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Symmetry relations in exactly soluble models 
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Abstract. Symmetryrelations such as the star-triangle or the inverse relation are very useful 
in determining the partition function of two-dimensional exactly soluble models. A 
common construction of the three-dimensional equivalents of these symmetry relations is 
presented here. They are used to derive, in a geometric way applying simultaneously to 
different kinds of spin models, the consequent global properties, i.e. the commutativity of 
the transfer matrices and the inverse functional equations on the transfer matrix and the 
partition function. The usefulness of the inverse relation is illustrated by an application to 
the three-dimensional king model. 

1. Introduction 

Symmetry relations such as the star-triangle relation and the inverse relation have been 
successfully exploited in different models of two-dimensional statistical physics (Ising 
models (Onsager 1971, Baxter and Enting 1978), vertex models (Baxter 1972, 1973, 
1978, 1980b, Stroganov 1979), the critical Potts model (Baxter et a1 1978), the 
hard-hexagon model (Baxter 1980a)). Schematically, these are relations which one 
imposes on the local statistical weights of the model, thus implying global properties like 
the commutativity of transfer matrices (Onsager 1971, Baxter 1972, 1973, 1978, 
1980b, Baxter etal 1978) or functional equations on the partition function (Stroganov 
1979, Baxter 1980a, b) or on some correlation functions (Baxter and Enting 1978), so 
that one can derive analytical expressions for these functions. These relations have also 
been used in two-dimensional particle physics to determine the S-matrix of particular 
models (Zamolodchikov 1979, Zamolodchikov and Zamolodchikov 1979) or the 
energy spectrum of some field theories (Faddeev et a1 1979, Kulish and Sklyanin 1981). 

It is an attractive challenge to try to extend to higher dimensions the class of the 
so-called exactly soluble models and their corresponding techniques. A generalisation 
of the triangle relation to a tetrahedron relation has been studied by Zamolodchikov 
(1981) in a three-dimensional model of factorised S-matrices and has also been used by 
Bazhanov and Stroganov (1981) to show the commutativity of transfer matrices in d 
dimensions. Unfortunately, the rank and the number of variables of the set of 
equations expressing the d-simplex relation increase very rapidly with the dimension, so 
that the explicit resolution rapidly becomes problematic. In this context, one has either 
to develop methods to uniformise the symmetry relations or to look for relations which 
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are more easily exploitable and which still allow the deduction of global properties or 
functional equations on the partition function or the correlation functions. In this latter 
case, it appears helpful to take advantage of the geometric properties of the symmetry 
relations. 

This article will precisely deal with this last approach. In 9 2 we recall the definitions 
of the concepts which we shall use, in particular the product of statistical weights and the 
transfer matrix. In 8 3, we describe the successive steps which enter the construction of 
a symmetry relation. The tetrahedron relation first illustrates the construction, which 
we then enlarge to include the case of the inverse relation. We use them in 0 4 to derive, 
in a geometric way applying simultaneously to different kinds of spin models, the global 
properties we are interested in, i.e. the commutativity of transfer matrices and the 
inverse functional equations. Finally, in order to show that one can effectively exploit 
three-dimensional relations, we very briefly give an application of the inverse relation 
to the perturbative determination of the partition function of the three-dimensional 
Ising model. 

2. Definitions 

Consider a three-dimensional cubic lattice of size L x M x N. Spins will be localised on 
points, links, faces and volumes indifferently and will take as many values as there are 
different states for the corresponding elementary part of the system. As we simul- 
taneously envisage the different kinds of spin models in which the elementary inter- 
actions occur between all the spins surrounding a point or included in a volume (figure 
l ) ,  we shall denote by interaction star the set of all the points, links, faces, volumes 

Figure 1. Interaction star: each figure represents all the points, links, faces, volumes and the 
corresponding spins which enter an elementary interaction; 1, f ,  v respectively index the six 
links (or faces), the 12 faces (or links) and the eight volumes (or points); w ( [ a l ] ;  [ai]; [av]) is 
the corresponding local statistical weight. 

