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We try to elucidate the role played by different symmetries in simple models of statistical
mechanics. Starting with obvious symmetries for the partition function and combining
them with duality relations we obtain a set of constraints on the possible algebraic varieties
relevant for the integrable manifolds and the phase diagram of the lattice model. When
imposing in addition the inversion relation special polynomials are obtained, which are
close and sometimes identical to the set of equations defining the parameter subspace of the
integrable models. Our procedure is detailed on the g-state chiral Potts models on a square
lattice, in particular for ¢ = 3 and 4.

1. Introduction

The symmetries of lattice models of statistical mechanics obviously play an
important role not only on the singular behaviour near phase transitions
(universality) but also on the phase diagram. However, when trying to turn this
general statement into a working tool one enters into a domain of great confusion
and subtle complexities. Does one consider the symmetries in the parameter
space of the model or symmetries in the real space? What are the additional
hidden symmetries behind the “miracles” happening at integrability?' Is it
possible for instance that the Z-invariance of the integrable models® might lead to
a lattice deformation theory including conformal invariance?® One often
encounters simplistic views associating self-duality transformations® with the
possibility of an exact solution, not mentioning here the large number of authors
who tried to mimic the Kaufman-Onsager algebra developed for the Ising model.’
Since the symmetries related to integrability remain quite mysterious, it 1S not
surprising that finding any new solution of the Yang-Baxter® (or star-triangle)
equations or their three-dimensional equivalent, the tetrahedron equations,’
requires a great deal of intuition.
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In this paper we consider a model which is simple enough for a rather
pedagogical presentation of our ideas but complex enough to avoid accidental
degeneracy between symmetries of different character. We start from simple
symmetries, like the symmetries of the lattice and obvious symmetries of the
partition function and successively add more complicated but still linear
symmetries like the duality relations. Then we introduce the (non-linear)
inversion relations.® This leads to a rather large symmetry group acting on the
parameter space of the model. We will see that the algebraic varieties invariant
under this symmetry group are close to the integrability varieties.

The model we study here is the so-called g-state chiral Potts model on the
square lattice and our goal will be to determine all algebraic varieties (homogen-
eous polynomials of given order) defined on the parameter space of the model
(Boltzmann weights) and invariant (or covariant) under the symmetry transfor-
mations mentioned above.

There are several reasons for the study of this model. First the model has a very
rich phase diagram containing different commensurate phases or floating
incommensurate phases.’ Secondly, the duality transformation D is no longer an
involution but a transformation of order four (D* = 1). Third, special cases of
this model, (notably the standard scalar Potts model,'” the symmetric Ashkin-
Teller model,® the clock model'' etc.) have been extensively studied analytically
and numerically. Finally, more recently Au-Yang et al.'*"* have discovered
integrable subspaces of this model which are the first examples of exactly solvable
models for which the correct parameterization involves curves of genus > 1.'
The symmetries of the model act on these curves of genus > 1.

At this point it is important to mention that our analysis is not restricted in any
way to this particular model, nor to two-dimensional models or to models with
only nearest neighbour interactions or even to spin models.

2. The Anisotropic g-State Chiral Potts Model

The partition function of the anisotropic g-state chiral Potts model on the
square lattice is the following;

z=> [[we—=a)[] #(e.:—ap. (1)

foyt (i) (k)

The first (second) product runs over all horizontally (vertically) oriented bonds
edges of the square lattice. Instead of the usual parameterization in terms of the
coupling constants we use throughout the paper the equivalent set of correspond-
ing Boltzmann weights {w(i), #(i)}{=;. The spins o, = 0, 1,..., g— 1 are g-state
variables (o; € Z,) and the Boltzmann weights depend on the difference between
nearest neighbor spins, not only on its absolute value, as in usual symmetric Z,
models. The set of weights w(0), w(1), .., w(g— 1) forms a set of g homogenous
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variables: the transformation w(i) — Aw(i) results on a trivial factor 1™
multiplying the partition function (N, is the number of bonds). In what follows we
will always omit multiplicative factors of this kind. The correspondence between
these homogeneous variables and the coupling constants of the Hamiltonian is
simple. For the three-state chiral Potts model, for example, w(n) =
[exp —fJcos(2m/3(n+ A))], where J is the nearest neighbor constant, A the
chirality of the model and f = 1/kT.

