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Abstract.
Landen transformation, and more generally modular correspondences, can be

seen to be exact symmetries of some Yang-Baxter integrable lattice models, like
the square Ising model, or the Baxter model. They are solutions of remarkable
Schwarzian equations and have some compositional properties. Most of the known
examples correspond, in an elliptic curves framework, to an automorphy property
of pullbacked 2F1 hypergeometric functions, associated with modular forms. It
is, however, important to underline that these Schwarzian equations go beyond
an elliptic curves, and hypergeometric functions framework. The question of
a modular correspondence interpretation of the solutions of these “Schwarzian”
equations was clearly an open question. This paper tries to shed some light
on this open question. We first shed some light on the very nature of a one-
parameter series solution of the Schwarzian equation. This one-parameter series
is not generically a modular correspondence series, but it actually reduces to an
infinite set of modular correspondence series for an infinite set of (N -th root of
unity) values of the parameter. We also provide an example of two-parameter
series, with a compositional property, solution of a Schwarzian equation. We
finally provide simple pedagogical examples that are very similar to modular
correspondence series, but are far beyond the elliptic curves framework. These
last examples show that the modular correspondence-like series, or the nome-like
series, are not necessarily globally bounded. The results of this paper can be seen
as an incentive to study differentially algebraic series with integer coefficients, in
physics or enumeratice combinatorics.
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1. Introduction: infinite order symmetries.

There is no need to underline the crucial role played by the concept of symmetry
in physics, theoretical physics, mathematical physics. We will not consider here
continuous symmetry groups (Lie groups) but rather discrete symmetries. Examples
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of such discrete symmetries are, for instance, birational transformations [1, 2], which
are known to be (infinite order) discrete symmetries of (Yang-Baxter) integrable
models [3, 4]. Such discrete symmetries can be studied, per se, in a discrete dynamical
perspective‡.

The simplest example of such discrete symmetries corresponds to a (univariate)
transformation x → y(x) preserving some structures†. These structures must be
invariant, or covariant, under the previous transformations x → y(x). The simplest
example of “structure” is certainely just a function. Let us consider a function
Φ(x), let us discard the (too simple) invariance situation, where we have a functional
equation Φ(y(x)) = Φ(x), and let us consider the following “covariance” property
for a function Φ(x)

Φ
(
y(x)

)
= A(x) · Φ(x), (1)

where the “automorphy” cofactor A(x) can be described in terms of the symmetry
transformation y(x). From a mathematical view-point such an “automorphy
property” (1) is reminiscent of the theory of automorphic forms [10, 11, 12, 13]
(which can be generalized to Hilbert modular forms for two, or more, variables),
which generalizes the theory of modular forms [14, 15, 16, 17, 18, 19]. In the case
where y(x) is not only a rational function, but a linear fractional transformation, the
“covariance” property (1) can be illustrated by the Poincaré series [20, 21, 22], and
other Theta-Fuchsian functions or series [13, 23, 24, 25]. From a physics view-point
such an “automorphy property” (1) is reminiscent of the renormalization group theory,
revisited by Wilson [26, 27, 28], seen as a fundamental symmetry in lattice statistical
mechanics or field theory.

In the following we will not restrict the transformation symmetry y(x) to be a
linear fractional transformation: the function y(x) is a series, analytic at x = 0, it
can be a rational function, an algebraic function, a D-finite function, a D-D-finite
function¶, a differentially algebraic function††, ...

To be more specific, let us give a simple, but highly pedagogical, illustration
of a “covariance” property (1), which corresponds to Φ(x) being a selected 2F1

hypergeometric function [30, 31]

2F1

(
[
1

12
,
5

12
], [1], y(x)

)
= A(x) · 2F1

(
[
1

12
,
5

12
], [1], x

)
, (2)

where the “automorphic prefactor” A(x) reads

A(x) = λ ·
( u(x)

u(y(x))
· y′(x)

)1/2

, (3)

and where u(x) is related [30, 31] to the wronskian of the order-two linear
differential operator annihilating Φ(x), namely the 2F1 hypergeometric function

2F1([
1
12 ,

5
12 ], [1], x).

‡ One can recall that the theory of iteration of rational functions was seen, in the pioneering work
of Julia, Fatou and Ritt, as a method for investigating functional equations [5, 6, 7, 8]
† These structures can be linear (or non-linear) differential equations, systems of partial differential
equations [9], functional equations, etc ...
¶ A D-D-finite function is a function solution of a linear differentiable operator with D-finite function
coefficients [29].
††A differentially algebraic function is a function solution of a non-linear differential equation of the
form P (x, y, y′, y′′, · · · y(n)) = 0, where P is a polynomial.
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1.1. Modular forms, correspondences and physics.

The simplest example of a transformation x → y = y(x) occurring in the
“automorphy” relation (2), or occurring as an exact generator of the renormalization
group of the square Ising model, or even of the Baxter model [32], corresponds to the
Landen transformation [32, 33]

k −→ kL =
2
√
k

1 + k
, (4)

or to its compositional inverse, the inverse Landen transformation. As it should, the
critical point of the square Ising model (resp. Baxter model) is a fixed point [32] of
the Landen transformation: k = 1.

Let us introduce the j-invariant♯ of an elliptic curve of modulus k, and its
transform by the Landen transformation (4)

j(k) = 256 · (1− k2 + k4)3

k4 · (1− k2)2
, j(kL) = 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2
, (5)

and let us also introduce the two corresponding Hauptmoduls [32]:

x =
1728

j(k)
, y =

1728

j(kL)
. (6)

These two Hauptmodul variables (6) are related by the modular equation [35, 36, 37,
38, 39, 40]:

1953125 x3y3 − 187500 x2y2 · (x+ y) + 375 xy · (16x2 − 4027xy + 16 y2)

− 64 (x+ y) · (x2 + 1487xy + y2) + 110592xy = 0. (7)

The algebraic function y = y(x), defined from the modular curve (7), is a multivalued
function, but we can, for instance, single out the (algebraic) series expansion††:

y =
1

1728
· x2 +

31

62208
· x3 +

1337

3359232
· x4 +

349115

1088391168
· x5 + · · · (8)

1.2. Schwarzian condition

More generally, the Gauss hypergeometric function 2F1([α, β], [γ], x) is solution of
the second order linear differential operator:

Ω = D2
x + A(x) · Dx + B(x), where: (9)

A(x) =
(α+ β + 1) · x − γ

x · (x − 1)
=

u′(x)

u(x)
, B(x) =

αβ

x · (x − 1)
.

An automorphy relation, like (2) but on 2F1([α, β], [γ], x), amounts to saying that the
second order linear differential operator (9), pullbacked by x → y(x), reduces to the
conjugate of the linear differential operator (9). Let us assume that the pullback y(x)
is an algebraic series like in (8). A straightforward calculation† allows to find relation
(3) giving the cofactor A(x) in terms of the pullback y(x). Eliminating the cofactor
A(x), the identification of these two linear differential operators thus corresponds to

♯ The j-invariant [32, 34] (see also Klein’s modular invariant) regarded as a function of a complex
variable τ (the ratio of periods), is a modular function of weight zero for SL(2, Z).
††This series (8) has a radius of convergence 1.
† Relation (3) for A(x) amounts to imposing [31] that the two order-two linear differential operators
have the same Dx coefficient. If the pullback y(x) is an algebraic series, like in (8), the cofactor
A(x) will be an algebraic function.
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just one (non-linear) condition that can be rewritten (after some algebra ...) in the
following Schwarzian form:

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (10)

where

W (x) = A′(x) +
A(x)2

2
− 2 · B(x), (11)

and where {y(x), x} denotes the Schwarzian derivative [41]:

{y(x), x} =
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)
y′(x)

)2

=
d

dx

(y′′(x)
y′(x)

)
− 1

2
·
(y′′(x)
y′(x)

)2

. (12)

For 2F1

(
[ 1
12 ,

5
12 ], [1], x), the “automorphy” condition (2) yields the Schwarzian

condition (10) with:

W (x) = − 32x2 − 41x+ 36

72 · x2 · (x − 1)2
. (13)

In previous papers [30, 31] we have seen that all the algebraic series (like (8)),
associated with different modular equations (like (7)), are solutions of the same
Schwarzian condition (10) with W (x) given by (13). These modular correspondences
series (8), associated with modular curves, are thus algebraic series. We are going to
revisit these results, with a different normalization of the pullbacks, in a forthcoming
section (2).

1.3. One-parameter solution series of the Schwarzian condition (10)

Trying to generalize the modular equation (7), and its associated algebraic series (8),
let us try to find the series of the form a · x2 + · · · , solutions of the Schwarzian
equation (10) with W (x) given by (13). It is straightforward to find that such series
is, in fact, the following one-parameter series:

y2 = a · x2 +
31 · ax3

36
− a · (5952 a− 9511)

13824
· x4 + · · · (14)

which actually reduces to (8) for a = 1/1728.

Remark 1.1: Generically the series (14) is differentially algebraic series (being
solution of a Schwarzian condition (10), with W (x) given by (13)). For selected values
of the parameter, like a = 1/1728, the series becomes an algebraic series (actually a
correspondence associated with a modular curve). Are there other selected values of
the parameters for which the series becomes an algebraic series ? Are there selected
values of the parameter for which the series (14) becomes a (non algebraic) D-finite
series ? Are there selected values of the parameter for which the series become D-D-
finite† series [42, 43] ?

1.4. The nome and mirror maps

† D-finite functions are solutions of linear differential operators with polynomial coefficients, D-D-
finite series are solutions of linear differential operators with D-finite function coefficients, etc ...
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Let us recall the concept ofmirror map [46, 47, 48, 49, 50, 51, 52] relating the reciprocal
of the j-function and the nome, with the well-known series with integer coefficients† :

X̃(q) = q − 744 q2 + 356652 q3 − 140361152 q4 + 49336682190 q5

− 16114625669088 q6 + 4999042477430456 q7 + · · · (15)

and the nome which is its compositional inverse:

Q̃(x) = x + 744x2 + 750420x3 + 872769632x4 + 1102652742882x5

+ 1470561136292880x6 + 2037518752496883080x7 + · · · (16)

The series (15) corresponds to x being the reciprocal of the j-function: 1/j . As a
consequence of the (modular form) hypergeometric identities (2) (see (6)), we need x
to be identified with the Hauptmodul 1728/j.

