) Γ(5/9 + n)

Γ(1/3 + n) Γ(1 + n) Γ(1 + n)
· 36n. (79)

Note that, at first sight, it is far from clear§ on (79), or on the simple recursion on
the ρ(n) coefficients (with the initial value ρ(0) = 1)

ρ(n+ 1)

ρ(n)
= 3 · (1 + 9n) (4 + 9n) (5 + 9n)

(1 + 3n)(1 + n)2
, (80)

to see that the ρ(n)’s are actually integers. A sketch of the (quite arithmetic) proof
that the ρ(n)’s are actually integers, is given in Appendix G.

Because of the 1/3 in the right (lower) parameters of (77), the hypergeometric
function (77) is not an obvious Hadamard product of algebraic functions (and thus
a diagonal of a rational function), and one can see that it is not an algebraic
hypergeometric function either by calculating its p-curvature and finding that it is
not zero [93], or using [112]. Proving that an algebraic function is the diagonal of a
rational function and proving that a solution of maximal weight for a Picard-Fuchs
equation is the diagonal of a rational function use two entirely distinct ways. The
hope is to combine both techniques to conclude in the intermediate situation.

This example remained for twenty years, the only “blind spot” on Christol’s
conjecture. We have recently found many other 3F2 examples‡, such that their series
expansion have integer coefficients but are not obviously diagonal of rational functions.
These new hypergeometric examples are displayed in Appendix F. Unfortunately these
hypergeometric examples are on the same “frustrating footing” as Christol’s example
(77): we are not able to show that one of them is actually a diagonal of a rational
function, or, conversely, to show that one of them cannot be the diagonal of a rational
function.

7. Integrality versus modularity: learning by examples

A large number of examples of integrality of series-solutions comes from modular
forms. Let us just display two such modular forms associated with HeunG functions
of the form HeunG(a, q, 1, 1, 1, 1;x).

§ In contrast with cases where binomial (and thus integers) expressions take place.
‡ 2F1 cases are straightforward, and cannot provide counterexamples to Christol’s conjecture.
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7.1. First modular form example

One can, for instance, rewrite the example (52) of subsection (5.1), namely
HeunG(−1/8, 1/4, 1, 1, 1, 1,−x), as a hypergeometric function† with two rational
pullbacks:

HeunG(−1/8, 1/4, 1, 1, 1, 1,−x) =

∞∑

n=0

n∑

k=0

(
n

k

)3

xn (81)

=
(
(1 + 4 x) · (1 + 228 x + 48 x2 + 64 x3)

)−1/4

× 2F1

(
[
1

12
,
5

12
], [1];

1728 · (1 − 8 x)6 · (1 + x)3 · x
(1 + 228 x + 48 x2 + 64 x3)3 · (1 + 4 x)3

)

=
(
(1 − 2 x) · (1 − 6 x + 228 x2 − 8 x3)

)−1/4

× 2F1

(
[
1

12
,
5

12
], [1];

1728 · (1 − 8 x)3 · (1 + x)6 · x2

(1 − 2 x)3 · (1 − 6 x + 228 x2 − 8 x3)3

)
.

The relation between the two pullbacks, that are related by the “Atkin¶” involution§
x ↔ −1/8/x, gives the modular curve:

1953125 y3 z3 − 187500 y2 z2 · (y + z) + 375 y z · (16 z2 − 4027 z y + 16 y2)

− 64 · (z + y) · (y2 + z2 + 1487 z y) + 110592 · z y = 0. (82)

Series (52) is solution of the (exactly) self adjoint linear differential operator Ω
where (θ = x ·Dx):

x · Ω = θ2 − x · (7 θ2 + 7 θ + 2) − 8 x2 · (θ + 1)2. (83)

The relevance of the “Atkin” involution x ↔ −1/8/x is also clear on the operator:
note that operator Ω is invariant by changing θ ↔ −1 − θ, and x ↔ −1/8/x. Also
note that changing Ω by a pullback x ↔ −1/8/x, amounts to changing Ω into
x · Ω · x−1.

7.1.1. Modular invariance

Do note that these pullbacks are respectively of the form (◦ denotes the compo-
sition of functions):

M2 =
1728 x

(x + 16)3
◦ (1 − 8 x)3

x (1 + x)3
and: M̃2 =

1728 x

(x + 256)3
◦ (1 − 8 x)3

x (1 + x)3
, (84)

† The relation between modular forms and hypergeometric functions can be simply seen in the
identity 2F1([1/12, 5/12], [1], 1728/j(τ))4 = E4(τ), where E4 is an Eisenstein series.
¶ In previous papers [113, 32], with some abuse of language, we called such an involution an Atkin-
Lehner involution. In fact this terminology is commonly used in the mathematical community for
an involution τ → −N/τ , on τ , the ratio of periods, and not for our x-involution. However,when
the modular curve is of genus zero one has a parametrisation in term of the variable xN (τ) =
(η(τ)/η(Nτ))24/(N−1) (see eq. (27) in [114]), which actually transforms as an involution (xN →
A/xN ) under the Atkin-Lehner involution. This is why we switch to the wording “Atkin” involution.
§ The relevance of the “Atkin” involution x ↔ −1/8/x is also clear on the operator: note that
operator Ω is invariant by changing θ ↔ −1 − θ, and x ↔ −1/8/x. Also note that changing Ω by
a pullback x ↔ −1/8/x, amounts to changing Ω into x · Ω · x−1.
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where one recognises the two Hauptmoduls of the modular curve corresponding to
τ → 2 τ . Introducing the Dedekind-like parametrisation:

x(q) = q ·
∞∏

n=1

(1 − qn)a(n) where:

∞∑

n=1

a(n) · tn =
3 t · (1 − t2)

1 − t6
,

one can rewrite the Hauptmoduls as:

M̃2

( (1 − 8 x(q))3

x(q) · (1 + x(q))3

)
= M2

( (1 − 8 x(q2))3

x(q2) · (1 + x(q2))3

)
. (85)

7.1.2. Other representations

In fact, using Kummer’s relation and other relations on 2F1’s:

2F1

(
[
1

6
,
1

3
], [1], 4 x (1− x)) = 2F1

(
[
1

3
,
2

3
], [1], x

)

= (1− x)−1/3 · 2F1

(
[
1

3
,
1

3
], [1], − x

1 − x

)

= (1− x)−2/3 · 2F1

(
[
2

3
,
2

3
], [1], − x

1 − x

)
(86)

=
( 9

9 − 8 x

)1/4
· 2F1

(
[
1

12
,
5

12
], [1],

64 x3 · (1 − x)

(9 − 8 x)3

)
.

HeunG(−1/8, 1/4, 1, 1, 1, 1,−x) can be written in many different ways as hypergeo-
metric 2F1 with two pullbacks:

HeunG(−1/8, 1/4, 1, 1, 1, 1,−x) =
1

1 + 4 x
· 2F1

(
[
1

3
,
2

3
], [1],

27 x

(1 + 4 x)3

)

=
1

1 − 2 x
· 2F1

(
[
1

3
,
2

3
], [1],

27 x2

(1 − 2 x)3

)
(87)

= (1 + x)−1/3 · (1 − 8 x)−2/3 · 2F1

(
[
1

3
,
1

3
], [1], − 27 x

(1 + x) · (1 − 8 x)2

)

=
1

1 + 4 x
· 2F1

(
[
1

6
,
1

3
], [1],

108 x (1 + x) (1 − 8 x)2

(1 + 4 x)6

)
= · · ·

The relation between the two pullbacks in (87), namely u = 27 x/(1 + 4 x)3,
and v = 27 x2/(1− 2 x)3), is the genus-zero modular curve:

8 u3v3 − 12 u2v2 · (u+ v) + 3 uv · (2 u2 + 2 v2 + 13 uv) (88)

− (u+ v) · (v2 + 29 uv + u2) + 27 uv = 0.

Let us consider the modular curve (88) for u = x, seeing v as a algebraic function of
x. One of the three root-solutions expands as:

ṽ0(x) =
1

27
x2 +

10

243
x3 +

256

6561
x4 +

18928

531441
x5 +

154000

4782969
x6 + · · · , (89)

the two other ones being Puiseux series (here t denotes x1/2):

ṽ1(x) = 3
√
3 t − 15 t2 +

119

6

√
3 t3 − 1904

27
t4 +

50701

648

√
3 t5 + · · · , (90)

the third root, ṽ2(x) corresponding to change t into −t. These series expansions
compose nicely: ṽ0(ṽ1(x)) = ṽ0(ṽ2(x)) = x.
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Remark: Ramanujan’s cubic transformation. For the hypergeometric
function 2F1([1/3, 2/3], [1], x), the existence of two pullbacks is also reminiscent of
relation (28) in [33], or to the known Ramanujan’s cubic transformation formula [115]:

(1 + 6 x) · 2F1

(
[
1

3
,
2

3
], [1], 27 x3

)
= 2F1

(
[
1

3
,
2

3
], [1], 1 −

( 1 − 3 x

1 + 6 x

)3)

= 1 + 6 x + 6 x3 + 36 x4 + 90 x6 + 540 x7 + 1680 x9 + · · · (91)

Noting that 2F1

(
[1/3, 2/3], [1], x) and 2F1

(
[1/3, 2/3], [1], 1 −x) are solutions of the

same second order linear ODE, one can change one of the two pullbacks, P1 = 27 x3

and P2 = 1 − (1 − 3 x)3/(1 + 6 x)3 in (91), into 1 − Pi, i = 1, 2. The relation
between the two pullbacks u = 1 − P1 and v = P2, is a simple (genus zero, (u, v)-
symmetric) modular curve:

512 · u3 · v3 − 1728 · u2 · v2 · (u+ v) + 216 · u v · (17 · u v + 9 · (u2 + v2))

− 243 · (v + u) · (3 · (u2 + v2) + 8 · u v) + 729 · (u2 + u v + v2) = 0. (92)

7.1.3. Schwarzian condition

A necessary condition for two different rational (resp. algebraic) pullbacks to exist
for a hypergeometric function like 2F1([1/3, 2/3], [1], x), i.e. a necessary condition
for a relation

2F1

(
[
1

3
,
2

3
], [1], p1(x)

)
= r1,2(x) · 2F1

(
[
1

3
,
2

3
], [1], p2(x)

)
, (93)

for some algebraic functions r1,2(x), is the (symmetric) condition

{p1(x), x} +
1

18
· 8 p1(x)

2 − 8 p1(x) + 9

p1(x)2 · (p1(x) − 1)2
·
(dp1(x)

dx

)2

= {p2(x), x} +
1

18
· 8 p2(x)

2 − 8 p2(x) + 9

p2(x)2 · (p2(x)− 1)2
·
(dp2(x)

dx

)2
, (94)

where {p1(x), x} denotes the Schwarzian derivative. This condition is invariant by
the simple transformations pi → 1 − pi, i = 1, 2. One immediately verifies that
the Schwarzian condition (94) is actually verified for the pullbacks (p1(x), p2(x))
occurring in (91), namely (27 x3, 1 − (1 − 3 x)3/(1 + 6 x)3), or in (87), namely
(27 x/(1 + 4 x)3, 27 x2/(1− 2 x)3).

Let us consider the modular curve (92) for u = x, seeing v as a algebraic function
of x. The three root-solutions expand as:

v0(x) = 1 − 1

729
x3 − 5

2187
x4 − 56

19683
x5 − 1691

531441
x6 − 5390

1594323
x7 + · · · ,

v1(x) =

(
i
√
3

2
− 1

2

)
· x +

5 i
√
3

9
x2 +

(
i
√
3

2
+

19

54

)
· x3 +

(
65

162
i
√
3 +

95

162

)
· x4

+

(
70

243
i
√
3 +

532

729

)
· x5 +

(
1171

1458
+

2297

13122
i
√
3

)
· x6 + · · · , (95)

the third series expansion v2(x) having its coefficients complex conjugate of the ones
in the series expansion v1. These series expansions compose nicely:

v1(v2(x)) = v2(v1(x)) = x, v0(v1(x)) = v0(v2(x)) = v0(x), (96)

v1(v1(x)) = v2(x), v2(v2(x)) = v1(x), v1(v1(v1(x))) = v2(v2(v2(x))) = x.
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One verifies on these three series expansions (95) the condition corresponding to
the p1(x) = x subcase in (94):

{v(x), x} +
1

18
· 8 v(x)

2 − 8 v(x) + 9

v(x)2 · (v(x) − 1)2
·
(dv(x)

dx

)2
=

1

18
· 8 x

2 − 8 x + 9

x2 · (x− 1)2
. (97)

One also verifies that the three series expansions (89) and (90) also satisfy, as they
should, the previous Schwarzian condition (97). One also verifies, as it should, that
the composition of all these series satisfy (97). For instance

ṽ0(ṽ0(x)) =
1

19683
x4 +

20

177147
x5 +

274

1594323
x6 +

86636

387420489
x7 + · · · ,

v0(ṽ0(x)) = 1 − 1

14348907
x6 − 10

43046721
x7 − 187

387420489
x8 + · · · , (98)

satisfies (97).

In other words, the Schwarzian condition (94) is another way to encode the
modular curves (92) or (88), and in fact, an infinite number of modular curves. The
emergence of Schwarzian derivatives should not be seen as a surprise. A relation like

2F1([1/3, 2/3], [1], v(x)) = R1,2(x) · 2F1([1/3, 2/3], [1], x) is obviously stable by the
composition† of the pullback functions v(x).

7.2. Second modular form example

The integrality of series-solutions can be quite non-trivial like the solution of the
Apéry-like operator

Ω = x · (1 − 11 x − x2) ·D2
x + (1 − 22 x − 3 x2) ·Dx − (x+ 3), (99)

or: x · Ω = θ2 − x · (11 θ2 + 11 θ + 3) − x2 · (θ + 1)2,

which can be written as a HeunG function. Introducing α = 11/2 − 5 · 51/2/2, this
(at first sight involved) HeunG function reads:

HeunG
(
− 123

2
+

55

2
· 51/2, − 33

2
+

15

2
· 51/2, 1, 1, 1, 1, α · x

)

=
1

1 − αx
· HeunG

(1
2
− 11

50
· 51/2, 1

2
− 1

10
· 51/2, 1, 1, 1, 1, − αx

1 − αx

)

=

∞∑

n=0

n∑

k=0

(
n

k

)2(
n+ k

k

)
· xn

= 1 + 3 · x + 19 · x2 + 147 · x3 + 1251 · x4 + 11253 · x5 + 104959 · x6

+ 1004307 · x7 + 9793891 · x8 + 96918753 · x9 + 970336269 · x10

+ 9807518757 · x11 + 99912156111 · x12 + 1024622952993 · x13

+ 10567623342519 · x14 + 109527728400147 · x15 + 1140076177397091 · x16

+ 11911997404064793 · x17 + 124879633548031009 · x18

+ 1313106114867738897 · x19 + · · · (100)

† The Schwarzian derivative S(f) = {f(x), x} is the well-suited derivative to take into account
when composition of functions occurs. This can, for instance, be seen on the chain rule: (S(f ◦g))(z)
= S(f)(g(z)) · g′(z)2 + S(g).
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but actually corresponds to a modular form, which can be written in two different
ways using two pullbacks:

(x4 + 12 x3 + 14 x2 − 12 x + 1)−1/4

× 2F1

(
[
1

12
,
5

12
], [1];

1728 · x5 · (1 − 11 x − x2)

(x4 + 12 x3 + 14 x2 − 12 x + 1)3

)

= (1 + 228 x + 494 x2 − 228 x3 + x4)−1/4 (101)

× 2F1

(
[
1

12
,
5

12
], [1];

1728 · x · (1 − 11 x − x2)5

(1 + 228 x + 494 x2 − 228 x3 + x4)3

)
.

Do note that these two pullbacks are respectively of the form:

1728 · x5 · (1 − 11 x − x2)

(x4 + 12 x3 + 14 x2 − 12 x + 1)3
(102)

=
1728 · x

(x2 + 10 x + 5)3
◦ 1 − 11 x − x2

x
,

and

1728 · x · (1 − 11 x − x2)5

(1 + 228 x + 494 x2 − 228 x3 + x4)3
(103)

=
1728 · x5

(x2 + 250 x + 3125)3
◦ 1 − 11 x − x2

x
,

where one recognises [116] the two Hauptmoduls of the modular curve corresponding
to τ → 5 · τ :

M5(x) =
1728 · x

(x2 + 10 x + 5)3
, (104)

M̃5(x) =
1728 · x5

(x2 + 250 x + 3125)3
= M5

(
53

x

)
.

Also note that the fact that the relation between the two Hauptmoduls (104)
corresponds to τ → 5 · τ can be seen straightforwardly if one introduces the quite
non-trivial Dedekind-like parametrisation

x(q) = q ·
∞∏

n=1

(1 − qn)a(n), where:

∞∑

n=1

a(n) · tn =
5 · t · (1 − t) (1 − t2)

1 − t5
,

yielding:

M̃5

(1 − 11 x(q5) − x2(q5)

x(q5)

)
= M5

(1 − 11 x(q) − x2(q)

x(q)

)
. (105)

More modular form examples of series with integer coefficients are given in
Appendix H. The modular form examples displayed in Appendix A, corresponded to
lattice Green functions [52]. Therefore, they have n-fold integral representations, and,
after section (4.4), can be seen to be diagonals of rational functions. In contrast the
modular form examples displayed in Appendix H correspond to differential geometry
examples discovered by Golyshev and Stienstra [117], where no n-fold integral
representation is available at first sight.
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7.3. Remark

At first sight one might think, and this is almost suggested in the literature, that the
integrality of the series-solutions of the globally nilpotent operators, corresponds to
some deep arithmetic property and, in the same time, that these integer coefficients
have a deep “physical” meaning (instantons, ...). There is often some confusion in the
literature between the concept of integrality of series (globally bounded series) and the
concept of modularity [34] which suggests a connection with selected algebraic varieties
(modular forms and elliptic functions [118], mirror maps, Calabi-Yau manifolds).

Note that, along this “selected algebraic varieties” line, it is also worth recalling
Krammer-Deitweiler’s counter-example [119, 120] to Dwork’s conjecture of a globally
nilpotent operator that cannot be reduced to an operator having hypergeometric
solutions up to a pullback, which corresponds to the two following HeunG functions:

HeunG(81, 1/2, 1/6, 1/3, 1/2, 1/2, 81 x), (106)

x1/2 ·HeunG(81, 21, 2/3, 5/6, 3/2, 1/2, 81 x).

These two HeunG are solutions of a globally nilpotent linear differential operator†
but are not globally bounded: they are G-series that cannot be reduced to series with
integer coefficients. However, this special example corresponds to a special arithmetic
situation: we are dealing, here, with very special HeunG functions associated
with periods of a family of abelian surfaces over a Shimura curve [120], and very
special ODEs corresponding to uniformising linear differential equations of arithmetic
Fuchsian lattices.

The interest of demonstration of sections (4.2), (4.4) is to show that this
integrality can be, in fact, the straight consequence of a quite simple form of the
n-fold integral namely (49) with the analyticity condition (50), that can be expected
to be seen in a quite general framework (for instance in enumerative combinatorics),
far from the theory of elliptic curves, or the theory of Calabi-Yau manifolds and other
Frobenius manifolds [121]. Let us now try to “disentangle” the concept of integrality
of series (globally bounded series) and the concept of modularity.

8. Integrality versus modularity

8.1. Diffeomorphisms of unity pullbacks

Let us consider a first simple example of a hypergeometric function which is
solution of a Calabi-Yau ODE, and which occurred, at least two times in the

study of the Ising susceptibility n-fold integrals [32, 33] χ(n) and χ
(n)
d , namely

4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1], 256 x), where we perform a (diffeomorphism of
unity) pullback:

4F3

(
[
1

2
,
1

2
,
1

2
,
1

2
], [1, 1, 1],

256 x

1 + c1 x + c2 x2 + · · ·
)

= 1 + 16 · x (107)

+ (1296− 16 c1) · x2 + (160000 + 16 c21 − 16 c2 − 2592 c1) · x3 + · · ·
If the pull-back in (107) is such that the coefficients cn, at its denominator, are
integers, one finds that the series expansion is actually a series with integer coefficients,
for every such pullback (i.e. for every integer coefficients cn). Furthermore, a

† Generically HeunG functions with rational parameters are not globally nilpotent, which indicates
that they do not have an integral representation as an integral of some algebraic integrand.
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straightforward calculation of the corresponding nome q(x) and its compositional
inverse (mirror map) x(q), also yields series with integer coefficients:

q(x) = x + (64− c1) · x2 + (c21 + 7072 − c2 − 128 c1) · x3 + · · · , (108)

x(q) = q + (c1 − 64) · q2 + (c21 + 1120 + c2 − 128 c1) · q3 + · · · , (109)

when its Yukawa coupling [32], seen as a function of the nome q, K(q) is also a series
with integer coefficients and is independent of the pullback:

K(q) = 1 + 32 · q + 4896 · q2 + 702464 · q3 + · · · (110)

This independence of the Yukawa coupling with regards to pullbacks, is a known
property, and has been proven in [88], for any pullbacks of the diffeomorphism of unity
form p(x) = x + · · ·

Remark: Seeking for Calabi-Yau ODEs, Almkvist et al. have obtained [91] a
quite large list of fourth order ODEs, which are MUM by definition and have, by
construction, the integrality for the solution-series‡ analytic at x = 0. Looking
at the Yukawa coupling of these ODEs is a way to define equivalence classes up to
pullbacks of ODEs sharing the same Yukawa coupling. This “wraps in the same bag”
all the linear ODEs that are the same up to pullbacks. Let us recall how difficult
it is to see if a given Calabi-Yau ODE has, up to operator equivalence, and up to
pullback, a hypergeometric function solution [32, 33], because finding the pullback
is extremely difficult [32, 33]. We may have, for the Ising model, some n+1Fn

hypergeometric function prejudice [32, 33]: it is, then, important to have an invariant
that is independent of this pullback (we cannot find most of the time).

Remark: The Yukawa coupling is not preserved by the operator equivalence.
Two linear differential operators, that are homomorphic, do not necessarily have the
same Yukawa coupling (see Appendix J).

8.2. Yukawa couplings in terms of determinants

Another way to understand this fundamental pullback invariance, amounts to rewriting
the Yukawa coupling [122, 88], not from the definition usually given in the literature
(second derivative with respect to the ratio of periods), but in terms of determinants
of solutions (Wronskians, ...) that naturally present nice covariance properties with
respect to pullback transformations (see Appendix J).

We have the alternative definition for the Yukawa coupling given in Appendix J:

K(q) =
(
q · d

dq

)2(y2
y0

)
=

W 3
1 ·W3

W 3
2

, (111)

where the determinantal variables Wm’s are the determinants built from the four
solutions of the MUM differential operator. This alternative definition, in terms
of these Wm’s, enables to understand the remarkable invariance of the Yukawa
coupling by pullback transformations [33]. These determinantal variables Wm quite
naturally, and canonically, yield to introduce another “Yukawa coupling” (which, in
fact, corresponds to the Yukawa coupling of the adjoint operator (see J.12)). This
“adjoint Yukawa coupling” is also invariant by pullbacks. It has, for the previous
example, the following series expansion with integer coefficients:

K⋆(q) = 1 + 32 · q + 4896 · q2 + 702464 · q3 + · · · (112)

‡ Hence, these operators are G-operators. One can also, calculating their p-curvatures, check,
directly, that the Calabi-Yau operators in Almkvist et al. [91] tables are actually globally
nilpotent [28], thus yielding automatically the rationality of the exponents for all the singularities
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which actually identifies with (110). The equality of the Yukawa coupling
for this order-four operator, and for its (formal) adjoint operator, is a
straightforward consequence of the fact that the order-four operator annihilating

4F3

(
[ 12 ,

1
2 ,

1
2 ,

1
2 ], [1, 1, 1], 256 x

)
is exactly self-adjoint, and, more generally, of the

fact that the order-four operator, annihilating (107), is conjugated to its adjoint by a
simple function (which is nothing but the denominator of the pullback).

8.3. Modularity

This example, with its corresponding relations (107), (108), (110), (112) may suggest
a quite wrong prejudice that the integrality of the solution of an order-four linear
differential operator automatically yields to the integrality of the nome, mirror map
and Yukawa coupling, that we will call, for short, “modularity”. This is far from being
the case, as can be seen, for instance, in the following interesting example, where the
nome and Yukawa coupling K(q) do not correspond to globally bounded series, when
the 4F3 solution of the order-four operator as well as the Yukawa coupling seen as a
function of x, K(x), are, actually, both series with integer coefficients.