Spin-group symmetries

The partition function Zas well as other quantities have some simple “gauge™
symmetries related to the fact that the o, variables can be seen as dummy
variables. For example, the transformation 0;— 0;,0;—0; — | leads to the
following cyclic permutation on the w(i)’s:

C:w(0) = w(l) = w(2) = ... = w(g— 1) — w(0). (2)

The same transformation can be performed independently on the W(i) variables.
Similarly, the “spin-reversal” symmetry generates an involution (R> = 1)

R: w(i) < w(g—i) (3)

(by definition w(g) = w(0)). C is a g-cycle and generates a symmetry group Z,.
When the group Z, has subgroups several other subcycles and involutions exist.
To make things clear, consider the ¢ = 15 case. One has two subgroups, Z; and
Z;. One can associate 1o the spin o; € Z,5 two spins 7; and p, belonging to Z; and
Z;, respectively, so that with obvious notations, g, = 37, + 5p;. The spin
difference is preserved in the new representation since

0;—0; = 3(t;— 1)+ 5(p—py)-

A new cycle and a new spin reversal can be defined for the variables p; and
similarly, for the variables 7,. The two new cycles are just C® and C°. The two new
spin reversal symmetries R, and R, commute (also with R) and satisfy relations
such as (CR,)*® = (CR,)* = (R,C)" = land R = R, R,.

In general one thus associate to Z, the group generated by C and R as well as R,
corresponding to all representations of Z, in terms of its subgroups. The
symmetry group generated by C and R only is the dihedral group (C? = R? =
(CRY = 1). For ¢ = 4, for instance, this leads to consider the group of the
symmetry of the square, C, generated by the transposition w(0) == w(2) and the
4-cycle w(0) = w(l) — w(2) = w(3) — w(0). When ¢ is a prime number there is
no subgroup and one only associates to Z, the dihedral group generated by C and
R.
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Duality transformation

Another, less obvious symmetry of the chiral ¢g-state Potts model is the duality
transformation':

q—1
D:w(m) = > o™w(m), n=0,1,...,g—1 (4)

m=0

where w is the gth root of unity, @w? = 1. The normalization factor is omitted
here, since we disregard all multiplicative factors of the partition function. The
duality transformation can be obtained using several methods. A geometric
approach' consists of introducing the link variables 4; = o;,— g;, which must
satisfy the constraints £; 4; = 0 (mod ¢) over each elementary plaquette. These
constraints are expressed introducing dummy variables y, associated with each
plaquette and the Z, representation of the Kronecker delta (Poisson’s formula).
Summing over the (now unconstrained) 4; variables leads to the dual representa-
tion of the partition function in terms of the yx, variables.
Let us remark that D? corresponds to the transformation

D w(0) — qw(0), w(i) —qw(g—i). (5)

It is clear that D? is an involution identical to R. D is a transformation of order
four: D* = 1. This is different from the usual duality for the standard scalar Potts
and Ising model, which is an involution. Hence, a more appropriate name for Eq.
(4) would be “quadrality” relation rather than duality. Although D is not a simple
permutation on w(i)’s it is still a linear transformation of the homogeneous
parameters w(i).

The inversion relation

In addition to the linear symmetries discussed so far, there is also a less obvious
one, the inversion symmetry, which is nonlinear.'® Consider the one-dimensional
transfer matrix M, whose elements are M, ; = w(a—f). The inverse of this
matrix is also a cyclic matrix, M’. Let us associate to each w(i) the corresponding
coefficient of the matrix M":

Lw(i) = wili) = M.y oo (6)

We also introduce transformation J, which associates to each of the parameters
w(i) its mverse

Jw(i) =

-, 7
wi(i) ()
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A straightforward generalization of the arguments detailed in Ref. 8 leads to an
exact functional equation on the symmetrized ¢~ X g~ row-to-row transfer
matrices of the chiral Potts model, valid for any finite size L of the system:

Ti(w(0), ..., wlg— 1) w(0),...,w(g—1)) X
(8)

1 1 _ e _
TL(W(O)...,w(q_l);w;(()),...,w,(q 1)) E.

where E stands for the g“ X ¢* unit matrix. The inversion relation amounts there-
fore to applying the transformations / and J to the homogeneous parameters
representing the Boltzmann weights associated with the horizontal and vertical
bonds, respectively. Although nonlinear transformations, /I and J are both
involutions. Equation (8) leads to a functional equation on the partition function
and its analytical continuation which is also valid outside the parameter subspace
corresponding to exact solvability.® The inversion relation is actually a (non-
trivial) symmetry of the model in the whole parameter space and one also expects
the critical manifolds of the model to be invariant under such transformations.
When ¢ = 3, for instance, the inversion relation reads