The nome series (16) and the mirror map series (15), are, respectively, solutions
of the following Schwarzian equations

{Q̃(x), x} +
1

2 · Q̃(x)2
·
(dQ̃(x)

dx

)2

+ W (x) = 0, (17)

and

{X̃(x), x} − 1

2 · x2
− W

(
X̃(x)

)
·
(dX̃(x)

dx

)2

= 0, (18)

where‡:

W (x) = −1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
. (19)

Let us introduce

X(q) = 1728 · X̃(q), Q(x) = Q̃
( x

1728

)
. (20)

The one-parameter series (14) is actually of the form X
(
a ·Q(x)2

)
. More generally,

all the series

yn(a, x) = X
(
a ·Q(x)n

)
, (21)

are solutions of the Schwarzian condition (10) with (13). For the selected values
a = 1/1728n−1 these series (21) turn out to be algebraic series: they are series
actually associated with correspondences, modular curves. The composition of two
such series is also solution of the Schwarzian condition (10). One easily finds that

yn

(
a, ym(b, x)

)
= ymn(a · bn, x) = a · bn · xmn + · · ·

ym

(
b, yn(a, x)

)
= ymn(b · am, x) = b · am · xmn + · · · (22)

Generically the two series yn and ym do not commute.
Remark 1.2: Note that if one assumes that the parameters a (resp. b) are of

the form ρn−1 (resp. ρm−1) with ρ different from 1/1728 or 1, the series yn(a, x)
and ym(b, x) commute¶, even if they are not algebraic series but only differentially

† In Maple the series (15) can be obtained substituting L = EllipticModulus(q1/2)2, in
1/j = L2 · (L − 1)2/(L2 − L + 1)3/256. See https://oeis.org/A066395 for the series (15) and
https://oeis.org/A091406 for the series (16).
‡ Note that (19) is nothing but (13) where x has been changed into 1728x.
¶ In terms of the nome, this amounts to noticing that transformations q → αn−1 · qn and
q → αm−1 · qm commute.
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algebraic series. The compositional identities (22) are inherited from the fact that the
composition of two algebraic series is an algebraic series, and that the composition
of two solutions of the Schwarzian condition (10) must† also be a solution of the
Schwarzian condition (10). Such properties are reminiscent of the concept of replicable
functions [53, 54, 55, 56, 57, 58, 59, 60].

Remark 1.3: It is straightforward to see that the series X
(
a ·Q(x)

)
is an order-

N transformation when the parameter a is a N -th root of unity: aN = 1. These
N -th root of unity are, thus, clearly selected values of the parameter. Are all these
N -th root of unity series algebraic series, or just D-finite series, or simply differentially
algebraic series ?

1.5. Multivaled functions and reversibility

The Landen algebraic transformation (4) amounts to multiplying (or dividing because
of the modular group symmetry τ ↔ 1/τ) the ratio τ of the two periods of the elliptic
curves: τ ←→ 2 τ . The other (isogeny) transformations†† correspond to τ ↔ N · τ ,
for various integers N .

We, thus, see that a modular equation, like (7), yields multivalued functions
corresponding to the different series solutions of the modular equation (for instance
(8) and its compositional inverse). More generally, for τ ↔ N · τ , we will have series
like 1/1728N−1 · xN + · · · and also (their compositional inverse Puiseux series)
1728(N−1)/N · x1/N + · · ·

In the textbooks the renormalization group is often presented as a semi-direct
group♯. In fact the renormalization group generators have no reason to be such
irreversible transformations. They are, at first sight, reversible transformations.
The modular equation (7) has a x ↔ y symmetric polynomial, corresponding
to the Landen transformation, as well as its compositional inverse, the inverse
Landen transformation. These two transformations are both exact generators of the
renormalization group of the square Ising model, or of the Baxter model [32]. With
this exact renormalization group representation we see that the modular equation
restores, as a consequence of its x ↔ y symmetry, the reversible character of the
renormalization group, the price to pay being that the function y(x) is actually
multivalued.

The Schwarzian condition (10) encapsulates [30, 31] an infinite number of modular
correspondences associated with their modular curves and modular forms [14, 15,
16]. In these cases the automorphy relation (2) corresponds to algebraic function
prefactors A(x). However, for series with one-parameter, like (14), which are
generically differentially algebraic, we still have an “automorphy” relation (2), but
with differentially algebraic “automorphy” prefactors A(x) (see (3)). We cannot
expect a modular equation, but is there a way to still see a transformation like
(14), as a “correspondence” with some “appropriate” generalization of the concept
of correspondences ?

† This is also a clear consequence of the automorphy property (1).
††See for instance (2.18) in [34].
♯ In most of the graduate text book on renormalization group, the critical fixed point is an attractive
fixed point. There is an “arrow of time”. The renormalization group is seen as an irreversible process.
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1.6. Correspondences, Schwarzian conditions and replicable functions

The Schwarzian condition (10) coincides exactly with one of the conditions G. Casale
obtained [61, 62, 63, 64, 65, 66, 67] in a classification of Malgrange’s D-envelopes and
D-groupoids [68] on P1. Denoting y′(x), y′′(x) and y′′′(x) the first, second and third
derivative of y(x) with respect to x, these conditions‡ read respectively

µ(y) · y′(x) − µ(x) +
y′′(x)

y′(x)
= 0, (23)

ν(y) · y′′(x)2 − ν(x) +
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)
y′(x)

)2

= 0, (24)

together with γ(y) · y′(x)n − γ(x) = 0 and h(y) = h(x), corresponding
respectively to rank two, rank three, together with rank one and rank nul groupöıds,
where ν(x), µ(x), γ(x) are meromorphic functions (h(x) is holomorph).

The previous examples of Schwarzian condition (10) correspond to elliptic
curves (modular curves, modular forms and modular correspondences [70]), through
pullbacked 2F1 hypergeometric functions [19]. In subsection 3.2 of [30] we have
seen that the Schwarzian condition (10) can actually occur with Heun functions
which cannot be reduced to pullbacked 2F1 hypergeometric functions††, and which
do not correspond to globally bounded [72, 73] series. Similarly, we have seen
Schwarzian conditions (10) corresponding to (non globally bounded) pullbacked 2F1

hypergeometric functions, associated with Shimura curves [74, 71, 70]. The Malgrange-
Casale approach for Schwarzian conditions (24) suggests that one should be able to find
examples of such Schwarzian conditions far beyond modular curves, or even Shimura
curves (and their associated modular forms [14, 15, 16] and automorphic forms [10]).
If such generalizations exist, are they also associated with one-parameter series ?
How to describe them ? Can they necessarly be seen, eventually, as generalization of
correspondences ?

In the next section we will first revisit the previous “classical” modular
correspondence results with a different normalization of the pullback (see (25) below)
which makes the occurrence of series with integer coefficients crystal clear. Revisiting
these calculations, with a key role played by a function F (x) defined below by (104),
we will be able to find some new partial differential equations (see (129), or (130)
below), in the parameter of the series†. These new equations will help us to find many
examples of replicable-like [54, 55, 56, 57, 58] functions far beyond modular curves or
Shimura curves [74, 70].

2. Revisiting the modular equations with a different normalization of the
pullbacks.

Some part of this section will be reminiscent of the results explained in [30], with
the difference that we have another normalization of the pullback, corresponding to
change x → 1728x, the “automorphy” relation (2) thus becoming

2F1

(
[
1

12
,
5

12
], [1], 1728 · y

)
= A(x) · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)
, (25)

‡ Casale’s condition (23) is exactly the same condition as the one we already found in [69], and this
is not a coincidence.
††See for instance the two Heun functions given by (164) in [71].
† See also (162) below for more parameters.
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where¶:

A(x) = λ ·
( u(x)

u(y(x))
· y′(x)

)1/2

. (26)

As a consequence the (pullback) algebraic series y = y(x), corresponding to isogenies
like (8) ... are normalized as x −→ xN + · · · , and are series with integer coefficients.

In our case, taking into account the exact expression of the wronskian, one has
u(x) = x · (1 − 1728x)1/2, and, thus, we get:

A(x) = λ ·
(x · (1 − 1728x)1/2

y · (1 − 1728 y)1/2
· y′(x)

)1/2

. (27)

Taking the square of (25) we can, thus, rewrite the “automorphic” relation (25) as

λ · y · (1 − 1728 · y)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
dx

, (28)

which is, in fact, nothing but

λ · dx

F (x)
=

dy

F (y)
. (29)

where F (x) reads:

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

(30)

= x − 744x2 − 393768x3 − 357444672x4 − 394896727080x5 + · · ·
The elimination of the “automorphic” cofactor A(x) gives the Schwarzian equation
on y(x)

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (31)

where now

W (x) = −1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
, (32)

namely:

− 1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
(33)

+
1

2
· 1 − 1968 y(x) + 2654208 y(x)2

y(x)2 · (1 − 1728 y(x))2
· y′(x)2 + {y(x), x} = 0.

3. Modular equation, modular correspondence

3.1. q −→ q2

Let us consider the modular equation†:
Γ2(x, y) = x y − (x+ y) · (x2 + 1487x y + y2)

+ 10125 · x y · (16x2 − 4027x y + 16 y2) (34)

− 8748000000 · x2 y2 · (x+ y) + 157464000000000 · x3 y3 = 0,

¶ Note a typo in (92) in [30]. the exponent −1/2 in (92) must be changed into 1/2.
† Which is nothing but (7) with the change of variables x → x/1728, y → y/1728.
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which has the following rational parametrization [19]:

x =
t

(t+ 16)3
and: y =

t2

(t+ 256)3
. (35)

It has the following algebraic series solutions with integer coefficients

y2 = x2 + 1488x3 + 2053632x4 + 2859950080x5 + 4062412996608x6

+ 5882951135920128x7 + 8664340079503736832x8 + · · · (36)

and

y1/2 = ω · x1/2 − 744 · x2/2 + 357024 · ω · x3/2 − 140914688 · x4/2

+ 49735011840 · ω · x5/2 − 16324041375744 · x6/2 + · · · (37)

where ω2 = 1 (i.e. ω = ± 1). These two algebraic series can be written respectively:

X̃
(
Q̃(x)2

)
and: X̃

(
ω · Q̃(x)1/2

)
. (38)

They amount, respectively, to changing the nome as follows: q −→ q2, together with
its compositional inverse q −→ ω · q1/2, where ω2 = 1. These two series, (36) and
(37), are actually solutions of the Schwarzian equation (31) with W (x), now, given
by (32). Note that we have the following relation:

2 · y2 · (1 − 1728 · y2)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y2

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy2
dx

. (39)

We have a similar relation for y1/2. Relation (39), and the corresponding one for y1/2,
are nothing but:

2 · dx

F (x)
=

dy2
F (y2)

and:
1

2
· dx

F (x)
=

dy1/2

F (y1/2)
. (40)

3.2. Linear ODE for q −→ q2

The previous algebraic series (36), (37) are solutions of an order-three linear differential
operator M3 = M1 ⊕ M2 which is the direct sum (LCLM) of an order-two linear
differential operator M2, and an order-one linear differential operator M1 with a
rational function solution

3.3. q −→ q3

Let us consider the modular equation:

1855425871872000000000 · x3 y3 · (y + x)

+ 16777216000000 · y2 x2 · (27x2 − 45946x y + 27 y2)

