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Abstract

The serie analysis of the low temperature expansion of the checkerboard q state Potts modei
in 2 magnetic field initiated in two previous papers is continued. On particular algebraic varieties of
the parameter space (corresponding or generalizing the so called disorder solutions) the
checkerboard Potts model and its Bethe approximation are indistinguishable as far as one is
concemed with the partition function and its first order derivatives. The difference between the two
models occurs for higher order derivatives. In particular one gives the exact expression of the (low
temperature expansion of) the susceptibility of the checkerboard Ising model in zero magnetic field
on one of these varieties.

infroduction.

A great number of models in siatistical mechanics on lattces possess some réemarkable
varieties, called disorder varieties where the pardtion function of the model can easily be evaluated
and is given by a very simple algebraic expression ( Stephenson 1970, Enting 1977 and 1980,
Jaekel and Maillard 1985 and for reviews on disorder solutions see Rujan 1984 and 1985). These
varieties lie in the physical domain of the parameter space. In many case, not only the partitien
function but also an infinite number of correlation functions and even other quantities like the
susceptibility of the Ising model { Dhar and Maillard 1985) can be computed on these disorder
varieties. In the particular case of the q state Potts mode! in zero magnetic field, these disorder
solutions map by duality on other solutions, the "order” solutions. They do lie in the non physical
domain of the parameter space.

In two previous papers ( Hansel and Maillard 1987,1988, hereafter paper 2 and 1), it has
been shown that the low temperature expansions of the partition function, but also the 3
magnetization and nearest neighbor correlation functions, of the checkerboard Potts model in a
magnetic field are equal to the expansion of some very simple expressions when one restricts the
parameter space of the model to an "order" variety which is the generalization of the previous one
without magnetic field. The simplification, that occurs on these varieties, are due to some
dimensional reduction (through an effective decoupling of the spins). It has also been shown in
Georges et al (1987) that, at least for the tiangular Ising model in zero magnetic field, one can
construct a diagrammatic suitable to the study of the vicinity of disorder varieties and the point of
interest is that the coefficients of such a perturbation theory are simple algebraic expressions.

In the following, one will study in a rather systematic way, the information that can be
deduced from the existence of "order" and disorder varieties on the checkerboard Potts model on
one hand, when considered together with some other exact results which are known to hold by
themselves on another hand. It is shown here that the results of papers 1 and 2 lead to a new exact
result for the low temperature expansion of the susceptibility of the checkerboard Ising model in
zero magnetic field. This will be checked, up to order twelve, on the low lemperature expansion of
the checkerboard Potts model given in puper 1. One will also show how to get the expressions of
some derivatives of order 1, 2, 3 and even 4 of the free energy when restricted to the disorder or
“order” varieties. All these results give more insight on the kind of non trivial information one can
get in the vicinity of these remarkable varieties.

The low temperature expansion of the isotropic square Ising model in a magnetic field can be
seen as the sum of two expressions: the low temperature expansion of the model on a Bethe lattice
with the same coordination number, and a correction corresponding to take into account the loops
on the square lattice (Bessis et al 1975). The partition function of the model on a Bethe lattice can be
computed using a trick first explained by Domb (Domb 1960) (see also the recent paper of
Dasgupta and Pandit about the mean field theory on the Potts model (Dasgupta and Pandit 1987)).
One generalizes these ideas in the case of the checkerboard Potts model in a magnetic field and
study the low temperature expansion of the model as a correction to the exactly known expansion of
the Bethe (mean field) approximation. One will show that the Bethe approximation of the



sheckerboard Potts model also simplifies on the “erder” variety of this very model. In
orevious correction does vanish on this + ariety. This allows 1o impose directly some constraints o
the correciion o the Bethe approximation,

The checkerboard Polis madel in a magnetic fleld,

apers 1, Z. The pamidon function per site Z of tire a-siate

Letus maﬂ recell the results of

checkerboard scalar Potts model in a ruagnetic field is given by:
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a, b, ¢, d denote the exponential of the four nearest neighber coupling constants of the modal (see
figure 1) and h is the exponential of the magnetic field. The spins belong Z,. The low-
temperature normalized partition function per site A is defined by:

Z(a, b,c,d, k) =(abecdh?)2 A, b,c, d, h) {2)
The low temperature parameters of the model will be denoted A, B, €, D and z (A=1/a,

B=I/b, C=1/c, D=1/d, z=1/h). The cxpansion of In A was given up to twelve order in paper 1.
Let usrecall its first terms:

InA (A, B, C, D, 2) = (g-1) ABCDz + (g-1)(A28%D% A?B?C% A2C2D% B2CPDHY: .