I w(i) = w(i) — w(j) w(k) 9

with (i, j, k) = (1, 2, 3). The determinant occurring when computing the inverse of
M is a multiplicative factor and is again omitted. Similarly, J reads:

T: w(i) = w(j)wik). (10)

In the g-state anisotropic model one has also in the thermodynamic limit the
obvious symmetry of exchanging vertical and horizontal weights:

S: w(i) < (). (11)

Combining together the inversion relation and the symmetry S one gets in general
an infinite set of birational transformations. Let us denote by 7 the inversion
transformation (/, J) in the anisotropic space. Since, #and S are involutions any
element of this automorphy group can be written as

S(7S), a=0,landneZ. (12)
Note that the transformations /. J, and D are not independent. Since the

transformation D “diagonalizes™ the cyclic transfer matrix M and since D* = |
one has the following relation:
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I =DID > = B, (13)
Let us also note that
JD* = BT, (14)

When restricting ourselves to one of the two anisotropic (horizontal or vertical)
set of homogeneous parameters, say { w(/)}, we have only to consider a sequence
of the two birational transformations J and D: any element of that group can be
written as

DYJD)Y, a«a=0,1,2,3andneZ, (15)

so that the group is a semi-direct product of Z, and Z. This group is a quite nontri-
vial symmetry group of the parameter space. One has also to add the “trivial”
permutation symmetries discussed above: J commutes with all these permutation
symmetries, while D commutes with R (= D?). Introducing in addition the
transformation

A w(i) = w' w(i)

one obtains in addition the relations DA = CD, DC = A™'D, DC™' = AD,
AJ = JA™'. From these relations it is simple to see that the symmetry group is the
semi-direct product of some simple finite group with Z. For almost all two-
dimensional models (g-state vertex models or Interactions a Round a Face = IRF
models®) one finds basically the same structure: semi-direct product of some
simple finite group (dihedral group, . . .) with Z. Z may be replaced by Z X Z or
Z* in anisotropic triangular models or in staggered models.'” The situation is
drastically different in three dimensions, where one cannot exclude subgroups as
large as free groups, generated by transformations without any relations between
them.

3. General Considerations and Integrable Varieties of the Chiral Potts Model

One naturally expects this large symmetry group to have important conse-
quences on the phase diagram of the model. For instance, one would expect the
critical manifolds, the zeros of the partition function and especially the integrable
varieties (which are algebraic varieties) to be invariant under the action of this
group of symmetry. In what follows, we will restrict ourselves to the study of the
action of these symmetries on algebraic varieties (homogeneous polynomials of
given order).

One can prove that the integrable manifolds must be invariant under (a
subgroup of) the automorphy group: this is basically due to compatibility
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relations between the Yang-Baxter (or tetrahedron) equations and the auto-
morphy group®'®. On the other hand, the integrable manifolds are always
algebraic varieties, a consequence of writing the commutation of transfer
matrices as a set of algebraic equations on the coefficients of the transfer matrix
- (and hence in the Boltzmann weights w(i) and w(i))'®:

(16)

where P, and Q, are homogeneous polynomials with integer coefficients of the
same degree in the Boltzmann weights w(i) and (/). K, are eventually not
independent constants — see the example of the hard hexagon model.'?

Hence, a model which is exactly solvable on a given parameter subspace
corresponds to a quite pathological situation from the point of view of algebraic
geometry: one has an algebraic variety with a large (in general finite) set of
birational automorphisms that leave the variety invariant. Actually, an algebraic
variety has usually only a very small set of automorphisms. Hence, one can
distinguish three different situations:

1. The group is very large, it contains a free subgroup and there is certainly no
algebraic variety with such a huge set of automorphisms (except the whole
parameter space).

2. The group is infinite but “nice” (semi-direct product of a finite group and the
Z or Z* group, like in our previous examples). There are only very few
algebraic varieties having such set of automorphisms: one can even try to
classify them as in Ref. 4. When the variety is an algebraic curve, it has to be of
genus 0 or 1.

3. The group is finite. The event of a finite group is a rare “accident” that
happens only on very restricted subspaces of the parameter space.

In general one gets immediately the generators of this automorphy group for
g-state vertex or IRF models even in higher dimensions. We therefore suggest
that it is possible to develop a systematic way of searching for exactly solvable
- models by looking at this automorphy group, which in general is easy to obtain
and not too difficult to analyze. Compared with the amount of work and intuition
one needs to find new solutions of the Yang-Baxter equations or using the Bethe
Ansatz, this method seems advantageous. In addition, this approach clarifies how
the symmetries related to integrability emerge from the natural symmetries of the
system.

