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Abstract The phase diagrams of the isotropic three and four-state chiral Potts model 

are studied using exact results and Monte-Carlo simulations performed on twisted square 

lattices with different sizes (up to 64x64 for the three-state Potts model). A floating phase 
starting immediatly from the critica1 ferromagnetic standard scalar Potts model seems to 

occur. Important finite size effects occur as expected. The phase diagram is seen to be 

even more involved in the case of the four-state chiral Potts model. 

1. Introduction 

Two years ago Au-Yang et a1 obtained integrable cases for the N-state chiral 

Potts m ~ d e l l - ~  which happened to be the first solvable model with genus greater 

than one parametrization (see for instance refs.3,4). This breakthrough has re- 

newed the interest in those models that generalize an important model of two- 

dimensional statistical mechanics, the (standard) scalar Potts model (for a review 
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see ref. 5) and exhibit interesting physical properties and rich phase diagrams 

(commensurate-incommensurate transitions, floating phases (for a review see for 

instance ref. 6), Lifshitz points7, possible occurence of a new chiral universality 

classs. Many subcases of this niodel have been considered with different names: 

clock models, helical models ... Recause it is known to exhibit (in two dimensions) 

an incommensurate floating phase (i.e. a phase with algebraically decaying order 

parameter correlations) the three-state chiral clock model (CC3) introduced by 

HuseQ and Ostlund1° has attracted great attention. The literature on these sub- 

jects is very large. Among many one can read for instance Selke and Yeomans", 

Everts and R6der12 and Everts13, von Gehlen and Rittenberg14, den Nijs15, Vexan 

et a116, Albertini et al1'~lS ... 
This paper is divided into two different parts: the analysis of the exact results 

and symmetries of the anisotropic N-state chiral Potts model and the results of 

simulations performed only on the isotropic three-state chiral Potts model. Of 

course a11 the ideas developed here are not restricted to isotropic models: we 

restrict ourselves to isotropic models for reasons of clarity and because many results 

can be found in the literature on different kinds of anisotropic modelslO, on very 

anisotropic models (strong coupling limits) and on low temperature properties of 

the chiral modellO. On the other hand the (finite temperature) isotropic chiral 

Potts models have not been so extensively studied. 

The purpose here is to shed some light on the relations between the notions 

of criticality, integrability and self-duality in models like the chiral Potts model 

for which many partia1 results are available and for which these notions no longer 

coincide. We try also to understand the role played by the integrability curve of 

Au-Yang et a1 in the phase diagram of the model. 

2. Symmetries and exact results for the N-state chiral Potts 
rnodel 

The partition function of the anisotropic N-state chiral Potts model on a 

square lattice reads: 
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where the first (resp.second) product is taken over a11 oriented horizontal (resp. 

vertical) bonds of the square lattice. The spins belong to ZN and the two sets 

of parameters consist of N homogeneous variables w (O), w ( i ) ,  ... w ( N  - 1) and 

a(O), w (1), ... w (N  - 1). The anisotropic model has some obvious symmetries on the 

square lattice that amount to performing simple transformations on the dummy 

variables ai and correspond to the following permutations of the w(i)'s 

and 

and of course similar transformations on the w(i)'s. S corresponds to spin reversal 

on the spins and the N-cycle C amounts to performing a translation on ai but not 

ai. C and S generate a dihedral group: one has for instance the following relation 

between C and S : (C'S)' = 1. 

In the thermodynamic limit one must also take into account the symmetry 

of permutation of the horizontal and vertical homogeneous parameters w(i) and 

w (i). 

A duality symmetry exists for this model (see for instance ref. 20). it corre- 

sponds to the following linear transformation: 

where w is an Nth  root of unity, wN = 1 (and of course similar transformations on 

the &(i)%). For every value of N, D is a transformation of order four, D2 being a 

transformation identical to S. 

The new results of Au-Yang et all and Baxter et a13 show that a star-triangle 

relation exists in the model provided certain (homogeneous) relations between the 
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w(i)'s and @(i)% are satisfied: a first set of conditions comes from the compat- 

ibility conditions for an overdetermined homogeneous system to have non-trivial 

solutions. These conditions correspond to the vanishing condition of determinants 

and occur only for N > 4. They are actually conditions bearing separately on the 

two horizontal and vertical parimeter spaces: 

and a = 1, ... N - 3. 

