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Abstract. We study the star-triangle relation for two-component spin models on a square 
lattice, in order to classify exhaustively such a relation. For this purpose, we obtain 
necessary conditions for the star-triangle relation to be satisfied, by considering the 
commutation of transfer matrices of arbitrary size N, for small N. The number of such 
conditions is compared with the number of relevant parameters of the model, and we are 
led to distinguish two very different cases. Only the first one is dealt with in this paper. 

1. Introduction 

The star-triangle relation (STR) has been shown to be a crucial element in the study 
of exactly solved two-dimensional models, in statistical mechanics as well as in field 
theory (Baxter 1980a, 1982; e.g. Bazhanov and Stroganov 1981). The underlying 
reason is that the (local) STR is a sufficient condition for the commutation of (global) 
transfer matrices; the study of models solved by this commutation property is therefore 
reduced to the study of an a priori simple local relation. Two remarks are here in 
order. First of all, the number of such models is, at the present time, relatively small. 
Secondly, the ‘ a  priori simple’ local relation leads in fact to a set of trilinear 
homogeneous equations, which is quite complicated (Maillard 1983). Moreover, this 
set seems to over-determine the few solutions that can exist, as can be seen from 
particular examples. It therefore appears natural to try to classify exhaustively the 
non-trivial solutions of the STR. Two large families of models are concerned in this 
classification: vertex models and spin models. 

For the 16-vertex model, the classification of the STR has been carried out by 
Krichever (1981) using a sufficient condition for the STR to be satisfied; this author 
used the fact that a pure tensor product is transformed into another pure tensor product 
by the local Boltzmann weight associated to the vertex (two-body S matrix in S matrix 
theory) (Krichever 1981, Jaekel and Maillard 1983). Krichever’s results can be 
summarised as follows: the non-trivial models that satisfy the STR are mainly (a) the 
symmetric 8-vertex model (Baxter 1972, 1973), (b) the asymmetric 6-vertex model 
(McCoy and Wu 1968), (c) the Fan-Wu free fermion model (Fan and Wu 1970, 
Felderhof 1972, 1973a, b). The symmetric 6-vertex and Ising models are subcases of 
the above models, and correspond to zero field conditions. 
8 Laboratoire asswit au CNRS. 
I/ Note that this model is referred to as Felderhof’s model in Krichever’s (1971) paper. 
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As for two-component spin models, such a classification does not exist on the 
market. It is the ultimate goal of this series of two papers. The vertex-and spin-star- 
triangle relations do not in general coincide, as exemplified by the hard hexagon model 
(Baxter 1980b). Krichever’s analysis cannot be straightforwardly generalised to spin 
models since, in this case, there is no obvious? pure tensor product stability property. 
We therefore choose a different strategy. We will find necessary conditions for the 
STR to be satisfied, by considering the commutation of transfer matrices of small size 
N. We will mainly use the stability of the STR under the inversion relation (Stroganov 
1979). 

The plan of the paper is as follows: 9 2 briefly recalls the STR and its consequences 
for the transfer matrices of arbitrary size N. In § 3, we extract from the small N cases 
necessary conditions for the STR to be satisfied. The number of such conditions is 
compared, in the framework of some gauge invariance, with the number of relevant 
parameters of the model (§ 4). This study will lead us to distinguish two cases: the 
first one corresponds to trivial solutions of the STR and is studied in this paper. The 
non-trivial solutions will be studied in the following paper, hereafter referred to as (11). 

2. Star-triangle relation. Commutation of transfer matrices 

Let us give a graphical illustration as well as a definition of the STR. We denote by 
W, W‘, W” the Boltzmann weights associated to each elementary cell of a square 
lattice (it is understood that W, W‘, W” correspond to three different choices of 
parameters of a given model). The STR means that the partition function of the two 
graphs below are equal: 

All spin variables are Ising-like and { ai}, i = 1,2,  . . . , 6 ,  are fixed spins and {a, a’} are 
summed upon. Analytically this relation reads 

c W ( a , ,  (+2, a 3 ,  U ) W ‘ ( U 6 ,  Ulr (+, (+5)  W”(a, a 3 3  a 4 ,  a 5 )  
U 

= c w a g ,  a‘, u 4 , a s )  W’(a’,  U29 U39 a 4 1  W”(UI, L+z, a‘, (+6) .  (1) 
U’ 