(3}
The results of paper 2 are the following: restricted to the algebraic variety
D+ ABCz +(g-2) ABCDz = Gy
one has:
In Aysy =122 In (1 +(g-1) ABCDz) (5)
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M denotes the magnerization of the model. Eguations (5) (6) (7) and (8) have o be seen as exact
formal constraints on the low iemperanre expansion of the partition function per site.

Bethe approximation for the chieckerbeard Poits modsl.
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model in a magnetic field (papers 1 and 2).These constraints can be used to get, or to check,
the low temperature expansion order by order. This has been sketched in paper 1
éira_:m these results with other exact resuits available on the model. Actually a large number of
coefficients of this anisotrepic expansion { but not all of them) can be obtained this way. At arder
twelve one remarks, among the number of ceefficients, that many of them correspond to diagrams
on a Bethe lattice with coordination numiber four and four coupling constants {see figure 2).
Therefore it is tempting to combine these two different kinds of information on the coefficients of
the expansion.

The contribution corresponding to this Bethe lattice can be compuied in the following way:
consider the veriex of fig 3 with four coupling constants, a magnetic field H on the centra! spin and
extemnal spins embedded in different effective magnetic fields Hy, Hy, He, Hp. The central and
external spins are fixed in order that their mean values are equal.

This seif consistent condition leads to the equations:
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(and three other similar equations where A, B and C are singled ovt)
Za,s Zha Ze, Zg denote the fugacities associated to the four different effective magnetic fields. Let

D +(g-2)Dzyt 2y

=TT @DDg ®

The exact expression of the magnetizaiien of the model reads :
iy

M= (10)

From the four algebraic equations (%) ene can (implicitly) pet z,, 25, 70 and zp in term of A,
E.C. D, and 2. When z=0, z,, Zp, zc and =g ore choten to vanish 2lso end forz # Q0 ene must
selzct the comresponding root by continutiy.



The expansion of the (low temperature) normalized free energy 1n Apewe (A, B, C, D, ) can be
obtained integrating the expansion of (10) with respect to z and reads:

InAg . (A, B, C, D, z) = (g-1) ABCDz + (g-1)(A’B*D*+ A’B*C?+ AZCPD%+ BXCDA2
+(g-1)(q-2)(AB’C’D*+A’BC' D%+ ATBCD %+ ATBCID) 2 + ...... (11)

This expansion has been performed, up to order twelve, using the formal calculation
program REDUCE (Hearn 1984) . One has actually verified that (most) of the coefficients with
chromatic polynomial (g-1)%(q-2)® (a, b integers) of the checkerboard Potts medel given in paper 1
are identical to the coefficients of the Bethe approximation (11). The correction to the Bethe
approximation gives:

A(A.B,C\D,z) = InA(A, B, C, D, z) - InA (A.B.C,D,z) =

Bethe
(4-1)AZB2C2D224+(q-1)(z5/2-24)(A2B2C2D4 + -..) + (g-1)(g-2)(AZB2C3D3 + )
+2(g-1)(AB3C3D3 + ... )25 + .. (12)

The diagrams, and their contributions associated to this correction, are given in appendix II They
have to be compared to the one of the checkerboard Pouts model given in paper 1.

It has been verified that the logarithm of (10) is equal, up to order twelve,

1/2 In(1 + (q-1) ABCDz) when (3) is satisfied.

Moreover the magnetization and nearest neighbor correlation functions can also be calculated
exactly on the Bethe lattice and therefore the following partial derivatives of A(A, B, C, D, z) are
known exactly when (3) is satisfied: dA/9A, dA/OB, dA/ID, 0A/0z,0A/3q. It has been verified up
to order eleven or twelve that A and its first derivatives vanish when restricted o (3);

Yo =505 0= g =3 = 5lw =0 (13)

This means that A is divisible by 82 where 8 is equal to D + ABCz + (g - 2) ABCDz. Indeed on
the expansion of the correction A obtained up to order twelve in A, B, C, D, one has verified that :

A=(q-1)A2B2C2z4 52 { 1+ (z2/2 -1)(A2 + B2+ C2) + (¢-2)(AB + ...)
- (q-2)(A2B + ...) + (q-2)(q-3)ABC +(g-1+z4)(A2B2 + ..)