The symmetries of the anisotropic chiral Potts model (generated by the in- 

version relation, permutation of horizontal and vertical couplings, duali ty...) are 

in general an infinite set of (birational) transformations on the parameter space of 

the mode121. It has been noticed that the previous solutions of the Yang-Baxter 

equations correspond precisely to the case where this set degenerates into a finite 

set. Moreover this finite set of symmetries is deeply related to the set of auto- 

morphisms of the algebraic curves of genus greater than one that occur in the 

parametrization of the solutions: these results are particularly obvious wheri one 

introduces well-suited variables to analyze this set of symmetriesZ2. 

To this set of determinantal equations one must also add one equation that 

mixes the horizontal and vertical parameters: 

R(w(O), w(l), ... w ( N  - ~)R(w(o) ,  ~ ( l ) ,  ...a( N - 1)) = 1 (5) 

where R is a rational expression of the w(i)'sZz. 

From now on we concentrate on the N = 3 and N = 4 isotropic chiral Potts 

models. 

I a )  - The  three-state chiral Pot t s  model 

For the N = 3 model there is no determinant condition like (4a,b) and eq.(5) 

reads: 
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This integrability curve is actually invariant under the other symmetries of the 

model C, S, D. 

We pay particular attention to the following sets of points of the phase dia- 

gram: 

-the line globally invariant under the duality transformation (self-dual line): 

J 3 w  (O) = w (O) + w (1) + w (2) (7) 

(there is another self-dual line which is not in the physical domain: a w ( 0 )  = 

w (o) + w (1) + w (2)). 

-the line where the model reduces to the standard scalar Potts model w(1) = w(2) 

and their transform by C and C2. The critica1 point of the ferromagnetic three- 

state standard scalar Potts model (the intersection of the standard scalar condition 

(w(1) = w(2)) and of the self-dual line (7): point H of fig. i a  also belongs to curve 

(6). Because of the symmetries (2a,b) and because the w(i) are homogeneous 

variables, it is convenient to introduce the two variables a and b: 

a = (w (O) - 2w(l) + w ( ~ ) ) / & ( w  (O) + w (1) + ~ ( 2 ) )  

In these new variables (a ,  6 )  the physical domain is then restricted to the triangle 

(ABC) drawn on fig. la.  The boundaries of the physical domain (w(0) = O or 

w(1) = O or w(2) = 0) are the edges of the triangle and also correspond to limits 

where the chiral model can be mapped (in the thermodynamic limit) onto a six 

vertex model in direct fields2'. The self-dual line (í'), the standard scalar Potts 

line, their transforms by C and C2 and curve (6) have also been drawn on fig. la.  

Due to the symmetries (2a,b) one can restrict the study of the phase diagram to 
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the (physical) triangle AOD. The two edges (AO),(OD) of this triangle correspond 

respectively to the isotropic three-state ferromagnetic (resp. antiferromagnetic) 

standard scalar Potts model (w(0) > w(1) = w(2), resp. w(1) > w(0) = w(2)). 

Point D is the completely ordered limit of the antiferromagnetic scalar Potts model. 

Point A (w(1) = w(2) = 0) corresponds to a completely ordered state, while 

point O corresponds to the completely disordered one (no interactions between 

the spins). 

As the model can be mapped, in the w(i) = 0 limit, onto a six vertex model in 

direct f i e l d ~ ~ ~ ' ~ ~ ,  one can actually locate a critica1 point on this edge of the triangle 

(ice point) for w(0)/2w(2) = 1) (see for instance inequalities (355a) on page 436 

of Lieb and W U ~ ~ ) .  Note that this point (G in figure la,b) is not on the self-dual 

line (7) (point E). Point H corresponds to the critica1 ferromagnetic three-state 

standard scalar Potts model. Points G and H are actually critical points of a very 

different nature: is  there a critical curve conneeting G and H ? Using a result of 

Kardar (ref. 23, eq. (14)) one can argue that there should exist, close to point H, 

a critica1 curve orthogonal to the standard scalar Potts line (AO) at point H. 

Criticality, integrability and self-duality are notions having often some over- 

lap for two-dimensional models. The Ashkin-Teller models, the Z, r n ~ d e l s ~ ' ~ ~ ~  

are some examples. The scalar Potts model is a typical example for which a 

star-triangle relation exists precisely when the model is critica12': this can be 

understood very roughly as saying that these conditions must correspond to en- 

hanced symmetries of the model. So the first question addressed in the simulations 

of paragraph I1 concerns the criticality of the model on condition (6) and also (7). 

Ib) - Four-state chiral Po t t s  model 

Let us consider now the four-state chiral Potts model. The analysis performed 

for the three-state chiral Potts model can be generalized mutatis-mutandis: the 

triangle of fig. i a  is replaced by a tetrahedron Mo Ml M2 M, , a point M in this 
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Fig. l a  - Phase diagram of the three-state chiral Potts model in the (a,b)-plane where a and b are 

defined by (6). The inside of the triangle (ABC) corresponds to the physical domain. On line (AO) 

the chiral model reduces to the standard scalar Potts model. Line (HE) is theseld-dual line (5). 