Let us consider the following 4F3 hypergeometric function which is clearly a
Hadamard product of algebraic functions and, thus, the diagonal of a rational function:

4F3

(
[
1

2
,
1

3
,
1

4
,
3

4
], [1, 1, 1], x

)

= (1 − x)−1/3 ⋆ (1 − x)−1/2 ⋆ (1 − x)−1/4 ⋆ (1 − x)−3/4

= Diag
(
(1− z1)

−1/3 (1 − z2)
−1/2 (1− z3)

−1/4 (1− z4)
−3/4

)
,

It is therefore globally bounded:

4F3([
1

2
,
1

3
,
1

4
,
3

4
], [1, 1, 1], 2304 x) = 1 + 72 x + 45360 x2 + 46569600 x3

+ 59594535000 x4 + 86482063571904x5 + 136141986298526208x6

+ 226888189910421811200 x7 + 394399917777684601926000 x8

+ 708188604075430924446000000 x9 + · · · (113)

Its Yukawa coupling, seen as a function of x, is actually a series with integer
coefficient in x:

K(x) = 1 + 480 x + 872496 x2 + 1728211968 x3 + 3566216754432 x4

+ 7536580798814208x5 + 16177041308360579328x6 (114)

+ 35105183794659521064960x7 + 76799014669577085362391024x8

+ 169059790576811511759706311168 x9 + · · ·
However, do note that the series, in term of the nome, is not globally bounded:

K(q) = 1 + 480 q + 653616 q2 + 942915456 q3 + 1408019875200 q4

+ 2146833138536640 q5 + · · · (115)

+ 571436303929319146711343817202689132288
q12

11
+ · · ·

In fact, the nome q(x), and the mirror map x(q), are also not globally bounded.
Note that in this example, the non integrality appears at order twelve (for x(q), q(x)
and K(q)). If the prime 11 in the denominator in (115) was the only one, one could
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recast the series into a series with integer coefficients introducing another rescaling
2304 x → 11 × 2304 x. But, in fact, we do see the appearance of an infinite number
of other primes at higher orders denominators in x(q), q(x) and K(q).

8.4. Hadamard products of ωn’s

Let us consider the two order-two operators

ω2 = D2
x +

(96 x+ 1)

(64 x+ 1) · x ·Dx +
4

(64 x+ 1)x
, (116)

ω3 = D2
x +

(45 x+ 1)

(27 x+ 1) · x ·Dx +
3

(27 x+ 1)x
, (117)

which are associated with two modular forms corresponding, on their associated nomes
q, to the transformations q → q2 and q → q3 respectively (multiplication of τ , the
ratio of their periods by 2 and 3), as can be seen on their respective solutions:

2F1

(
[
1

4
,
1

4
], [1], −64 x) = (1 + 256 x)−1/4 · 2F1

(
[
1

12
,
5

12
], [1],

1728 x

(1 + 256 x)3

)

= (1 + 16 x)−1/4 · 2F1

(
[
1

12
,
5

12
], [1],

1728 x2

(1 + 16 x)3

)
(118)

= 1 − 4 x + 100 x2 − 3600 x3 + 152100 x4 − 7033104 x5 + 344622096 x6

− 17582760000 x7 + 924193822500 x8 − 49701090010000 x9 + · · ·
(
(1 + 27 x) (1 + 243 x)3

)−1/12

· 2F1

(
[
1

12
,
5

12
], [1],

1728 x

(1 + 243 x)3 (1 + 27 x)

)

=
(
(1 + 27 x) (1 + 3 x)3

)−1/12

· 2F1

(
[
1

12
,
5

12
], [1],

1728 x3

(1 + 3 x)3 (1 + 27 x)

)
(119)

= 2F1

(
[
1

3
,
1

3
], [1], −27 x) = 1 − 3 x + 36 x2 − 588 x3 + 11025 x4 − 223587 x5

+ 4769856 x6 − 105423552 x7 + 2391796836 x8 − 55365667500 x9 + · · ·
The relation between the two Hauptmodul pullbacks in (118)

u =
1728 x

(1 + 256 x)3
, v =

1728 x2

(1 + 16 x)3
, (120)

corresponds to the (genus-zero) fundamental modular curve:

1953125 u3v3 − 187500 u2v2 · (v + u) + 375 uv ·
(
16 u2 + 16 v2 − 4027 uv

)

− 64 (u + v) ·
(
v2 + 1487 uv+ u2

)
+ 110592 uv = 0, (121)

The relation between the two Hauptmodul pullbacks in (119)

u =
1728 x

(1 + 243 x)3 (1 + 27 x)
, v =

1728 x3

(1 + 3 x)3 (1 + 27 x)
, (122)

corresponds to the (genus-zero) modular curve:

262144000000000 u3v3 · (u + v) + 4096000000 u2v2 · (27 v2 + 27 u2 − 45946 uv)

+ 15552000 uv · (u + v) ·
(
v2 + 241433 uv+ u2

)
(123)

+ 729 (u4 + v4) − 779997924 (u3v + uv3) + 1886592284694 u2v2

+ 2811677184 uv · (u + v) − 2176782336 uv = 0.
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Similarly, one can consider the order-two operators ωn associated with other
modular forms corresponding to τ → n · τ . The ωn’s can be simply deduced
from Maier [123], for modular forms corresponding to genus-zero curves i.e. for
n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25. After a simple rescaling, one gets
series with integer coefficients. For instance considering the linear differential operator
L7 (annihilating the modular form h7) in Table 13 of [116]

L7 = D2
x +

7 x2 + 65 x+ 147

3 (x2 + 13 x+ 49)x
· Dx +

4 x+ 21

9 (x2 + 13 x+ 49) · x , (124)

one has the modular form solution

D7(x)
1/12 · 2F1

(
[
1

12
,
5

12
], [1];

1728

j7(x)

)

=
77/6

x2/3
· D′

7(x)
1/12 · 2F1

(
[
1

12
,
5

12
], [1];

1728

j′7(x)

)
(125)

= 1 − 1

21
x +

11

3087
x2 − 380

1361367
x3 +

3887

200120949
x4 + · · ·

where

j7(x) =

(
x2 + 13 x+ 49

) (
x2 + 5 x+ 1

)3

x
, j′7(x) = j7

(49
x

)
,

D7(x) =
49

(x2 + 13 x+ 49) · (x2 + 5 x+ 1)3
, D′

7(x) = D7

(49
x

)
, (126)

The series (125) is globally bounded. Rescaling the x into 32 72 · x = 441 · x, Maier’s
linear differential operator (124) becomes

ω7 = D2
x +

1 + 195 x+ 9261 x2

(1 + 117 x+ 3969 x2) · x · Dx +
21 · (1 + 84 x)

(1 + 117 x+ 3969 x2) · x, (127)

which has the following series with integer coefficients:

D7(441 x)
1/12 · 2F1

(
[
1

12
,
5

12
], [1];

1728

j7(441 x)

)
(128)

= 1 − 21 x + 693 x2 − 23940 x3 + 734643 x4 − 13697019 x5

− 494620749 x6 + 83079255420 x7 − 6814815765975x8 + · · ·

The two operators ω2 and ω3 have a “modularity” property: their series
expansions analytic at x = 0, (118) and (119), as well as the corresponding
nomes, mirror maps are series with integer coefficients. The Hadamard product is
a quite natural transformation to introduce because it preserves the global nilpotence
of the operators, it preserves the integrality of series-solutions, and it is a natural
transformation to introduce when seeking for diagonals of rational functions¶. Let
us perform the Hadamard product of these two operators. With some abuse of
language [33], the Hadamard product of the two order-two operators (116) and (117)

H2,3 = D4
x + 6

(2064 x− 1)

(1728 x− 1) · x ·D
3
x +

(19020 x− 7)

(1728 x− 1) · x2
·D2

x

+
(4788 x− 1)

(1728 x− 1) · x3
·Dx +

12

(1728 x− 1) · x3
, (129)

¶ And, consequently, has been heavily used to build Calabi-Yau-like ODEs (see Almkvist et al. [88]).
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is defined as the (minimal order) linear differential operator having, as a solution, the
Hadamard product of the solution-series (118) and (119), which is, by construction, a
series with integer coefficients. This series is, of course, nothing but the expansion of
the hypergeometric function:

4F3([
1

4
,
1

4
,
1

3
,
1

3
], [1, 1, 1], 1728 x) (130)

= 2F1([
1

4
,
1

4
], [1], −64 x) ⋆ 2F1([

1

3
,
1

3
], [1], −27 x).

The Hadamard product of the order-two operator (116) with itself (Hadamard
square)

H2,2 = D4
x + 2

(14336 x− 3)

(4096 x− 1) · x ·D
3
x +

(42496 x− 7)

(4096 x− 1) · x2
·D2

x

+
(9984 x− 1)

(4096 x− 1) · x3
·Dx +

16

(4096 x− 1) · x3
, (131)

is defined as the (minimal order) linear differential operator having the series-solution

1 + 16 x + 10000 x2 + 12960000 x3 + 23134410000 x4 + 49464551874816x5 + · · · ,
which is the Hadamard product of the solution-series (118) with itself. This series is,
of course, nothing but the expansion of:

4F3([
1

4
,
1

4
,
1

4
,
1

4
], [1, 1, 1], 4096 x) (132)

= 2F1([
1

4
,
1

4
], [1], −64 x) ⋆ 2F1([

1

4
,
1

4
], [1], −64 x).

This operator H2,2 is a MUM operator. We can, therefore, define, without any
ambiguity, the nome (and mirror map) and Yukawa coupling of this order-four
operator [33]. One finds out that the nome†, and the mirror map (and the Yukawa
coupling as a function of the x variable), are not globally bounded: they cannot be
reduced, by one rescaling, to series with integer coefficients.

Similarly, one can also introduce the Hadamard square of (117)

H3,3 = D4
x + 6

(891 x− 1)3

(729 x− 1) · x ·D
3
x + 7

(1215 x− 1)

(729 x− 1) · x2
·D2

x

+
(2295 x− 1)

(729 x− 1) · x3
·Dx +

9

(729 x− 1) · x3
, (133)

which has the hypergeometric solution:

4F3([
1

3
,
1

3
,
1

3
,
1

3
], [1, 1, 1], 729 x) (134)

= 2F1([
1

3
,
1

3
], [1], −27 x) ⋆ 2F1([

1

3
,
1

3
], [1], −27 x).

Let us remark that the three linear differential operators (129), (131) and (133),
are MUM and of order four. However, they are not of the Calabi-Yau type.

† The nome of the Hadamard product of two operators has no simple relation with the nome of these
two linear differential operators.



Diagonals of rational functions 38

8.5. Hadamard products versus Calabi-Yau ODEs

This is not the case for other values of n and m. For instance one can introduce‡
H4,4 = ω4 ⋆ ω4, the Hadamard square of ω4, which is an irreducible order-four
linear differential operator, and has the hypergeometric solution already encountered
for some n-fold integrals of the decomposition of the full magnetic susceptibility of
the Ising model [32, 33]:

4F3([
1

2
,
1

2
,
1

2
,
1

2
], [1, 1, 1], 256 x) (135)

= 2F1([
1

2
,
1

2
], [1], −16 x) ⋆ 2F1([

1

2
,
1

2
], [1], −16 x).

The associated operator having (135) as a solution, obeys the “Calabi-Yau
condition” that its exterior square is of order five.

Let us give in a table the orders (which go from 4 to 20) of the various
Hm,n = Hn,m Hadamard products of the order-two operators associated with the
(genus-zero) modular forms operators ωn and ωm:

n\m 2 3 4 5 6 7 8 9 10 12 13 16 18 25
2 4 4 4 6 4 6 4 4 10 8 10 8 12 14
3 4 4 6 4 6 4 4 10 8 10 8 12 14
4 4 ∗ 6 4 ∗ 6 4 ∗ 4 ∗ 10 8 10 8 12 14
5 6 6 8 6 6 12 10 12 10 14 16
6 4 ∗ 6 4 ∗ 4 ∗ 10 8 10 8 12 14
7 6 6 6 12 10 12 10 14 16
8 4 ∗ 4 ∗ 10 8 10 8 12 14
9 4 ∗ 10 8 10 8 12 14
10 10 14 16 14 18 20
12 8 14 12 16 18
13 10 14 18 20
16 8 16 18
18 12 20
25 14

where the star ∗ denotes Calabi-Yau ODEs♯.

The following operators are of order four: H2,2, H2,3, H2,4, H2,6, H2,8, H2,9,
H3,3, H3,4, H3,6, H3,8, H3,9, ... Their exterior squares, which are of order six, do not
have rational solutions¶.

The following operators are of order six: H2,5, H2,7, H3,5, H3,7, H4,5, H4,7,
H5,5, H5,6, H5,8, H5,9, H6,7, H7,7, H7,8,H7,9, ... Their exterior square, which are
of order fifteen, do not have rational solutions (and cannot be homomorphic to higher
order Calabi-Yau linear ODEs).

Remarkably the following ten order-four operators H4,4, H4,6, H4,8, H4,9, H6,6,
H6,8, H6,9, H8,8, H8,9, H9,9 (with a star in the previous table) are all MUM, and

‡ To get the Hadamard product of two linear differential operators use, for instance, Maple’s
command gfun[hadamardproduct].
♯ Recall that Calabi-Yau ODEs are defined by a list of constraints [88], the most important ones
being, besides being MUM, that their exterior square are of order five. There are more exotic
conditions like the cyclotomic condition on the monodromy at ∞, see Proposition 3 in [91].
¶ They cannot be homomorphic to Calabi-Yau ODEs.
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are such that their exterior squares are of order five§: they are Calabi-Yau ODEs.
Actually the nome, mirror map and Yukawa coupling series are series with integer
coefficients for all these order four Calabi-Yau operators. The Yukawa coupling series
of these Calabi-Yau operators are respectively, for H4,4

K(q) = K⋆(q) = 1 + 32 · q + 4896 · q2 + 702464 · q3 + 102820640 · q4
+ 15296748032 · q5 + 2302235670528 · q6 + 349438855544832 · q7

+ 53378019187206944 · q8 + 8194222260681725696 · q9 + · · · , (136)

which is Number3 in Almkvist et al. large tables of Calabi-Yau ODEs [91], and is
the well-known one for†† 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1], 256 x), for H4,6:

K(q) = K⋆(q) = 1 + 20 · q + 36 · q2 + 15176 · q3 + 486564 · q4
+ 21684020 · q5 + 1209684456 · q6 + 58513394904 · q7

+ 2921860726948 · q8 + 141376772107064 · q9 + · · · (137)

which is Number137 in tables [91].
We give, in Appendix L, the expansion of the Yukawa coupling for a set of other

Hm,n that are Calabi-Yau: in particular their exterior square is order five (not six as
one could expect for a generic irreducible order-four operator). It will be shown, in
a forthcoming publication, that the fact that the order five exterior power property
occurs means that these operators are necessarily conjugated (by an algebraic function)
to their adjoints. Thus, the “adjoint Yukawa coupling” K⋆(q) is necessarily equal to
the Yukawa coupling K(q) for these operators.

Remark: The operator having the Hadamard product of the two HeunG
functions HeunG(a, q, 1, 1, 1, 1; x) and HeunG(A, Q, 1, 1, 1, 1; x) as a solution
reads:

(x− 1) (x− a) (x −A) (x −Aa) (Aa − x2)2 · x3 · D4
x (138)

+ 2 (x2 −Aa) · U3 · x2 · D3
x − U2 · x · D2

x − U1 · Dx + U0,

where the polynomials Un are given in Appendix K.
The exterior square of this order-four operator (138) is of order five for any value

of the parameters a, q, A, Q (instead of the order-six one expects for the exterior
square of a generic irreducible order-four operator).

The HeunG functions solutions of the form HeunG(a, q, 1, 1, 1, 1; x) are
an interesting set of HeunG functions. They verify the following (six Möbius)
identities [124]:

HeunG(a, q, 1, 1, 1, 1; x) = HeunG
(1
a
,
q

a
, 1, 1, 1, 1;

x

a

)

=
1

1 − x
· HeunG

( a

a − 1
,
a − q

a − 1
, 1, 1, 1, 1; − x

1 − x

)

=
1

1 − x/a
· HeunG

( 1

1 − a
,

q − 1

a − 1
, 1, 1, 1, 1; − x

a− x

)
(139)

=
a

a − x
· HeunG

(
1 − a, 1 − q, 1, 1, 1, 1;

(a − 1) · x
a− x

)

=
1

1 − x
· HeunG

(a − 1

a
,
a − q

a
, 1, 1, 1, 1; − x

1 − x
· a − 1

a

)
.

§ They are conjugated to their (formal) adjoint by a function.
††Actually H4,4 is exactly the operator for 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1], 256 x).
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The ten linear differential operators denoted by a star ∗ in the previous table are
all of this form: they have the Hadamard product of two HeunG functions solutions
of the form HeunG(a, q, 1, 1, 1, 1; x) as a solution. Note, however, that this HeunG-
viewpoint of the most interesting Hm,n’s does not really help. Even inside this
restricted set of HeunG functions solutions of the form HeunG(a, q, 1, 1, 1, 1; x)
it is hard to find exhaustively the values of the two parameters a and of the accessory
parameter† q such the series HeunG(a, q, 1, 1, 1, 1; x) is globally bounded‡, or, just,
such that the order-two operator having HeunG(a, q, 1, 1, 1, 1; x) as a solution is
globally nilpotent (see Appendix K).

The order-four operators H3,3, H3,4, are all MUM operators¶, but, similarly to
the situation encountered with H2,2, their nome, mirror map and Yukawa couplings
are not globally bounded.

Many Hm,n are not MUM, for instance the order-eight operator H12,12, or
the order-six operator H3,7, are not MUM. Concerning H3,7 and as far as its six
solutions are concerned, it is “like” the four solutions of an order-four MUM operator,
together with the two solutions of another order-two MUM operator, but the order-
six operator H3,7 is not a direct-sum of an order-four and order-two operator. We
have two solutions analytical at x = 0 (no ln(x)), two solutions with a ln(x). A
linear combination of these two solutions analytical at x = 0 is, by construction a
series with integer coefficients (the Hadamard product of the two series with integer
coefficients which are the initial ingredients in this calculation), when the other linear
combinations are not globally bounded.

8.6. “Atkin” transformations

It is worth noting that the globally bounded character of some of these Hm,n, at x = 0,
is simply related to the globally bounded character at x = ∞ of a conjugate operator,
as a consequence of some simple homomorphism relation with their transformed by
“Atkin” pullbacks:

x1/4 · H2,2(x) = H2,2

(
x→ 1

224 x

)
· x1/4,

x1/3 · H3,3(x) = H3,3

(
x→ 1

312 x

)
· x1/3, (140)

x1/2 · H4,4(x) = H4,4

(
x→ 1

216 x

)
· x1/2, x · H6,6(x) = H6,6

(
x→ 1

26 34 x

)
· x,

x · H8,8(x) = H8,8

(
x→ 1

210 x

)
· x, x · H9,9(x) = H9,9

(
x→ 1

36 x

)
· x,

but also for the order-six operators

x1/2 · H5,5(x) = H5,5

(
x→ 1

212 56 x

)
· x1/2, (141)

x2/3 · H7,7(x) = H7,7

(
x→ 1

38 74 x

)
· x2/3, (142)

† The accessory parameter appears in many applications as a spectral parameter [124].
‡ Along this line see the paper by Zagier [96] on integral solutions of Apéry-like equations.
¶ Note that the Hadamard product of two MUM ODEs is not necessarily a MUM ODE: the order-six
operator H3,7 is not MUM.
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and the order-eight operators

x2 · H12,12(x) = H12,12

(
x→ 1

24 32 x

)
· x2, (143)

x2 · H16,16(x) = H16,16

(
x→ 1

26 x

)
· x2, (144)

or the order-ten operators

x3/2 · H10,10(x) = H10,10

(
x→ 1

28 52 x

)
· x3/2, (145)

x7/6 · H13,13(x) = H13,13

(
x→ 1

28 33 132 x

)
· x7/6, (146)

or the order-twelve operator

x3 · H18,18(x) = H18,18

(
x→ 1

22 32 x

)
· x3, (147)

or the order-fourteen operator

x5/2 · H25,25(x) = H25,25

(
x→ 1

28 52 x

)
· x5/2. (148)

to be compared with

x1/4 · ω2(x) = ω2

(
x→ 1

212 x

)
· x1/4, x1/3 · ω3(x) = ω3

(
x→ 1

36 x

)
· x1/3,

x1/2 · ω4(x) = ω4

(
x→ 1

28 x

)
· x1/2, x · ω6(x) = ω6

(
x→ 1

23 32 x

)
· x,

x · ω8(x) = ω8

(
x→ 1

25 x

)
· x, x · ω9(x) = ω9

(
x→ 1

33 x

)
· x,

and:

x1/2 · ω5(x) = ω5

(
x→ 1

26 53 x

)
· x1/2, (149)

x2/3 · ω7(x) = ω7

(
x→ 1

34 72 x

)
· x2/3, · · ·

Note, however, that these properties (140) are no longer valid for the off-diagonal
operators Hm,n, m 6= n. For instance, the other order-four Calabi-Yau operators
H4,6, H4,8, H4,9 are not globally bounded at x = ∞: if one changes these operators
by a x → 1/x pullback, the new order-four operators after a well-suited conjugation
by xr (r rational number) are not globally bounded. For instance H4,6(x → 1/x)
requires to be conjugated by x1/2 (Puiseux series): after conjugation by x1/2, the
series analytical at x = 0 is not globally bounded.

Remark: Let us denote An the constant in the “Atkin” involution x → An/x
for modular form of order n (i.e. τ → n τ). We denote by ωn(x), the order-two
operator associated with a modular form of order n.

One has

xrn · ωn(x) = ωn

(
x→ 1

An B2
n x

)
· xrn , (150)

where the Bn’s are integers, and, quite remarkably¶, one also has for Hn,n(x) the

¶ If one forgets, for a second, that sum and multiplication do not commute, it is tempting to see
naively these conjugation results (151), on the Hn,n’s, as a straight consequence of the relation, like
(150), on the ωn’s, since the Hn,n’s are Hadamard squares of the ωn’s, the constant in the pullback
involution in the right-hand side of (151) being the square of the constant in (150). This is not the
case.
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Hadamard product of two ωn(x)’s

xrn · Hn,n(x) = Hn,n

(
x→ 1

A2
n B

4
n x

)
· xrn . (151)

The values of An, Bn and rn are given in the following table:

n 2 3 4 5 6 7 8 9 10 12 13 16 18 25
An 212 36 28 53 23 32 72 25 33 22 5 22 3 13 23 2 · 3 5
Bn 1 1 1 22 1 32 1 2 1 1 22 32 1 1 22

rn
1
4

1
3

1
2

1
2 1 2

3 1 1 3
2 2 7

6 2 3 5
2

8.7. 2F1([1/N, 1/N ], [1], x) hypergeometric functions

Modular forms can always be written as the hypergeometric function 2F1, up
to an algebraic pre-factor, and up to a pullback (see Maier [123]). Relations
(130), (132), (134) and (135) underline the special role of modular forms that
can be written as 2F1 with no algebraic pre-factor, and no pullbacks (see
Table 15 in [123]), namely 2F1([1/4, 1/4], [1], −64 x), 2F1([1/3, 1/3], [1], −27 x),
2F1([1/2, 1/2], [1], −16 x). Along this line it is worth considering the hypergeometric
functions 2F1([1/N, 1/N ], [1], −N3 x) which always yield globally bounded series,
together with their associated linear differential operators. The nome for these
operators does not (generically) correspond to globally bounded series. One notes,
however, that N = 6 is “special”, yielding series with integer coefficients for the
hypergeometric function†

2F1

(
[
1

6
,
1

6
], [1], −432 x

)
(152)

= (1 + 432 x)−1/6 · 2F1

(
[
1

12
,
5

12
], [1],

1728 x

(1 + 432 x)2

)

= 1 − 12 x + 1764 x2 − 397488 x3 + 107619876 x4 − 32285962800 x5

+ 10342270083600x6 − 3467404345579200x7 + · · ·
but also for the corresponding nome

q = x − 120 x2 + 24660 x3 − 6322720 x4 + 1828573410 x5 − 570359919024 x6

+ 187363061411720x7 − 63912709875600960x8 + · · · (153)

as well as the mirror map:

x(q) = q + 120 q2 + 4140 q3 + 166720 q4 − 6012210 q5 + 1165528224 q6

− 178811454280 q7 + 29512658112000 q8 + · · · (154)

In fact the hypergeometric function 2F1([1/6, 1/6], [1], x) (as well as the
hypergeometric function 2F1([1/6, 5/6], [1], 1 −x)) is actually “special” (as was first
seen by Ramanujan, see for instance Cooper [125]). In Appendix M the modular form
character of (152) is made crystal clear in a quite heuristic way.

Remark: Using the 2F1([a, b], [1], x) hypergeometric functions associated
to modular forms‡ (namely [a, b] = [1/2, 1/2], [1/3, 1/3], [1/4, 1/4], [1/6, 1/6],

† We use identity 2F1([1/6, 1/6], [1], x) = (1 − x)−1/6 · 2F1([1/12, 5/12], [1],−4x/(1 − x)2), which
singles out the known [113] pullback x → −4x/(1 − x)2.
‡ For [1/2, 1/2], [1/3, 1/3], [1/4, 1/4], [1/6, 1/6], see the Ramanujan’s theories to alternative
basis [125] for other “signatures”. For [1/8, 3/8] see the third example in Appendix A.
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[1/3, 2/3], [1/3, 1/6], [1/6, 5/6], [1/4, 3/4], [1/8, 3/8], [1/12, 5/12], ...), one can build

4F3 globally bounded examples by simple Hadamard products of these selected 2F1.
We give in Appendix P a miscellaneous set of identities expressing HeunG functions,
or modular forms, as the previously selected 2F1 hypergeometric functions with two
pullbacks.