At this point, let us come back to the chiral g-state Potts model and recall some
of the results obtained recently by Au-Yang et al.'>'* Baxter ez al. give a solution
of the star-triangle relation for this model in terms of two sets of “rapidities™, the
two sets of four homogeneous variables (a,, by, ¢,, d,) and (a,, b, ¢,, d,). In fact,
these variables occur only in the following particular combinations:
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Xy = by, X% =a,c,, x3=bd, x,=ca,

(17)
Xs Sidyty, X = daay, =Gby X=he,.

These homogeneous variables are related to the original homogeneous variables
{w(i)} and {W(i)} through the overdetermined linear system:

w(n)x; —w(n)w" ' x; —wn+ Dy +wn+ o™ 'x, =0

(18)
W(n)xs = W(n)o" ' x, — B(a+ 1)x; + Wn+ o™ x =0
forevery n=1,...,¢g— 1, " = I. Since the x/’s are products of the rapidities
Egs. (17) reduce to only two equations:
Xy Xy = Xg%; and Xk = XX (19)

However, since both w(i) and #(/) — and thus the x;'s are homogenous variables,
Eq. (19) can be further reduced to

X 1 .764 XgXq

: (20)
Xa X3 XsXg

When the overdetermined system (18) has non-trivial solutions (the x; variables
exist and are not zero) then the automorphy group is a finite group, since the
duality and the inversion read in terms of the x,’s:

DXy =0, X, K
(21)

J:.xl"‘X3, X=Xz, Xg =Xy, X5

The group generated by D and J is in general an infinite discrete group for g > 3.
However, the genus > 1 solution of the star-triangle relation of Au Yang er al."?
corresponds to a restricted parameter subspace where the group actually
degenerates into a finite group. In this model exact solvability requires two
different kind of conditions: the first set of (g — 3) conditions corresponds to the
compatibility conditions for the linear system (18) also implying that the group
degenerates into a finite group; the second set of constraints consists of only one
condition specific to integrability Eq. (20). In addition, the first set of conditions
do factorize according to the horizontal and vertical Boltzmann weights:

E.(w(),...,w(g—1)) =0
(22)
F(w(0),....%g—1)) =0
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where @ = 1, 2, ..., ¢—3 but the second condition, which is specific for
integrability, mixes the horizontal and vertical Boltzmann weights:

D(w(0),..., w(g— 1)) D(HO),..., H(g—1)) = 1. (23)

A simple examination of the linear system (18) shows that the set of determi-
nantal conditions (22) is invariant under the g-cycle C. However, it is important
to note that each F, is not invariant (or covariant) under C.

One remarks that Egs. (22) are very special cases of Eq. (16): the polynomials F,
are functions of the horizontal (vertical) Boltzmann factors. In this particular
case conditions (22) are compatibility conditions for the overdetermined system
(18). Actually the F,’s are polynomials of order four in only five variables even for
g = 5. For the three-state chiral Potts model there is no determinantal condition

(Eq. (22)) and Eq. (23) reads
P(w(0), w(1),w(2)) Q((0), w(1), W(2))
+ Q(w(0), w(1), w(2)) P(w(0),w(1), #(2)) =0 (24)

with

2 2
P(w(0),w(1),w(2)) =( w3(£)) w(O)w(1)w(2) = 3w (0)w(1)w*(2) (25)
=0

r

and

s

2
Q(w(0),w(1),w(2)) = ( w3(i)) w(0)w(1)w(2)
=0

+ 3w (0)wi (1) wi(2) —2 Z w3 )W () (26)

which follows from @ = x, x,/(x2x5/w),
XXy = Q+3(w—w)P (27)
and

X3 X3

=Q0—3(w—w)P. (28)
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In the limit of the three-state scalar Potts model (w(1) = w(2), (1) = W(2)),
Eq. (24) reduces to the known ferromagnetic®' and antiferromagnetic® criticality
conditions:

w(0)#w(0) + w(0)W(1) + w(1)H(0) = 0,
(29)
w(0)w(0) — w(0) (1) — w(1) B(0) = 2.

In the isotropic limit Eq. (24) becomes
Q(w(0), w(l), w(2)) = 0
while
P(w(0), w(1), w(2)) = 0

corresponds to trivializations of the model: w(i) = O orw(i) = 0,i = O or 1 or 2.
For g = 4 the compatibility condition for the linear system (18), Eq. (22) is

[w*(0) + w*(2)Iw(1)w(3) +[w?(3) + w? (1) ]w(0) w(2)
— 2w (0)w?(2) — 2w (1)w?(3) = 0. (30)

This condition is invariant under the duality relation, the transformation J, and
hence the whole set of transformations (16), which is finite here.