- (@-2)(q-2+z+22)(A2BC+...) + ... } + O(8?)
(14)

Of course the variable D does not play a special role and one can argue that the correction
Ads in fact divisible by n2 where 1 is equal to the product o B y8 with
@ = A+BCDz+ (g-2)ABCDz, B=B+ACDz+ (q-2)ABCDz andy =C + ABDz+(q- 2)
ABCDz.
On the expansion of the correction A, given up to order twelve in A, B, C. D, one verifies
acmally that A is equal to ;

A=(q-1)n2zt m 1+ (z22-D)(e? +..) + (g-2)(eP +...) + (Q-2)(g-3)afy + ...)
(@ 2(@P + ) F o |+ O (15)

These ideas can be straightforwardly generalized to higher dimensional models. For instance,
it has been remarked that equations (5) to (8) can be extended to a cubic Potts model with six
coupling constants in a magnetic field (paper 2).

Equations (13) mean that, as far as one is concerned with the partition function per site, the
magnetization and nearest neighbor correlation functions restricted to (3), there is no difference
between the q state Potts model in a magnetic field on a Bethe lattice with four coupling constants
and on the checkerboard lattice. These results can be understood in a heuristic way using the
decimation procedure detailed in Jackel and Maillard (1985a) transposed on the Bethe lattice : this
procedure needs appropriate boundary conditions but one knows that, in the thermodynamic limit,
the number of spins at the boundary is no longer negligeable compared to the total number of spins
of the lattice. A priori these boundary conditions cannot be neglected as for the checkerboard
lattice: for that reason one has verified directly on the equations (given in appendix I} which define
the partition function per site for the Bethe lattice, that equations (5) and (&) are indeed satisfied.

Exact result for the susceptibility of the checkerboard Ising model.

Let us now concentrate on the expansion of the magnetization of the checkerboard Potts
model. One has the surprising result that the magnetization is exactly equal to 1 on the algebraic
variety (3).

Differentiating the magnetization along this variety, (A, B, C, being fixed), one gets:

d

M dz
dM=0=w=dD-%

= (16)

where ) denotes the susceptibility of the model. From equation (3) one deduces dD/dz, and
therefore % is obtained straightforwardly from the derivative of the magnetization dM/3D. This
quantity can be calculated in the special case of the Ising model without magnetic field restricted o
the variety D + ABC = 0. Indeed, the spontaneous magnetization of the checkerboard model is
known exactly (Syozi and Naya 1960 a,b) for every values of A, B, C, D and is equal to (1-k2)!/8



where k2 reads:
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From (3) and (16) one gets immediately a1 exact expression for the low-igmperature expansion of
.the susceptibility of the checkerboard Ising model in zero magnetic ficld when reswicted to the
algebraic variety D+ ABC=Q:

XD+ ABC =0, z=1) = M ABC (19)

This exact result has been checked up to order twelve in A, B, and in C on the low
temperature expansion of paper 1, using the formal calculation program REDUCE (Hearn 1584) .

As the algebraic variety D + ABC =0 dees not lie in the physical domain of the parameter
space, (19) must be considered as a formal constraint on the low temperature expansion of the
model. The susceptibility on (3)isa simple rational expression that should be compared with the
€xact expression of Dhar and Maillard (1985) for the susceptibility of the checkerboard Ising model
in zero magnetic field restricied to the disorder variety, D*+A*B*(C=(,

Generalization to higher derivatives

This exact result for  is only a consequence of equation (8) (when condition (3) is satisfied)
and of the fact that the spontancous magnetization of the Ising model is known exactly. This
approach can be generalized in a straightforward way.

One can take into account the knowledge of
not only the magnetization, but also the partition function and the nearest neighbor correlation
functions whern reswicted to (3) (equations (5) (6) (7) (8)). These quantities are also known, for
g = 2 (Ising model), when the magnetic field of the model is eguai to zero for any values of the
coupling constants. The calculations are sketched in appendix III where it is shown that the
following derivatives can be caiculated in zero magnetic field when D + ABC =0 and q=2:

8 InAl il InAl wm_ Al mm_ Al Ci inAl
g "2 ggaH " Me o L g2 55 M g

The derivaiives of first order are equal for the checkerboard lauice and the Bethe
lattice (equations (13)). In particular, this is the case for dlnA/8q (D + ABC =0, H=0, q=2).
More generally, one can show that one has for any value of g and of the magnetic field that satisfy
equation (3) :

3 13 (q-1) D?
3B A =75 g (20)