+ 36864000 · x y · (y + x) · (x2 + 241433x y + y2)

+ (x4 − 1069956x3 y + 2587918086x2 y2 − 1069956x y3 + y4)

+ 2232 · x y · (y + x) − x y = 0, (41)

which has the following rational parametrization [19]:

x =
t

(t+ 27) · (t+ 3)3
and: y =

t3

(t+ 27) · (t+ 243)3
. (42)
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This modular equation (41) has the following algebraic series solutions

y3 = x3 + 2232x4 + 3911868x5 + 6380013816x6 + 10139542529238x7

+ 15969813236020944x8 + 25104342383076998772x9 + · · · (43)

and its compositional inverse

y1/3(ω, x) = ω · x1/3 − 744 · ω2 · x2/3 + 356652 · x3/3 − 140360904 · ω · x4/3

+ 49336313166 · ω2 x5/3 − 16114360320000 · x6/3 + · · · (44)

where ω3 = 1. The radius of convergence of the series (43) is R = 1/1728,
corresponding to the vanishing of the discriminant of the modular equation (41).
These two series can be written respectively

X̃
(
Q̃(x)3

)
and: X̃

(
ω · Q̃(x)1/3

)
, (45)

where ω3 = 1. They amount, respectively, to changing the nome as follows:
q −→ q3, together with its compositional inverse q −→ ω · q1/3 where ω3 = 1.
These two algebraic series, (43) and (44), are actually solutions of the Schwarzian
equation (31), with W (x) given by (32). Note that we have the following relation:

3 · y3 · (1 − 1728 · y3)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y3

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy3
dx

. (46)

We have a similar relation for y1/3. Relation (46), and the corresponding one for y1/3,
are nothing but:

3 · dx

F (x)
=

dy3
F (y3)

and:
1

3
· dx

F (x)
=

dy1/3

F (y1/3)
. (47)

3.4. Linear ODE for q −→ q3

The previous algebraic series (43), (44) are solutions of an order-four linear differential
operator M3 = M1 ⊕ M3, which is the direct sum (LCLM) of an order-three linear
differential operator M3, and an order-one linear differential operator M1 with a
rational function solution.

3.5. q −→ q5

We are not going to give explicitely the modular equation corresponding to q −→ q5

because it starts becoming a bit too large. Let us just say that it can (easily) be
obtained by the elimination of t in its rational parameterization [19]:

x =
t

(t2 + 10 t+ 5)3
and: y =

t5

(t2 + 250 t+ 3125)3
. (48)

This modular curve Γ5(x, y) = Γ5(y, x) = 0, has the following algebraic series
solutions

y5 = x5 + 3720x6 + 9287460x7 + 19648405600x8 + 38124922672650x9

+ 70330386411705000x10 + 125698841122545005000x11 + · · · (49)
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and

y1/5 = ω · x1/5 − 744 · ω2 · x2/5 + 356652ω3 · x3/5 − 140361152 · ω4 · x4/5

+ 49336682190 · x5/5 − 80573128344696

5
· ω · x6/5 + · · · (50)

where ω5 = 1. The series (49) and (50) are (algebraic) solutions of an order-six
linear differential operator L6 = L1 ⊕ L5, which is the direct sum of an order-one
linear differential operator with a rational function solution, and an irreducible order-
five linear differential operator operator L5. The series (49) and (50) can be written
respectively

y5 = X̃
(
Q̃(x)5

)
and: y1/5 = X̃

(
ω · Q̃(x)1/5

)
, (51)

where ω5 = 1. They amount, respectively, to changing the nome as follows:
q −→ q5, and its compositional inverse q −→ ω · q1/5 where ω5 = 1. These
two series, (49) and (50), are actually solutions of the Schwarzian equation (31), with
W (x) given by (32). Note that we have the following relation:

5 · y5 · (1 − 1728 · y5)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y5

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy5
dx

, (52)

i.e.

5 · F (y5) = F (x) · dy5
dx

, (53)

and:

5 · dx

F (x)
=

dy5
F (y5)

and:
1

5
· dx

F (x)
=

dy1/5

F (y1/5)
. (54)

Remark 3.1: The series (37), (44), (50) (and also (57) below) can be seen to be
functions of ω · x1/N with ωN = 1.

3.6. q −→ q4

We are not going to give explicitely the modular equation corresponding to q −→ q4

because it becomes a bit too large. Let us just say that it can (easily) be obtained by
the elimination of t in its rational parameterization [19]:

x =
t · (t+ 16)

(t2 + 16 t + 16)3
and: y =

t4 · (t+ 16)

(t2 + 256 t + 4096)3
. (55)

This modular curve Γ4(x, y) = Γ4(y, x) = 0 can also be obtained from the
elimination of the variable z between the (fundamental) modular equation Γ2(x, z) =
0, given by (34), and the same modular equation Γ2(z, y) = 0. The calculation of the
resultant, in z, between Γ2(x, z) and Γ2(z, y) factorizes, and gives (x −y)2 · Γ4(x, y).
This modular curve Γ4(x, y) = Γ4(y, x) = 0, has the following algebraic series
solutions

y4 = x4 + 2976x5 + 6322896x6 + 11838151424x7 + 20872495228416x8

+ 35647177050980352x9 + 59796357134115627008x10

+ 99264875397039869263872x11 + · · · (56)
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y1/4(ω, x) = ω · x1/4 − 744 · ω2 · x1/2 + 356652 · ω3 · x3/4 − 140361152 · x4/4

+ 49336682376 · ω · x5/4 − 16114625945856 · ω2 · x6/4

+ 4999042676442272 · ω3 · x7/4 − 1492669488513712128 · x8/4

+ 432762805367932714848 · ω · x9/4 + · · · (57)

where ω4 = 1, together with the (involutive) series:

y1 = −x − 1488x2 − 2214144x3 − 3337633792x4 − 5094329942016x5

− 7859077093785600x6 − 12234039128005541888x7 (58)

− 19190712499154486034432x8 − 30301349938167862039412736x9 + · · ·
The radius of convergence of the series (56), or (58), is R = 1/1728, corresponding to
the vanishing of the discriminant of the modular equation Γ4(x, y) = Γ4(y, x) = 0.
These three series (56), (57) and (58), can be written respectively

X̃
(
Q̃(x)4

)
and: X̃

(
ω · Q̃(x)1/4

)
and: X̃

(
−Q̃(x)

)
, (59)

where ω4 = 1. These series can be obtain from the series (36) and (37) of subsection
(3.1). It is straightforward to see† that y4(x) = y2(y2(x)), and that y1/4(x) =
y1/2(y1/2(x)), which amounts, on the nome, to performing q −→ q2 −→ (q2)2 = q4

and similarly q −→ ± q1/2 −→ ± (± q1/2)1/2 = ω · q1/4, where ω4 = 1. However,
the composition of y2 and y1/2 also corresponds, on the nome, to

q → ± q1/2 → (± q1/2)2 = q or: q → q2 → ± (q2)1/2 = ± q. (60)

Getting rid of the identity transformation, we get q → −q, which, precisely,
corresponds to the involutive series (58). These three series (56), (57) and (58) are
actually solutions of the Schwarzian equation (31), with W (x) given by (32). Note
that we have the following relation:

4 · y4 · (1 − 1728 · y4)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y4

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy4
dx

, (61)

4 · dx

F (x)
=

dy4
F (y4)

and:
1

4
· dx

F (x)
=

dy1/4

F (y1/4)

and:
dx

F (x)
=

dy1
F (y1)

. (62)

3.7. Linear differential operators for q → q4

The previous algebraic series (56), (57) and (58) are solutions of an order-six linear
differential operator M6 = M1 ⊕ M2 ⊕ M3, which is the direct sum (LCLM) of an
order-three linear differential operator M3, an order-three linear differential operator
M2, and an order-one linear differential operator M1 with a rational function solution.

Remark 3.2: The order of the linear operator M6, corresponds to the four
series (57) of the form y1/4, together with the series y4, and the series y1, namely
6 = 4 + 1 + 1 series. The series y4 (given by (56)) can be seen to be an (algebraic)
analytic continuation of the involutive series y1 (given by (58)).

† The composition/iteration of multivalued functions, like algebraic functions, is a bit tricky, we have,
however, no problem to compose algebraic series, for instance x → y2(x) → y4(x) = y2(y2(x)).
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Remark 3.3: The algebraic series y1, y4, y1/4(ω
n, x), solutions of the modular

equation Γ4(x, y) = 0, can be expressed as linear combinations of the solutions of
the three linear differential operators Mn, n = 1, 2, 3. If one introduces the (finite)
Galois group of the polynomial associated with the modular equation Γ4(x, y) = 0,
and the differential Galois groups of the three linear differential operators Mn,
one sees that the relation between these different Galois groups is far from being
straightforward.

3.8. More correspondence series

Let us display¶ more correspondence series.

• The (algebraic) series

X̃
(
Q̃(x)6

)
= x6 + 4464x7 + 12805560x8 + 30222607872x9

+ 64062187946172x10 + · · · (63)

is solution of a modular equation Γ6(x, y) = Γ6(y, x) = 0, that will not be written
here, but can easily be obtained from its rational parametrization [19]:

x =
t · (t+ 8)3 · (t+ 9)2

(t+ 6)3 · (t3 + 18 t2 + 84 t + 24)3
,

y =
t6 · (t+ 8)2 · (t+ 9)3

(t+ 12)3 · (t3 + 252 t2 + 3888 t + 15552)3
. (64)

This series (63) is solution of an order-twelve linear differential operator L12 =
L1 ⊕ L11, which is the direct sum of an order-one linear differential operator L1

with a rational function solution, and an order-eleven linear differential operator L11.

• We can also consider

X̃
(
Q̃(x)13

)
= x13 + 9672x14 + 52931268x15 + 216226356320x16 + · · · (65)

which is solution of a modular equation† Γ13(x, y) = Γ13(y, x) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t

(t2 + 5 t + 13) · (t4 + 7 t3 + 20 t2 + 19 t + 1)3
,

y =
t13

(t2 + 5 t + 13) · (t4 + 247 t3 + 3380 t2 + 15379 t + 28561)3
. (66)

This series (65) is solution of an order-fourteen linear differential operator L14 =
L1 ⊕ L13, which is the direct sum of an order-one linear differential operator L1

with a rational function solution, and an irreducible order-thirteen linear differential
operator L13.

• Let us consider
X̃
(
Q̃(x)9

)
= x9 + 6696x10 + 26681076x11 + 82647211104x12 + · · · (67)

which is solution of a modular equation Γ9(x, y) = Γ9(y, x) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t · (t2 + 9 t + 27))

(t+ 3)3 · (t3 + 9 t2 + 27 t + 3)3
, y =

t9 · (t2 + 9 t + 27))

(t+ 9)3 · (t3 + 243 t2 + 2187 t + 6561)3
.