4. Algebraic Varieties Compatible with the Symmetry Group

We now consider how to systematically analyze the homogeneous polynomial
expressions compatible with the previously described group of symmetries. The
surviving polynomials form a rather restricted set of possible candidates for
writing the integrable algebraic varieties and analyzing the model in the whole
parameter space. From the previous examples it is clear that we must distinguish
between two different kinds of equations: the ones which factorize separately on
the horizontal and vertical Boltzmann weights (Eq. (22)) and the ones mixing
these weights (i.e. Eg. (23)). According to the integrable solution of the chiral
g-state Potts model'*'** there are ¢— 3 factorized conditions and only one
mixing condition. In what follows we will concentrate therefore on the first, larger
set of conditions. This enable us to consider only one set of Boltzmann weights
(say, the horizontal one). Because of the “factorization™ property of this first set
of equations, however, it is important to note that these conditions are valid also
[for the isotropic model.

We consider the set of homogeneous polynomials of order N with integer
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coefficients in the variables w(0), . .., w(g— 1). At first sight one is interested in
the subset of polynomials which transform into themselves (up to a multiplica-
tive factor) under all the generators of the symmetry group. However, as already
mentioned before for the cycle C, it may happen that the set of polynomials is
eventually compatible with the generators of this symmetry group while this is
not true for the individual members of the set.

The symmetry transformations can be divided in three different sets: the
“trivial” symmetries permuting the homogeneous variables w(i) (C,R = D* R)),
the linear transformation D, and finally the nonlinear involutions J or . It is a
straightforward but tedious matter to find the homogenous polynomials co-
variant under a set of linear transformations. This a typical problem of Invariant
Theory (see Refs. 23, 24). We give here a “pedestrian” discussion of the problem.

Spin-group and duality symmetry

Each linear transformation can be separately diagonalized. They reduce to a
simple multiplicative factor (eigenvalue) when acting on the new variables
provided by the eigenvectors. Since all transformations are of finite order (2, 4, g,
divisors of g, etc.) the eigenvalues are thus roots of unity. For R, which acts as
w(i) == w(g— i), the new variables are w(i) = w(g—i) with eigenvalues =+ 1,
respectively. For C the new variables are the Fourier series defined as

q—1
W) = > w™w(p) (31)
p=0

with the corresponding factor @ ": CW(n) = @ "W(n).
Now consider 2 monomial expression of order NV in the “good™ variables w(i)
such as

g—1
[T w@e (32)

=0

where the o;'s are non-negative integers obeying the following sum rules:
g1
Z &= N
=0

(33)
q—1
z io; = —o (mod g)
=0

¢ = @’ is the “quantum number” associated with the action of C on polynomials
of order N. The general linear combination of monomials (32) associated with the
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same factor ¢ forms the most general polynomial of order N with quantum
number ¢. Among these linear combinations we have now to find the ones which
have also covariant properties with respect to the other symmetry generators.
When considering the spin reversal symmetry R, one has to rewrite the previous
polynomial expression in terms of the good variables for R, namely w(i) =
w(g—i). Among all monomial expressions in these new variables some will
transform with a quantum number r = + 1, while others with r = — 1. The poly-
nomial with quantum number ¢ thus splits into two polynomials: one with
quantum number ¢ and r = + | and another one with quantum number ¢ and r =
— 1. Similarly, for D one has a set of linearly independent variables to be obtained
from

X,.q = Ja(Qw(i)+ Q*w(g—i)) + (i) + Q%(g—1)) (34)

where Q* = 1. The set of eigenvectors (34) is redundant: from the 44 vectors only
g correspond to independent, non-zero eigenvectors. The corresponding multipli-
cative factor (up to \/E) is Q. lterating successively the procedure of rewriting the
polynomial in well suited variables for different symmetries, one can construct
polynomials characterized by a set of quantum numbers corresponding to some
(eventually all) transformations associated with the symmetries of the model.

Of course, it may happen that for some sequences of quantum numbers there
are no polynomials of order N which transform accordingly.

Although we know the set of transformations of finite order defining the
symmetry group, the eventual relations between these transformations must also
be known. Such relations also apply to the corresponding quantum numbers. For
example, since CRCR = | the respective quantum numbers ¢ and r obey
(er) = 1.