8.8. Modularity and Hypergeometric series with coefficients ratio of factorials

As a consequence of the classification by Beukers and Heckman [111] of all algebraic

nFn−1’s, the 8F7 hypergeometric series

8F7

([
1

30
,
7

30
,
11

30
,
13

30
,
17

30
,
19

30
,
23

30
,
29

30

]
,

[
1

5
,
2

5
,
3

5
,
4

5
,
1

2
,
2

3
,
1

3

]
, 214 39 55 x

)
,

has integer coefficients, and is an algebraic function. The Galois group belonging to
this function is the Weyl group W (E8) which has 696729600 elements [126]. It is an
algebraic series of degree 483840. More precisely, it was noticed [127] by Rodriguez-
Villegas that the previous power series reads:

∞∑

n=0

(30n)! n!

(15n)! (10n)! (6n)!
· xn, (155)

which is precisely the series introduced by Chebyshev during his work [128] on the
distribution of prime numbers to establish the estimate

0.92
x

log x
≤ π(x) ≤ 1.11

x

log x
, (156)

on the prime counting function π(x).

Considering hypergeometric series such that their coefficients are ratio of
factorials, a paper by Rodrigues and Villegas [127] gives the conditions of these
factorials for the hypergeometric series to be algebraic (all the coefficients are thus
integers). A simple example is, for instance the algebraic function:

3F2

(
[
1

4
,
1

2
,
3

4
], [

1

3
,
2

3
];

256

27
· x
)

=

∞∑

n=0

(
4n

n

)
· xn. (157)

Along this line it is worth recalling Delaygue’s Thesis [129] (see also Bober [130])
which gives some results♯ for series expansions¶ such that their coefficients are ratio
of factorials:

2F1

(
[
1

3
,
2

3
], [1]; 27 x

)
=

∞∑

n=0

(3n)!

(n!)3
· xn, (158)

4F3

(
[
1

2
,
1

2
,
1

2
,
1

2
], [1, 1, 1]; 256 · x

)
=

∞∑

n=0

((2n)!)4

(n!)8
· xn, (159)

4F3

(
[
1

2
,
1

2
,
1

6
,
5

6
], [1, 1, 1]; 28 33 · x

)
=

∞∑

n=0

(6n)! (2n)!

(3n)! (n!)5
· xn. (160)

These ratio of factorials are integer numbers. The series expansion of (160) reads:

1 + 240 x + 498960 x2 + 1633632000 x3 + 6558930378000x4

+ 29581300719210240x5 + 143836335737833939200 x6 + · · ·
♯ Necessary and sufficient conditions for the integrality of the mirror maps series.
¶ These series are not algebraic functions.
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8.9. More Hadamard products: Batyrev and van Straten examples [90]

8.9.1. A first auto-adjoint Calabi-Yau ODE

An order-four operator has been found by Batyrev and van Straten [90]

B1 = θ4 − 3 x · (7 θ2 + 7 θ + 2) · (3 θ + 1) · (3 θ + 2) (161)

− 72 x2 · (3 θ + 5) · (3 θ + 4) · (3 θ + 2) · (3 θ + 1),

which is conjugated to its adjoint: B1 · x = x · adjoint(B1).
Operator (161) is a Calabi-Yau operator: it is MUM, and it is such that its exterior

square is of order five. Its has a solution analytical at x = 0 which is actually the
Hadamard product of the previous selected hypergeometric 2F1:

2F1

(
[
1

3
,
2

3
], [1]; 27 x

)
⋆
( 1

1 + 4 x
· 2F1

(
[
1

3
,
2

3
], [1];

27 · x
(1 + 4 x)3

))
. (162)

8.9.2. A second auto-adjoint Calabi-Yau ODE

A second example [90] (see† page 34) of order-four operator corresponds to Calabi-
Yau 3-folds in P1 × P1 × P1 × P1:

B2 = θ4 − 4 x · (5 θ2 + 5 θ + 2) · (2 θ + 1)2

+ 64 x2 · (2 θ + 3) · (2 θ + 1) · (2 θ + 2)2, (163)

corresponding to the series-solution with coefficients:
(
2n

n

)
·

n∑

k=0

(
n

k

)2

·
(
2k

k

)
·
(
2n− 2k

n− k

)
(164)

=

(
2n

n

)2

· 2F1

(
[
1

2
, −n, −n, −n], [1, 1, − 2n − 1

2
]; 1
)
.

Its Wronskian reads:

W =
1

(1 − 64 x)2 · (1 − 16 x)2 · x6
, x3 · W 1/2 =

1

(1 − 64 x) (1 − 16 x)
. (165)

This operator is also a Calabi-Yau operator: it is MUM, and it is such that its exterior
square is order five. This order five property is a consequence of B2 being conjugated
to its adjoint: B2 · x = x · adjoint(B2).

The series-solution of (163) can be written as an Hadamard product

S = (1 − 4 x)−1/2 ⋆ HeunG(4, 1/2, 1/2, 1/2, 1, 1/2; 16 x)2 (166)

= 1 + 8 x + 168 x2 + 5120 x3 + 190120 x4 + 7939008 x5 + 357713664 x6 + · · · ,
the modular form character of HeunG(4, 1/2, 1/2, 1/2, 1, 1/2; 16 x) being illustrated
with identities (A.2) in Appendix A. Its nome reads:

q = x + 20 x2 + 578 x3 + 20504 x4 + 826239 x5 + 36224028 x6 + 1684499774 x7

+ 81788693064 x8 + 4104050140803x9 + 211343780948764 x10 + · · · (167)

Its mirror map reads:

x(q) = q − 20 q2 + 222 q3 − 2704 q4 + 21293 q5 − 307224 q6 + 80402 q7

− 67101504 q8 − 1187407098 q9 − 37993761412 q10 + · · · (168)

† There is a small misprint in [90] page 34: (2 θ + 1) must be replaced by (2 θ + 1)2 in the 4x term.
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The Yukawa coupling of (163) reads:

K(q) = K⋆(q) = 1 + 4 q + 164 q2 + 5800 q3 + 196772 q4 + 6564004 q5

+ 222025448 q6 + 7574684408 q7 + 259866960036 q8 + · · · (169)

The equality of the Yukawa coupling with the “adjoint” Yukawa coupling, K(q) =
K⋆(q), is a straight consequence of relation B2 · x = x · adjoint(B2).

Do note that recalling Batyrev and van Straten [90], (see step2 page 496), and
following Morrison [89], one can also write the Yukawa coupling as:

K(q) =
x(q)3 ·W 1/2

4

y20
·
( q

x(q)
· dx(q)

dq

)3
=

W
1/2
4

y20
·
(
q · dx(q)

dq

)3
, (170)

where W4 is the Wronskian (165). From this alternative expression for the Yukawa
coupling it is obvious that if the analytic series y0(x), as well as the nome (167) are
series with integer coefficients, then, the mirror map (168) is also a series with integer

coefficients, and, therefore, y0 seen as a function of the nome q, as well as x3 W
1/2
4 ,

and, consequently, the Yukawa coupling is a series with integer coefficients (as a series
in q or in x).

The globally bounded character of the analytic series y0(x) together with the nome,
thus yields the globally bounded character of the mirror map, Yukawa coupling, that we
associate with the modularity. Similar results can be found in Delaygue’s thesis [129],
in a framework when the coefficients of hypergeometric series are ratio of factorials.

In contrast the globally bounded character of the analytic series y0(x), together
with the globally bounded character of the Yukawa coupling (seen for instance as a
series in x) does not imply that the nome, or the mirror map, are globally bounded
as can be seen on example (113) (see (114) and (115)).

8.9.3. An operator non trivially homomorphic to B2

Let us, now, introduce the order-four operator

B2 = 256 x2 · θ2 (2 θ + 3) (2 θ + 1)

− 4 x · (2 θ + 1) (2 θ − 1) (5 θ2 − 5 θ + 2) + (θ − 1)4. (171)

This operator is non-trivially‡ homomorphic to the Calabi-Yau operator (163):

B2 · x · (2 θ + 1) = x · (2 θ + 1) · B2. (172)

As a consequence of the previous intertwining relation, one immediately finds that the
series-solution analytic at x = 0 of this new MUM operator (171) is nothing but the
action of the order-one operator x · (2 θ + 1) on the series (166), and reads:

x · (2 θ + 1)[S] = x + 24 x2 + 840 x3 + 35840 x4 + 1711080 x5 + 87329088 x6

+ 4650277632 x7 + 254905896960 x8 + · · · (173)

It is obviously also a series with integer coefficients (the action of x · (2 θ + 1) on the
series with integer coefficient is straightforwardly a series with integer coefficients).
More generally, the globally bounded series remain globally bounded series by
operator equivalence (non trivial homomorphisms between operators: generically the
intertwiner operators are not simple functions).

‡ The intertwiners between B2 and B2 are operators not simple functions.
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The exterior square of the order-four operator (171) is an order-six operator which
is, in fact the LCLM of an order-five operator E5 and an order-one operator:

Ext2(B2) = E5 ⊕
(
Dx −

d ln(ρ(x)

dx

)
, where: ρ(x) =

x

(1 − 16 x) (1 − 64 x)
.

Operator B2 is non-trivially homomorphic to its adjoint:

B2 · x3 · (2 θ + 3) · (2 θ + 5) = x3 · (2 θ + 3) · (2 θ + 5) · adjoint(B2). (174)

The Yukawa coupling of this order-four operator (171), non-trivially homomorphic to
(163), reads:

K(q) = 1 − 4 q − 140 q2 − 4040 q3 − 64436
q4

3
+ 1889332

q5

3

+ 88331368
q6

5
+ 1652707624

q7

9
− 69295027684

q8

63
+ · · · (175)

The Yukawa coupling series (175) is not globally bounded.
The “adjoint Yukawa coupling” of this order-four operator (171) reads:

K⋆(q) = 1 + 12 q + 564 q2 + 20440 q3 + 865732 q4 + 37162444 q5

+ 8255346664
q6

5
+ 1121762648248

q7

15
+ 72336859374772

q8

21
+ · · · (176)

Again, the adjoint Yukawa coupling series (176) is not globally bounded.
On this example one sees that the Yukawa coupling of two non-trivially

homomorphic operators are not necessarily equal. The Yukawa couplings of two
homomorphic operators are equal when the two operators are conjugated by a function
(trivial homomorphism). The modularity property is not preserved by (non-trivial)
operator equivalence: it can depend on a condition that the exterior square of the
order-four operators are of order five. The Calabi-Yau property is not preserved by
operator equivalence.

To sum-up: All these examples show that the integrality (globally bounded
series) is far from identifying with modularity. All these examples have to be taken
into account if one has in mind to build new conjectures combining these globally
boundedness of various series with the concept of diagonal of rational functions: for
instance, can we imagine that being a diagonal of rational functions automatically
yields that the nome or the Yukawa coupling are globally bounded series in q or x,
etc ?

9. Conclusion

Seeking for the linear differential operators for the χ(n)’s, we first discovered that
they were Fuchsian operators [14, 16], and, in fact, “special” Fuchsian operators,
namely Fuchsian operators with rational exponents for all their singularities, and
with Wronskians that are N -th roots of rational functions. Then we discovered that
they were G-operators (or equivalently globally nilpotent [28]), and more recently,
we accumulated results [33] indicating that they are “special” G-operators. There
is, in fact, two quite different kinds of “special character” of these G-operators. On
one side, we have the fact that one of their solutions is not only G-series, but is a
globally bounded series. This special character has been addressed in this very paper,
and we have seen that, in fact, this “integrality property [31]” is a consequence of



Diagonals of rational functions 47

quite general mathematical assumptions often satisfied in physics (the integrand is
not only algebraic but analytic in all the variables (50)). However, we have also
seen another special property of these G-operators, namely the fact that they seem
to be quite systematically homomorphic to their adjoints [33]. We will show, in a
forthcoming publication, that this last property amounts, on the associated linear
differential systems, to having special differential Galois groups, and that their exterior
or symmetric square, have rational solutions. This last property is a property of a
more “physical” nature than the previous one, related to an underlying Hamiltonian
structure [121], or as this is the case, for instance in the Ising model, related to the
underlying isomonodromic structure in the problem, which yields the occurrence of
some underlying Hamiltonian structure [121]. In general the integrality of G-operators
does not imply the operator to be homomorphic to its adjoint, and conversely being
homomorphic to its adjoint does not imply‡ integrality (and even does not imply†
the operator to be Fuchsian). Interestingly, the χ(n)’s, as well as many important
problems of theoretical physics, correspond to G-operators that present these two
complementary “special characters” (integrality and, up to homomorphisms, self-
adjointness), and, quite often, this is seen in the framework of the emergence of
“modularity”.

Nomes, mirror maps, and Yukawa couplings are not D-finite functions: they
are solutions of quite involved non-linear (higher order Schwarzian) ODEs (see for
instance Appendix D in [28]). Therefore, the question of the series integrality
of the nomes, mirror maps, Yukawa couplings, and other pullback-invariants (see
Appendix J) requires to address the very difficult question of series-integrality for
(involved) non-linear ODEs, or, equivalently, the problem of non-linear recursions
with integer sequence solutions. Note, however, as seen in Section 8.9.2, in particular
in (170), that the integrality of the series y0(x) and of the nome q(x) are sufficient to
ensure, provided the operator is conjugated to its adjoint (see (??)), the integrality
of the other quantities such as the Yukawa coupling, mirror maps. However the
integrality of the nome remains an involved problem. These questions will certainly
remain open for some time.

In contrast, and more modestly, we have shown that a very large sets of problems
in mathematical physics (see sections (4.4), (5) and (6.1)) actually correspond to
diagonals of rational functions. In particular, we have been able to show that the
χ(n)’s n-fold integrals of the susceptibility of the two-dimensional Ising model are
actually diagonals of rational functions for any value of the integer n, thus proving
that the χ(n)’s are globally bounded for any value of the integer n. As can be seen in
the “ingredients” of our simple demonstration (see (4.4)), no elliptic curves, and their
modular forms [132], no Calabi-Yau [118], or Frobenius manifolds [121], or Shimura
curves, or arithmetic lattice assumption [119, 120] is required to prove the result. We
just need to have a n-fold integral such that its integrand is not only algebraic, but
analytic in all the variables.
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‡ See Appendix N which gives an example of a (hypergeometric) family of order-four operators
satisfying the Calabi-Yau condition that their exterior square is of order five, and, even, a family of
self-adjoint order-four operator, the corresponding hypergeometric solution-series being not globally
bounded. See also Appendix O.
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x − xDx − 1/2 (see page 74 of [131]) with an irregular singularity is
self-adjoint.
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Appendix A. Modular forms and series integrality

First example: The generating function of the integers
n∑

k=0

(
n

k

)2

·
(
2k

k

)
·
(
2n− 2k

n− k

)
(A.1)

=

(
2n

n

)
· 2F1

(
[
1

2
, −n, −n, −n], [1, 1, − 2n − 1

2
]; 1
)
,

is nothing else but the expansion of the square of a HeunG function

HeunG
(
4,

1

2
,
1

2
,
1

2
, 1,

1

2
; 16 · x

)
= 1 + 2 x + 12 x2 + 104 x3

+ 1078 x4 + 12348 x5 + 150528 x6 + 1914432 x7 + · · · (A.2)

solution of the order-two operator

Hdiam = θ2 − 2 · x · (10 θ2 + 5 θ + 1) + 16 x2 · (2 θ + 1)2. (A.3)

which corresponds to the diamond lattice [48]. This HeunG function (A.2) is actually
a modular form† which can be written in two different ways:

HeunG(4,
1

2
,
1

2
,
1

2
, 1,

1

2
; 16 x)

= (1 − 4 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1];

108 x2

(1 − 4 x)3

)
(A.4)

= (1 − 16 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1]; − 108 x

(1 − 16 x)3

)
.

These two pullbacks are related by an “Atkin” involution x ↔ 1/64/x. The
associated modular curve, relating these two pullbacks (A.4) yielding the modular
curve:

4 · y3 z3 − 12 y2 z2 · (y + z) + 3 y z · (4 y2 + 4 z2 − 127 y z)

− 4 · (y + z) · (y2 + z2 + 83 y z) + 432 y z = 0, (A.5)

which is (y, z)-symmetric and is exactly the rational modular curve in eq. (27) already
found for the order-three operator F3 in [33] for the five-particle contribution χ̃(5) of
the magnetic susceptibility of the Ising model.

This result in [46, 48] can be rephrased as follows. One introduces the order-three
operator which has the following 3F2 solution

1

(4 − x2)3
· 3F2

(
[
1

3
,
1

2
,
2

3
], [1, 1],

27 x4

(4 − x2)3

)
, (A.6)

† Generically HeunG functions are far from being modular forms. They are even far from being
solutions of globally nilpotent operators (they generically have no integral representations [133, 134]).
There is a relation between these operators being finite-gap [135] and their globally nilpotence.
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associated with the Green function of the diamond lattice. Along a modular form line
lets us note that this hypergeometric function actually has two pullbacks:

3F2

(
[
1

3
,
1

2
,
2

3
], [1, 1],

27 x4

(4 − x2)3

)
(A.7)

=
x2 − 4

4 · (x2 − 1)
· 3F2

(
[
1

3
,
1

2
,
2

3
], [1, 1],

27 x2

4 · (x2 − 1)3

)
.

These two pullbacks related by the “Atkin” involution x → 2/x:

u(x) =
27 x4

(4 − x2)3
, v(x) = u(

2

x
) =

27 x2

4 · (x2 − 1)3
, (A.8)

corresponding, again, to the modular curve (A.5).

Second example. The HeunG function

HeunG(−3, 0, 1/2, 1, 1, 1/2; 12 · x) (A.9)

= (1 + 4 x)−1/4 · HeunG
(
4,

1

2
,
1

2
,
1

2
, 1,

1

2
,

16 x

1 + 4 x

)

= 1 + 6 x2 + 24 x3 + 252 x4 + 2016 x5 + 19320 x6 + 183456 x7

+ 1823094 x8 + 18406752 x9 + 189532980 x10 + · · ·
is solution of

Heunfcc = θ2 − 2 x · θ · (4 θ + 1) − 24 · x2 · (2 θ + 1) · (θ + 1), (A.10)

The square of (A.9) is actually the solution of an order-three operator (see equation
(19) in [48]) emerging for lattice Green functions of the face-centred cubic (fcc) lattice
which is thus the symmetric square of (A.10). This hypergeometric function with a
polynomial pull-back can also be written:

HeunG(−3, 0, 1/2, 1, 1, 1/2; 12 · x)

= 2F1

(
[
1

6
,
1

3
], [1]; 108 · x2 · (1 + 4 x)

)
(A.11)

= (1 − 12 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1]; − 108 · x · (1 + 4 x)2

(1− 12 x)3

)
,

where the involution x ↔ −1/4 · (1+4 x)/(1− 12 x) takes place. The modular curve
relating these two pullbacks reads exactly the rational curve (A.5) already obtained
in [33].

Third example. The HeunG function HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 4 x) is
solution of the order-two operator corresponding to the simple cubic lattice Green
function

Hsc = θ2 − x · (40 θ2 + 20 θ + 3) + 9 · x2 · (4 θ + 3) · (4 θ + 1).

The square of this HeunG function is a series with integer coefficients which identifies
with the Hadamard product of (1 − 4 x)−1/2 with a modular form :

HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 4 x)2 (A.12)

= (1 − 4 x)−1/2 ⋆ HeunG(1/9, 1/3, 1, 1, 1, 1; x)

= 1 + 6 x + 90 x2 + 1860 x3 + 44730 x4 + 1172556 x5 + 32496156 x6

+ 936369720 x7 + 27770358330 x8 + 842090474940 x9 + · · ·
The HeunG function HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 4 x) is globally bounded: the
series of HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 8 x) is a series with integer coefficients.
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One can also write this HeunG function in terms of a 2F1([1/6, 1/3], [1], x)
hypergeometric function up to a simple algebraic pullback (with a square root), or
in terms of a 2F1([1/8, 3/8], [1], x) hypergeometric function:

HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 4 x) = C
1/4
2 · 2F1

(
[1/8, 3/8], [1]; P2

)
, with:

C2 =
1

9 · (1 + 12 x)2
·
(
5 − 36 x + 4 · (1− 36 x)1/2

)
, P2 =

128 · x
(1 + 12 x)4

· p2,

p2 = (1 − 42 x + 352 x2 − 288 x3) + (1 − 4 x) · (1 − 20 x) · (1 − 36 x)1/2.

Do note that taking the Galois conjugate (changing (1− 36 x)1/2 into −(1− 36 x)1/2)
gives the series expansion of 3−1/2 · HeunG(1/9, 1/12, 1/4, 3/4, 1, 1/2; 4 x). This
shows that there exists an identity for 2F1([1/8, 3/8], [1], x) with two different
pullbacks, namely the previous P2 and its Galois conjugate, these two pullbacks being
related by a (symmetric genus zero) modular curve:

5308416 · y4 z4 + 442368 · y3 z3 · (y + z) + 512 y2 z2 · (27 y2 + 27 z2 − 27374 x y)

+ 192 y z · (y + z) · (y2 + z2 + 10718 y z) + y4 + z4 + 3622662 y2 z2

− 19332 · y z · (y2 + z2) + 79872 · y z · (y + z) − 65536 · y z = 0. (A.13)

Revisiting the examples. In a recent paper [136] corresponding to spanning
tree generating functions and Mahler measures, a result from Rogers (equation (36)
in [136]) is given where the two following 5F4 hypergeometric functions take place:

5F4

(
[
5

4
,
3

2
,
7

4
, 1, 1], [2, 2, 2, 2],

256 x3

9 · (x+ 3)4

)
,

5F4

(
[
5

4
,
3

2
,
7

4
, 1, 1], [2, 2, 2, 2],

256 x

9 · (1 + 3 x)4

)
. (A.14)

The corresponding order-five linear differential operators (annihilating these two 5F4

hypergeometric functions) are actually homomorphic (the intertwiners being order-
four operators). The relation between these two pullbacks y = 256 x3/9/(x + 3)4

and z = 256 x/9/(1 + 3 x)4, remarkably gives, again, the previous (y, z)-symmetric
modular curve (A.13).

The order-five linear differential operator, corresponding to the first 5F4

hypergeometric function, factorizes in an order-one operator, an order-three operator
and an order-one operator, the order-three operator being, in fact, exactly the
symmetric square of an order-two operator:

L1 · Sym2(W2) ·
x4

(x − 9) (x + 3)4
· R1,

where the order-one operators read respectively

L1 = Dx −
d

dx
ln
( x− 9

(9 x2 + 14 x + 9) · (x+ 3)4

)
, R1 = Dx −

d

dx
ln
((x+ 3)4

x3

)
,

and where the order-two operator W2 reads:

W2 = D2
x + 3

(6 · x2 + 7 x + 3)

(9 x2 + 14 x + 9) · x · Dx +
3

4
· 3 x + 2

(9 x2 + 14 x + 9) · x . (A.15)

We have a similar result for the order-five linear differential operator
corresponding to the second 5F4 hypergeometric function.
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Another solution of this order-five linear differential operator reads:

(x + 3)4

x3
·
∫

x − 9

(x+ 3) · x · 3F2

(
[
1

4
,
1

2
,
3

4
], [1, 1],

256 x3

9 · (x + 3)4

)
· dx. (A.16)

The expansion of the 3F2 hypergeometric function in (A.16) is globally bounded
(change x → 9 x to get a series with integer coefficients).

Recalling the two previous pullbacks we have, in fact, the following identity:

3 · (1 + 3 x) · 3F2

(
[
1

4
,
1

2
,
3

4
], [1, 1],

256 x3

9 · (x+ 3)4

)

= (x + 3) · 3F2

(
[
1

4
,
1

2
,
3

4
], [1, 1],

256 x

9 · (1 + 3 x)4

)
. (A.17)

However this 3F2 hypergeometric function is nothing but the square of a 2F1

hypergeometric function

3F2

(
[
1

4
,
1

2
,
3

4
], [1, 1], x

)
= 2F1

(
[
1

8
,
3

8
], [1], x

)2
. (A.18)

Thus, the previous identity (A.17) is nothing but the identity on a 2F1 hypergeometric
function with two different pullbacks:

(1 + 3 x)1/2 · 2F1

(
[
1

8
,
3

8
], [1],

256 x3

9 · (x+ 3)4

)

=
(
1 +

x

3

)1/2
· 2F1

(
[
1

8
,
3

8
], [1],

256 x

9 · (1 + 3 x)4

)
. (A.19)

The expansion of (A.19) is globally bounded. One gets a series with positive integer
coefficients using the simple rescaling x → 36 · x. Note that the two pullbacks can be
exchanged by the simple “Atkin” involution x ↔ 1/x, being related by the modular
curve occurring for the simple cubic lattice, namely (A.13).

We have a similar result for the other 5F4 hypergeometric functions popping out
in [136].