¶ For all these examples we used gfun of Bruno Salvy. We used the following commands:
algeqtodiffeq, diffeqtohomdiffeq, de2diffop, algeqtoseries, formal sols.
† The polynomial Γ13(x, y) is of degree 14 in y (or x).
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The polynomial Γ9(x, y) is of degree 12 in y (resp. in x). We thus have twelve
algebraic solutions-series of the modular equation Γ9(x, y) = 0. This series (67) is
solution of an order-twelve linear differential operator L12 = L1 ⊕ L11, which is
the direct sum of an order-one operator L1 with a rational function solution, and an
order-eleven linear differential operator L11. The (nine) series which are compositional
inverse of the series (67), are also solutions of the modular equation Γ9(x, y) = 0,
read:

X̃
(
Q̃(x)1/9

)
= ω · x1/9 − 744 · ω2 · x2/9 + 356652 · ω3 · x1/3

− 140361152 · ω4 · x4/9 + 49336682190 · ω5 · x5/9 − 16114625669088 · ω6 · x2/3

+ 4999042477430456 · ω7 · x7/9 + · · · (68)

where ω9 = 1. These (nine) series (68) are solutions of the order-twelve linear
differential operator L12. Note that the (two) order-three series

yω(x) = y1/3

(
y3(x)

)
= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3 (69)

− 32 · ω · (ω − 1) · (−24876477ω + 22887765) · x4 + · · ·
where ω2 + ω +1 = 0, are also solutions of the modular equation Γ9(x, y) = 0, and
are also of the order-twelve operator L12. We thus have 1 + 2 + 9 = 12 algebraic
solutions of the modular equation Γ9(x, y) = 0, and solutions of L12.

4. The one-parameter series solutions of the Schwarzian equation.

The Schwarzian equation (31) has more solutions than the infinite discrete set of
algebraic series (see (36), (43), (49), (56), (63), (65), ...) corresponding to modular
correspondences. One actually has a series depending on one parameter, namely:

y(a, x) = a · x − 744 · a · (a− 1) · x2 + 36 · a · (a− 1) · (9907 a− 20845) · x3

− 32 · a · (a− 1) · (4386286 a2 − 20490191 a+ 27274051) · x4

+ 6 · a · (a− 1) · (8222780365 a3 − 61396351027 a2

+ 171132906629 a− 183775457147) · x5

− 144 · a · (a− 1) · (111907122702 a4 − 1162623833873 a3 + 5000493989295 a2

− 10801207072185 a+ 10212230113145) · x6

+ 8 · a · (a− 1) · (624880309678807 a5 − 8367080813672297 a4

+ 48909476982869878 a3 − 158792594445015178 a2

+ 293243568886999823 a− 254689844062110385) · x7

− 192 · a · (a− 1) · (7774319708776120 a6 − 127824707491524999 a5

+ 946950323149342341 a4 − 4101941044701784034 a3 (70)

+ 11156847890086765926 a2 − 18508096006772656203 a

+ 15126379507970624425) · x8 + · · ·
Note that all the algebraic series (58), (69), (see also (92) below), ... associated with
modular equations, are of the form (70), where the parameter is a N -th root of unity:
aN = 1.
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Note that this one-parameter series (70) is a series of the form

y(a, x) = a · x + a · (a− 1) ·
∞∑

n=2

Pn(a) · xn, (71)

where the polynomials Pn(a) are polynomials of degree n − 2 in the parameter a,
with integer coefficients‡.

This one-parameter series (70), (71) verifies the following composition rule:

y
(
a, y(a′, x)

)
= y

(
a′, y(a, x)

)
= y(a a′, x). (72)

These series commute. One can verify that this one-parameter series (70) can, in fact,
be written

y(a, x) = X̃
(
a · Q̃(x)

)
, (73)

where

X̃(q) = q − 744 q2 + 356652 q3 − 140361152 q4 + 49336682190 q5

− 16114625669088 q6 + 4999042477430456 q7 + · · · (74)

and† its composition inverse:

Q̃(x) = x + 744x2 + 750420x3 + 872769632x4 + 1102652742882x5

+ 1470561136292880x6 + 2037518752496883080x7 + · · · (75)

The nome series (75) has a radius of convergence R = 1/1728 = 0.00057870370 · · ·
In the a → 0 limit one has

lim
a→ 0

y(a, x)

a
= x + 744x2 + 750420x3 + 872769632x4 + 1102652742882x5

+ 1470561136292880x6 + 2037518752496883080x7 + 2904264865530359889600x8

+ 4231393254051181981976079x9 + · · · (76)

which is nothing but the nome series Q̃(x) given by (75). In the a → ∞ limit one
has

lim
a→∞

y
(
a,

x

a

)
= x − 744x2 + 356652x3 − 140361152x4 + 49336682190x5

− 16114625669088x6 + 4999042477430456x7 − 1492669384085015040x8

+ 432762759484818142437x9 + · · · (77)

which is nothing but X̃, the (elliptic modulus) series (74).
Let us introduce the ratio of the polynomials in expansion (71):

Rn(a) =
Pn(a)

Pn+1(a)
. (78)

One sees, in the n → ∞ and a → 0 limit, that the ratio (78) becomes (as it should)
1/1728 = 0.00057870 · · · For miscellaneous small values of the parameter a, one can
see, that this ratio (78) also becomes 1/1728 in the n → ∞ limit.

‡ This can be seen as a consequence of the fact that y(a, x) = X̃
(
a · Q̃(x)

)
, where X̃(x) and

Q̃(x) are actually series with integer coefficients (see (15) and (16)).

† In Maple the X̃(q) series (15), (74) can be obtained substituting L = EllipticModulus(q1/2)2,
in 1/j = L2 · (L − 1)2/(L2 − L + 1)3/256. See https://oeis.org/A066395 for the series (15) and
https://oeis.org/A091406 for the series (16).
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In the last n → ∞ and a → ∞ limit (77), the ratio (78) becomes††
−0.004316810242 · · · which corresponds to the radius of convergence of the series
(15), (74). This radius of convergence is according to Vaclav Kotesovec¶

exp
(
−
√
3 · π

)
= 0.004333420501 · · · (79)

which is reminiscent of the selected values (see equation (55) in [32]):

t = exp
(
i π

1 + i
√
3

2

)
= i · exp

(
−
√
3

2
· π

)
or: j

(1 + i
√
3

2

)
= 0. (80)

The nearest to x = 0 singularity of X̃ is thus xc = t2 = − exp(−
√
3 · π). We

have seen that the radius of convergence of the (involutive) series (58) (i.e. a = −1)
is R = 1/1728, corresponding to the vanishing of the discriminant of the modular
equation Γ4(x, y) = Γ4(y, x) = 0, and more generally, for |a| = 1, one can see that
the radius of convergence of the series (70), (71), for N -th root of unity, aN = 1, is
also‡ R = 1/1728.

More generally, the radius of convergence of series (70), (71) corresponds to the
singularities of (73), namely the x = 1/1728 singularity of Q̃(x), and to the values of

x such that a · Q̃(x) = − exp
(
−
√
3 · π

)
, associated with the singularity of X̃(x),

namely:

x = X̃
(
− 1

a
· exp

(
−
√
3 · π

))
. (81)

When the parameter a is large enough (|a| >≃ 7.5), the radius of convergence no
longer corresponds to R = 1/1728, but to the singularity (81).

This transcendental value (79), for the radius of convergence of the series X̃(q),
is a strong incentive to understand the “very nature” of the one-parameter series
(70), (71), especially since it can be written in the simple form (73). Generically the
one-parameter series (70), being solution of a Schwarzian equation, is a differentially
algebraic series, but is it possible that this series could be, only for selected values of
the parameter, an algebraic series, or just a D-finite series, or possibly a D-D-finite
series ?

5. Trying to understand the one-parameter series solutions.

5.1. When the one-parameter series becomes an algebraic series

For a = −1 the (involutive) series y(a, x) (see series (58))

− x − 1488x2 − 2214144x3 − 3337633792x4 − 5094329942016x5

− 7859077093785600x6 − 12234039128005541888x7 + · · · (82)

has a radius of convergence 1/1728. Let us generalize what we have seen in subsection
(3.6) with series (58). Let us first recall the algebraic series y3 (corresponding to
q → q3), given by (43), and y1/3, given by (44), where ω3 = 1, and let us compose
y3 and y1/3. We first get:

y3

(
y1/3(x)

)
= x. (83)

††Obtained with 421 coefficients.
¶ See https://oeis.org/A066395 and https://oeis.org/A066395/b066395.txt for the reciprocal of j-
function. See also in [75], Q(exp(−

√
3 · π) = 0 or J(exp(−

√
3 · π) = 0, where Q is the Eisenstein

series E4 and J is the Klein modular invariant.
‡ This also corresponds to vanishing of the discriminant of the corresponding modular equations.
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More interestingly, we also get the following algebraic series

yω(x) = y1/3

(
y3(x)

)
= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3 (84)

− 32 · ω · (ω − 1) · (22887765 − 24876477ω) · x4 + · · ·
where ω3 = 1. One can verify that series (84) is actually series (70) when a3 = 1.
One can verify that this series is (for ω ̸= 1) a series of order 3:

yω(yω(yω(x))) = x. (85)

Let us also recall the algebraic series (corresponding to q → q5) y5, given by
(49), and its compositional inverse y1/5, given by (50), where ω5 = 1, and let us
compose y5 and y1/5. We first get:

y5

(
y1/5(x)

)
= x. (86)

More interestingly, we also get the following series:

yω(x) = y1/5

(
y5(x)

)
= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3

− 32 · ω · (ω − 1) · (4386286ω2 − 20490191ω + 27274051) · x4

+ 6 · ω · (ω − 1) · (8222780365ω3 − 61396351027ω2

+ 171132906629ω − 183775457147) · x5

− 144 · ω · (ω − 1) · (−1274530956575ω3 + 4888586866593ω2

− 10913114194887ω + 10100322990443) · x6 + · · · (87)

where ω5 = 1.
One can verify that (87) is actually (70) when a5 = 1. One can verify that the

series (87) is (for ω ̸= 1) a series of order 5:

yω(yω(yω(yω(yω(x))))) = x. (88)

This is a straight consequence of (73) with a5 = 1. Similarly, let us now consider

y13 = X̃
(
Q̃(x)13

)
= x13 + 9672x14 + 52931268x15 + 216226356320x16

+ 735033166074714x17 + 2200510278533887632x18 + · · · (89)

Its compositional inverse (Puiseux) series reads

y1/13 = X̃
(
Q̃(x)1/13

)
= ω · x1/13 − 744 · ω2 · x2/13 + 356652 · ω3 · x3/13

− 140361152 · ω4 · x4/13 + 49336682190 · ω5 · x5/13

− 16114625669088 · ω6 · x6/13 + · · · (90)

where ω13 = 1. Let us compose y13 and y1/13. We first get

y13

(
y1/13(x)

)
= x, (91)

which corresponds, on the nome, to: q −→ ω q1/13 −→
(
ω q1/13

)13

= q.
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More interestingly, we also get the following algebraic series:

yω(x) = y1/13

(
y13(x)

)
= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3

− 32 · ω · (ω − 1) · (4386286ω2 − 20490191ω + 27274051) · x4

+ 6 · ω · (ω − 1) · (8222780365ω3 − 61396351027ω2

+ 171132906629ω − 183775457147) · x5

− 144 · ω · (ω − 1) · (111907122702ω4 − 1162623833873ω3 + 5000493989295ω2

− 10801207072185ω + 10212230113145) · x6 + · · · (92)

where ω13 = 1. This series corresponds to q → q13 → ω · (q13)1/13 = ω · q. One
can verify that the series (92) is (for ω ̸= 1) a series of order 13:

yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(x)))))))))))))) = x. (93)

If we compare the series (92) with the one-parameter series (70), we see that:

yω(x) = y(ω, x) where: ω13 = 1. (94)

Conversely, denoting y(a, x) = ya(x) we see that the N -times composition of ya(x)
becomes the identity transformation when aN = 1:

ya(ya( · · · (ya(x)) · · · )) = x ⇐⇒ aN = 1. (95)

The series (92) is the solution series of the modular equation associated with the nome-

transformation q → q13
2

, corresponding to the composition of the modular equation
associated with q −→ q13 with itself.