As an example, consider the symmetries (C, R, D) for the g = 3 model and fix
the quantum numbers ¢ = 1 and r = 1. The well suited variables for D are

t = [3w(0)+W(0)
u= —+3w(0)+ w(0)
and
v = w(l)—w(2)

with the respective factors +1, — 1, i. No polynomials can be found for ¥ = 1, 2.
C and R generate the group of permutation for the three homogeneous variables
w(i). We therefore introduce the symmetric polynomials
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2
E=> wl)
=0
and

IT = w(O)w(l)w(2).

Denoting by £, IT the dual transforms of X and II, respectively, one finds for
N = 3 two “good™ polynomials, namely

(1 ++/3)2 + 611 (35)

with duality quantum numbers d = =+ 1. The polynomial with quantum number
+1 is a linear combination of #*, fu% wv? with the coefficients \/5 —1, \/3 +3,
6(\/3 + 1). The polynomial with quantum number — 1 is a linear combination of
u3, tu, tw* with coefficients /3 + 1, \/3 — 3, 6(+/3 — 1). Although these polyno-
mials do not have integer coefficients like the ones occurring in the integrability
condition (16), they are nonetheless algebraically equivalent to integer coefficient
polynomials of order six.

For N = 4, 5 there are no good polynomials, while for N = 6 one obtains four

polynomials. Three out of four are obtained as products of the good polynomials
of order N = 3:

35 = 3(Z?+6Z0)
il = X1—3[F =P (36)
IIZ—I1Z = 6IIZ+ 1811>— X2,
Their duality guantum numbers are d = 1, 1, —1, respectively.
Note that the obviously good polynomial of order six IT1Z + I1Z is a linear com-
bination of ITIT and XX since
— 181 + £ — 3(IE + I1Z) = 0. (37)

Other good polynomials of order six deduced from order three ones are linear
combinations of the above three polynomials (36). One has, for example

SI1+ 27201 = X+ 18I111,

$242732= 1235 — 1081111,
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. | -
[1P+273%*= E:>:):— 121111,

3M1—27%00 = 3(IIE—T11X),
$2-275% = 13(IIE—1IZ),
=27 = —(ME—IIZ%).

There is also a fourth polynomial that cannot be deduced from the previous
three: let us introduce the sixth order symmetric polynomial:

A= wiHw().

2]

Obviously,

A—27A
is a well suited polynomial with duality quantum number 4 = — 1. Remarkably
enough,

. IR -
A+27A =§EE—3HI"J

and therefore it is not a new independent polynomial. One remarks that the
polynomial O of Eq. (26) is (up to a factor) equal to —2(A — 27A) — 6 (TI1Z — [1X).
Among these four polynomials, Q and P = IIT already occur in the exact
solvability conditions (24) and in the “‘integrability’ variables x;, x,, X3, X3 of
Eas. (27), (28).%

Inversion relation symmerries

Next, we introduce in this scheme the effect of the inversion relation, which is a
non-linear transformation leading to even more severe restrictions. Because [ and
J (Egs. (6), (7)) are related by duality, we can restict ourselves to the study of
homogeneous polynomials which transform properly under J:

1
Pyu(w(0), ..., w(g—1)) = Py ( . 1)) On(w(0), ..., w(g—1))

(38)

w(0) T wlg
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where Qy is a polynomial. Since J is an involution Q) satisfies

1 1 .
QN(W(O) a ’F—I)) O(w(0), ..., wig—1)) = L. (39)

A polynomial has no poles, so the only possible form of Q, is
g—1
ov =[] w*).
=0

Let us first consider the case when Py is also covariant under C: the only solu-
tion is fy = f, = ... = 2N/q. For simplicity, consider a monomial expression

g—1
My =[] w'@)
=0

where the intergers y, satisfy
g—1
%=0 and > y=N. (40)
=0

The transformation of M, under J leads to consider

g—1

H wh(i) = ﬁ w My (41)

=0 =0
with the associated quantum numbers j = =+1. Since the 7;’S are integers
constrained to satisfy
2N
O=p=— (42)
q

and since 2N/q — y, must be also an integer, it follows that 2V has to be divisible
by g. Therefore, for g odd, the order of a polynomial covariant under C can be
only N=gk k= 1,2,... . Forgeven, the order is restricted to N = g/2k. This is
an interesting result: for odd g chiral Potts models there are no C-covariant
polynomials of order N less than g.