For instance, for the diamond lattice one gets an expression (see eq. (50) in [136])
where the two following 5F4 hypergeometric functions take place‡:

5F4

(
[
5

3
,
3

2
,
4

3
, 1, 1], [2, 2, 2, 2],

−27 x2

4 · (1 − x2)3

)
,

5F4

(
[
5

3
,
3

2
,
4

3
, 1, 1], [2, 2, 2, 2],

27 x4

(4 − x2)3

)
. (A.20)

These two pullbacks can be exchanged by the simple “Atkin” involution x ↔ 2/x.
These two pullbacks have been seen to be related by the (genus-zero) (y, z)-symmetric
modular curve (A.5):

4 y3 z3 − 12 y2 z2 · (y + z) + 3 y z
(
4 y2 + 4 z2 − 127 y z

)

− 4 · (y + z) · (y2 + z2 + 83 y z) + 432 y z = 0. (A.21)

Similarly to (A.17) we have an identity between two 3F2 hypergeometric functions
(namely 3F2([2/3, 1/2, 1/3], [1, 1], z)) with the two pullbacks (A.20), and these 3F2

‡ Note a small misprint in eq. (50) of [136]: one should read −27z2/4/(1 − z2)3 instead of
−27z4/4/(1 − z2)3.
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hypergeometric functions being the square of 2F1 hypergeometric functions, one finds
that the “deus ex machina” is the identity similar to (A.19):

(1 − x2)1/2 · 2F1

(
[
1

3
,
1

6
], [1],

27 x4

(4 − x2)3

)

= (1 − x2

4
)1/2 · 2F1

(
[
1

3
,
1

6
], [1],

−27 x2

4 · (1 − x2)3

)
. (A.22)

The series expansion of (A.22) is globally bounded. Rescaling the x variable as
x → 4 x, the series expansion becomes a series with positive integer coefficients (up
to the first constant term).

For the face-centred cubic lattice one gets an expression (see eq. (52) in [136])
where the two following 5F4 hypergeometric functions take place†:

5F4

(
[
5

3
,
3

2
,
4

3
, 1, 1], [2, 2, 2, 2],

x · (x + 3)2

(x − 1)3

)
,

5F4

(
[
5

3
,
3

2
,
4

3
, 1, 1], [2, 2, 2, 2],

x2 · (x + 3)

4

)
. (A.23)

This example is nothing but the previous diamond lattice example (A.20) with the
change of variable x → −3 x2/(x2 − 4) in (A.23). Therefore, the two pullbacks in
(A.23) are, again, related by the modular curve (A.5). The two pullbacks in (A.23)
can actually be seen directly in the following identity (equivalent to (A.22)):

2F1

(
[
1

3
,
1

6
], [1],

x · (x + 3)2

(x − 1)3

)
= (1 − x2)1/2 · 2F1

(
[
1

3
,
1

6
], [1],

x2 · (x + 3)

4

)
.

Finally, the equation (17) of [136] on Mahler measures, the two following 4F3

hypergeometric functions take place:

4F3

(
[
5

3
,
4

3
, 1, 1], [2, 2, 2],

27 x

(x − 2)3

)
,

4F3

(
[
5

3
,
4

3
, 1, 1], [2, 2, 2],

27 x2

(x + 4)3

)
. (A.24)

These two previous pullbacks can be exchanged by an “Atkin” involution x ↔ −8/x
and are related by the (genus-zero) (y, z)-symmetric modular curve:

8 y3 z3 − 12 y2z2 · (y + z) + 3 y z · (2 y2 + 2 z2 + 13 y z)

− (y + z) · (y2 + z2 + 29 y z) + 27 y z = 0. (A.25)

The underlying identity on 2F1 hypergeometric functions with the two pullbacks
(A.24) read:

− 2 · (x − 2) · 2F1

(
[
1

3
,
2

3
], [1],

27 x2

(x + 4)3

)

= (x + 4) · 2F1

(
[
1

3
,
2

3
], [1],

27 x

(x − 2)3

)
. (A.26)

The series expansion of (A.26) is globally bounded. Rescaling the x variable as
x → −8 x, the series expansion becomes a series with positive integer coefficients.

† There is one more misprint in [136]: the pullback −x (x + 3)/(x − 1)3 must be changed into
x (x + 3)/(x − 1)3.
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Appendix B. Another logarithmically bounded series

Let us display other logarithmically bounded series than (2). The hypergeometric
function 2F1([N/3, 1/6], [7/6], 9 x) is not globally bounded but is such that the order-
one operator 6 θ + 1 acting on it, is a series with integer coefficients for every integer
value of N :

(6 θ + 1) [2F1

(
[
N

3
,
1

6
], [

7

6
], 9 x

)
] = 1F0

(
[
N

3
], [], 9 x

)

= 1 + 3 x+ 18 x2 + 126 x3 + 945 x4 + 7371 x5 + 58968 x6 + · · · for N = 1,

= 1 + 6 x+ 45 x2 + 360 x3 + 2970 x4 + 24948 x5 + 212058 x6 + · · · for N = 2,

= 1 + 9 x+ 81 x2 + 729 x3 + 6561 x4 + 59049 x5 + 531441 x6 + · · · for N = 3, · · ·
Similarly

U = 3F2

(
[
1

4
,
7

12
,
1

7
], [

4

3
,
8

7
], 64 x

)
, (B.1)

which is such that the action of the order-one operator 7 θ + 1 changes it into a
globally bounded function

(7 θ + 1)(U) = 2F1

(
[
1

4
,
7

12
], [

4

3
], 64 x

)
= 1 + 7 x + 190 x2 + 7068 x3

+ 303924 x4 + 14208447 x5 + 701448594 x6 + 35983401900 x7 + · · ·

Appendix C. Φ
(n)
D (w) as diagonals

The family of simple integrals Φ
(n)
D (w) was introduced in §4 of [82], as a way to

simplify the study of the singularities of the Ising integrals χ(n). By definition, they
are equal to

Φ
(n)
D (w) = − 1

n!
+

2

n!

∫ 2π

0

dφ

2π

1

1 − xn−1(w, φ) · x(w, (n − 1)φ)
, (C.1)

where

x(w, φ) =
2w

1 − 2w cos(φ) +
√
(1 − 2w cos(φ))2 − 4w2

. (C.2)

By an easy change of variables, it follows that

Φ
(n)
D (w) = − 1

n!
+

2

n!
·Ψ(n)

D (w), (C.3)

where

Ψ
(n)
D (w) =

1

π

∫ 1

−1

Fn(w, t) ·
dt√
1− t2

, (C.4)

the algebraic function Fn(w, t) being defined by

Fn(w, t) =
1

1 − h(w, t)n−1 · h(w, Tn−1(t))
, (C.5)

where

h(w, t) =
2w

1 − 2w t +
√
(1− 2wt)2 − 4w2

, (C.6)
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and where Tm(t) is the m-th Chebyshev polynomial of the first kind, that is, the
unique polynomial of degree m such that cos(mt) = Tm(cos t).

In order to express Φ
(n)
D (w) as the diagonal of an algebraic function in two

variables, it is sufficient to use the following general result:

If F (w, t) is a bivariate power series, then the univariate power series

Ψ(w) =
1

π
·
∫ 1

−1

F (w, t)√
1− t2

· dt (C.7)

is the diagonal of the generalised power series§

G(w, t) =
F (w t, 1/t)√

1− t2
. (C.8)

The only non-trivial point in the proof of this fact is the classical integral evaluation

1

π
·
∫ 1

−1

dt

(1− ut) ·
√
1− t2

=
1√

1− u2
, for |u| < 1. (C.9)

Expanded proof: Letting F (w, t) =
∑

ℓ≥0 fℓ(t) · wℓ, the series Ψ(w) is equal
to

Ψ(w) =
∑

ℓ≥0

1

π
·
∫ 1

−1

fℓ(t)√
1− t2

· wℓ dt, (C.10)

while the series G(w, t) is equal to

G(w, t) =
∑

ℓ≥0

fℓ(1/t) t
ℓ

√
1− t2

· wℓ. (C.11)

It follows that the diagonal of G is equal to

Diag(G)(w) =
∑

ℓ≥0

[
t0
] fℓ(1/t)√

1− t2
· wℓ. (C.12)

To prove that Ψ = Diag(G), it thus suffices to show that for any power series f ,

1

π
·
∫ 1

−1

f(t)√
1− t2

· dt =
[
t0
] f(1/t)√

1− t2
. (C.13)

By linearity, it thus suffices to prove that for any non-negative integer s,

1

π
·
∫ 1

−1

ts√
1− t2

· dt = [ts]
1√

1− t2
. (C.14)

This follows from the classical integral evaluation

1

π
·
∫ 1

−1

dt

(1− ut) ·
√
1− t2

=
1√

1− u2
, for |u| < 1. (C.15)

For example, when n = 2, the previous construction shows that

Φ
(2)
D (w) =

1

4
+

1

4
· 2F1

(
[
1

2
,
1

2
] [1], 16w2

)
(C.16)

=
1

2
+ w2 + 9w4 + 100w6 + 1225w8 + 15876w10 + · · ·

is equal to the diagonal of the algebraic function

1 − 2w +
√
(1− 2w)2 − 4w2t2

2 ·
√
1− t2 ·

√
(1 − 2w)2 − 4w2t2

− 1

2
. (C.17)

§ In the sense of [58].
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Appendix D. Creative telescoping: computing ODEs for diagonals

The notion of diagonal of rational function is ubiquitous in combinatorics [137].
Its importance comes from the fact that many operations on power series with
a combinatorial relevance (Hadamard products, constant terms, or positive parts,
of Laurent power series, etc) can be encoded as diagonals. A classical result by
Lipshitz [57] predicts that diagonals of rational functions are D-finite. The question
is then: how to obtain algorithmically a differential equation satisfied by the diagonal
Diag(f) of a given rational function f(x1, . . . , xn)? The question can be reformulated
in terms of computing a multiple integral with parameters, over an algebraic surface
(“vanishing cycle” or “évanescent cycle” in Deligne’s terminology [64]), and thus can
be attacked from a geometric viewpoint.

A first answer to this algorithmic question is provided by Lipshitz’s result [57]: if
F denotes the rational function F = f(x1, x2/x1, . . . , xn/xn−1)/(x1 · · ·xn−1), and if
the following equality, called the creative telescoping equation,

L

(
xn,

∂

∂xn

)
(F ) =

∂R1

∂x1
+ · · · +

∂Rn−1

∂xn−1
, (D.1)

admits a solution (L, g1, . . . , gn−1), where P (called telescoper) is a linear differential
operator with coefficients in Q[xn], and where R1, . . . , Rn−1 are rational functions
in Q(x1, . . . , xn) (called certificates), then P annihilates the diagonal Diag(f) of f .

Several algorithms exist for solving equation (D.1). A common weakness of
currently known algorithms for solving (D.1) is that they are not able to compute the
telescoper L without computing the certificates (R1, . . . , Rn−1). This is unfortunate,
since in practice only the telescoper is really needed, while the size of the certificates
is much more important than that of the telescoper.

Lipshitz’s initial argument requires the construction of a non-zero operator
annihilating F which involves all the partial derivatives ∂/∂xi. This reduces the
resolution of (D.1) to that of a linear system over Q. The big practical issue with this
approach is the size of the linear system, which is about several millions even for the
simple rational function f = 1/(1− x1 − x2 − x3). A much more efficient algorithm
for solving equation (D.1) is Chyzak’s extension [65, 138] of the Zeilberger’s celebrated
creative telescoping method [139], although the computational complexity of Chyzak’s
algorithm is not yet well understood. The most efficient implementation of Chyzak’s
algorithm is due to Koutschan [140].

More generally, for n-fold parameterised integrals of D-finite functions, Chyzak’s
creative telescoping algorithm delivers a system of PDEs. For two variables
(anisotropic Ising model), one will get a system of PDEs corresponding to two
“telescopers”, that can be written in the following form:

P1

(
x, y,

∂

∂x

)
=

N∑

n=0

pn(x, y) ·Dn
x , P2

(
x, y,

∂

∂x

)
=

M∑

n=0

qn(x, y) ·Dn
y .

where the pn’s, and the qn’s, are polynomials of the two variables x and y.
Note that, in practice, the down-to-earth physicist’s guessing techniques we have

used in our various papers [14, 16, 26, 82], which amount to getting‡ the linear ODE

‡ Strictly speaking, the correctness of the linear ODEs obtained by “guessing” is not mathematically
guaranteed. However, one may be convinced on the correctness of the ODE, since, in practice, one
has longer series than what is used in the guessing. Also, some properties (as global nilpotence,
expected known structures) are retrieved.
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from the series expansion of the diagonal (or, in general, of the parameterised integral)
is much more efficient† than the creative telescoping approach. This is moral, since
time consuming computations are the price to pay in order to guarantee the correctness
of the ODE.

Appendix E. Christol’s theorem in more heuristic terms

Let us give a sketch in heuristic terms of how the main theorem in [49] is proved.

The first step is purely algebraic-geometric. The algebraic function F involved in
the integral representation

f(x) =

∫

C

F (x;x1, . . . , xn) · dx1 · · · dxn, (E.1)

lives on a complex (n + 1)-manifold V , or, more precisely, on a family of smooth
complex n-manifolds Vx. One applies to it the so-called embedded resolution of
singularities [142]. This process uses a succession of blowing up which is theoretically
explicit but seems to be inaccessible for computation.

Roughly speaking, we so obtain a new family of manifold Ṽ with Ṽx = Vx for
x 6= 0, and Ṽ0, a divisor with normal crossing, namely, a union of “smooth algebraic”
n-manifolds Di that meets “transversally”. In particular, if non void, an intersection
Di1 ∩ · · · ∩Dim of m distinct Di’s is of (complex) dimension n−m+ 1. It is obvious

that, at most, n+ 1 divisors Di’s can intersect at a given point of Ṽ0.
Moreover, if there are really n+ 1 divisors Di intersecting at the point P of Ṽ0,

then, choosing P as origin and equations Xi = 0 of Di (0 ≤ i ≤ n) as new variables,

the equation of Ṽ becomes, at least locally, X0...Xn = x. Applying the (algebraic)
change of variables (X1, . . . , Xn) = ϕ(x1, . . . , xn) to (E.1) (x coming in the picture
as a parameter), one gets

f(x) =

∫

ϕ(C)

F (x ; X1, . . . , Xn) ·
dX1

X1
· · · dXn

Xn
, (E.2)

for an algebraic function F . If we are lucky, the cycle ϕ(C) is (homotopic to) CP ,
the vanishing cycle around P , and (E.2) is an avatar of (53). Then

f = Diag(F̃ ) with F̃ (X0, . . . , Xn) = F (X0 · · ·Xn ; X1, . . . , Xn), (E.3)

(up to a multiplicative constant) and f is the diagonal of an algebraic function (in
n+ 1 variables), hence, the diagonal of a rational function (in 2n+ 2 variables).

Actually the computation of ϕ(C) is inaccessible. To find hypothesis under which
it is possible to conclude, we turn to the Picard-Fuchs equation LV because it does not
depend on the cycle C. Moreover it is stable under birational maps like the blowing
up used for the desingularisation. All reasoning we will do from now do concern all
solutions of LV and cannot be done by considering only, for instance, the minimal
order linear differential equation of f .

Reverting the process, we conclude from formula (E.2) that integration on CP

gives a solution of the Picard-Fuchs equation in the ring of diagonals of rational
functions (proposition 11 in [49]). Let us recall that the Picard-Fuchs linear differential

† Serious programming improvements of the creative telescoping method have been developed
recently [140, 141], and it is now possible to get the linear ODE for the isotropic Ising model χ̃(3),
from creative telescoping calculations.
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equation is given by the derivation ∂
∂x acting (through derivation under the integral

sign) on the space Hn(Ṽx) of n differentials modulo exact ones and a solution of this
“differential module” is a C(x)-linear application from this space to some function
space (here the diagonals of rational function) that do commute with ∂

∂x .
It is difficult to decide, a priori, whether, or not, such a solution is zero on

the particular differential F (x;X1 . . .Xn)
dX1

X1
· · · dXn

Xn
we begin with. But we can

assert that it is non zero for differentials G(x ; X1, . . . , Xn)
dX1

X1
· · · dXn

Xn

such that

G̃(0, . . . , 0) 6= 0. So, we consider the P -residue, for P = D1 ∩ · · · ∩ Dn, which,
roughly speaking, associates to a given differential the coefficient of dX1

X1
· · · dXn

Xn

it
contains. Then the Poincaré residue map associates to a differential the family of its
residues in all the point P of Ṽ0 which are the intersection of n+ 1 divisors Di (this
set could be void)§.

The last step is to connect the Poincaré residue and the monodromy filtration on
the space of solutions of this differential module. This is more or less contained in [143].
Actually this paper shows how to compute subspaces of differential with logarithmic
poles of given order by means of spaces built from the monodromy filtration. A by-
product of this construction (cf theorem 12 in [49]) says that a differential of Hn(Ṽx)
the Poincaré residue of which is 0 (i.e. it has a zero residue for each P ) is in the kernel
of any solution of maximal (monodromy) weight for LV .

As a consequence, the kernel of a solution of maximal weight for LV contains the
intersection of the kernel of the solution corresponding to integrate on the vanishing
cycles CP . But the monodromy filtration is characterised by its “dual” filtration on
Hn(Ṽx) given by corresponding kernels. So we conclude that the solution obtained by
integrating on C is in the span of solutions obtained by integrating on the vanishing
cycles CP . Hence it takes its value in the set of diagonals of rational functions (in
2n+ 2 variables).

When LV is MUM a simpler argument is the following : by hypothesis the solution
associated to C is of maximal weight and the differential, we started with, is not in
its kernel because f 6= 0. So there is, at least, one point P such that integration
on CP of that differential is not zero and gives a diagonal of rational function g. In
particular g is analytic (near zero) and one can conclude by unicity, up to a constant,
of the analytic solution for LV .

Appendix F. Other hypergeometric “blind spots” for Christol’s conjecture

Let us give a list of 3F2 that are not algebraic hypergeometric functions‡, that are not
obviously Hadamard product of algebraic functions, but actually correspond to series
with integer coefficients:

3F2

(
[
N1

9
,
N2

9
,
N3

9
, ], [

M1

3
, 1], 36 x

)
, (F.1)

§ It is rather easy to convince himself that differential dX1

X1
· · · dXi

Xh

i

· · · dXn

Xn
are exact ones for h > 1

and then are 0 in Hn(Ṽx). The naming logarithmic pole comes from this remark. It is much less
obvious to prove that the Poincaré residue is actually well-defined on Hn(Vx) but it does.
‡ The 2F1 case is well-known.
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where the four integers (N1, N2, N3; M1) read respectively:

[1, 2, 7; 2], [1, 2, 8; 2], [1, 4, 5; 1], [1, 4, 7; 1], [1, 4, 7; 2], [1, 4, 8; 2], [1, 5, 8; 1],

[1, 7, 8; 1], [2, 4, 5; 1], [2, 4, 7; 1], [2, 5, 7; 2], [2, 5, 8; 1], [2, 5, 8; 2], [2, 7, 8; 1],

[4, 5, 7; 2], [4, 5, 8; 2].

The series expansion of the first candidate reads:

3F2

(
[
1

9
,
2

9
,
7

9
, ], [

2

3
, 1], 36 x

)
= 1 + 21 x + 5544 x2 + 2194500 x3

+ 1032711750 x4 + 535163031270 x5 + 294927297193620 x6

+ 169625328357359160 x7 + 100668944872954458000x8 + · · ·
Other examples read for instance:

3F2

(
[
1

7
,
2

7
,
4

7
, ], [

1

2
, 1], 74 x

)
, 3F2

(
[
1

11
,
2

11
,
6

11
, ], [

1

2
, 1], 114 x

)
. (F.2)

Do note that, even if these various hypergeometric functions look very much
alike, the linear differential operators that annihilate them are not equivalent (no
homomorphisms between these operators† or their symmetric powers).

One can also try to find, systematically, 4F3 hypergeometric functions that are
not algebraic hypergeometric, that are not obviously Hadamard product of algebraic
functions, but actually correspond to series with integer coefficients. Note that some
of these 4F3 are deduced from the previous 3F2, as a consequence of a Hadamard
product by an algebraic function:

4F3

(
[
1

9
,
2

9
,
7

9
,
1

4
], [

2

3
, 1, 1], 36 23 x

)
(F.3)

= 3F2

(
[
1

9
,
2

9
,
7

9
, ], [

2

3
, 1], 36 x

)
⋆ (1 − 23 x)−1/4 = 1 + 42 x + 55440 x2

+ 131670000 x3 + 402757582500 x4 + 1419252358928040x5

+ 5475030345102361680x6 + 22492318540185824616000 x7 + · · ·

Appendix G. Proof of integrality of series (77)

Let us sketch the proof of the integrality of series (77), namely, the integrality of
coefficients (79). For each power of the integer number q = pn a term like 4 + 9n
is periodically divisible (period p) by q. In order to have the ratio (80) be an integer,
one needs the numerator to be divisible by this factor q before the denominator. The
case p = 3 is an easy one. The other prime p do not divide 9. One needs to find
the first case of divisibility, namely the first integer n such that 4 + 9n = k q (this
corresponds to the smallest k). If d q = 1, mod. 9 then k = 4 d, mod. 9. In other
words, the smallest k is the rest of 4 d, mod. 9. Consequently, we have replaced the
calculations, for every integer q, by a finite set of calculations for d = 1, 2, 4, 5, 7, 8.
Let us use this approach for the ratio (80).

Remark: The terms n + 1 are always the last to be divisible by q. Hence, one
can forget its factors. However, one needs as many factors at the numerator than at
the denominator. For the other terms, the following table of the rest of d · a gives the

† Associated with these various hypergeometric functions with the same singularities at x = 0, 1, ∞.
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complete proof:

. 1 2 4 5 7 8

1 1 2 4 5 7 8

4 4 8 7 2 1 5

5 5 1 2 7 8 4

3 3 6 3 6 3 6

(G.1)

One finds out that this is always a factor of the numerator, before the occurrence of
a factor at the denominator.

Appendix H. Integrality of differential geometry modular form series

Appendix H.1. Golyshev and Stienstra examples [117]

From a differential Geometry viewpoint, Golyshev and Stienstra gave a set of selected
order-three linear differential operators in [117]. The Wronskians of all these Golyshev
and Stienstra examples, displayed in [117], are square roots of simple rational
functions. Consequently, the differential Galois groups of the order-three operators
displayed in [117] will be O(3, C) instead of SO(3, C).

Furthermore, all these Golyshev and Stienstra order-three operators are
symmetric squares of order-two linear differential operators.

For instance for G5, it is the symmetric square of

H5 = D2
x +

1− 66 x− 32 x2

(1− 44 x − 16 x2) · x ·Dx − 3 · (x + 1)

(1− 44 x − 16 x2) · x. (H.1)

This Heunian second order operator H5 is actually solvable in 2F1 hypergeometric
function with a (modular) pullback

κ1/4 · 2F1

(
[
1

12
,
5

12
], [1]; Pu

)
(H.2)

To see this, one can, for example, calculate the nome q in terms of the variable x from
the series solutions y0(x) and y1(x) in x of (H.1), i.e. from q = exp(y1(x)/y0(x)), then
obtain a series expansion in x for Pu using the well-known expansion of the modular
invariant j(q) = 1728/Pu = 1/q + 784 + 196884q + 21493760q2 + · · · in terms of q,
and then recognise the algebraic equation satisfied by Pu using for example Maple’s
command gfun[seriestoalgeq]. One obtains:

(144 x2 + 216 x+ 1)3 · P 2
u − 1728 x (3456 x5 + 7776 x4 − 12600 x3

+ 1890 x2 − 80 x+ 1) · Pu + 2985984 x6 = 0, (H.3)

then:

Pu =
864 x · (1 − 80 x + 1890 x2 − 12600 x3 + 7776 x4 + 3456 x5)

(1 + 216 x+ 144 x2)3
(H.4)

+
864 · x · (1− 4 x) (1 − 18 x) (1 − 36 x)

(1 + 216 x+ 144 x2)3
· (1 − 44 x − 16 x2)1/2,

κ =
5 · (36 x− 13) + 60 · (1 − 44 x − 16 x2)1/2

1 + 216 x + 144 x2
.
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They correspond to the following series expansions:

Pu = 1728 x − 1257984 · x2 + 575828352 · x3 − 214274336256 · x4

+ 70880897026368 · x5 − 21731780729723904 · x6 + · · · ,
κ = −125 + 28500 x − 6123000 x2 + 1318794000 x3 − 283968657000 x4

+ 61147607046000 x5 − 13166982207738000x6 + · · ·
Note that the series for κ, and Pu, have integer coefficients.

Introducing the rational parametrisation of curve y2 − (1 − 44 x − 16 x2) = 0,
in order to get rid of the square root (1 − 44 x − 16 x2)1/2, namely

x =
µ

(125 + 22µ + µ2)
, y = ± (µ2 − 125)

(125 + 22µ + µ2)
, (H.5)

the corresponding two pullbacks and κ’s reading

Pu =
1728µ

(5 + 10µ + µ2)3
, κu = −5 (125 + 22µ + µ2)

(5 + 10µ + µ2)
,

Pv =
1728µ5

(3125 + 220µ + µ2)3
, κv = −125 (125 + 22µ + µ2)

(3125 + 250µ + µ2)
.

where it is straightforward to see the “Atkin” symmetry µ ←→ 125/µ:

Pv(µ) = Pu

(125
µ

)
, κv(µ) = κu

(125
µ

)
, (H.6)

x
(125

µ

)
= x(µ), y

(125
µ

)
= − y(µ), λ5

(125
µ

)
= −λ5(µ).