where the spins entering an elementary interaction are localised. Accordingly, to each 
configuration of the spins localised in an interaction star i, i.e. [a]i, there will correspond 
an interaction energy E([crIi) and in consequence a local statistical weight w ( [ a ] i )  = 
exp(-@E([crIi)) (where p is the inverse of the absolute temperature) (figure 1). This is 
the set of parameters that will characterise the model. The partition function of the 
model is then given by 

z = C exp(-PE({cr))) (1) 
tu} 
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where the summation is over all configurations of all spins and the corresponding energy 
is given by 

where the summation is over all interaction stars. The partition function can also be 
written as 

This expression can be considered as the product of all the local statistical weights, 
provided one defines an elementary product in the following way (figure 2). Consider 
the two local weights w and w’ associated with two neighbouring interaction stars i 
and i f :  

(1) glue the two stars identifying the spins on the common points, links, faces, 
volumes ; 

(2) to any configuration of the spins located in this block of stars, associate the 
product of the corresponding values of the local weights; 

(3) take the sum of all the results given by all the different configurations of the spins 
which are located strictly inside the block (those which do not interact with the exterior 
any more). The final result is the statistical weight of the spins located on the boundary 
of the block. This is the desired product W W ‘ ,  

An essential concept which is introduced in soluble models as a simplifying 
intermediate step to compute the partition function is that of transfer matrix. For that 
purpose, one cuts the lattice into similar (d - 1)-dimensional slices (figure 3). One then 
takes the product, in the sense previously defined, of the local weights corresponding to 
all the interaction stars located inside a slice. The result is the statistical weight of the 

Figure 2. Product of two local weights: 

c w(v1, U, vz., v3, v4, u5)w’(v,  v;, vi, U;, U:, U : )  
0 

= (ww’) (v* ,  U ; ,  u 2 ,  v;, v3, U;, U& vi, v5, U ; ) .  
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Figure 3. Transfer matrix: Tb(a, a ’ )  with n = ( .  , . , ai.,  , .i, U ’ =  I . ,  , , a:. , . . I ,  h = 
(. . . , b ,  . . .). 

slice, which is a function which associates a number to each configuration of the spins 
located on the boundary of the slice. Distinguishing between the lower and upper sides 
of the slice and considering each configuration of the spins on one side (a or a’ )  as a basis 
vector for the vector space of states on that side, one can consider the statistical weight 
of the slice as a matrix which sends the vector space of states of the lower side into the 
vector space of states of the upper side (figure 3): 

Tb(a, a’)  with a = (. . . , a , ,  . . .) 
a ’ =  (. . . , a : ,  . . .) 
b = (. . . , b,, . . .) 

i taking L x M values 

and j taking - ( L  + M )  values 

(the spins 011 the perimeter can be considered as additional parameters). This matrix is 
called the transfer matrix. The partition function is then given by the product of N 
similar transfer matrices (figure 4). With the preceding matrix interpretation, this 
corresponds to the operator product, and, with the usual periodic boundary conditions, 
to the trace operation of ordinary matrices. We shall prefer to use the partition function 
per site, i.e. ZIILMN, which we shall denote for simplicity by 2 in the following. Hence 

14 N 1ILMN Z = [ T r ( T  )I , 
leading in the thermodynamic limit to 

Z 

where A is the largest eigenvalue of the transfer matrix T. 

T - 

T 

I 

I 

T 

T 

T 

Figure 4. Partition function. 