One can try to evaluate the number of sequences . . . . , V,—1 satisfying (40) and
(42) and also the ratio of this number over the number of sequences satisfying
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(40) but not (42). This ratio is a good measure showing how much the inversion
relation restricts the number of good polynomials. Introducing K = N/q this ratio
behaves for large g as

2N\¢
(1+?) /Clsq~ (R(K))*

where

(1 +2K)( K )"“
R(K) =

K K+1

R(1) = 3/4, R(2) = 20/27, R(3) = 189/256 ... R(K) < 3/4, . .. R(=) = 2/e =
0.7357. Therefore the ratio decreases exponentially with 4.

For large values of ¢ the comptability between the inversion relation and the
spin group symmetry (covariance under C) becomes increasingly difficult to
satisfy, especially since the degree of the polynomials grows with g. Recalling the
example of Au-Yang et al."” one sees that a way out is to have polynomials of only
a restricted set of variables. This breaks the spin group symmetry (covariance
under C) for each individual polynomial but the whole set restores this
symmetry. This allows for polynomials of a smaller degree to appear because now
insteadof By = ... = f,_, = 2N/gfor Qyone hasonly i, + ... + B,—1 = 2N.The

“dimers™ Eq. (41) are replaced by

g—1 4-1
[ weey = [Tw* iy 0=y=g. (43)

=0 =0

Now N can be almost arbitrary. To illustrate this point consider one of the
determinantal compatibility conditions (22) for ¢= 5:

(w(0)w(3) — w(DHw(2)) (w(1)w(4) — w)wB3))(1 + w+ w?)

—=(wO)w(2) ~ w (1)) (W(2) w(4) — w?(3)) (1 + w+ w)(] + w)

— (w(0)w(4)— w(D)w(3))(w(1)w(3)— w3(2))(1 + ) (44)
where w? = 1. This is a fourth order polynomial in only five variables (the para-
meter space has more than five homogeneous variables). Equation (38) is
satisfied with Oy depending on only five homogeneous variables:

Oy = w(O)w(1)w(2)w?(3) w(4).

The “dimers™ of Eq. (41) form a good basis from the point of view of the inver-
sion relation J and they will strongly “prune” the space of all homogeneous
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polynomials previously discussed. In fact, the non-linear nature of J is very
restrictive (Eq. (42)) and hardly fits with constraints coming from the linear
transformations. With this last step we add to the string of gunantum numbers also
the quantum number j. At the same time the number of incompatible seis of
quantum numbers is again increased.

After this lengthy but straightforward procedure there is still one step left,
namely the search for anisotropic polynomials which are compatible with the
anisotropic duality and inversion relations ¢ = (I, J) and with the exchange
symmetry S between horizontal and vertical variables (for example Egs. (23),
(24)). It is worth recalling that the situation may be very subtle: these polynomials
may break the spin-group symmetry (the covariance under C. for instance), which
could be restored for the ser of anisotropic polynomials or even in a more indirect
way via the factorized equations (22).

5. Results for Small g

When performing the previous analysis for small values of g one obtains the
following results:

g = 2 (Ising model).

One actually recovers the well-known modulus of the elliptic functions
ocecurring in the model

W(0)w( 1) T(0) (1)
4w(0)yw(1)w(0)W(1)

k = sinh 2K, sinh 2K, = (45)

Note that the modulus is not invariant but covariant under duality — it becomes
its inverse

g=3.

The first homogeneous polynomials occur for N = 6 and they are given in the
previous section. Note that the polynomial Q (26) is not covariant by J. The first
anisotropic algebraic variety occurs at order twelve, It is interesting to recall here
the expressions of the variables x, (i = 1, .. .. 4), well suited for the star-triangle
relation (w?® = 1)

x; = wH0)w(2)+ ww(2)w(l)+ w’w (1)w(0).
X3 = wHD)w(0) + ow?(2)w(l)+ o’ w(0)w(2),

(46)
—x; = wH(1)w(2)+ ow (0)w(1) + w*w (2)w(0),

—x, = W (2)w(0) + ow(0)w(l) + @’ wi(1)w(2).
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These variables are well suited for transformations J and D but are actually not
invariant under C or R. From the point of view of exact solvability the
transformations J and D are more important to take into account than the trivial
symmetries C or R

qg=4.

The first homogeneous polynomials are of order four. The set of polynomials
well suited for (J, C, R = D? R,) are the following

wA(0)w?(2) £ w(1)w?(3),

(w*(0) = w () w()w(3) = (w?(1) £ w*(3)) w(0) w(2),
(47)
Zow (W),

W (O w()wk).