More generally the modular equation ΓN2(x, y) = 0, corresponding to q →
qN

2

, will have 1+(N−1) +N2 = N · (N +1) algebraic solution-series, corresponding
respectively to the series

yN2 = xN2

+ 744 · N2 · xN2+1 + · · · (96)

together with the N − 1 (order-N) series

y1/N (yN (x)) = ω · x − 744 · ω · (ω − 1) · x2 + · · · (97)

with ωN = 1 but ω ̸= 1, and the N2 compositional inverse (Puiseux) series of the
series (96). Series (58), (83) and (87) are such examples.

5.1.1. The one-parameter series (70) is not generically a D-finite series
The one-parameter series (70) becomes an algebraic series when the parameter is a

N -th root of unity. All the previous algebraic series associated withmodular equations,
can also be seen as D-finite series as displayed in the previous section (3.7). Along this
line it is crucial to note that these series are solutions of a linear differential operator
(like M3 in the previous section (3.7)) of order increasing with N . Therefore, we see
that one cannot expect the one-parameter series (70) to be generically D-finite, being
solution a finite order linear differential operator with polynomial coefficients in x and
in the parameter a, since the order of this linear differential operator grows with N
when the parameter is a N -th root of unity.
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5.2. When the one-parameter series becomes a globally bounded series

Note that, for integer values of the parameter a, the series y(a, x) are actually series
with integer coefficients. More generally, one can see easily that such series are globally
bounded [72, 73] for any rational number a = P/Q: the series (70) can be recast into
a series with integer coefficients if one rescales x as follows: x −→ Q · x.

If one of these series is D-finite, the series should be, according to Christol’s
conjecture [76], a diagonal of a rational (or algebraic) function [72]. In particular this
series should reduce to algebraic function modulo any prime number [72, 73]. Let us
focus, for instance, on the particular value a = 3. For a = 3 the series y(a, x) is a
series with integer coefficients

S = 3x − 4464x2 + 1917216x3 − 1013769984x4 − 33437759328x5

− 420498625999104x6 − 452363497164804864x7 + · · · (98)

which has a radius of convergence 1/1728 = 0.00057870 · · · If one considers the series
(98) modulo different primes p, it is very difficult to see (for p large enough) if this
series (98) is an algebraic series modulo p, or, even, is D-finite modulo p. We have,
however, found the following result. Introducing

σ =
S − 3x

3 · 25 · x
+

99

2
· x + 1 = 1 + 3x + 19971x2 − 10560104x3

− 348309993x4 − 4380194020824x5 − 4712119762133384x6 + · · · (99)

this series reduces, modulo p = 2, to the algebraic series

σ(x) = 1 + x + x2 + x4 + x8 + x16 + x32 + x64 + x128 + x256 + · · · (100)

solution, modulo p = 2, of the algebraic polynomial:

σ(x2) − σ(x) + x = σ(x)2 − σ(x) + x = 0. (101)

The nature of the series (98), or more generally of (70) for integer, or rational values
of the parameter a, remains an open question. It seems that such globally bounded
series are not D-finite. At least, one has an infinite number of differentially algebraic
series. Are these globally bounded series D-D-finite series [42, 43] ?

5.3. Miscellaneous calculations.

Let us introduce the hypergeometric function:

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

. (102)

Note that the Schwarzian equation (17), on Q̃(x), can be seen to be a consequence of
(see (109) below):

F (x) =
Q̃(x)

Q̃(x)′
together with: W (x) =

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

. (103)

Therefore the nome Q̃(x) is also solution of the order-one linear differential
operator:

L1 = F (x) · Dx − 1 where: (104)

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

.
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It is thus DD-finite†:

Q̃(x)′

Q̃(x)
=

1

F (x)
or: Q̃(x) = exp

(∫ x dx

F (x)

)
. (105)

The one-parameter series y(x) = y(a, x), given by (70), is solution of the rank-two
equation (see (23))

AR(x) −AR(y(x)) · y′(x) +
y′′(x)

y′(x)
= 0, (106)

with

AR(x) =
F ′(x)

F (x)
, (107)

and also solution of the Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (108)

where:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

= A′
R(x) +

AR(x)
2

2

= −1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
. (109)

Note that W (x) is a rational function, but this is far from being the case for AR(x).
We will see, in the following, that the one-parameter series y(x) = y(a, x), given by
(70), is also solution of:

a · ∂y(a, x)
∂a

= F (y(a, x)) = F (x) · ∂y(a, x)
∂x

. (110)

5.4. More one-parameter series solutions.

If one combines y2, the “correspondence” series (36) solution of the modular equation
(34), with the one-parameter series (70), one gets a one-parameter series

y
(a)
2 = y(a, y2) = X̃

(
a · Q̃(x)2

)
= a · x2 + 1488 · a · x3

− 24 · a · (31 a− 85599) · x4 − 256 · a · (8649 a− 11180329) · x5

+ 12 · a · (29721 a2 − 392019552 a+ 338926406215) · x6 (111)

+ 192 · a · (8292159 a2 − 45872836768 a+ 30686235044193) · x7 + · · ·
This series (111) is also solution of the Schwarzian equation (33). Furthermore we
have:

2 · y(a)2 · (1 − 1728 · y(a)2 )1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y(a)2

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
2

dx
. (112)

When a = 1, the radius of convergence of (111) is 1/1728 = 0.000578703703 · · · ,
and this is also the case for any a, N -th root of unity aN = 1.

† See [42, 43].
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More generally, all the series

X̃
(
a · Q̃(x)n

)
= a · xn + · · · (113)

have a radius of convergence corresponding, for a small enough, to the occurrence of
the singularity of the nome-like series Q̃(x), namely x = 1/1728.

Similarly to (111), if one combines y3, the “correspondence” series (43) solution
of the modular equation (41), with the one-parameter series (70), one gets a one-
parameter series

y
(a)
3 = y(a, y3) = X̃

(
a · Q̃(x)3

)
= a · x3 + 2232 · a · x4 + 3911868 · a · x5

− 24 · a · (31 a− 265833940) · x6 − 54 · a · (61504 a− 187769367601) · x7

− 1296 · a · (7351340 a− 12322394107529) · x8 + · · · (114)

This series (114) is also solution of the Schwarzian equation (33). Furthermore we
have:

3 · y(a)3 · (1 − 1728 · y(a)3 )1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y(a)3

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
3

dx
. (115)

Similarly:

y
(a)
5 (x) = y

(
a, y5(x)

)
= X̃

(
a · Q̃(x)5

)
= a · x5 + 3720 · a · x6

+ 9287460 · a · x7 + 19648405600 · a · x8 + 38124922672650 · a · x9

− 24 · a · (31 a− 2930432767154406) · x10 (116)

− 40 · a · (138384 a− 3142471028063763509) · x11

− 960 · a · (25120323 a− 229208433006295134073) · x12 + · · ·
This series (116) is also solution of the Schwarzian equation (33). Furthermore we
have:

5 · y(a)5 · (1 − 1728 · y(a)5 )1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · y(a)5

)2

= x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
5

dx
. (117)

One also easily gets:

5 · F (y
(a)
5 (x)) = F (x) · dy

(a)
5 (x)

dx
= 5 · a · ∂y

(a)
5 (x)

∂a
. (118)

More generally, let us introduce the modular correspondence series yn(x) =
xn + 744 · n · xn+1 + · · · (for n ≥ 2), one can verify that these series commute.
These modular correspondences yn(x) can easily be generalized to one-parameter

series y
(
a, yn(x)

)
which are also solutions of the Schwarzian equations:

y
(
a, yn(x)

)
= a · xn + 744 · n · a · xn+1 + · · · (119)
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5.5. Composition in general

The one-parameter series (119) can be written

y(a)n (x) = X̃
(
a · Q̃(x)n

)
. (120)

We have the following composition:

y(a)n

(
y(b)m (x)

)
= X̃

(
a · Q̃

(
X̃
(
b · Q̃(x)m

))n)
= X̃

(
a ·

(
b · Q̃(x)m

)n)
= X̃

(
a · bn · Q̃(x)mn

)
= y(a bn)

mn (x). (121)

Note that the condition to have series solutions of the Schwarzian equation of the

form y
(a)
n (x) = a · xn + · · · , with n ≥ 2, amounts to having [30, 31] W (x) of

the form W (x) = −1/2/x2 + · · · which is satisfied when F (x) = α · x + · · · , or
Q̃(x) = ρ · x1/α + · · ·

6. The one-parameter series (4) seen as a ϵ-expansion.

In the a → 1 limit, let us denote ϵ = a − 1. The one-parameter series
y(x) = y(a, x), given by (70), can, thus, be seen as an ϵ-expansion:

y(a, x) = x +

∞∑
n=1

ϵn · Bn(x), (122)

where B1(x) = F (x), with F (x) given by (102), and where B2(x) reads (see also
equation (115) in [30]):

B2(x) =
1

2
· F (x) ·

(dB1(x)

dx
− 1

)
. (123)

Assuming that (122) is solution of the Schwarzian condition (108) (with W (x) given
by (104)), we actually obtained the next Bn(x)’s:

B3(x) =
1

3
· F (x) ·

(dB2(x)

dx
− dB1(x)

dx
+ 1

)
,

B4(x) =
1

4
· F (x) ·

(dB3(x)

dx
− dB2(x)

dx
+

dB1(x)

dx
− 1

)
, (124)