Curve 7 corresponds to the star-triangle condition (4). Fig. l b  - Region (OAD) of the ~hysica l  

triangle. Region (OHFD) corresponds to the disordered phase while region (HAG) corresponds to 

an ordered one. Region (GMF) could be a new phase. The broken lines correspond to the sweeps 

for a=0.20 and a=0.35. 

parameter space being associated to the homogeneous parameters w(i) in the 

following way: 
3 

C w (i) . M-M~ = O 
i = O  

One has interesting exact subcases for this model: 

w(i) = w(i + 1) = 0 for i = 0 (or i = 1 or 2 or 3) correspond again to a six vertex 

model in direct (and equal) f i e l d ~ ~ ~ . ~ ~ ,  while w(0) = w(2) = O or w(1) = w(3) = O 

correspond to a mapping onto an Ising (free-fermion) model. This means that 

one is able to locate critica1 points on the six edges MIMj of the tetrahedron: 

eight corresponding to the critical points of the six vertex model in direct fields 
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and four to the critica1 point af the two-dimensional Ising model (see fig. 2a). 

The symmetric Ashkin-Teller rnodel is another interesting subcase of the four- 

state chiral Potts mode130~31~32. To make this clear let us consider the four-state 

Potts spin as two Ising spins ai and ri. With this notatíon, the Boltzmann weight 

corresponding to the interactiori between two nearest neighbour spins (oi, ri) and 

(oj, ri) reads: 

Let us note that the spin revers'al symmetry (ai, a,) -t (-ai, -a,) corresponds 

to the transposition w(1) t, v~(3), while the spin reversai symmetry ri -+ -7, 

corresponds to the symmetry w (1) ++ w (3) and w(0) t, w (2). The 4-cycle w (O) -+ 

w(1) -+ w(2) -+ w (3) -+ w(0) corresponds to changing r, to -rioj, o, to -oj and 

leaving ri and ai invariant. From eq.(9) it is staightforward to see that there exist 

other two-dimensional Ising (free-fermion) limits: the line of equations w(1) = 

w(3) and w(0) = w(2) and the curves of equations w(l)w(3) = w(O)w(2) and 

w(1) = w (3) or w (O) = w(2). For w(1) = w(3), the model obviousIy reduces to 

a symmetric Ashkin-Teller model (it corresponds to the fact that the model is no 

longer chiral). This is also the case for w(0) = w(2) (change r, to -riuj, uj to -0, 

and keep ri and ai invariant). In this (s~mmetric) Ashkin-Teller limit, the phase 

diagram of the model is ~e l l -k ;nown~~.  In particular, one recalls the existence of 

a critica1 self-dual lines4 in the plane w(1) = w(3) (or w(0) = w(2)) of equation 

w(0) = w(i) f w(2) + w (3) (bowever, it is very unlikely that the self-dual plane 

w(0) = w(1) + w(2) + w(3) c:ould be a critica1 plane outside the Ashkin-Teller 

conditions w (1) = w(3) or w(0) = w(2)). From these different exact subcases, one 

remarks that the phase diagram of the four-state chiral Potts model is a much 

more involved phase diagram than the one of the three-state model. The critica1 

manifolds contain quite different critica1 points like points Si (critica1 points of a 

six vertex model in direct fields) and like points Ii (critica1 points of a free-fermion 
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Ising model) (see fig. 2a). These idem can of course be generalized to higher 

values of N: the corresponding phase diagrams will depend very much on whether 

N is a prime number or not. The critica1 behaviour of these models for any N also 

indicates a rather involved situation: along the standard scalar Potts varieties the 

transition is first order for N > 4 and along the integrability varieties one gets4 

the following value for the exponent a: : a = 1 - 2 / N .  

M3 

Fig. 2a - Phase diagram of the four-state chiral Potts model. The in- 

side of the tetrahedron (MoMlM2 M3) corresponds to the physical domain. 

Points Si, ..& correspond to critical points of the six vertex model in direct 

field, 11, ... I 4  to the critica1 points of the two-dimensional Ising model. The 

(MoM2Ci) and (MlMsC2) planes correspond to the (symmetnc) Ashkin- 

Teller limit of the model. CIDl, C1D2, C2Dr are self-dual lines of the 

Ashkin-Teller model. Fig. 2b - Phase diagram in the (MoM2Ci) Ashkin- 

Teller plane. The line (MONO) correspond to the standard scalar four-state 

Potts model. Point P is the (ferromagnetic) critical point of the standard 

scalar four-state Potts model. 
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3. Monte- Carlo simulations 

Monte-Carlo simulations have been performed on a parallel computer built in 

the CRTBT which consists of forty-six M68000's working in parallel. This parallel 

computer allows us to average the results over a rather large nurnber of samples. 