The relation between the two pullbacks Pu and Pv corresponds to a (rational)
modular curve. One immediately recognises the modular curve corresponding to the
elimination of µ between (the two Hauptmoduls) Pu, and Pv, which is well-known
to correspond to q → q5, or τ → 5 · τ (namely the fundamental modular curve
Φ(j(τ), j(5 · τ)) = 0).

All these results for equation (H.1) can be summarised in the following equation

ρ5(a5 · x)−1 · Pullback
[
H5, x→ c5(a5 · x)

]
· ρ5(a5 · x) = ω5, (H.7)

where we denote by ω5, the order-two operator corresponding to the modular solution

D5 · 2F1

(
[ 1
12 ,

5
12 ], [1];

1728
j5

)
, where D5 and j5 are given by Maier (see tables 4 and 12

in [123]). The expression of c5(x) is given in (G.4): c5(x) = x/(x2 + 22 x + 125)
and ρ5(x) is given below.

This means that the order-two linear differential operator, associated with
Golyshev and Stienstra example G5, when pull-backed by appropriate functions c5(x),
and ρ5(x), is simply the operator corresponding to the modular solution j5.

In a similar way, one can perform the same calculations for other examples given
in [144]. The results are displayed in the following table with the same notations as
before:

ρn(an · x)−1 · Pullback
[
Hn, x→ cn(an · x)

]
·ρn(an · x) = ωn, (H.8)
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n cn(x) ρn(x) an = An ·Bn

2 x/(x+ 64)2 (x+ 64)1/4 212

3 x/(x+ 27)2 (x+ 27)1/3 36

4 x/(x+ 16)2 (x+ 16)1/2 28

5 x/(x2 + 22x+ 125) (x2 + 22x+ 125)1/4 22 53

6 x/(x+ 9)/(x+ 8) ((x + 9)(x+ 8))1/2 23 32

7 x/(x2 + 13x+ 49) (x2 + 13x+ 49)1/3 72 32

8 x/(x+ 8)/(x+ 4) ((x + 8)(x+ 4))1/2 25

9 x/(x2 + 9x+ 27) (x2 + 9x+ 27)1/2 33

Operators Hn for n = 6, 7, 8, 9 are given in the next subsection (for n = 2, 3, 4,
see [144]).

Let us note that all these examples are associated to genus zero curves. Another
example G11 given in [144] which is associated to a genus one curve will be considered
in detail in Appendix I.

Appendix H.2. More details

The order-three operator G6 is the symmetric square of

H6 = D2
x +

1 − 51 x + 2 x2

x · (1− 34 x + x2)
·Dx +

x− 10

4 x · (1− 34 x + x2)
. (H.9)

Let us introduce the rational parametrisation of y2 − (1 − 34 x + x2) = 0:

x =
µ

(µ+ 9) · (µ+ 8)
, y =

µ2 − 72

(µ+ 9) · (µ+ 8)
.

With this new parametrisation the operator (H.9) becomes

Lµ = 4 · (µ+ 9)2 · (µ+ 8)2 · θ2µ − 10 · (µ+ 9) · (µ+ 8) · µ + µ2, (H.10)

which is covariant by the “Atkin” involution µ ↔ 72/µ, x being invariant by this
involution:

x
(72
µ

)
= x(µ), y

(72
µ

)
= − y(µ), (H.11)

It is worth recalling the rational parametrisation of the modular curve τ → 6 · τ
namely [123]:

j6 =
(µ + 6)3 · (µ3 + 18µ2 + 84µ + 24)

µ · (µ + 8)3 · (µ + 9)2
, (H.12)

j′6 =
(µ + 12)3 · (µ3 + 252µ2 + 3888µ + 15552)

µ6 · (µ + 8)2 · (µ + 9)3
= j6

(72
µ

)
.

The solutions of (H.10) read:
( (µ + 8)3 (µ + 9)4

µ

)1/12
· 2F1

(
[
1

12
,
1

12
], [

2

3
];

j6
1728

)
, (H.13)

but can also be written as:
( (µ + 8)2 (µ + 9)2

(µ+ 6) (µ3 + 18µ2 + 84µ + 24)

)1/4
· 2F1

(
[
1

12
,
5

12
], [1];

1728

j6

)
, (H.14)

( 36 · (x+ 8)2 (x+ 9)2

(µ + 12) · (µ3 + 252µ2 + 3888µ + 15552)

)1/4
· 2F1

(
[
1

12
,
5

12
], [1];

1728

j′6

)
.
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The third order operator G7 is the symmetric square of the second order linear
differential operator

H7 = D2
x +

1− 39 x− 54 x2

(1− 27 x) (x+ 1)x
·Dx − 2 · (1 + 3 x)

(1 − 27 x) (x+ 1)x
. (H.15)

Introducing the parametrisation of the rational curve

y2 − (1 + x) · (1− 27 x) = 0, (H.16)

namely

x =
µ

µ2 + 13µ + 49
, y =

µ2 − 49

µ2 + 13µ + 49
, (H.17)

where one verifies the existence of an “Atkin” involution:

x
(49
µ

)
= x(µ), y

(49
µ

)
= − y(µ), (H.18)

With this change of variables the second order differential operator (H.15) reads:

Lµ = (µ2 + 13µ + 49)2 · θ2µ − 2 · (µ2 + 13µ + 49) · µ − 6µ2. (H.19)

It is worth recalling the rational parametrisation of the modular curve τ → 7 · τ
namely [123]:

j7 =
(µ2 + 13µ + 49) · (µ2 + 5µ + 1)

µ
, (H.20)

j′7 =
(µ2 + 13µ + 49) · (µ2 + 245µ + 2401)

µ7
= j7

(49
µ

)
.

The solution of (H.19) reads:
( (µ2 + 13µ + 49)4

µ

)1/12
· 2F1

(
[
1

12
,
1

12
], [

2

3
];

j7
1728

)
,

(76 · (µ2 + 13µ + 49)4

µ7

)1/12
· 2F1

(
[
1

12
,
1

12
], [

2

3
];

j′7
1728

)
.

The order-three operator G8 is the symmetric square of

H8 = D2
x +

1 − 36 x + 32 x2

x · (1 − 24 x + 16 x2)
·Dx − 2

1 − 2 x

x · (1 − 24 x + 16 x2)
. (H.21)

Furthermore one has an “Atkin” symmetry x ↔ 1/16/x. Introducing the
parametrisation of y2 − (1 − 24 x + 16 x2) = 0, namely

x =
µ

(µ + 4) · (µ + 8)
, y =

µ2 − 32

(µ + 4) · (µ + 8)
, (H.22)

the linear differential operator (H.21) becomes

Lµ = (µ + 4)2 · (µ + 8)2 · θ2µ − 2 · (µ + 4) · (µ + 8) · µ + 4 · µ2,

this operator being covariant by the “Atkin” involution which leaves x invariant:

x
(32
µ

)
= x(µ), y

(32
µ

)
= − y(µ). (H.23)
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It is worth recalling the rational parametrisation of the modular curve
representing τ → 8 · τ , namely [123]:

j8 =
(µ4 + 16µ3 + 80µ2 + 128µ + 16)3

µ · (µ + 4)2 (µ + 8)
, (H.24)

j′8 =
(µ4 + 256µ3 + 5120µ2 + 32768µ + 65536)3

µ · (µ + 4) (µ + 8)2
= j8

(32
µ

)
.

A solution of (H.23) reads
( (µ + 8)5(µ + 4)4

µ

)1/12
· 2F1

(
[
1

12
,
1

12
], [

2

3
];

j8
1728

)
, (H.25)

but can also be written
(
(µ + 4) · (µ + 8)

)1/2
· 2F1

(
[
1

2
,
1

2
], [1]; − µ · (µ + 8)

16

)
,

or equivalently, using Gauss-Kummer identity:
(
(µ + 4) · (µ + 8)

)1/2
· 2F1

(
[
1

4
,
1

4
], [1]; − µ · (µ + 8) · (µ + 4)2

64

)
.

Finally, the order-three operator G9 is the symmetric square of

H9 = D2
x +

1 − 27 x − 54 x2

x · (1 − 18 x − 27 x2)
·Dx − 6 + 27 x

4 x · (1 − 18 x − 27 x2)
. (H.26)

With the parametrisation of the rational curve y2 − (1 − 18 x − 27 x2) = 0,
namely

x =
µ

µ2 + 9µ + 27
, y =

µ2 − 27

µ2 + 9µ + 27
, (H.27)

the linear differential operator (H.26) becomes

Lµ = 4 · (µ2 + 9µ + 27)2 · θ2µ − 6 · (µ2 + 9µ + 27) · µ − 27µ2,

which is covariant by the “Atkin” involution leaving x invariant:

x
(27
µ

)
= x(µ), y

(27
µ

)
= − y(µ). (H.28)

It is worth recalling the rational parametrisation of the modular curve τ → 9 · τ
namely [123]:

j9 =
(µ + 3)3 · (µ3 + 9µ2 + 27µ + 3)

µ · (µ2 + 9µ + 27)
, (H.29)

j′9 =
(µ + 9)3 · (µ3 + 243µ2 + 2187µ + 6561)

µ9 · (µ2 + 9µ + 27)
= j9

(27
µ

)
.

A solution of (H.28) reads
( (µ2 + 9µ + 27)5

µ

)1/12
· 2F1

(
[
1

12
,
1

12
], [

2

3
];

j9
1728

)
, (H.30)

but can also be written as:
(
(µ2 + 9µ + 27)

)1/2
· 2F1

(
[
1

3
,
1

3
], [1]; − µ · (µ2 + 9µ + 27)

27

)
, (H.31)

(27 · (µ2 + 9µ + 27)

µ2

)1/2
· 2F1

(
[
1

3
,
1

3
], [1]; − 27

µ2 + 9µ + 27

µ3

)
.

The relation between these two pullbacks corresponds to the modular curve

x3y3 − 270 · x2y2 + 972 · x y · (x + y) − 729 · (x2 + xy + y2) = 0. (H.32)
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Appendix I. Higher genus modular forms

For non-zero genus modular curves, we have generalisations of these structures
associated with an “Atkin” involution of the form z → A/z, which correspond
to the introduction of the so-called Atkin† modular polynomials, or star-modular
polynomials [146].

Appendix I.1. A genus-one curve

Let us first consider the order-three Golyshev and Stienstra linear differential operator
G11 given in [144] which is the symmetric square of

H11 = D2
x +

(625− 12750 x− 30800 x2 − 3150 x3 − 4512 x4)

x · (125 − 1900 x − 40 x2 − 188 x3) · (8 x+ 5)
·Dx

− 6 · (125 + 700 x+ 105 x2 + 188 x3)

(125 − 1900 x − 40 x2 − 188 x3) · (8 x+ 5)
. (I.1)

Performing the same calculations as for (H.1), one deduces that the solution
of (I.1) can be written in terms of pull-backed hypergeometric function, namely

2F1

(
[ 1
12 ,

5
12 ], [1]; Pu

)
, with Pu = 1728/J , with J satisfying the following algebraic

equation:

244140625 x12 · J2 − 5 · (132645814272 x11 + 372815032320 x10 + 1405869696000 x9

+ 5229172080000 x8 − 225383400000 x7 − 5599578600000 x6 + 339591656250 x5

+ 1103850000000 x4 − 349421875000 x3 + 42861328125 x2 − 2363281250 x

+ 48828125) · x · J + (78336 x4 + 181440 x3 + 561600 x2 + 144000 x+ 625)3 = 0.

Then, when we perform the pullback x → 5/(5 z − 3), we obtain the modular
polynomial of order-eleven given† by Morain [146], or by Elkies (see eq. (49) in [147]),
associated to a genus-one modular curve:

J2 −Q1(z) · J + (z4 + 228 z3 + 486 z2 − 540 z + 225)3 = 0. (I.2)

where:

Q1(z) = z11 − 55 z10 + 1188 z9 − 12716 z8 + 69630 z7 − 177408 z6

+ 133056 z5 + 132066 z4 − 187407 z3 + 40095 z2 + 24300 z − 6750.

The j-invariant of the genus-one (J, z)-curve (I.2) reads¶:

jinv = −122023936

161051
= − 4963

115
. (I.3)

Appendix I.1.1. Atkin modular polynomial and modular forms for τ → 11 τ

Let us focus on the previous Atkin modular polynomial (I.2):

Φ∗
11(z, j) = j2 −Q1(z) · j + (z4 + 228 z3 + 486 z2 − 540 z + 225)3. (I.4)

Note that there is no associated “Atkin” involution of the (rational) form z → A/z,
since the curve Φ∗

11(z, j) = 0 is a genus-one curve.

† Atkin’s work we are interested in, cannot be found in papers but in emails [145].
† See Φ∗

11(F, J) in the last equation of subsection 2.3.2 of [146]. The variable F in [146] is z here.
¶ Use the command algcurves[j invariant] in Maple.
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The elimination of z, between the two solutions j+ and j− of Φ∗
11(z, j) = 0,

yields the modular curve

Φ11(j+, j−) = 0, (I.5)

which is a quite large (146 monomials) (j+, j−)-symmetric polynomial of degree twelve
in j+ (resp. j−). The discriminant of Φ11(j+, j−) in j− reads (we denote here j−
by j):

− 1111 · j8 · (j − (12)3)6 · Q2 · P2, (I.6)

where Q reads:

Q = (j + (15)3) · (j − (20)3) · (j + (96)3) · (j + (960)3) · (j − (255)3)

× (j2 − 425692800 j + 9103145472000)2 · (j2 + 117964800 j − 134217728000)2,

and where P is a polynomial that factors into the product of seven polynomials of
degree two, fourteen polynomials of degree four, one polynomial of degree six and four
polynomials of degree eight:

P = P
(1)
2 · · · P (7)

2 · P (1)
4 · · · P (14)

4 · P (1)
6 · P (1)

8 · · · P (4)
8 . (I.7)

In the j+ = j− = j limit it becomes a polynomial of degree 22, which simply
factors as follows:

Φ11(j, j) = − (j + (32)3) · Q2

× (j3 − 1122662608 j2 + 270413882112 j − 653249011576832).

where, besides the Complex Multiplication value [148] j = (255)3 = 16581375, one
recognises a large set of Heegner numbers [17], corresponding to the following integer
values of the j-invariant: (20)3, −(15)3, −(32)3, −(96)3, −(960)3. Note that the
j-invariant of the genus-one (j+, j−) modular curve also reads the same j-invariant
as the one for the genus-one curve (I.2), namely −122023936/161051 (see (I.3)).

Recalling the well-known expansion of the j-function as a function of q:

j(q) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 (I.8)

+ 20245856256 q4 + 333202640600 q5 + 4252023300096 q6 + · · ·
one verifies immediately that it does correspond to τ → 11 τ :

Φ11

(
j(q), j(q11)

)
= 0. (I.9)

Recalling the modular discriminant of Weierstrass, ∆(q) (i.e. the 24-th power of the
Dedekind eta function up to (2π)12 factor), it reads:

∆(q) = q ·
∞∏

n=1

(1 − qn)24.

Let us introduce the Eisenstein series‡ E2(q) and the Euler-like function ρ(q):

E2(q) =
q

24
· d ln(G(q))

d q
, where: G(q) =

∆(q11)

∆(q)
,

ρ(q) = q ·
∞∏

n=1

(1 − qn)2 ·
∞∏

n=1

(1 − q11n)2. (I.10)

‡ Quasi-modular form [149]: G2((a τ + b)/(c τ + d)) = (c τ + d)2 · G2(τ) − (c τ + d) c/4/π/i.
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and, finally z(q) (denoted F in Morain [146]):

z(q) =
3

5
+

12

5
· E2(q)

ρ(q)
=

1

q
+ 5 + 17 q + 46 q2 + 116 q3 + 252 q4

+ 533 q5 + 1034 q6 + 1961 q7 + · · · (I.11)

One verifies that the two relations on the Atkin modular polynomial (I.4) are satisfied:

Φ∗
11(z(q), j(q)) = 0, and: Φ∗

11(z(q), j(q
11)) = 0. (I.12)

Introducing x(q) = 1/z(q) one has the following series expansion with integer
coefficients:

x(q) = q − 5 q2 + 8 q3 − q4 − 17 q5 + 62 q6 − 176 q7 + 339 q8 − 386 q9 + · · ·
Let us now show an identity characteristic of modular forms:

A(x) · 2F1

(
[
1

12
,
5

12
], [1];

1728

j(q11)

)
= 2F1

(
[
1

12
,
5

12
], [1];

1728

j(q)

)
, (I.13)

where A(x) is the algebraic function

A(x)4

112
+

112

A(x)4
=

2

112
· 7321− 87612 x+ 73206 x2 + 21060 x3 − 23175 x4

1 + 228 x+ 486 x2 − 540 x3 + 225 x4
.

Appendix I.1.2. A change of variables

Let us rewrite (I.4) in this variable x = 1/z, and in the Hauptmodul H = 1728/j,
introducing a new star-modular polynomial P ∗

11(x, H) = H2 · z12 · Φ∗
11(1/x, 1728/H):

P ∗
11(x, H) = (1 + 228 x + 486 x2 − 540 x3 + 225 x4)3 · H2 (I.14)

− 1728 · Q1(x) · x · H + 17282 x12, with:

Q1(x) = 1 − 55 x + 1188 x2 − 12716 x3 + 69630 x4 − 177408 x5 + 133056 x6

+ 132066 x7 − 187407 x8 + 40095 x9 + 24300 x10 − 6750 x11.

The two Hauptmodul solutions of polynomial P ∗
11(x, H) expand respectively as:

1

j(q)
=

H1

1728
= x − 739 x2 + 349254 x3 − 135092042 x4 + 46600204623 x5 + · · · ,

1

j(q11)
=

H2

1728
= x11 + 55 x12 + 1837 x13 + 48411 x14 + 1109999 x15 (I.15)

+ 23244727 x16 + · · ·
The corresponding expansions of 2F1([1/12, 5/12], [1]; H1) and 2F1([1/12, 5/12], [1]; H2)
read respectively two series with integer coefficients:

2F1([1/12, 5/12], [1]; H1) = 1 + 60 x − 4560 x2 + 614400 x3 − 95660400 x4

+ 16231863060 x5 − 2905028387700x6 + · · · + 20000242239261022140x9

− 3953288123422938241560x10 + 791518845663517087144740x11 + · · ·

2F1([1/12, 5/12], [1]; H2) = 1 + 60 x11 + 3300 x12 + 110220 x13 + 2904660 x14

+ 66599940 x15 + 1394683620 x16 + 27425371380 x17 + · · · (I.16)

Defining A(x) as the ratio of these two series expansions:

2F1

(
[
1

12
,
5

12
], [1]; H1

)
= A(x) · 2F1

(
[
1

12
,
5

12
], [1]; H2

)
, (I.17)
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one can easily see that this ratio A(x) is solution of the genus-one algebraic equation:

A(x)4

112
+

112

A(x)4
=

2

112
· γ(x)

δ(x)
. (I.18)

It is worth noting that this genus-one algebraic curve (I.18), in the two variables
x and y = A(x)4, has the same j-invariant, namely −122023936/161051 (see (I.3)),
as the genus-one (x, y)-curve (I.2) corresponding to the Atkin-modular polynomial.

The ratio A(x) then reads:

A(x)4 =
γ(x) − 120 · α(x) · β(x)1/2

δ(x)
, where: (I.19)

α(x) = 45 x2 − 246 x + 61, β(x) = (1 + x) · (1 − 17 x + 19 x2 − 7 x3),

γ(x) = 7321 − 87612 x + 73206 x2 + 21060 x3 − 23175 x4,

δ(x) = 1 + 228 x + 486 x2 − 540 x3 + 225 x4. (I.20)

Its series expansion is a series with integer coefficients:

A(x) = 1 + 60 x − 4560 x2 + 614400 x3 − 95660400 x4 + 16231863060 x5

− 2905028387700x6 + · · · + 20000242239261022140 x9 (I.21)

− 3953288123422938241560 x10 + 791518845663517087144680x11 + · · ·
Introducing the polynomial ζ(x) = 1 + 8 x − 9 x2 + 10 x3 − 6 x4, one has the

following relations on A(x):

d lnA(x)

dx
=

60 · ζ(x)
β(x)1/2 · δ(x) , (I.22)

Appendix I.1.3. Order-four operator

Let us introduce the order-four linear differential operator L4 annihilating

2F1

(
[1/12, 5/12], [1]; H1). Quite remarkably this linear differential operator L4 also

annihilates 2F1

(
[1/12, 5/12], [1]; H2). Therefore, this order-four operator is not a

MUM operator (it has two series-solutions (I.16), analytic at x = 0).
The symmetric square of L4 is of order nine, instead of the order ten one can

expect generically. Furthermore, the exterior square of L4 is of order six, but,
remarkably, this exterior square factorizes into a direct sum of an order-one operator,

M1, an order-two operator, M
(1)
2 , and an order-three operator, which is the symmetric

square of another order-two operator, M
(2)
2 :

ext2(L4) = M1 ⊕ M
(1)
2 ⊕ Sym2(M

(2)
2 ), (I.23)

where

M1 = Dx −
1

4
· d ln(µ(x))

dx
, with: µ(x) =

δ(x)

x4 · β(x)2 (I.24)

the Wronskian of the two order-two operators M
(1)
2 and M

(2)
2 reading respectively:

Wr(M
(1)
2 )2 =

ζ(x)2

x4 · β(x)3 · δ(x) , Wr(M
(2)
2 )4 =

ζ(x)4

x4 · β(x) · δ(x)3 . (I.25)

This factorisation is a consequence of relation (I.17) and indicates that L4 is very
special.
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The Hauptmoduls H1 or H2 are not rational functions of x, they are algebraic.

Therefore 2F1

(
[1/12, 5/12], [1]; H1) has no reason to be solution of a second-order

operator. As far as factorisation of linear differential operators in operators with
polynomial coefficients, L4 is irreducible†. Let us show that such a reduction to a
second order linear differential operator actually exists.

Appendix I.1.4. Order-two operator: operator ω11

Introducing the algebraic function A(x)

A(x) =
1

δ(x)1/8 · A(x)1/2 =
( 1

γ(x) − 120 · α(x) · β(x)1/2
)1/8

=
β(x)1/4 · δ(x)3/8

ζ(x)1/2
·
(−1

60
· d (1/A(x))

dx

)1/2
, (I.26)

which has the series expansion

A(x) = 1 − 117

2
x +

64635

8
x2 − 21853425

16
x3 +

32050683795

128
x4

− 12299248285371

256
x5 +

9718868161850799

1024
x6 + · · · , (I.27)

one finds that

A(x) · 2F1

(
[
1

12
,
5

12
], [1]; H1

)
= 1 +

3

2
x +

75

8
x2 +

1335

16
x3

+
111795

128
x4 +

2559789

256
x5 +

124177119

1024
x6 + · · · (I.28)

is actually solution of an order-two linear differential operator:

ω̃11 = D2
x +

1− 24 x+ 4 x2 + 30 x3 − 21 x4

x (x+ 1) (1 − 17 x + 19 x2 − 7 x3)
· Dx

− 3 (x− 1) (7 x2 − x− 2)

4 x · (x+ 1) (1 − 17 x + 19 x2 − 7 x3)
. (I.29)

Note that

M
(2)
2 =

1

λ(x)
· ω̃11 · λ(x), with: λ(x) =

δ(x)3/8 · β(x)1/4
ζ(x)1/2

. (I.30)

The series (I.28) is globally bounded, the rescaling x → 4 x changing this series
into a series with integer coefficients,

1 + 6 x + 150 x2 + 5340 x3 + 223590 x4 + 10239156 x5 + 496708476 x6

+ 25083657720 x7 + 1304819854470 x8 + · · · , (I.31)

solution of the order-two operator (pullback of (I.29) by x → 4 x ):

ω11 = D2
x +

1− 96 x+ 64 x2 + 1920 x3 − 5376 x4

x · (1 + 4 x) · (1− 68 x+ 304 x2 − 448 x3)
· Dx

− 6 (1− 4 x) (1 + 2 x− 56 x2)

x · (1 + 4 x) · (1− 68 x+ 304 x2 − 448 x3)
. (I.32)

† The command DEtools[DFactor] in Maple.
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Appendix I.1.5. From order-two operator to order-four operator

This result can be revisited as follows. The function 2F1

(
[1/12, 5/12], [1]; H1),

known to be solution of the order-four operator L4 is also solution of the order-two
operator:

1

A(x) · ω̃11 · A(x) = A(x)1/2 · ω̂11 ·
1

A(x)1/2
= ω̂11 +

1

4
·
(d lnA(x)

dx

)2
− Ω1

2
,

where: ω̂11 = δ(x)1/8 · ω̃11 ·
1

δ(x)1/8
(I.33)

= D2
x +

p1(x)

x · δ(x) · β(x) ·Dx +
p0(x)

x · δ(x)2 · β(x)

= D2
x −

1

4
· d ln(µ(x))

dx
·Dx +

p0(x)

x · δ(x)2 · β(x) ,

with µ(x) is given in (I.24) and

p1(x) = 1 + 147 x − 4313 x2 − 7083 x3 + 14073 x4 + 4125 x5 − 19395 x6

+ 12555 x7 − 3150 x8, (I.34)

p0(x) = 1 − 19 x + 1389 x2 − 6497 x3 + 27603 x4 − 37155 x5 − 18369 x6

+ 45477 x7 − 17280 x8 − 270 x9, (I.35)

and where the order-one operator Ω1 reads (using (I.22)):

Ω1 =
d lnA(x)

dx
·
(
2Dx +

p1(x)

x · δ(x) · β(x)
)

+
d2 lnA(x)

dx2
(I.36)

=
60 · β(x)1/2 · ζ(x)

β(x) · δ(x) ·
(
2Dx −

1

4
· d ln(κ(x))

dx

)
, where: κ(x) =

δ(x)5

x4 · ζ(x)4 .