B5(x) =
1

5
· F (x) ·

(dB4(x)

dx
− dB3(x)

dx
+

dB2(x)

dx
− dB1(x)

dx
+ 1

)
,

B6(x) =
1

6
· F (x) ·

(dB5(x)

dx
− dB4(x)

dx
+

dB3(x)

dx
− dB2(x)

dx
+

dB1(x)

dx
− 1

)
, · · ·

More generally, one easily discovers the recursion

(n+ 1) · Bn+1 + n · Bn = F (x) · dBn(x)

dx
, (125)

which yields on the series (122)∑
n

(n+ 1) · Bn+1 · ϵn +
∑
n

n · Bn · ϵn = F (x) ·
(∑

n

dBn(x)

dx
· ϵn

)
, (126)

or

∂
∑

n Bn+1 · ϵn+1

∂ϵ
+ ϵ ·

∂
∑

n Bn · ϵn

∂ϵ
= F (x) ·

(∂∑
n Bn(x) · ϵn

∂x

)
, (127)
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yielding finally

(1 + ϵ) · ∂y(a, x)
∂ϵ

= F (x) · ∂y(a, x)
∂x

, (128)

namely:

a · ∂y(a, x)
∂a

= F (x) · ∂y(a, x)
∂x

. (129)

Note that y(a, x) is also solution of:

F
(
y(a, x)

)
= F (x) · ∂y(a, x)

∂x
. (130)

Recalling some relation on the nome q (see equation (33) in [30]):

q′

q
=

1

F (x)
or: q · d

dq
= F (x) · d

dx
, (131)

we see that relation (129) also reads more simply:

a · ∂y(a, x)
∂a

= q · ∂y(a, x)
∂q

. (132)

which is reminiscent of the fact that changing x → y(a, x) just amounts, on the
nome, to changing q → a · q. Equation (129) means that y(a, x) is a function of∫ (da

a
+

dx

F (x)

)
= ln(a) +

∫ ( dx

F (x)

)
, (133)

or, recalling (105), a function of:

exp
(∫ (da

a
+

dx

F (x)

))
= a · Q̃(x). (134)

This is actually the case since y(a, x) is nothing but X̃
(
a · Q̃(x)

)
(see (73)).

Remark 6.1 : Do note that the previous calculations are still valid when F (x)
is not given by (102). One can verify, for any function F (x), that the ϵ-expansion
(122) with coefficients Bn given by (123), (124), (125), is actually solution of the
Schwarzian relation (108), with W (x) given by (see (103), (109)):

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

. (135)

7. Generalization of W (x) in the Schwarzian equation: adding an extra
parameter α.

For a given function F (x) let us consider the relation

F (y(x)) = F (x) · dy(x)
dx

, (136)

which corresponds to:

dy

F (y)
=

dx

F (x)
=

dq

q
. (137)

From (136), namely F (y) = F (x) · y′, one gets

F ′(y) · y′ = F ′(x) · y′ + F (x) · y′′, (138)
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or
F ′(y)

F (y)
· y′ =

F ′(x)

F (x)
+

y′′

y′
. (139)

or, more generally, using (136) in order to introduce an extra parameter α:(F ′(y)

F (y)
+

α

F (y)

)
· y′ =

(F ′(x)

F (x)
+

α

F (x)

)
+

y′′

y′
. (140)

Let us introduce

AR(x) =
F ′(x)

F (x)
+

α

F (x)
, (141)

we see that (140) can be written

AR(x) −AR(y) · y′ +
y′′

y′
= 0. (142)

which is (23) of section (1.6). From (138), that we rewrite

F ′(y) = F ′(x) + F (x) · y
′′

y′
, (143)

one gets

F ′′(y) · y′ = F ′′(x) + F ′(x) · y
′′

y′
+ F (x) ·

(y′′
y′

)′
, (144)

or, using (136), written F (x) = F (y)/y′:

F ′′(y)

F (y)
· y′2 =

F ′′(x)

F (x)
+

F ′(x)

F (x)
· y

′′

y′
+
(y′′
y′

)′
. (145)

Taking the square of (139) one gets (up to a factor 2):

1

2
·
(F ′(y)

F (y)

)2

· y′2 =
1

2
·
(F ′(x)

F (x)

)2

+
1

2
·
(y′′
y′

)2

+
F ′(x)

F (x)
· y

′′

y′
. (146)

From (145) and (146) we deduce:(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2)
· y′2 =

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
(y′′
y′

)′
− 1

2
·
(y′′
y′

)2

,

or, recalling the Schwarzian derivative,

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

−
(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2)
· y′2 + {y(x), x} = 0,

or, more generally, using (136), which allows to introduce an extra parameter α

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)2
(147)

−
(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2

+
1

2
· α2

F (y)2

)
· y′2 + {y(x), x} = 0.

Note that (147) is actually of the form

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (148)

where (AR given by (141)):

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)2
= A′

R(x) +
AR(x)

2

2
. (149)

Remark 7.1: Note that these calculations also work with

µ · F (y(x)) = F (x) · dy(x)
dx

, (150)

which corresponds to (40), (47), (54), (62).
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8. An “academical” Schwarzian equation: W (x) is no longer a rational
function

Recalling

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(
[
1

12
,
5

12
], [1], 1728 · x

)2

, (151)

the one-parameter series y(x) = y(a, x), given by (70), is, for any value of α, solution
of the rank-two equation

AR(x) −AR(y(x)) · y′(x) +
y′′(x)

y′(x)
= 0, (152)

with

AR(x) =
F ′(x)

F (x)
+

α

F (x)
, (153)

but is also solution of the Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (154)

where:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)
= A′

R(x) +
AR(x)

2

2

= −1

2
· 1 − 1968x + 2654208x2

x2 · (1 − 1728x)2
+

1

2
· α2

F (x)
. (155)

For generic values of α, the solution-series of the form a · x + · · · , of the rank-two
equation (152), as well as the Schwarzian equation (154), with W (x) given by (155), is
just the one-parameter series y(x) = y(a, x), given by (70). However, for a selected
set of values of α, namely (non-zero) integer values, the solution-series of the form
a · x + · · · , becomes a two-parameters series. For instance, for α = ± 1, the extra
parameter occurs with the coefficient of x2, for α = ± 2 the extra parameter occurs
with the coefficient of x3, ... and, more generally, for α = ±N the extra parameter
occurs with the coefficient of xN+1. Let us display the α = 1 case in detail.

8.1. The α = 1 case: two-parameters series

Let us consider the case α = 1 in the Schwarzian equation (154) with (155), or in
the rank-two relation (152) with (153).

The two-parameter series

y(a, b, x) = a · x +
(
1728 · b − 744 · a · (a− 1)

)
· x2

+
(
2985984 · a · b2 − 2571264 · a · (a− 1) · b (156)

+ 36 · a · (a− 1) · (9907 a− 20845)
)
· x3

+
(
5159780352 · a · b3 − 6664716288 · a · (a− 1) · b2

+ 186624 · (9907 a2 − 30752 a+ 19022) · a · b

− 32 · a · (a− 1) · (4386286 a2 − 20490191 a+ 27274051)
)
· x4 + · · ·
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is actually solution of the Schwarzian equation (154) with (155), or the rank-two
relation (152) with (153), for α = 1. Note that the two-parameter series (156) is
also solution† of

a · ∂y(a, b, x)
∂a

+ b · ∂y(a, b, x)
∂b

= F
(
y(a, b, x)

)
, (157)

with F (x) given by (151). We have the following composition rules for the two-
parameter series (156):

y
(
a′, b′, y(a, b, x)

)
= y

(
a a′, a2 b′ + a′ b, x

)
. (158)

Let us introduce an alternative parametrization of the two-parameter series (156),
changing b into a b, in (156):

Y (a, b, x) = a · x +
(
1728 · a b − 744 · a · (a− 1)

)
· x2

+
(
2985984 · a3 · b2 − 2571264 · a2 · (a− 1) · b (159)

+ 36 · a · (a− 1) · (9907 a− 20845)
)
· x3 + · · ·

We have the following composition rules for the two-parameter series (159)

Y
(
a′, b′, Y (a, b, x)

)
= Y

(
a a′, a b′ + b, x

)
, (160)

which corresponds to: [
a b
0 1

]
·
[
a′ b′

0 1

]
=

[
a a′ a b′ + b
0 1

]
. (161)

The series (159) is, now, solution of:

a · ∂Y (a, b, x)

∂a
= F

(
Y (a, b, x)

)
, (162)

with F (x) given by (151). Let us introduce the a → 0 limit:

Qb(x) = lim
a→ 0

Y (a, b, x)

a

= x + (744 + 1728 b) · x2 + (750420 + 2571264 b+ 2985984 b2) · x3

+ (872769632 + 3549961728 b + 6664716288 b2 + 5159780352 b3) · x4

+ (1102652742882 + 4945819779072 b+ 11680775258112 b2

+ 15355506327552 b3 + 8916100448256 b4) · x5

+ (1470561136292880 + 7027977959274240 b+ 19050621395927040 b2

+ 32624754548539392 b3 + 33167893667512320 b4 + 15407021574586368 b5) · x6

+ · · · (163)

In the b → 0 limit, this series (163) reduces to the nome series (75) or (76).
In the a → ∞ limit one gets:

Xb(x) = lim
a→∞

Y
(
a, b,

x

a

)
= x − 744x2 + 356652x3 − 140361152x4

+ 49336682190x5 − 16114625669088x6 + 4999042477430456x7

− 1492669384085015040x8 + 432762759484818142437x9 + · · · (164)

† However it is not solution of F (x) · y′ = F (y) or F (x) · y′ = a ∂y
∂a

.
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This series (164) is nothing but (74) or (77), and, thus, does not depend on the second
parameter b.