This analysis has been performed for the three-state isotropic chiral Potts model 

to be able to study large enough samples. 

We study L x L square lattice with helical boundary conditions L = 

4,8,16,32,64). Most of the trajectories in the (AOD) triangle are sweeps in the 

(a,b)-plane which correspond to keeping constant the value of a and to decreasing 

b, but trajectories allowing a sirnple use of the fluctuation-dissipation theorem 

(trajectories with given coupling constants, given chirality ... ) are also considered. 

A measure of the relevant quantities (internal energy, fluctuation of the internal en- 

ergy ... ) is performed every ten Monte-Carlo steps (MCS) per spin. For instance 

in the L = 64 (resp. 16) case 5000 MCS per spin are discarded (to therrnalize the 

system) and 10' (resp. 4 x 108) values are averaged. For the L = 64 case, for 

instance, it represents 4 x 10" updates and it took three weeks (for a given value 

of a) on the parallel computer (the total number of updates corresponding to a11 

the simulations performed here is 5 x 1012 .) 

Different runs along trajectories in the parameter space corresponding to the 

standard scalar Potts model ((AO) in fig. Ia) have been performed to check the 

validity of our program. As already mentioned by Barber", due to important 

corrections to scaling, discrepancies in the value of exponent obtained from the 

finite size scaling analyzis occur but the location of the critica1 point is obtained 

quite accurately. 

To investigate the criticality of the integrability curve (6) and of the self-dual 

line (7) sweeps for a=0.20,0.25 and different values of L (L = 4,8,16,32,64) have 

been perforrned. The results are shown in the insert of figure 4: c(b) presents a 

maximum which becomes sharper with increasing values of L. The system seems to 

undergo a second order phase transition between an ordered and a disordered phase 

as could be remarked inspecting representative spin configurations just above the 
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transition (see fig. 3a). For a=0.20 this breaking takes place through flips of 

isolated clusters of spins in an ordered phase. The ordered phases correspond to 

a ferromagnetic state and to helical statesZ3 (< ... 012 ... >, resp. < ... 021 ... >) for 

the other ordered phases of the phase diagram (points B and C). One locates quite 

accurately the critica1 point corresponding to the maximum. One notes that the 

value of b corresponding to the integrability curve is clearly to be discardes as well 

as the self-dual value. The "simplicity" arguments which would have identified the 

critical curve with the self-dual line actually fails. Curve (6), if critica1 for the 

chiral three-state Potts model, corresponds to a very weak singularity. However 

one can imagine that the integrability curve (6) has to be a 'special" curve in 

the parameter space. One could think of a connection between this curve and a 

wetting transition curve (compare, up to the change of variables (a ,  b) -+ (PJ ,  A ) ,  

the integrability curve (6) (7 in fig. l a )  and the interfacial wetting transition 

dotted lines of figure 1 of Huse et al19. On the other hand these results indicate 

that the critica1 curve, although different, is located close to the self-dual line near 

point H. This is in agreement with the previously mentioned result of Kardar that 

the critica1 curve exists in the neighborhood of point H and has to  be orthogonal 

to the line (AO) at point H. 

Monte Carlo simulations were carried out for L = 16 and a = 0.35 in order 

to follow this transition for larger values of a. The situation is now more involved: 

c(b) exhibits two maxima (fig. 5). For L = 32 we get then three maxima and for 

L = 64 six maxima. These results indicate a rather involved phase structure fsr 

a = 0.35 in a certain range {bmi, ,  b,,,) of b: the setting of the equilibrium seems 

to be slower as can be verified for trajectories that enable one to get into this 

new phase and correspond to a given chirality for instance A = -0.42 36. Such 

trajectories allow an easy use of the 0uctuation-dissipation theorem and therefore 

one can control the setting of the equilibrium. A difference between the order 

breaking mechanism of the system appears very clearly comparing the snapshots 

of the spin configurations of the system for a < 0.2 and for a > 0.2. (see fig. 3a,b,c 

for snapshots for a = 020 and a = 0.35). In opposition to the a = 0.20 situation, 

clusters of spins organised in walls running diagonally through the whole lattice 
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occur for a = 0.35. This is reminiscent of a floating phase6. Of course everything 

must be very sensitive to the choice of boundary conditions: with our choice of 

boundary conditions the number of walls must be divisible by three. The maximum 

of c(b) occur precisely when the number of walls increases by three. Note that the 

run performed for L = 16 already gave a reliable estimation of the extension of 

this "new phase". Sweeps for different values of a (0.26, 0.265, 0.270, 0.275, 0.30, 

0.37) have been carried out for L = 16 to get the extension of this "new phase". 