MOCK: (1) separate tne interaction stars, (L) rearrange tnem, (5 )  glue tnem t)aclc togetner 
in this new arrangement. This new arrangement must be chosen in such a way as to 
preserve the boundary of the block (the block boundary is a set of points, links, faces 
and volumes with definite neighbourhood relations and all this must remain 
unchanged). Let us illustrate this by the tetrahedron transformation and its dual image 
(in the geometric sense (Wegner 1971)): four interaction stars (four vertices or four 
parallelepipeds, respectively) are glued together to build a tetrahedron with its neigh- 
bourhood or a rhombic dodecahedron, respectively (figure 5 ) .  One obtains the second 
arrangement either by moving any of the four planes of the tetrahedron through the 

05 

Figure 5. Decomposition of a tetrahedron (of a rhombic dodecahedron). 
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opposite vertex or by taking the symmetric image of the partitioned rhombic dodeca- 
hedron relatively to its centre (figure 6). These two arrangements build two blocks 
which both correspond to a tetrahedron (either upside up or upside down) with its 
neighbourhood or respectively to a rhombic dodecahedron with an inner star (which is 
either upside up or upside down). From one arrangement to the other, the boundary of 
the block does not change: this can easily be checked for the neighbourhood relations of 
the 12 links, 24 faces and 14 volumes surrounding the tetrahedron as well as for the 14 
points, 24 links and 12 faces of the rhombic dodecahedron. The only change is in the 
inside, the tetrahedron itself or the inner star. Each of the two arrangements represents 
the gluing of the same four different interaction stars: to recognise the same star from 
one arrangement to the other, one can either follow the intersections of the planes as 
they move or take the symmetric image relatively to the centre of the rhombic 
dodecahedron. Let us now describe the symmetry relation which is involved in the 
preceding transformation. The two arrangements give two ways of gluing the inter- 
action stars, hence two different blocks with the same boundary. As the two blocks have 

si B a 

r, 
Figure 6.  Rearrangement of the tetrahedron (of the rhombic dodecahedron). 



Symmetry relations in exactly soluble models 1315 

the same boundary, their statistical weights will be functions defined on the same set and 
thus will be of the same form. But, as the local weights of the stars are different, the 
statistical weights of the blocks will a priori be different, i.e. there will exist configura- 
tions of the spins for which they are a priori different. Now, we shall impose that the 
statistical weights of the two blocks be indeed equal, for any configuration of the 
boundary spins, and this will be the symmetry relation. Let us make explicit this 
relation in detail, considering, for simplicity, the case of a model with volume spins only 
(the general case is derived in the same way). Associate a spin with each volume in or 
around the tetrahedron, figures 5 and 6, summing up the conventions: c the central spin, 
si ( i  = 1, . . . , 4 )  the four spins behind a vertex, ai ( i  = 1 ,  . . . ,6)  the six spins behind a 
link and f i  (i = 1, . . . ,4) the four spins behind a face. The spin dependence of the 
different interaction stars and of their corresponding local weights (A, B, C, D) is 
indicated by figures 5 ,  6 and 7 for each of the two arrangements. Equating the two 
respective products gives the equation expressed by figure 7, that is the tetrahedron 
relation 

Figure 7. Tetrahedron relation. 

One can make the following observations on this set of equations. The variables are the 
values of the local weights for each configuration of the spins (exp(-PE([aIi))) and 
constitute four groups (A([v] ) ,  B([a]),  C([v ] ) ,  D([a] ) ) .  As each interaction star 
depends on eight spins, each spin taking n different values, each group contains n8 
variables. Since the equality holds for any value of the 14 boundary spins, the 
tetrahedron relation is expressed by a set of nI4 homogeneous algebraic equations in 
the 4n8 variables, linear in each variable separately, but of overall degree four. Such a 
system is overdetermined and constraints must be imposed on the variables of each 
local weight (A, B, C, 0) to allow for a solution (these constraints come from the 
elimination of the other groups of variables and lead to algebraic subvarieties). Clearly, 
the large number of variables and equations makes the explicit resolution of the 
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tetrahedron relation and the corresponding parametrisation of the local weights 
difficult. Let us remark that the symmetry relations corresponding to the boundary 
preserving transformation of any block of interaction stars are obtained in the same way 
(for instance, one can envisage any kind of zonohedron (see Coxeter 1973) with its 
central symmetry). 