For higher derivatives the situation is different (even if they can be calculated exactly for both
models). This stress the difference and the similarity between the partition function of the we
models. For instance equation (16) is the same for the checkerboard Ising mode! and the Ising
model on a Bethe lattice with four coupling constants : however the exact expressions for the
susceptibility of both models
will be different because their spontancous magnetization (and therefore 3M/3D
restricted to D + ABC = 0, z = 1) are different . From the equations given in appendix III, one can
understand that the partial derivatives of higher orders that can be calculated exactly, are simple
(but different) rational expressions for D + ABC =0, z = 1. One can verify that these partial
derivatives simplify drastically for the two models restricted (o the variety D+ ABC=0,q=2,
z= 1. However, up to the order available from our expansion, no difference has been noticed. For
instance the following derivatives restricted to (3), have the same expansion on the Bethe and
checkerboard lattice up to order eleven:

WM
579A P A @) = -(@-1AZBICIZ + (g-1)(q-2)ABACHz* (21a)
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5795 1 A gy = ABCz + (@-3/2)A2B2C222 + 2(q-1)ATBACIZ3 -(q-1)(A4B4C2 + .24 -

(g-D(g-2)(A4B4C3 +...3z4

(21b})
and up to order twelve:
mu
531 A g = ABBICES- (g-5/2)A*B4Cz4 (21¢)
q

The fact that there is no difference at these orders is reminiscent of a remark made by Baxter (p306
(1982)) about the formal similarity of the magnetization for both models (equations 11.8.29 and
11.8.36). It is a consequence of the equations of appendix III and of the fact that A is equal to zero
up to order seven.

It should be remarked that these ideas can be applied mutatis mutandis on the disorder (high
temperature) solution of the checkerboard Ising model in a magnetic field (Jackel and Maillard
1985b ). It is shown in appendix III that the susceptibility, but also the fourth derivative of the
partition function with respect to the magnetic field, can even be calculated .

These ideas can also be applied on the disorder solution of the checkerboard Potts model ina
magnetic field (Jackel and Maillard 1985b). However the disorder variety is defined by two
equations in the parameter space and the constraints one gets that way on the partition function are
weaker.

Conclusion

The formal constraints of paper 1 and 2 on the low-temperature expansion of the
checkerboard Potts model in a magnetic field, are revisited in this paper. It is shown that the
equations satisfied by the low-temperature expansion of the partition function and its derjvatives of
order one with respect to the coupling constants, the number of states, or the magnetic field are also
satisfied by the partition function of the Potts model on the Bethe lattice with four coupling
constants. This enables to shed some light on the analysis of the coefficients of this low-
temperature expansions: many of these coefficients correspond to this Bethe approximation (of
course, the relevant part of the expansion, for the critical properties for instance, is "hidden" in the
correction to the Bethe approximation). The first order derivatives give soft constraints on the
expansion that do not discriminate between the checkerboard and Bethe lattice. It is stressed that the
higher order derivatives on the "order” and disorder varieties take partially into account these
relevant differences: for instance, using the exact low temperature expansion of the spontaneous
magnetization of the checkerboard Ising model, one can get the exact expression of the
susceptibility of this model without magnetic field on the variety D + ABC = 0. The difference

10

between the susceptibilities on the "order” and disorder varieties should be traced back to the
calculation performed by Wu et al. {1976). Indeed, these authors noted that the high and low
temnperature susceptibilities are given in the scaling limit by two different kind of expansions.
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Appendix ¥

Let us introduce the variables 04, dg §.0p, defined by

A+(g-2)Az AtT,
§ =T HGDAzZ, fand similar definitions for g0 and §p)
with these new variables equations (2) read:
H_?J -D
2, 9 o= ~ (22)

I+(q-2)D - (g-1) 9, D

{and similar equations for ¢, ¢y, ¢) . The variable t previously introduced is equal to zddp0cdn.
It is a straightforward matter to see the vanishing condition of $p, corresponds te condition (3) of
this paper (and of course to the vanishing condition of variable t): equations (Z2) become
respectively ¢, = A, ¢y =B, . =Cand conditicn {2}, that is to say

D +zABC + (g-2)ABCDz = 0. This situation corresponds to the following values of the fugacities:

-D

Z,=1p ﬂNﬂ“O In= M.I.Am:NvU 23)

On these equations one understands that condition (3), which corresponds to a trivizlization of the
fow-temperature expansion of the checkerboard Potts model in a magnetic field, also comesponds to
a trivialization of the partition function per site on the Bethe lattice. One gets that the magnetization
of the model (equation (10)) restricted to (3) is equal to 1. One can even get the (low temperature)
normalized partition function (see for instance equation (4.9.6) of Baxter 1982):

>ug.s§ = [(1+{g-1)Az, )(14+(g-1)Bzg)(14(q-1)Cz)(14+(a-1)Dzp )12 1 + (g-1)t ]

(24)
= (14+(q-1)Dz) = (14(q- )ABCDz) 2

(@-HD*
1+(g-2)D

These expressions coincide exactly with equations (5) and (8), and justify the heuristic
argument of the decimation procedure on the Bethe lattice.