The function 2F1

(
[1/12, 5/12], [1]; H2), known to be solution of the order-four

operator L4 is also solution of the order-two operator:

1

A(x) · A(x) · ω̃11 · A(x) · A(x) =
1

A(x)1/2
· ω̂11 · A(x)1/2

= ω̂11 +
1

4
·
(d lnA(x)

dx

)2
+

Ω1

2
. (I.37)

These last two order-two operators (I.33) and (I.37) can be written as Ω11 ±Ω1/2
where:

Ω11 = ω̂11 +
1

4
·
(d lnA(x)

dx

)2

= D2
x +

p1(x)

x · δ(x) · β(x) ·Dx − 30 · q0(x)

x · δ(x)2 · β(x) ,

with

q0(x) = 1 − 49 x + 909 x2 − 7877 x3 + 31323 x4 − 44025 x5 − 10089 x6

+ 39237 x7 − 13680 x8 − 1350 x9. (I.38)

These last two order-two operators (I.33) and (I.37) are not linear differential operators
with rational coefficients, but with algebraic coefficients: there are β(x)1/2 terms.
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One can verify directly that the order-four operator L4 can actually be seen as
the direct sum of these last two order-two operators with algebraic coefficients (I.33)
and (I.37):

L4 =
(
A(x)1/2 · ω̂11 ·

1

A(x)1/2

)
⊕
( 1

A(x)1/2
· ω̂11 · A(x)1/2

)

= (Ω11 −
Ω1

2
) ⊕ (Ω11 +

Ω1

2
). (I.39)

Note that this result is a particular case of a more general result. Let us consider the
direct-sum of the two order-two operators with algebraic coefficients depending on one
parameter u

L4(u) = (Ω11 + u · Ω1

2
) ⊕ (Ω11 − u · Ω1

2
). (I.40)

The order-four operator is actually a linear differential operator with rational
coefficients for any u. It is of the form

L4(u) = M2 · Ω11 + u2 · M1 ·N1, (I.41)

where M2 and M1 are respectively order-two and order-one operators with rational
coefficients and the order-one operator N1 reads:

N1 = Dx −
1

8
· d ln(ρ(x))

dx
, with: ρ(x) =

δ(x)5

x4 · ζ(x) . (I.42)

We have the following general result: the exterior square of a direct sum of the
form (I.39) is a direct sum of three order-one operators and the symmetric square of an
order-two linear differential operator. Let us denote W+, W− and W the Wronskian
of respectively

ω̂+
11 = A(x)1/2 · ω̂11 ·

1

A(x)1/2
, ω̂−

11 =
1

A(x)1/2
· ω̂11 · A(x)1/2, ω̂11.

One has the following direct sum decomposition for an arbitrary order-two linear
differential operator ω̂11:

ext2
(
ω̂+
11 ⊕ ω̂−

11

)
= (I.43)

(
Dx −

d ln(W+)

dx

)
⊕
(
Dx −

d ln(W−)

dx

)
⊕
(
Dx −

d ln(W )

dx

)
⊕ M

(3)
2 ,

where the order-three operator M
(3)
2 can, for instance, be written as a conjugation of

a symmetric square (see also (I.30)):

M
(3)
2 = Sym2

(dA(x)
dx

1/2

ω̂−
11 ·

(dA(x)
dx

)−1/2)
. (I.44)

The order-one operator Dx − d ln(W )
dx in (I.43) actually corresponds to (I.33) together

with (I.24). However we see from (I.43) that the irreducible order-two operator M
(1)
2 ,

we found in the direct sum decomposition (I.23), can in fact be decomposed in a direct
sum of order-one operators with algebraic coefficients.
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Appendix I.1.6. Back to Golyshev and Stienstra operator
Do note that the order-two operator H11, previously encountered with a genus-one

situation (see (I.1)), is conjugated to a pullback of (I.29):

H11 =
1√

5 + 3x
· ω̃11

(
x → 5 x

5 + 3 x

)
·
√
5 + 3x. (I.45)

The pullback of H11 by x → 5 x reads:

H11

(
x → 5 x

)
= D2

x +
4512 x4 + 630 x3 + 1232 x2 + 102 x− 1

(188 x3 + 8 x2 + 76 x− 1) · (8 x+ 1) · x · Dx

+
6 (188 x3 + 21 x2 + 28 x+ 1)

(188 x3 + 8 x2 + 76 x− 1) · (8 x+ 1) · x, (I.46)

which has as a solution the series with integer coefficients:

1 + 6 x + 204 x2 + 8790 x3 + 445170 x4 + 24577236 x5 + 1436107596 x6

+ 87310665684 x7 + 5466252149820 x8 + · · · (I.47)

Appendix I.1.7. Hadamard products
The Hadamard square of ω11 is a linear differential operator of order ten. The

Hadamard square of H11 (or its pullback by x → 5 x) is also a linear differential
operator of order ten. This order-ten operator is not MUM.

Its head polynomial is

x6 · (1 − 64 x) · (96256 x3 − 512 x2 + 608 x+ 1) · (35344 x3 + 28512 x2 + 5792 x− 1)

× (35344 x3 − 14288 x2 − 8 x− 1) · P29,

where P29 is a polynomial of degree 29. One verifies easily that Hadamard’s
theorem [62] on the location of the singularities is verified. If one denotes x1, x2,
x3, the three roots of polynomial 188 x3+8 x2+76 x−1 (see (I.46)), one sees that the
three roots of polynomial 96256 x3−512 x2+608 x+1 are nothing but −x1/8, −x2/8,
−x3/8, the three roots of polynomial 35344 x3+28512 x2+5792 x−1 are nothing but
x2
1, x2

2, x2
3, the three roots of polynomial 35344 x3 − 14288 x2 − 8 x − 1 are nothing

but x1 x2, x2 x3, x1 x3, and of course, besides x = 0 and x = ∞, 1/64 = (−1/8)2.

Appendix I.2. Other higher genus modular forms

Similar calculations can be performed for the modular forms associated with genus-
one modular curves, corresponding, for instance to τ → N τ , for N = 17, 19. For
N = 23 the modular curve is a genus-two curve [150, 151]. These detailed analysis
and calculations will be given in a forthcoming publication.

The N = 23 genus-two case requires to introduce the order-two operator ‡:

ω̃23(x) = D2
x +

1 − 12 x + 4 x2 + 5 x3 − 33 x4 + 35 x5 − 28 x6

x · (1 − 8 x + 3 x2 − 7 x3) · (1 − x2 + x3)
· Dx

− 1 − x − x2 + 12 x3 − 15 x4 + 14 x5

x · (1 − 8 x + 3 x2 − 7 x3) · (1 − x2 + x3)
,

This operator has the analytic solution with integer coefficients:

1 + x + 3 x2 + 13 x3 + 67 x4 + 375 x5 + 2223 x6 + 13713 x7 + 87123 x8 + · · ·
‡ where one notes that the polynomial 1 − x2 + x3 has the root − 1/P , where P = 1.324717958 ...
is the smallest Pisot number [152].



Diagonals of rational functions 72

The pullback of ω̃23(x) by x → 1/x gives an order-two operator with two analytic
solutions (no logarithm):

x +
5

14
x2 +

11

196
x3 − 85

1372
x4 − 3499

57624
x5 − 2041

57624
x6 − 18317

672280
x7

− 332455

19765032
x8 +

21994361

1383552240
x9 + · · · , (I.48)

and

x2 +
5

14
x3 − 3

98
x4 − 251

1372
x5 − 137

1372
x6 − 507

9604
x7 − 24007

470596
x8

− 144083

6588344
x9 + · · · (I.49)

These two series are not globally bounded (but a linear combination of these two
series may be globally bounded ...). The fact that the two previous solutions have no
logarithmic terms excludes any relation like (149). We encounter the same situation
with the order-two operators ω̃11(x), ω̃17(x), ω̃19(x), ω̃29(x), ω̃31(x), ω̃41(x), ω̃47(x),
ω̃59(x), and ω̃71(x), the corresponding two series at x = ∞ having no logarithmic
terms yielding the same obstruction for a relation like (149). These various order-two
operators correspond to higher order genus modular curves [153], namely genus-one
for ω̃11(x), ω̃17(x), ω̃19(x), genus-two for ω̃29(x), ω̃31(x), genus-three for ω̃41(x),
genus-four for ω̃47(x), genus-five for ω̃59(x), and genus-six for ω̃71(x).

Note that all these higher-genus ω̃n(x)’s are simply homomorphic to their adjoint.
They are such that

R(x)1/M · adjoint(ω̃n(x)) = ω̃n(x) · R(x)1/M , (I.50)

where R(x) is a rational function, and where M = 2, except for n = 19 where
M = 6.

Appendix I.3. Order-two operators associated with modular Atkin equations

Let us give the explicit expressions of some ωn’s for n = 17, 19, 23, 31, 39, 41, 47, 59, 71.
The higher genus ωn’s read

ωi = D2
x +

Ai

Ci
Dx +

Bi

Ci
,

with:

A11 = 84 x4 − 120 x3 − 16 x2 + 96 x− 4,

B11 = 3 (x− 1) (7 x2 − x− 2),

C11 = 4 x · (7 x3 − 19 x2 + 17 x− 1) (x+ 1),

A17 = 448 x5 − 576 x4 + 280 x3 + 224 x2 − 264 x+ 16,

B17 = 168 x4 − 180 x3 + 67 x2 + 41 x− 20,

C17 = 16 x(x− 1)(8 x4 − 4 x3 + 3 x2 + 10 x− 1),

A19 = 264 x5 − 354 x4 − 258 x3 + 300 x2 + 93 x− 9,

B19 = 110 x4 − 130 x3 − 69 x2 + 56 x+ 6,

C19 = 9 x · (2 x+ 1) (x+ 1) (4 x3 − 12 x2 + 10 x− 1),
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A23 = 28 x6 − 35 x5 + 33 x4 − 5 x3 − 4 x2 + 12 x− 1,

B23 = 14 x5 − 15 x4 + 12 x3 − x2 − x+ 1,

C23 = x · (7 x3 − 3 x2 + 8 x− 1)(x3 − x2 + 1),

A29 = 504 x7 − 64 x6 − 896 x5 − 480 x4 + 400 x3 + 512 x2 + 72 x− 16,

B29 = 315 x6 − 35 x5 − 441 x4 − 213 x3 + 109 x2 + 103 x+ 4,

C29 = 16 x · (x+ 1)(7 x6 − 8 x5 − 8 x4 − 2 x3 + 12 x2 + 4 x− 1),

A31 = 108 x6 + 343 x5 + 477 x4 + 235 x3 + 28 x2 − 6 x− 1,

B31 = 60 x5 + 161 x4 + 180 x3 + 69 x2 + 5 x− 1,

C31 = x · (x3 + 3 x2 + 4 x+ 1)(27 x3 + 17 x2 − 1)

A41 = 704 x9 + 960 x8 − 360 x7 − 1472 x6 − 672 x5 + 480 x4

+ 720 x3 − 128 x2 − 120 x+ 16,

B41 = 616 x8 + 756 x7 − 289 x6 − 969 x5 − 353 x4 + 265 x3

+ 261 x2 − 39 x− 12,

C41 = 16 x · (x− 1)(8 x8 + 20 x7 + 15 x6 − 8 x5 − 20 x4 − 10 x3

+ 8 x2 + 4 x− 1),

A47 = 66 x10 − 154 x9 + 190 x8 − 135 x7 + 52 x6 + 56 x5 − 57 x4

+ 60 x3 − 22 x2 + 9 x− 1,

B47 = 66 x9 − 140 x8 + 158 x7 − 103 x6 + 35 x5 + 33 x4

− 28 x3 + 24 x2 − 6 x+ 1,

C47 = x · (11 x5 − 6 x4 + 15 x3 − 5 x2 + 5 x− 1) (x5 − 2 x4 + x3

+ x2 − x+ 1),

A59 = 308 x12 + 624 x11 + 1632 x10 + 2640 x9 + 3520 x8 + 3816 x7

+ 3232 x6 + 2128 x5 + 1008 x4 + 280 x3 − 24 x− 4,

B59 = 385 x11 + 720 x10 + 1748 x9 + 2600 x8 + 3128 x7 + 3024 x6

+ 2217 x5 + 1216 x4 + 448 x3 + 86 x2 − 4 x− 4,

C59 = 4 x · (x3 + 2 x+ 1) (11 x9 + 24 x8 + 46 x7 + 61 x6 + 60 x5

+ 44 x4 + 21 x3 + 4 x2 − 2 x− 1),

A71 = 88 x14 − 30 x13 − 280 x12 − 195 x11 + 420 x10 + 671 x9 − 5 x8

− 666 x7 − 444 x6 + 91 x5 + 231 x4 + 95 x3 + 4 x2 − 6 x− 1,

B71 = 132 x13 − 42 x12 − 372 x11 − 248 x10 + 475 x9 + 717 x8

+ 25 x7 − 563 x6 − 362 x5 + 29 x4 + 112 x3 + 38 x2 + x− 1,

C71 = x · (11 x7 − 4 x6 − 18 x5 − 5 x4 + 11 x3 + 7 x2 − 1) (x7 − 2 x5

− 3 x4 + x3 + 5 x2 + 4 x+ 1).
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Appendix J. Yukawa coupling as ratio of determinants

Consider an order-four MUM linear differential operator. Let us introduce the
determinantal variables Wm = det(Mm) which are the determinants‡ of the following
m×m matrices Mm, m = 1, · · · , 4, with entries expressed in terms of derivatives of
the four solutions y0(x), y1(x), y2(x) and y3(x) of the MUM linear differential operator
(see Section (5) for the definitions). One takes W1(x) = y0(x) and:

M2 =

[
y0 y1

y′0 y′1

]
, M3 =




y0 y1 y2

y′0 y′1 y′2

y′′0 y′′1 y′′2


 , M4 =




y0 y1 y2 y3

y′0 y′1 y′2 y′3

y′′0 y′′1 y′′2 y′′3

y′′′0 y′′′1 y′′′2 y′′′3



,

where: y′i =
d

dx
yi, y′′i =

d2

dx2
yi, y′′′i =

d3

dx3
yi. (J.1)

Since q = exp(y1/y0), and hence,

q · d
dq

=
W 2

1

W2
· d

dx
=

y20
W2
· d

dx
, (J.2)

and thus
(
q · d

dq

)2
=

y40
W 2

2

· d2

dx2
+ 2

y30
W 2

2

dy0
dx
· d

dx
− y40

W 3
2

dW2

dx
· d

dx
, (J.3)

we deduce, after some simple algebra, an alternative definition for theYukawa coupling:

K(q) =
(
q · d

dq

)2(y2
y0

)
=

W 3
1 ·W3

W 3
2

=
y30 ·W3

W 3
2

. (J.4)

to be compared with the other previous alternative expression previously given (170)
for the Yukawa coupling

K(q) =
x(q)3 ·W 1/2

4

y20
·
( q

x(q)
· dx(q)

dq

)3
=

W
1/2
4

y20
·
(
q · dx(q)

dq

)3
. (J.5)

In fact from (J.2) we deduce
(
q · dx(q)

dq

)3
=

W 6
1

W 3
2

=
y60
W 3

2

, (J.6)

and, so, (J.5) is compatible with (J.4) if the following identity is verified:

W 2
3 = W4 · y20 = W4 · W 2

1 . (J.7)

This identity is in fact specific of order-four operators conjugated to their adjoint (see
below (J.17)). Therefore we prefer to use definition (J.4) for the Yukawa coupling,
instead of the more restricted definition (J.5).

Let us assume that the pullback p(x) has a series expansion of the form

p(x) = λ · xr · A(x), (J.8)

where the exponent r is an integer, where λ is a constant, and where A(x) is a
function analytic at x = 0 with the series expansion:

A(x) = 1 + α1 · x + α2 · x2 + · · ·
‡ For an order-four operator the Wronskian is W4.
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The determinantal variables Wm’s transform very nicely under pullbacks p(x) of the
form (J.8):

(W1(x), W2(x), W3(x), W4(x)) −→ (J.9)
(
W1(p(x)),

p′

r
· W2(p(x)),

p′3

r3
· W3(p(x)),

p′6

r6
· W4(p(x))

)
, p′ =

dp(x)

dx
.

One can show that the nome (51) of an order-N operator transforms under a
pullback p(x):

q(x) −→ Q(x) with: λ · Q(x)r = q(p(x)). (J.10)

From the covariance property (J.9), and from the previous transformation q →
λ · qr for the nome, one easily gets the transformation of the Yukawa coupling seen as
a function of the nome K(q) → K(λ · qr):

K(q(x)) =
W1(x)

3 ·W3(x)

W2(x)3
(J.11)

−→ W1(p(x))
3 ·W3(p(x))

W2(p(x))3
= K(q(p(x))) = K(λ · Q(x)r).

For λ = 1 and r = 1 (i.e. when the pullback is a deformation of the
identity transformation), one recovers the known invariance of the Yukawa coupling
by pullbacks (see Proposition 3 in [154]).

One finds another pullback invariant ratio, namely:

K⋆ =
W1 ·W 3

3

W4 ·W 3
2

, (J.12)

which is, in fact, nothing but the Yukawa coupling for the adjoint of the original
operator.

Another invariance property is worth noting. Let us consider two linear
differential operators Ω1 and Ω2 of order N that are equivalent, in the sense of
the equivalence of linear differential operators. This means that there exists linear
differential operators intertwiners I1, I2, J1, J2, of order at most N − 1 such that

Ω1 · I1 = I2 · Ω2, and: J1 · Ω1 = Ω2 · J2. (J.13)

Let us assume that one of these intertwiners is a linear differential operator of order
zero (a function), then the previous homomorphism between operators amounts to
saying that the two operators are conjugated by a function:

Ω2 = ρ(x) · Ω1 · ρ(x)−1, (J.14)

which correspond to changing the four solutions as follows: yi → ρ(x) · yi. In
such a case (quite frequent as will be seen in forthcoming publication) the previous
determinant variables transform, again, very nicely under the “gauge” function ρ(x):

(W1, W2, W3, W4) → (ρ(x) ·W1, ρ(x)2 ·W2, ρ(x)3 ·W3, ρ(x)4 ·W4). (J.15)

It is straightforward to see that the Yukawa coupling and the “dual Yukawa”,
K⋆, are invariant by such a transformation¶. Two conjugated operators (J.14)
automatically have the same Yukawa coupling.

Do note that the Yukawa couplings for two operators, which are non trivially
homomorphic to each other (intertwiners of order one, two, ...), are actually different.

¶ K and K⋆ (and their combinations) are the only monomials Wn1
1 Wn2

2 Wn3
3 Wn4

4 to be invariant
by (J.9) and (J.15).
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The (pullback invariant) Yukawa coupling is not preserved by operator equivalence (see
subsection (8.9.3)).

Remark: The definition of these determinantal variables Wi’s heavily relies on
the MUM structure of the operator†. The four solutions are not on the same footing:
the log filtration imposes a natural order between the four solutions the definition
of Wi’s relies on. It is worth noting that if one permutes the four solution yi, one
would get 24 other sets of (W1, W2, W3, W4) which are actually also nicely covariant
by pullbacks, thus yielding a finite set of other “Yukawa couplings” or adjoint Yukawa
coupling K⋆ also invariant by pullbacks. In fact these “Yukawa couplings”, and other
K⋆, can even be defined when the linear differential operator is not MUM, and they
are still invariant by pullbacks.

Appendix J.1. Pullback-invariants for higher order ODEs

These simple calculations can straightforwardly be generalised to higher order linear
differential equations. We give here the invariants for higher order linear differential
operators.

Let us give, for the n-th order linear differential operator the list of the Kn

invariants by pullback transformations:

K3 =
W 3

1 ·W3

W 3
2

, K4 =
W 8

1 ·W4

W 6
2

, K5 =
W 15

1 ·W5

W 10
2

, K6 =
W 24

1 ·W6

W 15
2

, · · ·

Kn =
W an

1 ·Wn

W bn
2

, with: an = n · (n− 2), bn =
n · (n− 1)

2
. (J.16)

A n-th order linear differential operator has Kn as an invariant by pullback
transformation, as well as all the Km with m ≤ n. K3 is the Yukawa coupling,
and one remarks, for the order-four operators, that the other pullback invariant K⋆

(see (J.12)), which is actually also the Yukawa coupling of the adjoint operator, is
nothing but K3

3/K4.

For order-four operators conjugated to their adjoint (see (J.14)) (i.e. operators
homomorphic to their adjoint, the intertwiner being an order zero differential operator,
a function), one has the equality

K4 = K2
3 , i.e. K3 = K⋆, or W 2

3 = W 2
1 ·W4, (J.17)

to be compared with the equality in Almkvist et al. (see Proposition 2 in [88])

y0 y
′
3 − y3 y

′
0 = y1 y

′
2 − y2 y

′
1, (J.18)

which is satisfied when the Calabi-Yau condition that the exterior square is of order
five is satisfied.

If a linear differential operator Ω4 verifies condition (J.17), its conjugate by a
function, ρ(x) · Ω4 · ρ(x)−1, also verifies condition (J.17) (their Yukawa couplings are
equal).

The condition (J.17) is not satisfied for linear differential operators homomorphic
to their adjoint with non-trivial intertwiner (of order greater than zero). For instance
the order-four operator (171) does not satisfy condition (J.17).

† Or recalling the powerful result of Steenbrink [143] that the filtration by the logs is the same as
the Hodge filtration, the definition relies on this filtration.
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Remark: Concerning order-three operators and hypergeometric functions. It is
worth noting the four examples

3F2

(
[
1

2
,
1

2
,
1

2
], [1, 1], 64 x

)
, 3F2

(
[
1

2
,
1

3
,
2

3
], [1, 1], 108 x

)
,

3F2

(
[
1

2
,
1

4
,
3

4
], [1, 1], 256 x

)
, 3F2

(
[
1

2
,
1

6
,
5

6
], [1, 1], 1728 x

)
,

which are such that their series expansions, as well as their associated nome, mirror
map (compositional inverse of the nome), are series with integer coefficients, the
previous invariant K3 being the constant 1.

This however comes as no surprise since the four corresponding operators are
all symmetric squares† of order-two operators. Their solutions of the form y0(x) =
u(x)2, y1(x) = u(x) · v(x), and y2(x) = v(x)2/2, give automatically K3 = 1.

Appendix K. Quasi-Calabi-Yau ODE associated to the Hadamard
product of two HeunG functions

The operator having the Hadamard product of the two HeunG functions
HeunG(a, q, 1, 1, 1, 1; x) and HeunG(A, Q, 1, 1, 1, 1; x) as a solution reads:

(x− 1) (x− a) (x −A) (x −Aa) (Aa − x2)2 · x3 · D4
x (K.1)

+ 2 (x2 −Aa) · U3 · x2 · D3
x − U2 · x · D2

x − U1 · Dx + U0,

where:

U3 = 5 x6 − 4 (a+ 1) (A+ 1) · x5 +
(
3 aA2 + 3 a2A−Aa+ 3A+ 3 a

)
· x4

+ 4Aa (a+ 1) (A+ 1) · x3 −Aa
(
5 a2A+ 5 aA2 + 9Aa+ 5 a+ 5A

)
· x2

+ 4A2a2 (a+ 1) (A+ 1) · x − 3 a3A3,

U2 = −25 x8 + (14Aa+ (14 +Q) a+ (14 + q)A+ 14 + q +Q) · x7

− 2 (3Aa (a+A) + Aa (Q+ q − 29) + 3A+ qA+ 3 a+Qa) · x6

−Aa (42Aa+ 42A+ qA+Qa+ 42 a+Q+ q + 42) · x5

+ 2Aa (11Aa (a+A) + 2Aa (q +Q− 2) + 11 a+ 11A+ 2Qa+ 2 qA) · x4

+A2 a2 (30Aa+ 30 a+ 30A−Qa− qA−Q− q + 30) · x3

− 2A2a2 (12Aa (a+A) +Aa (Q + q + 25) +Qa+ qA+ 12 a+ 12A) · x2

+A3a3 (14Aa + 14 a+ 14A +Qa + qA +Q+ q + 14) · x − 7A4a4,

U1 = −15 x8 + 2 (2Aa+ 2A+ 2 a+Qa+ qA+Q+ q + 2) · x7

− 2 (Aa (Q+ q − 23) + qA+Qa) · x6

− 6Aa (2Aa+ 2A+ 2 a+Qa+ qA+Q+ q + 2) · x5

− 4Aa (Aa (a+A)− 2Aa (Q+ q − 8)− 2Qa− 2 qA+ a+A) · x4

+ 2A2a2 (18Aa +Qa+ qA+ 18 a+ 18A+Q+ q + 18) · x3

− 6A2a2 (2Aa (a+A) +Aa (Q+ q + 5) + 2A+ 2 a+Qa+ qA) · x2

+ 2A3a3 (2Aa+ 2A+ 2 a+Qa+ qA+Q+ q + 2) · x −A4a4,

† Recall that 3F2([1/2, α, 1 − α], [1, 1], x) = 2F1([α/2, 1/2 − α/2], [1], x)2.
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U0 = x7 − q Qx6 − (−q2A + 3Aa − aQ2) · x5

− aA (2 qA + 2 q + 2Qa + 2Q − qQ) · x4

+ Aa
(
3Aa (2Q+ 2 q + 1) + 6Qa + 6 qA− 2 aQ2 − 2 q2A

)
· x3

−A2a2 (6 qA + 6 q + 6Qa + 6Q − qQ) · x2

+A2a2
(
Aa (2Q+ 2 q − 1) + 2Qa+ 2 qA + aQ2 + q2A

)
· x − q Q a3A3.