Consider, next, a more general type of local transformation where the number of 
interaction stars is not conserved. Instead of rearranging a block of stars, we shall try to 
insert such a block into a lattice. Consider for instance the block of two interaction stars 
which one obtains either by joining two vertices at three lines or by joining two 
parallelepipeds along three faces (figure 8). This block can also be seen as the result 

~ 

Figure 8. Inversion block. 

0, 

of the double intersection of a surface with two planes, or as its dual image. In order to 
insert such a block into the lattice, one first needs to make a hole, that is, to duplicate 
some points, links, faces, volumes (and of course the corresponding spins) and to pull 
these elements apart, so that one can introduce the block into the available space (figure 
9). This hole will have no effect on the lattice, if it is associated with a statistical weight 
which is equal to zero when any two duplicates of a spin are different and equal to a 
constant when all duplicates are equal (this is a kind of identity operator). The insertion 
of the block is the transformation which replaces the hole by the block. This trans- 
formation will be a symmetry if one imposes the equality of the two statistical weights, 
that is, if the statistical weight of the block (the product of the local weights) is either 
zero or a constant, according to whether any two spins which otherwise would identify 
are different, or whether all such pairs of spins are effectively equal. Thus, the inserted 
interaction stars with their local weights can be considered as the inverse of each other 
and the symmetry relation which is involved by the previous transformation is called the 
inverse relation. Let us now give the inverse relation in detail, reconsidering for 
simplicity a model with volume spins only. The spin conventions are summed up by 
figure 8: c the central spin, si (i = 1,2) the spins behind a vertex, ai (i = 1,2 ,3)  behind a 
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Figure 9. Insertion of the inversion block. 

link, f i  ( i  = 1,2,3) behind a face. The spin dependence of the local weights is given by 
figure 10 which also expresses the inverse relation: 

A(sl, a39 al, a29 fl, fi, f3, c)A’(c,  fl, f37f2, a39 a2, al, si) = A&s,* (7) 
C 

Let us examine this set of equations in more detail. The variables are again the different 
values of the local weights and constitute two groups (A, A’) of n8 variables, with an 
additional variable A. The equality must hold for any values of the spins on the 
boundary and thus provides n8 equations. For a given weight A, it allows us to 
determine, through the resolution of a linear system, another local weight A’, which is 
its inverse. In practical cases, a priori constraints are imposed on the local weights 
(symmetries, normalisation, exclusions, etc) and the counting is different, but the 
resolution of the inverse relation remains simpler than that of the tetrahedron relation. 
The inverse relation only imposes that the a priori constraints be compatible with the 

4 
A 

Figure 10. Inverse relation. 



1318 M TJaekel and JMMaillard 

existence of an inverse satisfying the same constraints (the normalisation factor A may 
thus be determined by the local weight A ) .  Furthermore, one can check the existence of 
the inverse relation on two-dimensional Ising models (non-planar or with field), on 
d-dimensional Potts models, percolation models, etc. 

4. Commuting transfer matrices-inverse functional equations 

After constructing the local symmetry relations, we shall apply them to derive global 
properties for the model. Let us first recall how to visualise both of these trans- 
formations: for the tetrahedron relation, four planes intersect three at a time and then 
one of them moves through the intersection of the other three (figures 5 and 6); for the 
inverse relation, one surface is locally parallel to the intersection of two planes and is 
then pushed through this intersection, cutting it twice (figures 8 and 9). Let us make the 
following remark: if one considers, instead of a regular cubic lattice, a non-regular 
lattice made of arbitrary surfaces, restricted to behave like planes at large distances, 
then the previous transformations generate the deformations of any surface, while 
keeping all the relative asymptotic positions fixed. Then, if one can associate local 
statistical weights at all the intersections, in such a way that the tetrahedron and inverse 
relations are satisfied everywhere on the lattice, the previous transformations will leave 
the partition function unchanged. This will thus constitute a generalisation of the Z 
invariance (Baxter 1972, 1973, 1978, Zamolodchikov 1981), where the planes are 
allowed not only to move but also to deform themselves. 