These simulations indicate two maxima which trace the location of {bmi,, b,,,) 

(fig. lb).  

Fig. 3a - Snapshot for a = 0.20 and b = 0.230. 

4. Discussion and prospects 

The phase diagram of the three-state chiral P ~ t t s  model has been seen to be 

a surprisingly rich one and the phase diagram of the four-state chiral Potts model 

should be even richer. From exact results we have located certain critica1 points 

of the isotropic N-state chiral Potts model. For the three-state isotropic chiral 
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Fig. 3b - Snapshot for a = 0.35 and b = 0.200. 

Fig. 3c - Snapshot for a = 0.35 and b = 0.185. 



J.C. Anglds d'Auriac e t  a1 

Fig. 4 - Finite siee scaling for c(b) for a=0.20 and L=8,16,32,64 with l / v  = 

1 and a / v  = 0.5. The insert shows the original data. 

Potts model it has been shown, using Monte-Carlo simulations, that these points 

are in fact connected by continuous phase boundaries which define, in the phase 

diagram, ordered and disordered phases and a domain where the phase structure is 

reminiscent of a floating phase. Critica1 curve(s) have been located with accuracy 

for a < 0.2. The situation consistent with the evidence obtained here seems to 

be the following: the critical ferromagnetic standard scalar Potts point H might 

be in fact a multicritical point, the two critical curves originating at point H being 

hardly distinguishable near H .  One should recall that Albertini et a117918 have been 

able to see a commensurate-incommensurate transition ín the ground state of the 
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Fig. 5 - c(b) for different values of L for a = 0.35. 

superintegrable chiral Potts models and one can compare for example fig. l b  here 

and fig. 2 of Albertini et a118 which corresponds to a schematic plot of the phase 

diagram of the three-state chiral Potts model. 

On the other hand a certain ambiguity remains on the localization of point 

F (see fig. lb).  This ambiguity is difficult to clarify since the local Monte-Carlo 

algorithm clearly fails in the neighbourhood of (AD)-line. It is not proved that 

point F is definitely different from point E or even D. 

Other studies are necessary to get a better understanding of this intermediate 

phase. A simulation for a 128 x 128 lattice and for a given chirality A = -0.42 is 

in progressS6 and seems to confirm the previous analyzis. Simulations have also 
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been performed on anisotropic lattices with similar results. As Monte-Carlo simu- 

lations for the four-state for sufficiently large sizes cannot be envisaged reasonably, 

it would be interesting to perforrn similar simulations on the triangular (resp. hon- 

eycomb) three-state isotropic chiral Potts model for which one symmetry (S) still 

exists but symmetry C does not. 

The self-dual line (7) is not critical. The criticality of self-dual lines was 

natural for Z, m ~ d e l s ~ ~ ~ ~ *  because these lines are not only globally invariant by 

duality but each of their points are invariant: this is no longer thc case for chiral 

models. Let us emphasize when the critica1 boundaries are only globally invariant 

by duality that, their algebraicity is often a consequence of an integrability (for 

instance the identification of the self-dual line with a critical curve should have 

had its origin in an integrability of the self-dual line but one can actually verify 

that the star-triangle relation, or any simple generalization of it, is not obviously 

satisfied when the self-dual condition (7) is satisfied). Finally from a more general 

point of view, one can expect the integrability curve (6) to be some "special" curve: 

from the previous simulations m e  sees that it is included in the ordered phase of 

the phase diagram (see fig. ia). What kind of "specialn phenomenon can occur 

in an ordered phase? Presumably only very subtle transitions such a s  wetting-like 

transitions. 
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Resumo 

Os diagramas de fase do modelo de Potts quiral isotrópico com três e quatro estados são 

estudados, usando resultados exatos e simulaçóes de Monte Carlo realizadas em redes quadradas 

retorcidas de diferentes tamanhos (até 64x64 para o modelo de Potts de três estados). Parece 

ocorrer uma fase flutuante começando imediatamente do ponto crítico do modelo de Potts .escalar 
ferromagnético usual. Como esperado, ocorrem importantes efeitos de tamanho finito. Obtém-se 

um diagrama de fase ainda mais complexo para o modelo de Potts quual de quatro estados. 