This order-four operator satisfying the Calabi-Yau condition (its exterior square is of
order five). The solution of this order-four operator, analytic at x = 0 reads:

y0(x) = 1 +
Qq

Aa
· x +

(
2 qa+ 2 q + q2 − a

) (
2QA+ 2Q+Q2 −A

)

16 a2A2
· x2 + · · · ,

the nome reads

x +
(Qa + qA +Q + q − 4 qQ)

Aa
· x2 + · · · , (K.2)

and the first terms of its Yukawa coupling K(x) read:

K(x) = 1 +
(1 − 3Q− 3 q + a+A + 10 qQ+Aa− 3 qA− 3Qa)

Aa
· x + · · · (K.3)

Even inside this restricted set of HeunG functions solutions of the form
HeunG(a, q, 1, 1, 1, 1; x) it is hard to find exhaustively the values of the
two parameters a, and of the accessory parameter q, such that the se-
ries HeunG(a, q, 1, 1, 1, 1; x) is globally bounded. The HeunG function
HeunG(a, q, 1, 1, 1, 1; b x) becomes a series 1 + N1 x + N2 x

2 + · · · with integer
coefficients N1, N2, ..., for

a = q · (4N2 −N2
1 ) · q − 2N2

1

N2
1 · (2 q − 1)

, b = N1 ·
a

q
. (K.4)

These are necessary conditions. One can find some other necessary conditions on
the integer coefficients of the series. Besides q = 1/2, a = 2 q, a = 1/3 q (13 q −
6)/(2 q −1) (i.e. N2/N

2
1 = 5/4 or N2/N

2
1 = 4/3) that require some specific analysis,

one finds that one has necessarily the following relation among the first four coefficients
N1, N2, N3, N4, namely:

27 · N2
3 + 10 · (N2

1 − 9N2) · N1 · N3 + 8 · (4N2
1 − 3N2) · N4

− 9 · N2
2 · (N2

1 − 6N2) = 0. (K.5)

One verifies easily that (K.5) is actually verified for (52) and (100).
Note that the ratio Np/N

p
1 are rational expressions of a and q, invariant by

(a, q) → (1/a, q/a), of the form P (a, q)/qp, where P (a, q) is a polynomial.
However, finding the values of the accessory parameter q, such that

HeunG(a, q, 1, 1, 1, 1; x) is globally bounded remains difficult. Is it possible to
finds such values of the accessory parameter q for any given integers N1 and
N2 ? For instance for N1 = 2, N2 = 10 the series with integer coefficients
HeunG(−8, q, 1, 1, 1, 1; 8 x) is actually a series with integer coefficients for q = −2.

Furthermore it is difficult to find the values of the two parameters a and q
such that the order-two operator having HeunG(a, q, 1, 1, 1, 1; x) as a solution is
globally nilpotent. For instance, if one restricts to a = 9/8, it is hard to show that
the only rational number value of the accessory parameter q yielding global nilpotence
is q = 3/4. For q a rational number one gets an infinite set of divisibility conditions.
The prime 5 must divide the numerator of (q+3) (q+1) (q+2) (q2+4 q+1), the prime
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7 must divide the numerator of (q2 + 6 q+ 6) (q + 6) (q + 1) (q + 4) (q2 + 4 q+ 1), etc.
With q = N/D where N and D integers < 1000 and with the conditions emerging
from the p-curvature calculations for the first primes ≤ 42. One finds that q = 3/4
is the only value of the accessory parameter corresponding to global nilpotence.

Restricting to HeunG functions solutions of the form HeunG(a, q, 1, 1, 1, 1; 60 a x)
for integer values of a and q it is hard to find the integer values of a and q such that
the corresponding series are globally bounded.

Appendix L. Yukawa coupling of Calabi-Yau ODEs

Let us give the expansion of the Yukawa coupling for a set of other Hm,n that are
Calabi-Yau: in particular they are MUM and their exterior squares are of order five
(the “Calabi-Yau condition”).

For H4,8 the Yukawa coupling reads:

K(q) = K⋆(q) = 1 + 16 · q + 352 · q2 + 33280 · q3 + 2058528 · q4
+ 123766016 · q5 + 7347718144 · q6 + 439489011712 · q7

+ 26579639900960 · q8 + 1616513123552128 · q9 + · · · , (L.1)

which is Number 36 in Almkvist et al. large tables of Calabi-Yau ODEs [91].
For H4,9 the Yukawa coupling reads:

K(q) = K⋆(q) = 1 + 12 · q − 324 · q2 − 29544 · q3 − 1314756 · q4
− 12971988 · q5 + 2033927928 · q6 + 146587697352 · q7

+ 4172739566652 · q8 − 77469253445544 · q9 + · · · , (L.2)

which is Number 133 in tables [91].
For H6,6 it reads:

K(q) = K⋆(q) = 1 + 37 · q − 4523 · q2 + 412327 · q3 − 33924139 · q4
+ 2662557912 · q5 − 203154013049 · q6 + 15217617773948 · q7

− 1125153432893483 · q8 + 82390368380951296 · q9 + · · · , (L.3)

which is Number 144 in tables [91].
For H6,8 it reads:

K(q) = K⋆(q) = 1 + 24 · q − 2012 · q2 + 139056 · q3 − 8227932 · q4
+ 468328024 · q5 − 25856580632 · q6 + 1402012096656 · q7

− 74994891745116 · q8 + 3972880128014736 · q9 + · · · , (L.4)

which is Number 176 in tables [91].
For H6,9 it reads:

K(q) = K⋆(q) = 1 + 18 · q − 1674 · q2 + 88209 · q3 − 4801770 · q4
+ 239279643 · q5 − 11680323039 · q6 + 558685593414 · q7

− 26379917556714 · q8 + 1233104626297710 · q9 + · · · , (L.5)

which is Number 178 in tables [91].
For H8,8:

K(q) = K⋆(q) = 1 + 16 · q − 864 · q2 + 47104 · q3 − 1890528 · q4
+ 80502016 · q5 − 3118639104 · q6 + 123287486464 · q7

− 4691784791264 · q8 + 179585946086272 · q9 + · · · , (L.6)
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which is Number 107 in tables [91].
For H8,9 the Yukawa coupling reads:

K(q) = K⋆(q) = 1 + 12 · q − 756 · q2 + 27192 · q3 − 1144644 · q4
+ 39948012 · q5 − 1377082728 · q6 + 47882164776 · q7
− 1608623259588 · q8 + 53732432848152 · q9 + · · · , (L.7)

which is Number 163 in tables [91], and for H9,9 it reads:

K(q) = K⋆(q) = 1 + 9 · q − 567 · q2 + 20205 · q3 − 615735 · q4
+ 19431009 · q5 − 608213043 · q6 + 18406651167 · q7
− 542566460727 · q8 + 15865350996861 · q9 + · · · , (L.8)

which is Number 165 in tables [91].

Appendix M. Modular form character of 2F1([1/6, 1/6], [1], x)

The modular form character of (152) is clear on the remarkable (and intriguing)
identity (58) (or (59)) in Maier [123]:

2F1

(
[
1

6
,
1

6
], [1], P1

)
(M.1)

= 2 ·
((x + 60) (x+ 80) (x+ 96)

(x+ 48) (x+ 120)2

)−1/6

· 2F1

(
[
1

6
,
1

6
], [1], P2

)
,

where the two pullbacks read respectively (◦ denotes the composition of functions)

P1 =
−1
432
· x (x+ 60)2 (x+ 72)2 (x+ 96)

(x+ 48)(x+ 80)(x+ 120)2
(M.2)

=
x

x− 1
◦ 1728 x

(x + 16)3
◦G =

x

x− 1
◦ 1728 x2

(x + 256)3
◦ 642

G
,

P2 =
−1
432
· x

2(x+ 48)2(x+ 72)(x+ 120)

(x+ 60) (x+ 80)2 (x+ 96)2
(M.3)

=
x

x− 1
◦ 1728 x

(x + 16)3
◦ 64

2

H
=

x

x− 1
◦ 1728 x2

(x + 256)3
◦ H,

where

G =
8 x · (x+ 96)

(x+ 72)(x+ 60)
, H =

−64 x · (x+ 48)

(x+ 72) (x+ 120)
, (M.4)

The algebraic relation between these two pullbacks (u, v) = (P1, P2), corresponds
to the (genus zero) modular curve:

6912 u v · (u4 v4 + 1) − 3 u v ·
(
80 (u2 + v2) + 529999 u v

)
· (v2 u2 + 1)

+ 16 (u+ v) · (u v + 1) · (u2 + v2 − 241 u v) · (v2 u2 − u v + 1)

− 6 u v · (u + v) · (u v + 1) ·
(
640 (u2 + v2) − 652959 u v

)

+ u v ·
(
6912 (u4 + v4) − 1589997 (u3 v + v3 u) + 21958300 v2 u2

)
= 0.
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Other identities are worth noting on these pullbacks, for instance:

−4 x
(1− x)2

◦ P1 =
1728x

(x + 16)3
◦ F =

1728x2

(x + 256)3
◦ 4096

F
, and:

−4 x
(1− x)2

◦ P2 =
1728x2

(x + 256)3
◦ F =

1728x

(x + 16)3
◦ 4096

F
, where:

F =
x · (x+ 80) (x+ 48) (x+ 96)

(x+ 120) (x+ 72) (x+ 60)
.

It can also be illustrated through the identity:

2F1

(
[
1

6
,
1

6
], [1],

27 x

(1 + 8 x)2 (1 − x)

)
(M.5)

=
(1 − x)1/6 (1 + 8 x)1/3

(1 + 7 x + x2)1/4
· 2F1

(
[
1

12
,
5

12
], [1],

27 x2 (1 − x)2 (1 + 8 x)

4 (1 + 7 x + x2)3

)

=
(1 − x)1/6 (1 + 8 x)1/3

(1 − 4 x)1/2
· 2F1

(
[
1

12
,
5

12
], [1],

−108 x (1 − x) (1 + 8 x)2

(1 − 4 x)6

)
,

where the last two pullbacks are related by the fundamental modular curve [17, 32, 123]
(corresponding to τ → 2 τ), as can be deduced from the identities on these two
pullbacks:

27 x2 · (1 − x)2 (1 + 8 x)

4 (1 + 7 x + x2)3
=

1728x2

(x+ 256)3
◦ 16 (1 + 8 x)

(x− 1)x
, (M.6)

− 108 x · (1 − x) (1 + 8 x)2

(1 − 4 x)6
=

1728x

(x+ 16)3
◦ 16 (1 + 8 x)

(x− 1)x
. (M.7)

The relation between the hypergeometric function 2F1([1/6, 1/6], [1], x) and

2F1([1/12, 5/12], [1], x), can also be understood from the Kummers’s quadratic relation
on 2F1([1/6, 5/6], [1], x):

2F1

(
[
1

6
,
5

6
], [1], x

)
= 2F1

(
[
1

12
,
5

12
], [1], 4 x · (1− x)

)
.

Appendix N. Calabi-Yau condition versus integrality: a Saalschutzian
hypergeometric family of operators

The Calabi-Yau condition that the exterior square of an order-four linear differential
operator is of order five is a fundamental condition defining Calabi-Yau ODEs [88, 90,
91]. Let us consider the following Saalschutzian hypergeometric function

4F3([b − c + d, b, c, d], [e, b + d, 1 + b+ d − e], x), (N.1)

and, let us introduce the order-four linear differential operator M4(b, c, d, e) which
annihilates this hypergeometric function. It is a straightforward exercise to verify that
this linear differential operator satisfies the Calabi-Yau condition: its exterior square
of is actually of order five for any values of the parameters b, c, d, e. This order-four
operator is almost self-adjoint†:

xb+d−1 · M4(b, c, d, e) = adjoint(M4(b, c, d, e)) · xb+d−1. (N.2)

† If one denotes by N the denominator of the rational number b+d−1 , the symmetric N-th power
of M4(b, c, d, e) is up to a normalisation, self-adjoint.
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For generic rational parameters, the series expansion of the Saalschutzian
hypergeometric function (N.1) is not globally bounded.

Let us restrict to the condition d = 1 − b:

4F3([1 − c, b, c, 1 − b], [e, 1, 2 − e], x). (N.3)

The order-four operator is still such that its exterior square is of order five, but it
is now a self-adjoint operator (see (N.2)). Again, one sees that, for generic rational
parameters, the series expansion of the Saalschutzian hypergeometric function (N.3)
is not globally bounded. Actually the four solutions are not of a MUM form. Besides
the analytic at x = 0, non globally bounded, solution (N.3)

1 +
b c d · (b − c+ d)

e · (b + d) · (1 + b + d− e)
· x + · · · , (N.4)

the three other solutions have no logarithm and are, for generic rational parameters,
Puiseux series:

x1−e ·
(
1 − (1 + d− e) (1 + c− e) (1 + b− e) (1 + b− c+ d− e)

(e − 2) (1 + b+ d− e) (b + d+ 2− 2 e)
· x + · · ·

)
,

x1−b−d · (1 + · · · ), xe−b−d · (1 + · · · ).
When the exponents 1 − e, 1 − b − d, e − b − d are integer values one can recover
solutions with logarithms for the operators.

Appendix O. Integrality of a one-parameter Saalschutzian
hypergeometric family of operators

Let us consider the order-four linear differential operator (θ = x ·Dx):

M4(µ) = 16 · θ2 · (θ − 1)2 (O.1)

− x · (2 θ + 1)2 · (2 θ − 1 + µ) · (2 θ − 1 − µ).

We have a one-parameter family of operators depending on µ2.
The Wronskian of M4(µ) is independent of µ, and reads 1/(x − 1)2/x4. This

order-four operator is, for any rational value of µ, non-trivially homomorphic to its
adjoint (with order-two intertwiners):

adjoint(M4(µ)) · (x− 1) · L2(µ) = L2(µ) · (x− 1) · M4(µ), (O.2)

M4(µ) · (x− 1) · M2(µ) = M2(µ) · (x− 1) · adjoint(M4(µ)), (O.3)

where L2(µ) and M2(µ) are two self-adjoint order-two linear differential operators:

L2(µ) = D2
x − 1 − µ2

4µ2
· 1 − µ2 x

(x− 1) · x2
, (O.4)

M2(µ) = 16 · x4 · D2
x + 64 · x3 · Dx + 36 x2 +

4 x2

(x − 1) · µ2
.

The order-two operator M2(µ) has simple hypergeometric solutions:

(1 − x) · x−(3µ+1)/2/µ · 2F1

(
[
2µ − 1

2µ
,
2µ − 1

2µ
], [

µ − 1

µ
], x
)
,

(1 − x) · x−(3µ−1)/2/µ · 2F1

(
[
2µ + 1

2µ
,
2µ + 1

2µ
], [

µ + 1

µ
], x
)
.
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note that, generically, the hypergeometric function 2F1([
2µ−1
2µ , 2µ−1

2µ ], [µ−1
µ ], x) does

not corresponds to a globally bounded series, as can be seen, for instance, for µ =
−5/11.

The two intertwining relations (O.2) and (O.3) can, in fact, be seen as a straight
consequence of the fact that the order-four operator M4(µ) can remarkably be written
in terms of these two self-dual operators:

M4(µ) = M2(µ) · (1 − x) · L2(µ) +
(µ2 − 1)2

µ4 · (1 − x)
. (O.5)

This order-four operator (O.1), or (O.5), does not satisfy the Calabi-Yau
condition. Its exterior square M6(µ) is of order six, with a, not only rational function
solution, but a constant solution. It is actually the direct sum of Dx and of an order-
five linear differential operator M5(µ):

M6(µ) = Dx ⊕ M5(µ), where: (O.6)

M5(µ) = M5(0) + µ2 · M(2)
5 + µ4 · M(4)

5 + µ6 · M(6)
2 · Dx + µ8 · x3 · Dx.

where the M(m)
n ’s are linear differential operators of order n. For µ2 = 1 the order-

five operator M5(µ) becomes the product‡ of two order-two operators and of Dx:

M5(± 1) = N2 · M2 · Dx. (O.7)

For the other odd values of µ (µ = ± 3, ± 5, · · · ) the order-five operator M5(µ)
factorizes into the product of an order-two, order-one and an order-two operator.

As will be seen in a forthcoming publication, the fact that the exterior square
has a rational solution is also a consequence of the decomposition (O.5). We have the
following general result. Any order-four linear differential operator of the form

M4 = M2 · c0(x) · L2 +
λ

c0(x)
, (O.8)

where L2 and M2 are two (general) self-adjoint operators

L2 = a2(x) · D2
x +

d a2(x)

dx
· Dx + a0(x), (O.9)

M2 = b2(x) · D2
x +

d b2(x)

dx
· Dx + b0(x), (O.10)

is such that its exterior square has A/a2(x) (A is any constant) as a solution. In the
case (O.5), the solution is the constant solution: 1/a2(x) = 1. Instead of M4, we
can introduce

M̃4 = c0(x) · M4 = c0(x) · M2 · c0(x) · L2 + λ, (O.11)

which annihilates the same solutions as M4. It is worth noting that a decomposition
like (O.8), provides, in fact, interesting results on the spectrum of M̃4. For simplicity
let us consider the example (O.1) with its decomposition (O.5), or on M̃4(µ), the
decomposition

M̃4(µ) = (1 − x) · M4 = M̂4(µ) +
(µ2 − 1)2

µ4
, (O.12)

where the order-four operator M̂4(µ) factors:

M̂4(µ) = (1 − x) · M2(µ) · (1 − x) · L2(µ). (O.13)

‡ It is also a direct sum M̂2 ⊕ (N̂2 · Dx) where M̂2 and N̂2 are two order-two operators.
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This order-four operator M̂4(µ) is, also, (non-trivially) homomorphic to its adjoint:

adjoint(M̂4(µ)) · L2(µ) = L2(µ) · M̂4(µ). (O.14)

It is clear that µ = ± 1 needs to be analysed separately. For instance, for µ = 1, the
order-four operator M̂4(µ) factors in a direct sum Dx ⊕ M3 where the order-three
operator M3 has the three solutions:

9 x2 · 4F3

(
[1, 1,

5

2
,
5

2
], [2, 3, 3], x

)
+ 16 x · ln(x) − 64, (O.15)

x ·
∫

π

2
· 2F1

(
[
1

2
,
1

2
], [1], 1 − x

)
· dx
x2

, and: x.

Let us consider the solutions of L2(µ) which can actually be expressed in terms
of hypergeometric functions:

Ψ1 = (1 − x) · x(2µ−ρ)/4/µ · 2F1

(
[
2µ2 + 4µ − ρ

4µ
,
2µ2 − 4µ + ρ

4µ
], [

2µ − ρ

2µ
], x
)
,

Ψ2 = (1 − x) · x(2µ+ρ)/4/µ · 2F1

(
[
2µ2 + 4µ + ρ

4µ
,
−2µ2 + 4µ − ρ

4µ
], [

2µ + ρ

2µ
], x
)
,

where ρ reads ρ = 2 · (2µ2 − 1)1/2. One immediately deduces from the
decomposition (O.12), that Ψ1 and Ψ1 are two eigenfunctions† of the order-four
operator M̃4(µ), with the same eigenvalue (µ2 − 1)2/µ4:

M̃4(µ) ·Ψi =
(µ2 − 1)2

µ4
·Ψi, i = 1, 2. (O.16)

Introducing a rational parametrisation for µ and ρ, namely

µ =
u2 − 2 u + 2

u2 − 2
, ρ = − 2 · u

2 − 4 u+ 2

u2 − 2
, (O.17)

one finds that, even for rational values of the parameter u, that forces µ and ρ
to be rational numbers as well, the hypergeometric functions in the two previous
eigenfunctions Ψi do not correspond (generically) to globally bounded series. More
generally, for rational values of the parameter u, the four solutions of M̂4(µ) are
Puiseux series of the form xr ·A(x), where r is a rational number and A(x) are series
analytic at x = 0. None of the four A(x) corresponds to a globally bounded series.

Appendix O.1. Saalschutzian hypergeometric solution

In fact the order-four linear differential operator M4(µ), or M̃4(µ), has the 4F3

(Saalschutzian) hypergeometric solution

x · 4F3

(
[
1− µ

2
,
1 + µ

2
,
3

2
,
3

2
], [1, 2, 2], x

)
, (O.18)

which expands as:

x − 9

64
(µ− 1) (µ+ 1) · x2 +

25

4096
(µ− 1) (µ+ 1) (µ− 3) (µ+ 3) · x3

− 1225

9437184
(µ− 1) (µ+ 1) (µ− 3) (µ+ 3) (µ− 5) (µ+ 5) · x4 (O.19)

+
441

268435456
(µ− 1) (µ+ 1) (µ− 3) (µ+ 3) (µ− 5) (µ+ 5) (µ− 7) (µ+ 7) · x5 + · · ·

† See the spectral theory of ordinary linear differential equations, in particular for self-adjoint
operators.
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On this expansion it is clear that the hypergeometric function truncates into a
polynomial for µ any odd integer (positive or negative). Furthermore, this series
(O.19) is globally bounded for any rational number µ.

Let us take a simple rational value for µ, namelyµ = 1/3. The series expansion
(O.19) reads

x +
1

8
x2 +

125

2592
x3 +

42875

1679616
x4 +

94325

5971968
x5 +

41544503

3869835264
x6 + · · · (O.20)

The series expansion of the nome (as well as the mirror map) is not globally bounded:

q = x +
17

48
x2 +

22195

124416
x3 +

1913687

17915904
x4 +

2195016283

30958682112
x5 + · · ·

In contrast, the series expansion of the Yukawa coupling K(x) is a globally bounded
series

K(x) =
1

x
− 43

144
− 11

288
x − 31517

3359232
x2 − 522821

3869835264
x3 + · · ·

Actually the rescaling x → 24 ·33 · x changes 24 ·33 · K(x) into a series with integer
coefficients:

24 · 33 · K(24 · 33 · x) =
1

x
− 129 − 7128 x − 756408 x2 − 4705389 x3

+ 58331013489 x4 + 38259799407522x5 + 19576957591348938 x6 (O.21)

+ 9193736880930978297x7 + 4149261387452007788523x8 + · · ·

Appendix O.2. A non-trivially equivalent operator for µ = ± 1

Let us introduce the order-four operator

N4 = 16 · θ · (θ − 2) · (θ − 1)2 (O.22)

− 4 · x · θ · (θ − 1) · (2 θ − 1)2.

which is nothing but M2 · D2
x (see (O.7)).

This operator is non-trivially homomorphic to M4(± 1), that is (O.1) for µ = ± 1:

N4 · A2 =
( x

1− x

)
· A2 ·

(1− x

x

)
· M4(± 1), (O.23)

where: A2 = (1 − x) · θ · (θ − 1).

Operator N4 does verify the Calabi-Yau condition: its exterior square is of order five.
The operator N4 can also be written as a direct sum:

D2
x ⊕

(
D2

x −
1

4 x · (1− x)

)
. (O.24)

or, in terms of θ = x · Dx, the direct sum:

θ ⊕ (θ − 1) ⊕
(
16 · θ · (θ − 1) − 4 x · (2θ − 1)2

)
. (O.25)

Thus, besides the constant solution and y(x) = x, its solutions can simply be written
in terms of hypergeometric functions, for instance

x · (1 − x) · 2F1

(
[
3

2
,
3

2
], [2]; x

)
(O.26)

= 4 x · (1 − x) · d

dx

(
2F1

(
[
1

2
,
1

2
], [1]; x

))
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= x · (1 − x) (1 − 2 x)−3/2 · 2F1

(
[
3

4
,
5

4
], [2]; − 4 x · (1 − x)

(1 − 2 x)2

)
.