If the STR (1) holds, and provided one takes periodic boundary conditions, the transfer 
matrices associated with the Boltzmann weights Wand W‘ commute, even for arbitrary 
size N (Baxter 1980a, Kasteleyn 1975). The transfer matrices$ will be denoted 
respectively by TN( W )  and TN(  W’). What is remarkable in all known soluble cases 

+ Such a property may in fact exist for spin models, as revealed by some cases solved on disorder lines 
(Baxter, private communication). 
$ The transfer matrix TN( W )  transfers from one horizontal row to the next one. It may therefore be called 
a horizontal transfer matrix. -The STR (1) implies a similar commutation property for the vertical transfer 
matrices, that we denote by TN( W )  and TN( W‘).  
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is that the STR (1) or  its consequence 

( TN( W ) ,  TN( W ' ) )  = 0 for all N 

implies (see e.g. Jaekel and Maillard 1983) 

cPi,N( W )  = cP,,N( W ' )  

a b c  d 
e f  g h 
/ J k  / 
m n o  p 

(3) 
where (P , ,~  is an algebraic function of the parameters of the model (the index i indicates 
that there may be several functions for a given N ) .  If one tries to solve equations (1)  
by eliminating the parameters associated with W", one gets a vanishing determinant 
condition like 

det(matrix( W, W')) = 0 

because of the linear homogeneous character of (1) .  This condition cannot a priori be 
factorised, and equation (3)  must indeed be considered as remarkable. Moreover, (3)  
allows the model to be foliated: in the case of the Baxter model, one recovers the 
known characterisation of elliptic functions as intersecting quadrics (Baxter 1982). 
One should also mention that there are always trivial solutions of the STR ( l ) ,  such as 
W = constant X W' (the transfer matrix commutes with itself). There are other uninter- 
esting cases where the STR is satisfied for any weight W, W', W": they often correspond 
to one- or zero-dimensional models in disguise. 

3. Study of the star-triangle relation for the IRF model 

3.1. Definition of the model 

Let us recall the definition of the interaction-round-a-face (IRF) model (Baxter 1980a): 
we consider Ising spins {a, = * i }  at the corners of an elementary cell (square), see 
figure 1.  The IRF model is the most general model corresponding to these 24 = 16 spin 
configurations. We therefore have 16 parameters, denoted by a,  b, c, d, . . . , m, n, o, p 
(figure 1 ) .  Throughout this paper, we assume that none of these parameters is zero 
(no excluded configurations). 

3.2. Commutation of transfer matrices for small size N 

We now study in detail the consequences of (2) for small N ( N  = 1 ,2 ,3 ,4 ,  . . . ). 

matrix (figure 2(a)): TI( W) transfers from spin a1 to spin a2 and reads 
(a) N = 1.  Note that, due to  the periodic boundary conditions, TI( W) is a 2X 2 
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02 1:; 
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( 0 )  

0 3  

Figure 2. Commutation of transfer matrices: ( U )  N = 1, ( b )  N = 2. 

Equation (2)  then yields 

d / m  = d’/m’,  ( 4 )  

( a - p ) / d = ( a ’ - p ’ ) / d ’ .  ( 5 )  

(b) N = 2. For N = 2, T2( W )  is a 4 X 4 matrix, which transfers from spins ( m l ,  m2) 
to spins (u3, m4) (figure 2(b ) ) ,  and equation ( 2 )  leads to 

2BD‘ + CH‘ = 2B’D + CH, 

DB’ + GI’ = D’B + G’I, 

2GI’+ CH’ = 2G’I + C’H, 

DX’ + HG’ = D’X + H’G, 

BX’ + CI’ = B’X + C’I, 

H (  Y ’ - X ’ )  +2ID’ =HI( Y - X )  +2I’D, 

C (  Y’ - X ’ )  + 2BG’ = C’( Y - X )  + 2B’G, 

IY’ + HB’ = I’ Y + H’R, 

(6) 

(7)  

(8) 

( 9 )  

(10) 

( 1 1 )  

( 1 2 )  

( 1 3 )  

GY’+DC’=G’Y+D’C,  (14) 
where the following notations have been used: B = bc, C = d 2 ,  D = ei, G = hl, H = m2,  
I =  no, X = f k + g j - a 2 ,  Y = f k + g j - p 2 .  Using ( 4 ) ,  equations (6)-(8) yield 

B / D = B ’ / D ’ ,  I / G  = I ’ /G’.  (15a ,  b )  
Let us now consider equations ( 9 ) ,  (10). We set H = AC, B = pD, I = pG, and we get 

DX’+ACG’=D’X+AC’G, ( 1 6 )  
pDX’ + pCG‘ = pD’X -k pC’ G. (17) 

This implies 

( p - Ap)CG’= ( p -Ap)C’G. 