One actually finds that the two parameter series (159) is nothing but:

Y (a, b, x) = Xb

(
a · Qb(x)

)
. (165)

From (165) we can also deduce that (162), is, in fact, nothing but equation:

a · ∂Xb(a · x)
∂a

= F
(
Xb(a · x)

)
. (166)

Furthermore, since a · ∂Xb(a·x)
∂a = x · ∂Xb(a·x)

∂x , relation (166) also gives:

x · ∂Xb(a · x)
∂x

= F
(
Xb(a · x)

)
. (167)

In contrast with the b = 0 case, the two functions, Qb and Xb, given by the
two limits (163), (164), are not compositional inverse. In the a → 1 limit, the
decomposition (165) becomes:

Y (1, b, x) = Xb

(
Qb(x)

)
= x + 1728 · b · x2 + 2985984 · b2 · x3 + 186624 · (27648 b2 − 1823) · b · x4

+ 110592 · (80621568 b3 − 15947604 b − 5249233) · b · x5 + · · · (168)

The series (168) is a one-parameter family of commuting series:

Y
(
1, b, Y (1, b′, x)

)
= Y

(
1, b′, Y (1, b, x)

)
= Y (1, b + b′, x). (169)

In particular the compositional inverse of Y (1, b, x) is Y (1, −b, x):

Y
(
1, b, Y (1, −b, x)

)
= Y

(
1, −b, Y (1, b, x)

)
= x. (170)

Note that:

Qb

(
Xb(x)

)
=

x

1 − 1728 · b · x
= x + 1728 · b · x2 + · · · (171)

From (171) we deduce an alternative expression for Qb(x) in terms of the nome (16)
(i.e. the compositional inverse of (164), or, equivalently Qb(x) for b = 0):

Qb(x) =
Q0(x)

1 − 1728 · b · Q0(x)
. (172)

Note that the composition rule relation (160) can, now, be seen as a straightforward
consequence of relation (172). From relation (172) one can see that the radius of
convergence of the series (163) corresponds, for small enough values of the additional
parameter b, to the singularity of Q0(x), (i.e. R = 1/1728), and for large enough
values of the parameter b, to the singularity Q0(x) = 1/1728/b, namely:

x = Xb

( 1

1728 b

)
= X̃

( 1

1728 b

)
. (173)

Remark 8.1: Do note that, in contrast with the α = 0 case, there is no
solution-series of the form a · x2 + · · · or, more generally, of the form a · xN + · · ·
with N ̸= 1, of the Schwarzian equation (154), when W (x) is given by (155).
This corresponds to the fact that, when α ̸= 0, W (x) is no longer of the form
W (x) = −1/2/x2 + · · · (see [30, 31]).
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9. Polynomial examples for F (x).

Modular correspondences, modular curves, correspond to a (transcendental) function
F (x) associated to elliptic functions like (102), (151).

Let us now recall the general results of section (6), which describes the one-
parameter solution-series (122) of the Schwarzian equation (108), and also the partial
differential equations (129), (130), and the fact that these equations are actually valid
for any function F (x).

Let us consider, here, the one-parameter functions y(a, x), corresponding to
miscellaneous polynomial examples of functions F (x), that are, thus, far from
being associated with the previous “classical” modular forms [14, 15, 19] and
hypergeometric/elliptic functions [44, 45].

From the general results of the previous section (6) we will thus get a set of
miscellaneous examples. All the corresponding one-parameter series, below, will verify
the composition rule:

y
(
a, y(a′, x)

)
= y(a a′, x). (174)

All these one-parameter series will also verify:

F
(
y(a, x)

)
= a · ∂y(a, x)

∂a
= F (x) · ∂y(a, x)

∂x
. (175)

One will also consider a polynomial that will be the truncation of the
hypergeometric function (102). One will, then, get a one-parameter solution-series,
very similar‡ to (70), which also verifies the composition rule (72), but does not
correspond to globally bounded series [72].

9.1. A first simple polynomial example for F (x)

Let us now consider the polynomial

F (x) = x · (1 − 373 · x) · (1 − 371 · x) = x − 744x2 + 138383x3, (176)

which has the same first two terms as the series expansion of the hypergeometric
function (102). The function W (x) in the Schwarzian equation, given by (135), reads:

W (x) = −1

2
· 1 − 830298x2 + 411827808x3 − 57449564067x4

x2 · (1 − 373x)2 · (1 − 371x)2
. (177)

A solution of the Schwarzian equation, with W (x) given by (177), reads:

y(a, x) = a · x − 744 · a · (a− 1) · x2 +
1

2
· a · (1245455 a − 968689) · (a− 1) · x3

− 620 · a · (885656 a − 470507) · (a− 1)2 · x4 + · · · (178)

Let us introduce the two limits

Q̃(x) = lim
a→ 0

y(a, x)

a
= x + 744x2 +

968689

2
x3 + 291714340x4 + · · · (179)

and:

X̃(x) = lim
a→∞

y
(
a,

x

a

)
= x − 744x2 +

1245455

2
· x3 − 549106720x4

+
3989599188003

8
· x5 − 461623555588416x6 +

6928370820171415659

16
· x7

− 410201463628637176320x8 + · · · (180)

‡ The three first terms are the same.
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The one-parameter series (178) can actually be written explicitly as:

y(a, x) = X̃
(
a · Q̃(x)

)
. (181)

The series (178) clearly reduces, at a = 1, to y(1, x) = x. Using this remark, together
with the decomposition (181), we see that the series X̃(x) must be the compositional
inverse of the “nome-like” series Q̃(x).

These two series, (179) and (180), are solutions of the two Schwarzian equations†

{Q̃(x), x} +
1

2 · Q̃(x)2
·
(dQ̃(x)

dx

)2

+ W (x) = 0, (182)

and

{X̃(x), x} − 1

2 · x2
−W

(
X̃(x)

)
·
(dX̃(x)

dx

)2

= 0, (183)

where W (x) is given by (177).
In fact one can find a closed exact algebraic expression for the “nome-like” series

Q̃(x). Recalling (131) one can write:

Q̃(x) = exp
(∫ dx

F (x)

)
= x · (1 − 371x)371/2

(1 − 373x)373/2

= x + 744x2 +
968689

2
x3 + 291714340x4 + · · · (184)

Taking into account the fact that X̃(x) is the compositional inverse of Q̃(x), one can
rewrite (181) as a functional equation on the one-parameter series y(a, x) given by
(178):

a · Q̃(x) = Q̃
(
y(a, x)

)
. (185)

Since Q̃(x) is an algebraic function, we see, from (185), that the one-parameter series
y(a, x), given by (178), is actually an algebraic series for any value of the parameter
a (and not only N -th root of unity).

Using the algebraic expression of Q̃(x), given in (184), one deduces that the series
y = y(a, x) is actually solution of:

a2 · x2 · (1 − 371x)371

(1 − 373x)373
− y2 · (1 − 371 y)371

(1 − 373 y)373
= 0. (186)

Taking into account the large degree in x or y of the (polynomial) condition (186),
one should note that it can actually be quite difficult to get this (polynomial) equation
from¶ a large series (178).

The series X̃(x) is also an algebraic series y = X̃(x), solution of:

x2 · (1 − 373 · y)373 − y2 · (1− 371 · y)371 = 0. (187)

Note that, even with a very large series (180), it is also quite hard, because of the high
degree in y of (187), to find the algebraic expression (187), even if it is really simple.

Let us, now, introduce the series

y2 = X̃
(
Q̃(x)2

)
= x2 + 1488x3 + 1521481x4 + 1301919152x5

+
1996564263793

2
x6 + 708980642952488x7 + · · · (188)

† The same Schwarzian equations as (17) and (18) in subsection (1.4).
¶ Using, for instance, the command seriestoalgeq of gfun of Bruno Salvy.
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This series (188) is an algebraic series, solution of Q̃(y) = Q̃(x)2. The compositional
inverse of series (188), is the series

y1/2 = X̃
(
Q̃(x)1/2

)
= ω · x1/2 − 744x +

1246199

2
· ω · x3/2

− 549660256x2 +
3995160282965

8
· ω · x5/2 + · · · (189)

where ω2 = 1. This series (189) is an algebraic series, solution of Q̃(x) = Q̃(y)2.
These two series, (188) and (189), are solutions of the Schwarzian equation with W (x)
given by (177).

Remark 9.1: The algebraic equations Q̃(y) = Q̃(x)2 and Q̃(y) = Q̃(x)2, and
their corresponding algebraic series solutions (188) and (189), could be seen to be
the “equivalent” of the modular equation (34), and its corresponding algebraic series
solutions (36) and (37). However, one should note that the modular equations, like
(34), are x ↔ y symmetric, and, consequently, the modular equation (34) represents
q → q2 and q → q1/2 in the same time (see series (36) but also (37)). In contrast,
Q̃(y) = Q̃(x)2 (resp. Q̃(y) = Q̃(x)2) breaks the x ↔ y symmetry. Therefore, the
“equivalent” of the modular equation (34) is rather:(

Q̃(y) − Q̃(x)2
)
·
(
Q̃(x) − Q̃(y)2

)
= 0. (190)

The one-parameter series (178) verifies the composition rule:

y
(
a, y(a′, x)

)
= y(a a′, x). (191)

The series (178) also verifies the relations:

F
(
y(a, x)

)
= F (x) · ∂y(a, x)

∂x
= a · ∂y(a, x)

∂a
. (192)

9.2. Truncation of the hypergeometric function F (x).

The hypergeometric function F (x) given by (102), expands as x−744x2−393768x3 +
· · · Let us consider a simple truncation of this hypergeometric function:

F (x) = x − 744x2 − 393768x3. (193)

From (135) one deduces:

W (x) = −1

2
· 1 + 2362608x2 − 1171853568x3 − 465159713472x4

x2 · (1 − 744x − 393768x2)2
. (194)

The Schwarzian equation (108) with the previous W (x), namely (194), has the
following one-parameter solution-series:

y(a, x) = a · x − 744 · a · (a− 1) · x2 + 36 · a · (a− 1) · (9907 a− 20845) · x3

− 80352 · a · (a− 1)2 · (264 a− 9379) · x4 (195)

− 648 · a · (a− 1)2 · (250310357 a2 + 598043050 a− 1207272939) · x5

+
482112

5
· a · (a− 1)3 · (1944308192 a2 − 424834349 a− 8498464743) · x6 + · · ·

This one-parameter series (195) is quite similar† to the one-parameter series (70). The
series (195) actually verifies the composition rule:

y
(
a, y(a′, x)

)
= y(a a′, x). (196)

† The first three coefficients are actually the same.
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Let us introduce the two limits

Q̃(x) = lim
a→ 0

y(a, x)

a
= x + 744x2 + 750420x3 + 753621408x4 (197)

+ 782312864472x5 +
4097211834177216

5
x6 +

4331866321367059104

5
x7 + · · ·

and:

X̃(x) = lim
a→∞

y
(
a,

x

a

)
= x − 744x2 + 356652x3 − 21212928x4 (198)

− 162201111336x5 +
937374311061504

5
x6 − 563689525139743392

5
x7 + · · ·

Again these two series (197) and (198) verify the Schwarzian equations (182) and (183)
but with W (x) now given by (194). One verifies that the one-parameter series (195)
is actually of the form:

y(a, x) = X̃
(
a · Q̃(x)

)
. (199)

Again, from (199) and from the fact that y(a, x) = x for a = 1, we see that the
series (198) is actually the compositional inverse of the “nome-like” series (197):

y(1, x) = x = X̃
(
Q̃(x)

)
. (200)

The one-parameter series (195) is also solution of

a · ∂y(a, x)
∂a

= F (y(a, x)) = F (x) · ∂y(a, x)
∂x

, (201)

and one can deduce, from (199), the following functional equation on the one-
parameter series y(a, x) given by (195):

Q̃
(
y(a, x)

)
= a · Q̃(x). (202)

Conversely, from (202), we get, recalling (137)

dy

F (y(a, x))
=

dx

F (x)
+

da

a
, (203)

which gives for a fixed

F (y(a, x)) = F (x) · ∂y(a, x)
∂x

, (204)

and for x fixed:

a · ∂y(a, x)
∂a

= F (y(a, x)). (205)

Let us introduce the series¶

y2 = X̃
(
Q̃(x)2

)
= x2 + 1488x3 + 2053632x4 + 2621653632x5

+ 3244440682476x6 +
19627900112688192

5
x7 +

23401843163094440736

5
x8

+
193179165341208747259392

35
x9 + · · · (206)

This series (206) is solution of the Schwarzian equation (108), with W (x) given by
(194), and is also solution of

2 · F (y2) = F (x) · ∂y2
∂x

, (207)

¶ Note that this series has the same first three coefficients than series (36).