This series is globally bounded. Changing x → 16 x turns this series into a series
with integer coefficients:

16 x + 32 x2 + 192 x3 + 1600 x4 + 15680 x5 + 169344 x6 + 1951488 x7

+ 23557248 x8 + 294465600 x9 + · · · (O.27)

Appendix O.3. A family of non-trivially equivalent operators for odd integer µ

It is tempting to try to generalise (O.24), or (O.25), with a simple µ2-ansatz:

D2
x ⊕ M2(µ) where: M2(µ) = D2

x −
µ2

4 x · (1 − x)
, (O.28)

or, in terms of θ = x · Dx, the direct sum:

θ ⊕ (θ − 1) ⊕
(
16 · θ · (θ − 1) − 4 x · (4θ2 − 4θ + µ2)

)
. (O.29)

In order to compare this ansatz operator with the initial operator (O.1), we slightly
rewrite it as

16 · θ2 · (θ − 1)2 − x · (2 θ + 1)2 · (4θ2 − 4θ + 1 − µ2),

and we, also, rewrite this ansatz operator as follows:

Codd(µ) = 16 · θ · (θ − 1)2 · (θ − 2) (O.30)

− 4 · x · θ · (θ − 1) · (4θ2 − 4θ + µ2).

One finds that such an ansatz is actually non-trivially† homomorphic to operator
(O.1) for any odd integer values (positive or negative) of µ, and that its exterior square
is actually of order-five for any value of µ (Calabi-Yau condition).

For µ = 2 t/(1 + t2), with t a rational number (hence |µ| < 1, the solutions
of (O.30) read (besides the constant solution and y(x) = x) simple hypergeometric
functions, for instance:

S0(x) = x · 2F1

(
[

t2

1 + t2
,

1

1 + t2
], [2], x

)
, (O.31)

together with the solution§ S1(x) = S0(x) · ln(x) + S̃1(x) where S̃1(x) is analytic at
x = 0, and solution of an order-four operator N4, product of two order-two operators,
N4 = N2(µ)· M2(µ), where N2(µ) is an order-two operator homomorphic to M2(µ)
(see (O.28)):

N2(µ) ·
1

x2
· (2 θ − 1) =

2

x
·
(
Dx −

d ln(ρ(x))

dx

)
· M2(µ), (O.32)

where: ρ(x) =
1 − x + µ2 x

(1− x) · x3/2
.

The series expansion of (O.31) is globally bounded for any rational value¶ of the
parameter t:

x +
1

2

t2

(1 + t2)2
· x2 +

1

12

t2 (2 t2 + 1) (t2 + 2)

(1 + t2)4
· x3

+
1

144

t2 (3 t2 + 2) (2 t2 + 3) (2 t2 + 1) (t2 + 2)

(1 + t2)6
· x4 + · · · (O.33)

† The intertwiners are linear differential operators of order three.
§ This solution can also be written MeijerG([[], [(2 + t2)/(1 + t2), (2 t2 + 1)/(1 + t2)]], [[0,1], []], x),
i.e. as a MeijerG function.

¶ In contrast the series S̃1(x) is not globally bounded for the rational values of t.
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For instance for µ = 4/5 the hypergeometric solution (O.31) reads S0(x) =
x · 2F1([1/5, 4/5], [2], x), corresponding to the globally bounded solution series:

x +
2

25
x2 +

18

625
x3 +

231

15625
x4 +

17556

1953125
x5 +

1474704

244140625
x6 + · · ·

The rescaling x → 53 x turns this series into a series with integer coefficients.
Remark that the two solutions S0(x) and S1(x), for µ = 4/5, can be replaced

by the two solutions well-suited for x large ( z = 1/x):

z−4/5 · (1− z) · 2F1

(
[
1

5
,
6

5
], [

2

5
], z
)
, z−1/5 · (1− z) · 2F1

(
[
4

5
,
9

5
], [

8

5
], z
)
.

The two hypergeometric functions 2F1([1/5, 6/5], [2/5], z) and 2F1([4/5, /5], [8/5], z)
do not correspond to globally bounded series. We have a similar result for the other
rational values of t.

Do note, however, that for the other rational values of µ we have a drastically
different situation: the operator (O.30) is no longer globally nilpotent‡, as can be seen
on the solution of D2

x − µ2/4/x/(1− x) in (O.28)

x · (1 − x) · 2F1

([3 + (1 − µ2)1/2

2
,
3 − (1 − µ2)1/2

2

]
, [2], x

)
, (O.34)

which has the series expansion

x +
1

8
µ2 · x2 +

1

192
µ2 · (µ2 + 8) · x3 +

1

9216
µ2 · (µ2 + 8)(µ2 + 24) · x4

+
1

737280
µ2 · (µ2 + 8) (µ2 + 24) (µ2 + 48) · x5 + · · · (O.35)

For rational values of µ that are not of the form µ = 2 t/(1 + t2), the solution-series
(O.35) of the operator (O.30) is not globally bounded as can be checked with the two
rational values of µ such that |µ| < 1 and |µ| > 1 respectively. One can verify that
the solution-series (O.35) of (O.30) for µ = 1/3

x +
1

72
x2 +

73

15552
x3 +

15841

6718464
x4 +

6859153

4837294080
x5 +

4945449313

5224277606400
x6 + · · ·

and for µ = 3:

x +
9

8
x2 +

51

64
x3 +

561

1024
x4 +

31977

81920
x5 +

948651

3276800
x6 +

40791993

183500800
x7 + · · ·

are not globally bounded.

Appendix O.4. Seeking for equivalent operators for other values of µ

The operator (O.30), which is non-trivially homomorphic to (O.1), (or (O.30)) for
odd integer values of the parameter µ, is not valid for even integer values of µ. For
example, for µ = 0, operator (O.1) actually verifies the Calabi-Yau condition, its
exterior square being nothing but M5(µ) for µ = 0 (see (O.6)). Operator M5(0)
reads

16 · θ2 · (θ − 1)2 − x · (2θ + 1)2 · (2θ − 1)2. (O.36)

It is not of the form (O.30), which cannot encapsulate all the operators homomorphic
to (O.30) satisfying the Calabi-Yau condition. As previously remarked, the series

‡ For instance one sees explicitly on (O.34) that its exponents are not rational numbers, therefore
operator (O.30) cannot be a globally nilpotent operator.
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expansion of the solution x · 4F3

(
[ 12 ,

1
2 ,

3
2 ,

3
2 ], [1, 2, 2], x) is globally bounded, and

can be turned into a series with integer coefficients with the rescaling x → 256 x.
Note that (O.36) can be used as a “seed” to get a family of µ2-dependent operator

verifying the Calabi-Yau condition. The linear differential operator

C(µ) = 16 · θ2 · (θ − 1)2 (O.37)

− x · (2θ + 1 − µ) · (2θ + 1 + µ) · (2θ − 1 − µ) · (2θ − 1 + µ),

is such that its exterior square is actually of order five. Very fortunately, operator
(O.37) is non-trivially homomorphic to (O.1) for any integer value (positive or
negative, even or odd) of parameter µ. Again the intertwiners are of order-three.

For instance, for µ = 2 one has the intertwining relation between operator (O.1)
and (O.37)

C(2) ·
(
(8 θ2 · (2 θ − 3) + 4 θ + 1) − 2 x · (2 θ − 3) (2 θ + 1)2

)
(O.38)

=
(
(8 θ2 · (2 θ − 3) + 4 θ + 1) − 2 x · (2 θ − 3) (2 θ + 1) (2 θ + 3)

)
· M4(2).

For larger values of the integer µ the intertwiners become more and more involved.
They are still of degree three in θ but of higher degree in x.

Operator (O.37) has simple hypergeometric solutions for any value of µ:

x · 4F3

(
[
µ + 3

2
,
−µ + 3

2
,
µ + 1

2
,
−µ + 2

2
], [1, 2, 2]; x) (O.39)

For any rational value of µ, the series expansion of the solution of (O.37) analytic
at x = 0, namely (O.39)

x +
1

64
(µ− 1) (µ+ 1) (µ− 3) · (µ+ 3)x2 (O.40)

+
1

36864
(µ− 1) (µ+ 1) (µ− 3)2 (µ+ 3)2 (µ− 5) (µ+ 5) · x3 + · · ·

is globally bounded†.
For instance, for µ = 1/3, the series (O.40)

x +
10

81
x2 +

2800

59049
x3 +

1078000

43046721
x4 +

53953900

3486784401
x5 +

26709338656

2541865828329
x6 + · · ·

can be turned into a series with integer coefficients after the rescaling x → 36 x.
However, the series expansion of the nome for (O.37) for µ = 1/3 is not globally
bounded:

x +
19

54
x2 +

250403

1417176
x3 +

218211473

2066242608
x4 +

281241377443

4016775629952
x5

+
1456188325082179

29282294342350080
x6 +

3167628271177596809

85387170302292833280
x7 + · · ·

In contrast, the Yukawa coupling K(x) for µ = 1/3 is actually globally bounded

K(x) =
1

x
− 49

162
− 2179

59049
x − 1508129

172186884
x2 +

47590097

167365651248
x3 + · · ·

Actually the rescaling x → 2· 36 x on 2· 36 K(x) turns the previous series expansion
into a series with integer coefficients:

2 · 36 · K(2 · 36 x) =
1

x
− 441 − 78444 x − 27146322 x2 + 1284932619 x3

+ 27674475754905 x4 + 59119113109746798x5 + 100896041483693939736 x6

+ 158984355721045048019613x7 + 241323001023828827752150059x8 + · · ·
† Operator (O.37) is thus globally nilpotent for any rational value of µ.
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to be compared with (O.21) for operator (O.1). We have similar result for µ = 4/5
(the series (O.40) can be turned into a series with integer coefficients after the rescaling
x → 28 · 55 x, and the series expansion of the nome is not globally bounded).
The Yukawa coupling K(x) for µ = 4/5 can be changed into a series with integer
coefficients:

28 · 3 · 55 K(28 · 3 · 55 x) =
1

x
− 1057980 − 92574954000 x (O.41)

− 51733629839745000 x2 + 74509092036686778685920x3 + · · ·
Note that, for any odd integer, (positive or negative), (O.40) is a terminating

series, reducing to a polynomial.

As a byproduct, we see, for any odd integer value of µ, that operator (O.1) is
(non-trivially) homomorphic to two different operators (O.30) and (O.37), such that
their exterior square is of order five. As it should these two operators (O.30) and
(O.37) are, for any odd integer value of µ, homomorphic† (with intertwiners of order
three). For µ = 3 one gets the homomorphism:

Codd(3) ·
(
4 θ · (θ − 1)2 − 4 x · (θ − 1) · (θ − 2) · (θ + 2)

)
(O.42)

=
(
4 (θ − 2) · (θ − 1)2 − x · (θ − 1) · (4 θ2 − 4 θ + 9)

)
· C(3).

For other values of µ one gets slightly more involved intertwiners that are no longer
of degree one in x.

The homomorphisms, for odd integer values of µ, between a non globally nilpotent
operator (O.30) and the globally nilpotent operator (O.37), or between operators with
non globally bounded and globally bounded solutions, may seem misleading. It is
important to note that, for odd integer values of µ, the operator (O.37) is non longer
irreducible‡, that the intertwiners between (O.30) and (O.37) (see (O.42)) are not
globally nilpotent, and, furthermore, that the globally bounded infinite series (O.40),
reduces to a polynomial. The intertwining relation between (O.30) and (O.37) then
matches this terminating hypergeometric series (O.40) with the y(x) = x solution of
(O.30).

Do note that, given an order-four operator such that its exterior square has a
rational solution (“extended Calabi-Yau condition”), finding an order-four operator
(non-trivially) homomorphic to the first operator such that its exterior square is of
order five (Calabi-Yau condition) is an extremely difficult task¶, even if one assumes
decompositions like (O.8), (O.11). We will address this difficult question of the
reduction of the “extended Calabi-Yau condition” to the “Calabi-Yau condition” in a
forthcoming publication.

† Note that for even integer values of µ, operator (O.37) is irreducible when (O.30) is reducible.
Therefore operators (O.30) and (O.37) cannot be homomorphic for even integer values of µ.
‡ For any odd integer value of µ the operator (O.37) is the product of four order-one operators such
that their wronskian is a rational function. Operator (O.37) is thus globally nilpotent.
¶ In particular because, as we have seen, this reduction to an operator satisfying the Calabi-Yau
condition is not unique. In contrast, starting from an operator satisfying the Calabi-Yau condition,
like (O.37), it is straightforward to get operators that are non-trivially homomorphic to this operator,
and are such that their exterior square has a rational solution (just perform the LCLM of this operator
with any order-three linear differential operator). This will be explained in a forthcoming publication.
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Appendix P. Modular forms and selected 2F1 hypergeometric functions
with two pullbacks

We display here a (non exhaustive) list of miscellaneous identities (between modular
forms and their representations as 2F1 hypergeometric functions with two pullbacks)
that we often encountered in our studies of the Ising model, lattice Green functions,
or Calabi-Yau ODEs:

2F1

(
[
1

6
,
1

3
], [1]; 108 · x2 · (1 + 4 x)

)
(P.1)

= (1− 12 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1]; − 108 · x · (1 + 4 x)2

(1 − 12 x)3

)
.

= 1 + 6 x2 + 24 x3 + 252 x4 + 2016 x5 + 19320 x6 + 183456 x7

+ 1823094 x8 + 18406752 x9 + 189532980 x10 + · · ·

(1 + 2 x) · 2F1

(
[
1

6
,
1

3
], [1];

27 x2 (1 + x)2

4 (1 + x + x2)3

)
(P.2)

= (1 + x + x2)1/2 · 2F1

(
[
1

6
,
1

3
], [1];

27 x (1 + x)

4 (1 + 2 x)6

)
.

The series expansion of (P.2) are globally bounded and can be changed into a series
with integer coefficients after the rescaling x → 4 x. This identity is nothing but
identity (P.1) after a change of variable. Another example corresponds to HeunG
functions of the form HeunG(a, q, 1, 1, 1, 1; x), such that the two parameters a and
q are associated with fixed points of the symmetries (139) of these HeunG functions :

HeunG(
1

2
,
1

2
, 1, 1, 1, 1, 4 x) = HeunG(2, 1, 1, 1, 1, 1, 8 x)

=
1

1 − 4 x
· HeunG

(
−1, 0, 1, 1, 1, 1, − 4 x

1 − 4 x

)

=
1

1 − 4 x
· 2F1([

1

4
,
1

4
], [1],

64 x2 · (1 − 8 x)

(1 − 4 x)4

)

= 2F1([
1

4
,
1

4
], [1], 64 x · (1 − 4 x) · (1 − 8 x)2

)
(P.3)

= (1 − 256 x + 5120 x2 − 32768 x3 + 65536 x4)−1/4

× 2F1

(
[
1

12
,
5

12
], [1], − 1728 · x · (1 − 4 x) · (1 − 8 x)2

(1 − 256 x + 5120 x2 − 32768 x3 + 65536 x4)3

)

= (1 − 16 x + 80 x2 − 128 x3 + 256 x4)−1/4

× 2F1

(
[
1

12
,
5

12
], [1], 1728 · x4 · (1 − 4 x)4 · (1 − 8 x)2

(1 − 16 x + 80 x2 − 128 x3 + 256 x4)3

)

= 1 + 4 x + 20 x2 + 112 x3 + 676 x4 + 4304 x5 + 28496 x6 + 194240 x7

+ 1353508 x8 + 9593104 x9 + · · ·
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The previous HeunG function can also be written

2F1

(
[
1

2
,
1

2
], [1], 16 x · (1 − 4 x)

)
=

1

1 − 4 x
· 2F1

(
[
1

2
,
1

2
], [1],

16 x2

(1 − 4 x)2

)

= (1 − 4 x) · (1 − 8 x) · 2F1

(
[
3

2
,
3

2
], [2], 16 x · (1 − 4 x)

)
(P.4)

− 2 x

(1 − 4 x)3
· 2F1

(
[
3

2
,
3

2
], [2],

16 x2

(1 − 4 x)2

)

Using the identity
(
16 x · (1 − 4 x)

)
◦
( 9 x2

1 + 4 x+ 40 x2

)
= 144

x2 · (1 + 2 x)2

(1 + 4 x+ 40 x2)2

=
( 16 x2

(1 − 4 x)2

)
◦
( −3 x · (1 + 2 x)

(1 − 4 x)2

)
(P.5)

one easily deduces from (P.4) a linear functional identity between the same
hypergeometric function with three different rational pullbacks:

18 x2 · (1 + 4 x+ 40 x2)3 · (1 − 4 x)6 · 2F1

(
[
3

2
,
3

2
], [2], p1(x)

)

− (1 + 2 x)7 · (1 − 4 x)7 · 2F1

(
[
3

2
,
3

2
], [2], p2(x)

)
(P.6)

+ (1 + 8 x)2 · (1 + 4 x+ 40 x2)3 · (1 + 2 x)6 · 2F1

(
[
3

2
,
3

2
], [2], p3(x)

)
= 0,

where the three pullbacks read respectively:

p1(x) = 1296 · x4

(1 + 2 x)4
=

( 16 x2

(1 − 4 x)2

)
◦
( 9 x2

1 + 4 x+ 40 x2

)
,

p2(x) = 144 · x2 · (1 + 2 x)2

(1 + 4 x + 40 x2)2

=
(
16 x · (1 − 4 x)

)
◦
( 9 x2

1 + 4 x+ 40 x2

)
,

p3(x) = −48 · x · (1 + 2 x) · (1 + 4 x+ 40 x2)

(1 − 4 x)4
(P.7)

=
(
16 x · (1 − 4 x)

)
◦
( −3 x · (1 + 2 x)

(1 − 4 x)2

)
.

Note that each of the three terms in (P.6) corresponds to series with integer coefficients,
their series reading respectively:

18 x2 − 216 x3 + 2160 x4 − 25344 x5 + 223236 x6 − 1810512 x7 + · · · ,
− 1 + 14 x − 190 x2 + 2524 x3 − 26732 x4 + 270184 x5 − 2650164 x6 + · · · ,
1 − 14 x + 172 x2 − 2308 x3 + 24572 x4 − 244840 x5 + 2426928 x6 + · · ·
Another HeunG(a, q, 1, 1, 1, 1; x) example, such that the two parameters a

and q correspond to fixed points of the symmetries (139) of these particular HeunG
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functions, read:

HeunG
(1 + i 31/2

2
,
3 + i 31/2

6
, 1, 1, 1, 1; 9 · 3 + i 31/2

2
· x
)

= 2F1

(
[
1

3
,
1

3
], [1]; 81 · x · (1 − 27 x + 243 x2)

)

=
1

x
· 2F1

(
[
1

3
,
1

3
], [1];

1 − 27 x + 243 x2

729 x3

)

= 1 + 9 x + 81 x2 + 567 x3 + 729 x4 − 72171 x5 − 1764909 x6 − 28284471 x7

− 343842327 x8 − 2859802119 x9 − 2072088459 x10 + 523309421259 x11

+ 13407709577211x12 + 226522478442087 x13 + · · · , (P.8)

where the coefficients are actually integers, their sign having a period six. This example
is nothing but revisiting (H.31) with a x→ −81 x change of variable.

Among the fixed points of the symmetries (139) the case a = 0 for any value of
q, corresponds to a special limit. Let us write q as q = (1− r2)/4, one has

lima→0 HeunG(a,
1 − r2

4
, 1, 1, 1, 1; 24 a x) = 2F1

(
[
1 − r

2
,
1 + r

2
], [1], 24 x),

which is, of course, a series with integer coefficients for any even integer values of r
(it is a simple polynomial expression for odd integer values of r).

More identities† read:

HeunG(−3, 0, 1/2, 1, 1, 1/2; 12 · x) = 2F1

(
[
1

6
,
1

3
], [1]; 108 · x2 · (1 + 4 x)

)

= (1− 12 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1]; − 108 · x · (1 + 4 x)2

(1− 12 x)3

)

= 1 + 12 x2 + 48 x3 + 540 x4 + 4320 x5 + 42240 x6 + 403200 x7

+ 4038300 x8 + · · · ,

HeunG(4,
1

2
,
1

2
,
1

2
, 1,

1

2
; 64 x) =

= (1 − 16 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1];

1728 x2

(1 − 16 x)3

)

= (1 − 64 x)−1/2 · 2F1

(
[
1

6
,
1

3
], [1]; − 432 x

(1 − 64 x)3

)
(P.9)

= 1 + 8 x + 192 x2 + 6656 x3 + 275968 x4 + 12644352 x5 + 616562688 x6

+ 31366053888 x7 + 1645521666048 x8 + 88371818921984 x9 + · · · ,

3F2

(
[
1

3
,
1

2
,
2

3
], [1, 1], − 108 x

(1 − 16 x)3

)
(P.10)

=
1 − 16 x

1 − 4 x
· 3F2

(
[
1

3
,
1

2
,
2

3
], [1, 1],

108 x2

(1 − 4 x)3

)

= 1 − 12 x − 36 x2 − 192 x3 − 1380 x4 − 11952 x5 − 116928 x6

− 1242624 x7 − 14006628 x8 − 164954640 x9 + · · · ,
† Not to be confused with Goursat-type identities on hypergeometric functions (see for instance
section 4 in [155]). Here, the hypergeometric functions have the same parameters but different
pullbacks.
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2F1

(
[
1

2
,
1

2
], [1], x

)
= (1 − 16 x + 16 x2)−1/4 (P.11)

× 2F1

(
[
1

12
,
5

12
], [1], −108 · x · (1− x)

(1 − 16 x + 16 x2)3

)
.

This globally bounded series becomes a series with integer coefficients after the
rescaling x → 16 x.

2F1

(
[
1

4
,
3

4
], [1], x

)
(P.12)

= (1 + 3 x)−1/4 · 2F1

(
[
1

12
,
5

12
], [1], 27 · x · (1 − x)2

(1 + 3 x)3

)
.

This globally bounded series becomes a series with integer coefficients after the
rescaling x → 64 x.

2F1

(
[
1

3
,
2

3
], [1], x

)
(P.13)

=
( 9

9 − 8 x

)1/4
· 2F1

(
[
1

12
,
5

12
], [1], 64 · x

3 · (1− x)

(9 − 8 x)3

)
.

This globally bounded series becomes a series with integer coefficients after the
rescaling x → 27 x.

A few hypergeometric functions occur in the analysis of the Yang-Baxter
integrable hard-hexagon [156, 157, 158]:

2F1

(
[
1

12
,
5

12
], [1]; −1728 x

(
1 + 11 x− x2

)5

(1− 228 x+ 494 x2 + 228 x3 + x4)
3

)
(P.14)

=
(1− 228 x+ 494 x2 + 228 x3 + x4

x4 − 12 x3 + 14 x2 + 12 x+ 1

)1/4

× 2F1

(
[
1

12
,
5

12
], [1]; −1728 x5

(
1 + 11 x− x2

)

(x4 − 12 x3 + 14 x2 + 12 x+ 1)
3

)
,

and the globally bounded algebraic hypergeometric functions 2F1([1/6, 2/3], [1/2], x)

2F1([1/4, 3/4], [2/3], x):

2F1([
1

6
,
2

3
], [

1

2
]; 27 x) = 1 + 6 x + 105 x2 + 2184 x3 + 48906 x4 + 1141140 x5

+ 27335490 x6 + 666865800 x7 + 16488256905 x8 + · · · (P.15)

2F1([
1

4
,
3

4
], [

2

3
]; 64 x) = 1 + 18 x + 756 x2 + 37422 x3 + 1990170 x4

+ 110198556 x5 + 6261870888 x6 + 362293958520 x7 + · · · (P.16)

Note that the two second-order operators

D2
x +

1

6
· (11 x− 3)

x · (x − 1)
·Dx +

1

9

1

x · (x− 1)
,

D2
x +

2

3
· (3 x− 1)

x · (x− 1)
·Dx +

3

16

1

x · (x− 1)
, (P.17)

annihilating respectively the two algebraic functions 2F1([1/6, 2/3], [1/2], x)

2F1([1/4, 3/4], [2/3], x), are such that their symmetric sixth power are (non-trivially)
homomorphic, the intertwiners being order-six operators.



Diagonals of rational functions 94

References

[1] Butera P and Comi M 2002 An on-line library of extended high-temperature expansions of basic
observables for the spin-S Ising models on two- and three-dimensional lattices J. Statist.
Phys. 109 311–315 URL http://arxiv.org/abs/hep-lat/0204007

[2] Campostrini M, Pelissetto A, Rossi P and Vicari E 2002 25th-order high-temperature expansion
results for three-dimensional Ising-like systems on the simple-cubic lattice Phys. Rev. E 65

066127 URL http://arxiv.org/abs/cond-mat/0201180

[3] Arisue H and Fujiwara T 2003 Algorithm of the finite-lattice method for high-temperature
expansion of the Ising model in three dimensions Phys. Rev. E 67 066109 URL
http://arxiv.org/abs/hep-lat/0209002

[4] Bessis J D, Drouffe J M and Moussa P 1976 Positivity constraints for the Ising ferromagnetic
model J. Phys. A 9 2105 URL http://stacks.iop.org/0305-4470/9/i=12/a=015

[5] Lalin M N and Rogers M D 2007 Functional equations for Mahler measures of genus-one curves
Algebra Number Theory 1 87–117 URL http://arxiv.org/abs/math/0612007v3
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développement de Taylor J. Math. Pures Appl. 4 101–186 URL
http://portail.mathdoc.fr/JMPA/PDF/JMPA_1892_4_8_A4_0.pdf

[63] Flajolet P and Sedgewick R 2009 Analytic combinatorics (Cam-
bridge: Cambridge University Press) ISBN 978-0-521-89806-5 URL
http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi
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