If p - Ap # 0, we have 

G /C  = G’/C’, D/  X = D’/ X ’  

The study of (11)-(14) leads to similar results. We may thus conclude that 

On the contrary, if p - Ap = 0, we still get equations ( 1 5 )  but the remaining equations 
(91, ( l l ) ,  ( 1 3 )  cannot be factorised. 



Classification of the star-triangle relation: I 1255 

(c) N = 3,4.  Using the same method as in Jaekel and Maillard (1983), we obtain 
from ( T3( W), T3( W’)) = 0 four relations (two by two conjugate) 

with 
P,( W) = vi( W’) 

cp ( W) = ( gjd + w k bh + w ’Pc)  / ( gjm + w foi + w ne k ) , (20) 

kf ( a  - p )  + w( big - hoj) +U’( jec - gnl) 
gjd+wflc+w2kbh cp2( W) = 7 

where w 3  = 1. A little extra work would yield more relations; for instance, at N =4, 
we get, among many, 

cp( W )  = (fjco - bkng)/(  ejkh - fgil) = cp( W ‘ ) .  (22) 

4. Gauge invariance and number of variables 

Let us consider the (horizontal) transfer matrix TN( W). Due to the periodic boundary 
conditions (PBC), TN( W) is left unchanged by the transformation D,: 

The positions of the {ai} are shown in figure 1. The invariance of TN( W) under D1 
holds because the Dl(ui ,  ai) factors cancel two by two, even the first and last ones 
(PBC). Since TN( W) is unchanged, so is the partition function 2 under (23). Since 
ai = f 1, the transformation D, is a three-parameter transformation. On the other 
hand, we could have defined another transformation D,: 

D2 leaves 2 unchanged but modifies TN( W); it is also a three-parameter transforma- 
tion. Note that D, and D2 overlap and that the intersection (Dl n D2) of these two 
‘gauge’ transformations is a one-parameter family. Given the IRF model, one may 
conclude that the use of D1 and 0, allows one to gauge away at most 3 + 3 - 1 = 5 
parameters. These transformations are similar to the weak graph duality for vertex 
models (Gaaf and Hijmans 1975). 

Let us now compare, in the case p # Ap, the number of conditions obtained from 
(2), and the number of relevant variables among the 16 (homogeneous) initial ones, 
that is among 15 parameters. The gauge transformation D,  which leaves TN( W) 
invariant also leaves (3) invariant. Therefore one may fully use D1 and gauge away 
three irrelevant parameters, without modifying the number of conditions cpa ( W) = 
cp,( W’). Summing up the number of such conditions for N = 1 ,2 ,3 ,4 ,  we find at least 
13 of them, whereas the number of remaining parameters is 12. If one assumes that 
all conditions cp,( W) = pa( W’) are independent, the only possible solution of the 
STR (1) is W =constant X W’ and that concludes our discussion of the case p # Ap. To 
get non-trivial solutions, we have to consider the case p # h p  which is the subject of 
paper (11), or some possible solutions with p # Ap with non-independent conditions 
cp,( W) =vu( W’). We shall see in (11) that such solutions may only exist when the 
inversion relation does not exist for the model. 
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5. Conclusion 

In this paper, we have initiated a possible strategy for studying the STR in the case of 
two-component spin models. This strategy has been shown to work in the case p # Ap, 
with the result that there does not exist a non-trivial solution of the STR, provided the 
conditions cp,( W) = c p m (  W') are independent. For the other case, p = Ap, this approach 
does not allow one to conclude. In paper (11), we will consider this case by using the 
inversion relation: due to its compatibility with the STR, the inversion relation will 
enable us to generate new invariants pa( W) from the old ones. 
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