Replicable functions 32

i.e.

2 ·
(
y2 − 744 y22 − 393768 y32

)
=

(
x − 744x2 − 393768x3

)
· ∂y2
∂x

, (208)

and one also has:

Q̃
(
y2(x)

)
= Q̃(x)2. (209)

Let us, now, introduce the one-parameter series

y
(a)
2 = y(a, y2) = X̃

(
a · Q̃(x)2

)
= a · x2 + 1488 a · x3

− 24 · a · (31 a− 85599) · x4 − 35712 · a · (62 a− 73473) · x5

+ 36 · a · (9907 a2 − 130673184 a+ 90254015568) · x6 (210)

+
160704

5
· a · (49535 a2 − 262999040 a+ 122399922528) · x7 + · · ·

This one-parameter series (210) is solution of the Schwarzian equation (108), with
W (x) given by (194). It is also solution of

Q̃
(
y
(a)
2 (x)

)
= a · Q̃(x)2, (211)

and also solution of

2 · F (y
(a)
2 ) = F (x) · ∂y

(a)
2

∂x
= 2 · a · ∂y

(a)
2

∂a
. (212)

where

F (x) = x − 744x2 − 393768x3 = x ·
(
1 − p · x

)
·
(
1 − q · x

)
, (213)

with:

p = 372 + 6 · 147821/2, q = 372 − 6 · 147821/2, (214)

Let us denote

α =
1

2
· p+ q

q − p
= − 31

14782
· 147821/2 = −0.25497 · · · (215)

Following the previous calculations in subsection (9.1), one easily finds that the “nome-
like” series (197) reads:

Q̃(x) =
x · (1 − p · x)p/(q−p)

(1 − q · x)q/(q−p)
=

x(
(1 − p · x) · (1 − q · x)

)1/2
·
(1 − p · x
1 − q · x

)α

= x + 744x2 + 750420 x3 + 753621408x4 + 782312864472 x5

+
4097211834177216

5
x6 +

4331866321367059104

5
x7 + · · · (216)

This “nome-like” series (216) is actually D-finite. It is solution of the order-one
linear differential operator (θ = x · Dx is the homogeneous derivative):

L1 = F (x) ·Dx − 1 = (x − 744x2 − 393768x3) ·Dx − 1

= (1 − 744x − 393768x2) · θ − 1. (217)

The radius of convergence of the “nome-like” series (216) is 1/p, with p given by
(214):

R =
1

p
=

147821/2

65628
− 31

32814
= 0.0009078632370 · · · (218)
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This “nome” series (216) is D-finite, with a finite radius of convergence, but it is not
globally bounded. Note that X̃(x) is only a differentially algebraic function.

Note that the order-one linear differential operator L1, given by (217), is not
globally nilpotent [77]. The corresponding p-curvatures are null (or nilpotent that is
the same for order-one linear differential operators) for the following primes:

3, 11, 13, 17, 23, 31, 47, 61, 73, 79, 89, 101, · · · (219)

but non-zero for the following primes:

5, 7, 19, 29, 37, 41, 43, 53, 59, 67, 71, · · · (220)

Note that, since 14782 = 2 · 19 · 389, we could have expected that one does not
see the transcendence of the “nome” mod. 19, the “nome” reducing to an algebraic
function (see (214), (215)), and, thus, one could expect a zero p-curvature. This is
not the case.

Note that the exponent of the “nome-like” series (216), at the singularity
x = 1/p, is

p

q − p
= −1

2
− 31

147821/2
= −0.7549735291 · · · (221)

which is not a rational number. This rules out the fact that the order-one linear
differential operator (217) could be globally nilpotent [77].

Let us consider the simplest example of series y(a, x), namely the (involutive)
series (195) for a = −1:
y(−1, x) = −x − 1488x2 − 2214144x3 − 3099337344x4 − 4030574598144x5

− 23640158283604992

5
x6 − 23310435220175683584

5
x7 (222)

− 20590422517553304526848

7
x8 +

12494610391145690921435136

7
x9 + · · ·

Calculating the first fifty coefficients of this series, one can see that this (involutive)
series is not globally bounded.

10. Comments and speculations on differentially algebraic series.

We have displayed miscellaneous series solutions of Schwarzian equations (and thus
having a compositional property [30, 31]), which can be seen to be, or to generalize,
modular correspondences [70]. We remark that we have the following situation:
we have series depending on one parameter (sometimes two parameters for slightly
“academical” examples like in subsection (8.1)), which reduce to series with integer
coefficients for an infinite set of values of the parameter(s), namely the integer values‡.
These one-parameter series are generically, only differentially algebraic, even for
integer values of the parameter (where they are probably not even D-finite, see for
instance (98)). In contrast, and remarkably, when the parameter is a N -th root of
unity, the generically differentially algebraic one-parameter series become algebraic
functions. We thus have an infinite number of algebraic functions.

It is interesting to note that a totally and utterly similar situation have been seen
to occur in other very interesting situations in physics, or enumerative combinatorics.

‡ More generally, for rational values of the parameters we have globally bounded differentially
algebraic series.
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Along this line, differentially algebraic series with integer coefficients¶ exist, and
correspond to remarkable solutions of differentially algebraic equations in physics,
or enumerative combinatorics, like λ-extensions of Ising correlation functions [78, 79],
or solutions of a differentially algebraic Tutte equation [80]. We have an infinite set of
differentially algebraic series with integer coefficients that are not D-finite [80, 78, 79].
We also have the occurence of an infinite number of algebraic series for an infinite set
of Tutte-Beraha values of the λ parameter. Note that these selected values can also
be seen as N -th root of unity situation.

At first sight, these Tutte-Beraha examples [80], or λ-extension of correlation
functions of the Ising model [78, 79], are not related to Schwarzian equations with
their composition function properties†. Is it possible that such differentially algebraic
series could also reduce (in a more or less involved way ...) to exact decompositions

like X
(
ω · Qn(x)

)
, that we found systematically throughout this paper, since many

of the results of this paper are, in fact, consequences of such exact decompositions ?

• One motivation of this paper was to understand the very nature of the one-
parameter series y(a, x) : we have seen that this series cannot be solution of an
order-N linear differential operator (for some integer N independent of the parameter
a) with coefficients polynomials in x and in the parameter a.

• The relation between the Schwarzian equations (such that W (x) = −1/2/x2 +
· · · , see [30, 31]), and modular correspondences was also an important motivation. The
solutions of the Schwarzian equations are larger that just the (infinite) set of “modular
correspondences”, precisely because of the occurrence of one-parameter series y(a, x).
Along this line we have first seen that the solution of the Schwarzian equations can
actually correspond to series with more than one parameter. Modular correspondences
are associated with modular curves and modular forms [14, 15, 16]. Consequently,
another question was to know if one can generalize these concepts beyond the elliptic
curves and modular forms framework.

We have also shown, with very simple (polynomial) examples for the function
F (x), that these structures can actually be generalized far beyond the elliptic curve
(modular curve, Shimura curves, modular form, automorphic form) framework. Along
this line, a first polynomial example (9.1) provides an example of one-parameter series
y(a, x), algebraic for any value of the parameter. We also found that the equivalent of
the nome is a simple algebraic function (square root of a rational function). With that
example one also understands why it can be extremely hard to see that some series are
algebraic, even if the algebraic function to guess is of a quite simple form. Furthermore,
a “truncated” example (9.2) shows that the “modular equation-like” series (see for
instance (206), (222)) can actually be non globally bounded. The “nome-like” series is
a non globally bounded but still D-finite, series (see (217)), the corresponding linear
differential operator being non globally nilpotent.

11. Conclusion

This paper provides a simple, and pedagogical, illustration of exact non-
linear symmetries in physics (exact representations of the renormalization group

¶ Not simply reducible to ratio of globally boundedD-finite series, or composition of globally bounded
D-finite series.
† These λ-extension of Ising correlation functions are solutions of Painlevé equations [78, 79].
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transformations like the Landen transformation for the square Ising model [32, 33], ...)
and is a strong incentive to discover more differentially algebraic equations involving
fundamental symmetries, and to develop more differentially algebraic series analysis in
physics [80, 81], beyond examples like the square-lattice Ising model [81, 78, 79, 88, 89].

In this paper we first focused, essentially, on identities relating the same
hypergeometric function with two different algebraic pullback transformations related
by modular equations. This corresponds to the “classical” modular forms [19] (resp.
automorphic forms) that emerged so many times in physics [46, 47, 72]: these algebraic
transformations can be seen as simple illustrations of exact representations of the
renormalization group of some Yang-Baxter integrable models [32, 33, 69]. These
transformations are seen to be solutions of some Schwarzian relation.

The Schwarzian relation is seen to “encapsulate”, in one differentially algebraic
(Schwarzian) equation, all the modular forms and modular equations of the theory of
elliptic curves. The Schwarzian condition can thus be seen as some quite fascinating
“pandora box”, which encapsulates an infinite number of highly remarkable modular
equations, and a whole “universe” of Belyi-maps‡. It is important, however, to
underline that these Schwarzian conditions are actually richer than just elliptic
curves, and go beyond†† “simple” restrictions [87] to pullbacked 2F1 hypergeometric
functions. In a more general perspective, such Schwarzian conditions occur in
Malgrange’s pseudo-group approach [61, 62, 63, 68] of D-enveloppes. At this level
of mathematical abstraction, the question of a modular correspondence interpretation
of these “Schwarzian” series was clearly an open question. This paper sheds some light
on this open question. It sheds some light on the very nature of a one-parameter series
solution of the Schwarzian equation, which is not generically a modular correspondence
series, but actually reduces to an infinite set of modular correspondence series for an
infinite set of (N -th root of unity) values of the parameter. This paper also provides
(polynomial) examples that are very similar to modular correspondence series, but are
far beyond the elliptic curves framework.
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intercontinental de Matemàticas PUCP-UVa 2015 CIMPA Research school ”Transformation
Groups and Dynamical Systems”

[64] G. Casale and Julien Roques, Dynamic of rational mappings and difference Galois theory, Int.
Math. Res. Notices 2008 (2008)
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