=(1- i
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Appendix IIT
Let us introduce the following notations :
u=D+ABC, v=2z-1, w=g-2, a=ABC
With these notations, condition (3) reads :
n+c.v-alw+ou.w-alvw +auvw =0 {26)

Let us Taylor-expand F(u, v, w) the partition function of the g-state checkerboard Potts model in a
magnetic field :
Flu, v, w) = F(Q, 0, 0) + uF + vF, + wF,
+ 121 (W2F" 2 + v2F" 2 + wiF" 2 + 2uvF", + 2uwF",,
+2vwEF" o) + ... 20

The Taylor expansion of F, is known exactly on (26). Eliminating v, one gets, order by
order in u and w, the following equations :

2
o
aF, -F,=C, H-NI.u.l
a -1
3
o
Qhu._t + M..._s. = Or.nﬂ —
o -1
2
l+a
F"2 - 20F "y + F\2 = Gy 1= -0 ———
(-a) (28)
4 -2
a2F"2 + 2aF",, + F' 2+ 202 F = Gy, =@ 3
(o-1)
2 o2
o2 F'y + 0B, - 20F, - oF" 2-F" =G 5=- @ =
(a-1)

16

a3F"3 - F"3 - 3a2F" 2, + 3cF"2, =G =-2

e expressions Cj ; are deduced from the expansion of the nght hand term of equation (5).
Similar calculations can be performed for the magnetization and nearest neighbor cormrelation
functions of the model. This amounts to replace F by F and F', respectvely:

2
1+
o F"2-F'y =Dy = 5
(1-a) 29)
-2
UFyy +Flyy=Dyp =- @ 3
(o-1)
2
. o +3
@2 F'" 3+ F'2-20 F"2, =Dy, =-2 @ i
(@-1y

and
aF, -F'y2=E = 0

aF'\2+F =E,=0
. (30)
a F'2,+ F"3-2a F",2=E; ;=0

D;; and E;; are known from the expansion of the right hand terms of equation (6) and (7)
respectively (all the m.ue.mamr as a conseguence of (8)).

One can verify actually on the expressions of Cy;, Dy; and E;; the following relations which are
consequences of (28), (29), (30) :

Cai+E1=aDyy and G +E;;=0aDy, 3D
The partition function and the magnetization of the Potts model are known exactly for zero magnetic

field (z = 1) in the Ising case q = 2. This means that F(u, 0, 0) and F,(u, 0, 0) are known exactly,
that is, that F', F" 2, F" 3, F,, F"y,, F",2, are known. From the previous equations one can
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deduce the expressions of F', F" .2, F",,,. F",, F',2, F",,2, F".3. This means that the second
derivatives with respect to q or H and the third derivatives with respect to H of the partition function
can be calculated exactly.

One remarks that these calculations are not restricted to partial derivatives for g=2,z=1and
D + ABC =0 but can also be performed to gei the same partial derivatives for any point of the
variety (3). The only difference is that the coefficients in front of the partial derivatives in the above

equations will be slightly modified, that expressions G, Dy will also be modified, and thatonly

F,and F', are known exactly. The only exact resuit one gets, is the following :

) 3 12 (g-1)D?  -AZB?C?%?

= - . z (32
3q " Aeneek '@ =5 17 Apewnd) =23 U gD = TABC: !

Similar calculations could have been performed for the disorder selutions of the checkerboard Ising
model in a2 magnetic field. Let us introduce the high-temperature variables ; = th K; , and set:

u=ty+ttyty and v=(z-1)2/2 (33)
The disorder equation reads :
u=o.v + pv? (34)

where a and [ are rational functions of the variables t;.

In this high temperature domain, one has the spin reverse symmetry H— -H. F{u, 0) and
Fy(u, 0) (and thus F',, F",2...) are known exactly and one can also Taylor-expand these functions
and get the exact expression of F'y, (this corresponds to the exact expression of the susceptibility on
the disorder solution without magnetic ficld) but also F",,, F",2. This means that 3%/3H* In A can
be calculated on the disorder solution of the checkerboard Ising model without magnetic field.

18
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Figure capiions.
Figore 1 The checkerboard lattice
Figure 2 The Bethe lattice with four coupling censtants,
Figure 3 Elementary cell of the checkerboard moedel and the four effective fields of the mean

field approximation,
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