Coming back to a regular lattice, we shall now deduce the commutativity of transfer 
matrices from the tetrahedron relation. Take the product of two transfer matrices, one 
with all its local weights equal to a given weight A, and the other with all its weights 
equal to another weight B (figure 11). First modify this product in the following way: 
make the two slices which build the two transfer matrices intersect along one half of 
their perimeter, or more precisely multiply the product of the two transfer matrices by a 
set of identical weights C all along one side of the perimeter and by a set of other 
identical weights D along an adjacent side (figure 12). Suppose now that the four 
different local weights A,  B, C, D introduced so far (one for each transfer matrix, one 
for each side) satisfy the tetrahedron relation. One can begin to make a tetrahedron 
transformation at the corner where these four weights touch one another. The result is 
two-fold (figure 13(a)): on the one hand, the two transfer matrices have been 
exchanged at this corner; on the other hand, two other blocks of four weights satisfying 
the tetrahedron relation have been created. One can then repeat the transformation 
and have it propagate along the sides of the perimeter (figure 13(b, c, d ) ) .  At the end, 
one remarks that, while interchanging the two transfer matrices along two lines on the 
edge, one has also recovered the initial situation, with a corner of four weights satisfying 

Figure 11. Product of two transfer matrices 
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I I  I I I 

Figure 12. Crossed product of two transfer matrices: direct, dual and projected images. 

the tetrahedron relation (figure 13(d)). The previous transformations can be repeated, 
line after line, until one finally has the following situation: the slices of the two transfer 
matrices are completely interchanged and the modification on the perimeter has 
moved, unchanged, to the opposite side (figure 13(e, f)). Recalling the matrix inter- 
pretation, one sees that the product of two transfer matrices taken in a given order has 
been transformed into the product of the same matrices, but taken in the opposite 
order, and simultaneously modified by a matrix product on the perimeter spins 
corresponding to a conjugation: 

SCvD(b, 6'; C, Cf)T$,"T:,bp,* = c Tf~,c,,,T$c,S"D(C", Cfn;  b", b"') (8) 
c,cr c".c'" 

or 

S"D(b, b'; C, Cf)T$~,T:,c,. [ S C * D ( C f ' ,  C f f f ;  b", b'")]-' = Tf,,bw*T&,. (9) 
c,c' 

C",C"' 

Introduce the periodic transfer matrix, that is the transfer matrix one obtains by 
imposing periodic boundary conditions: 

? = diagb, TrbiTbebi (10) 
where diagbc Trbi means that opposite spins (both external 6,  and internal bi) have been 
identified, and that the sum over all configurations of internal spins bi has been taken. 
Identifying opposite spins in equalities (9) and summing over all configurations of the 
internal spins bi and the external spins be common to both transfer matrices, one obtains 
the commutativity of the periodic transfer matrices: 

(11) ? A T B -  B A - ?  7 .  

(Let us note that a parametrisation of the symmetry relation will provide families of 



1320 M TJaekel and JMMaillard 

I I  I I l 

le)  
I I 1 I I  

I f )  

Figure 13. Sequence of tetrahedron transformations leading to the commuted product. 

models satisfying the symmetry relation and thus having commuting periodic transfer 
matrices; that is, if U is a parameter varying inside the family 

[ T ( ~ ) Y  7(21)1= 0 for any U, v. (12) 

T(U) = TjU' (13) 

Developing around a point (U = 0 for instance), 

i 

will give an infinite set of operators in involution: 

[Ti, Tj] = 0 for any i, j.) 