The last two polynomials are not only invariant under the square group C,, but
under the whole group of permutation of the four homogeneous parameters w(i).
When one imposes invariance under the duality relation the last two polynomials
are ruled out and one only gets the polynomial corresponding to the compatibility
relation Eq. (30):

w(1)w(3)w(1)Ww(3) + w(1)w(3)w(0)w(2)
T w(O)w2)w(1)w(3) — w(0)w(2) w(0)W(2). (48)

Recall that this polynomial is actually covariant under J and hence under
transformations (17).

6. Conclusions

In this paper we have proposed a step-by-step systematic approach for the
search of integrable algebraic varieties in statistical mechanics of lattice models.
The idea is to construct a set of homogeneous polynomials covariant with respect
to all simple and less simple symmetries of the parameter space, including lattice
symmetries, spin group symmetries, duality transformations and finally, the
inversion relation. It is always possible to look carefully at some precise
examples. However, as illustrated here, a large number of bifurcations may occur;
the polynomials may be invariant under some transformations and covariant
under others, or, as explained, they can break individually some spin group
symmetry which is recovered later as a compatibility property of the set of such




Step-by-Step Approach toIntegrability 1557

polynomials. Such a large number of possible scenarios make the hope that such a
scheme can be automatized and eventually implemented on a symbolic manipu-
lating language very dim.

We want to stress the point that the analysis leading to this set of “good” poly-
nomials introduces a set of appropriate variables not only on special manifolds
(the varieties of exact solvability) but in the whole parameter space of the model.
For example, a renormalization group scheme must be compatible with all the
symmetries of the model and in particular with the automorphy group considered
in this paper. We expect that the homogeneous polynomials discussed above
could also be useful in the context of renormalization transformations. In the
two-dimensional anisotropic Ising model, for example, the parameterization of
the solution is given in terms of an elliptic function of modulus

k = sinh 2 K, sinh 2K,.

A given value of k corresponds to a family of diagonal commuting transfer
matrices®® and the corresponding elliptic curve is preserved under the action of
the automorphy group described here. The Landen transformation of elliptic
functions

gt

1+k

can be identified with a generator of the renormalization group: it is an infinite
order transformation with the critical-variety k = 1 as fixed point. In general, we
would expect any transformation of the renormalization group to commute with
all birational transformations corresponding to the symmetry group of the model.
If one assumes the renormalization group transformation to be an algebraic
transformation, we face the following mathematical problem, similar to the one
discussed here: find a new algebraic transformation that commutes with a given
set of birational transformations.

In this paper we treated in some detail the chiral g-state Potts model. However,
the general framework of our paper has a much larger domain of validity and can
be applied to multispin interaction models, to higher dimensions, as well as to
Boltzmann weights which are not even functions of the difference between pairs
of spins. Recalling the general “interaction models” of I. G. Biggs”” where the
spins might belong to any finite group and the Boltzmann weight corresponding
to interactions between nearest neighbors g; and g; is a representation of the
group (w(g;, ;) = w(o; 0;)), one can show that a sizeable part of the previous
analysis is still valid. The duality transformation is now associated with the
characters of the group. When the group is solvable, duality can be again a simple
transformation.”® Some general arguments on the necessary conditions for the
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existence of the star-triangle transformation® seem to exclude the case of
nonsolvable groups (like, for example, the 75 alternated group of five elements).

We recall that the automorphy group is a group of birational transformations
generated from a finite set of rational involutions (and some transformations of
higher order). Hence, it is not surprising that in the case of finite groups the set of
automorphisms identifies with some group of reflections (for example, the finite
group of automorphisms of K3 surfaces coincide with finite groups which have
certain types of embeddings into Mathieu groups™’).

From the point of view of statistical mechanics we have seen that it is
straightforward to obtain the generators of this set of birational transformations.
However, their relations are not a priori known.

We stress again that when the group is finite the parameter space is severely
reduced, while for infinite groups it is the set of possible algebraic varieties which
is strongly restricted.'® Even in the “bad” case when the symmetry group contains
a free group, the orbits of a point in the parameter space cannot be compared io
Julia sets, since all the symmetry transformations have here a unique inverse:
there exists a drastic difference between models of statistical mechanics on
lattices for which a transfer matrix formalism can be introduced (like assumed in
this paper) and the ones for which it cannot (non-Euclidean lattices, self similar
lattices, etc.)

Even in simple statistical mechanical problems one hits some pure mathemati-
cal problems like dealing with the theory of representation of finite groups or
recognizing that two different sets of equations define the same algebraic variety.
Statistical mechanics allows for a simple way of having a glimpse at some
beautiful mathematical structures: automorphisms of algebraic varieties,
Coxeter-like groups® defined by a set of finite order generators and their
relations.
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