Let us now deduce the similar global properties for the inverse relation. For that 
purpose, we shall follow quite faithfully the preceding sequence of transformations. 
Consider the product of two transfer matrices, each one built out of the same local 
weights, either A or A', these two weights satisfying the inverse relation. Contract all 
pairs of lines or, in the dual image, all pairs of faces along two sides of the perimeter, 
identifying and summing over the corresponding spins (figure 14). One can make the 



Symmetry relations in exactly soluble models 1321 

Figure 14. Pinched product of two transfer matrices: direct and dual images. 

inverse transformation at the corresponding corner (figure 15(a)).  The result is again 
two-fold: an identity operator at the corner and two contractions on the sides (figure 
15(b)).  The inverse transformation can then be applied along the two sides (figure 
15(c, d,  e ) )  and then again at the corner (figure l S ( f ) )  and so on (figure 15(g)). At the 
end, this gives identity operators all over the slices of the transfer matrices (figure 
15(h)). Considering the initial contraction as an additional product on the perimeter 
spins, one obtains the inverse functional equation for transfer matrices: 

T ~ T ~ '  = (A)I  (15) 

To illustrate the type of constraints this relation imposes on the model, let us consider 
the case of a one-parameter family. After proper normalisations 

T ( u ) T ( - ~ )  = n. (17) 

Developing around a point ( U  = 0) gives an infinite set of operator relations which look 
very similar to those of a set of operators in involution ({ , } is the usual anticom- 
mutator): 

Tg = I, [To, Til= 0, {To, T21= T:, [To, T31= [TI ,  7'21, 

{To, T4}+ TZ={Ti, 7'31, [To, 7'51  = [Ti,  T41+ [T3, T21, (18) 

. . . .  
Recalling that, in the thermodynamic limit, the partition function per site is given by the 
largest eigenvalue of the periodic transfer matrix, the inverse relation on the transfer 
matrix will heuristically provide the similar functional equation on the partition 
function per site: 

Z(A)Z[I(A)I  = N A )  (19) 

(where A is the set of parameters representing a model, I ( A )  the set representing the 
inverse model and A(A)  the normalising factor). In fact, the derivation of this 
functional equation is not straightforward. (For a precise discussion of this derivation 
see Jaekel and Maillard (1981).) First the limit of an infinite lattice must allow us to 
neglect the effects on the perimeter spins induced by the contractions and to replace the 
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- +  i t s 7  
I I I I I I 

- s  Tt TI- 1- 

(g) (h l  

Figure 15. Sequence of inverse transformations leading to the identity operator. 

transfer matrix T in equation (15) by the periodic transfer matrix T, giving 

7 A T r ( A ) = ~ L M ( ~ ) ~ .  (20) 
Then this equality holds between the largest eigenvalue of r A  and the smallest 
eigenvalue of T " ~ ) ,  and therefore will not relate the partition function calculated at A to 
the partition function calculated at I(A).  It seems natural to consider that equality (19) 
holds between the partition function at A and an analytical continuation at I ( A ) .  This 
has been checked to be true in one or two dimensions and constitutes a conjecture in d 
dimensions. Our discussion below also provides a first step towards its verification for 
the three-dimensional Ising model. 

To conclude this section, we give a brief account of an application of the inverse 
relation to the three-dimensional Ising model. Let A = (K1, KZ, K3) be the standard 
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interaction constants in the three different directions of the cubic lattice. The inverse 
relation then gives 

I(K17 Kz, K3) = (Ki +$r, -Kz, -K3), (21 )  

Z ( K 1 ,  K2,  K3)Z(K1 +$r, -K2, -K3) = 2i sinh 2K1. (22)  

U = tanh K1, U = tanh K2,  w = tanh K3, (23) 

A = 2i sinh 2K1 

and for the inverse functional equation on the partition function per site 

Introducing the more convenient parameters 

the inverse relation becomes 

Z ( u ,  0, w ) Z ( l / u ,  -U, -w)=4iu/ ( l -u2) .  

One also has the obvious symmetry between the three directions 

Z(U, 0, w )  = Z[du7 0 7  w)l (S) 
where U is any permutation of the three variables, U, v,  w.  After extracting a 
normalising factor 

Z(u,  v7 w)=2[ (1-u2) (1-u2) (1-w2) ] -1 ’2z(u ,  v, w )  

In Z(U, U, w )  = (U’+ w2)f1(u) + v2w2f2(u) + ( v 4  + w4)f3(u) + . . . 

(24) 

and taking the log, we shall use the partially resummed high-temperature expansion 
(Baxter 1980b, Jaekel and Maillard 1981) 

(25 )  

where fl, fi and f 3  are rational functions of U ,  resulting from the partial resummation. 
One can see that fl, f3 are equal to the corresponding two-dimensional functions and 
that f2 has only ( 1   type singularities: 

a +buZ+cu4+du6 U 2  1 2  1 4  
9 2 3 ( 1 - i - U  +TU ). f 3 h )  = - 

( 1  - u2)3 ( 1 - U  1 
U 2  

f lh)  =l--uz‘ fib) = 

(26) 

(1) 

(SI 
From these equations and from the knowledge of the coefficient of the u2u2w2 term 
which is 16, one can immediately determine fz: 

The inverse (I) and symmetry (S) relations on z are 

In z(u, v, w)+ln Z ( I / U ,  -v, - w )  =In(l - u 2 ) ( 1  - w2) ,  

In z(u, U, w )  = In Z [ U ( U ,  U, w ) ] .  

f z ( u ) =  ( 1  +13u2+13u4+u6)/(1-u2)3. (27) 
We have also obtained this result without using (I) and (S) by determining all the 
corresponding diagrams, which are shown in figure 16. Note that the standard 
high-temperature expansion can be recovered from the preceding result, up to the 
eighth order: 

In z(u,  U, w ) =  u 2 v 2 + u 2 w 2 + v 2 w 2 + 1 6 u 2 v 2 w 2 + u 4 u 2 + u 4 ~ 2 + u 4 u 2 +  w4u2 

+ v w + w4v + 5 8( U 4v w + v 4u w + w4u ’U ’) 

+3(u4u4+u4w4+v4w4)+ u6vZ+ u6w2 

+v6u2+w6u2+v6w2+w6v2+.  . . 
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~ + 2 1 4  2 
= 4 (U )(--*) 4+$..c; 1 4  1-U 

Figure 16. Diagrams of order 0 2 w 2  in the three-dimensional Ising model. 

(in agreement with the isotropic case (Sykes et a1 1972)). These procedures can be 
repeated to any order of the expansion and can then be interpreted in two ways: either 
as a verification of the inverse relation on the partition function, through the diagram- 
matic expansion of figure 16 (and thus the inverse relation can be used as a control test 
of the exactness of the result) or as a determination of the partition function through the 
relations (I) and (S) and a little more information on a particular type of diagram. A 
more extensive discussion of this problem is now under study. 

5. Conclusion 

In this article, we have tried to give a common construction of symmetry relations and 
also a common derivation of global properties for the transfer matrix or the partition 
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function. In particular, just as for the two-dimensional hard-hexagon model (Baxter 
1980a), these properties can be derived for genuine spin models, without using a 
particular matrix formalism. Note that the inverse relation is satisfied by the whole 
transfer matrix, and thus provides the inverse functional equation not only for the 
largest eigenvalue but also for any eigenvalue. One can thus look for inverse functional 
equations not only on the partition function but also on the interface energy (as can be 
verified for the two-dimensional Ising model) or on some correlation lengths (Watson 
1977). However, in this case, one loses the additional spatial symmetries which were 
satisfied by the partition function. 

We have also indicated in the three-dimensional Ising case, how one can exploit the 
constraints which the inverse relation imposes on the partition function. In this 
approach, no connection was made with any star-triangle or tetrahedron relation, but 
instead, the inverse relation was combined with a particular diagrammatic expansion of 
the partition function. Such a procedure also applies to other models like ddimen- 
sional Potts models (Jaekel and Maillard 1981) and two-dimensional non-planar (or 
with field) Ising models. 
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