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Abstract.

Landen transformation, and more generally modular correspondences, can
be seen to be exact symmetries of some integrable lattice models, like the
square Ising model, or the Baxter model. They are solutions of remarkable
Schwarzian equations and have some compositional properties. Most of the known
examples correspond, in an elliptic curves framework, to an automorphy property
of pullbacked 2F7 hypergeometric functions, associated with modular forms. It
is, however, important to underline that these Schwarzian equations go beyond
an elliptic curves, and hypergeometric functions framework. The question of
a modular correspondence interpretation of the solutions of these “Schwarzian”
equations was clearly an open question. This paper tries to shed some light
on this open question. We first shed some light on the very nature of a one-
parameter series solution of the Schwarzian equation. This one-parameter series
is not generically a modular correspondence series, but it actually reduces to an
infinite set of modular correspondence series for an infinite set of (N-th root of
unity) values of the parameter. We also provide an example of two-parameter
series, with a compositional property, solution of a Schwarzian equation. We
finally provide simple pedagogical examples that are very similar to modular
correspondence series, but are far beyond the elliptic curves framework. These
last examples show that the modular correspondence-like series, or the nome-like
series, are not necessarily globally bounded. The results of that paper can be seen
as an incentive to study differentially algebraic series with integer coefficients, in
physics or enumeratice combinatorics.
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Replicable functions 2
1. Introduction: infinite order symmetries.

There is no need to underline the crucial role played by the concept of symmetry
in physics, theoretical physics, mathematical physics. = We will not consider
here continuous symmetry groups (Lie groups) but rather discrete symmetries,
not necessarily corresponding to geometrical symmetries (Coxeter groups, Weyl
groups of infinite-dimensional Kac—Moody algebras), or finite groups. At first
sight we do not expect any representation of these discrete symmetries as linear
transformations of vector spaces (no representation theory). Examples of such discrete
symmetries, without representation as linear transformations, are, for instance,
birational transformations [I, 2], which are known to be (infinite order) discrete
symmetries of integrable models [3, 4]. Such discrete symmetries can be studied,
per se, in a discrete dynamical perspectiveﬁ.

The simplest example of such discrete symmetries corresponds to a (univariate)
transformation « — y(z) preserving some structuredi. These structures must be
invariant, or covariant, under the previous transformations @ — y(z). The simplest
example of “structure” is certainely just a function. Let us consider a function
®(z), let us discard the (too simple) invariance situation, where we have a functional
equation ®(y(x)) = @(z), and let us consider the following “covariance” property
for a function ®(x)

o(y@) = Aw@)- o), 1)

where the “automorphy” cofactor A(x) can be described in terms of the symmetry
transformation y(x). Along this line the function ®(z) can be seen as an
“automorphic” function [I0] with respect to the transformation z — y(z): the
composition of the transformation y(z) with itself, clearly yields another “covariance”
or “automorphy” property

o(yw@)) = Ay@)-o(y@) = (A(y@)- A@)- 2@, @)

and so on, for every n-th iteration of y(z) with itself. From a mathematical view-
point such an “automorphy property” (Il) is reminiscent of the theory of automorphic
forms [10] [TT), 12} 3] (which can be generalized to Hilbert modular forms for two, or
more, variables), which generalizes the theory of modular forms [14L 15l 16l 17, 18| 19].
In the case where y(x) is not only a rational function, but a linear fractional
transformation, the “covariance” property () can be illustrated by the Poincaré
series [20, 2T 22], and other Theta-Fuchsian functions or series [I3| 23| [24] 25].
From a physics view-point such an “automorphy property” () is reminiscent of the
renormalization group theory, revisited by Wilson [26] 27], seen as a fundamental
symmetry in lattice statistical mechanics or field theory. The graduate student
example of exact renormalization calculation of the partition function of the one-
dimensional Ising model, displayed in [2§], relies on an “automorphy relation”
), where ®(x) is the partition function per site, and y(x) corresponds to the
renormalization transformation symmetry tanh(K) — tanh(K)?2.

In the following we will not restrict the transformation symmetry y(z) to be a
linear fractional transformation: the function y(z) is a series, analytic at = = 0, it

1 One can recall that the theory of iteration of rational functions was seen, in the pioneering work
of Julia, Fatou and Ritt, as a method for investigating functional equations [5} [6, [7] 8]

1 These structures can be linear (or non-linear) differential equations, systems of partial differential
equations [9], functional equations, etc ...
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can be a rational function, an algebraic function, a D-finite function, a D-D-finite
functiorEI, a differentially algebraic functiorﬂ,

To be more specific, let us give a simple, but highly pedagogical, illustration
of a “covariance” property (I, which corresponds to ®(z) being a selected oF}
hypergeometric function [30] B1]

1 5 1 5
2 (I3 b 1 9@) = A@-2A (5 15 1 @), 3)

where the “automorphic prefactor” A(x) reads
w(@) o 2
A@) = A+ ( (@) (4)
u(y(x))
and where wu(z) is related [30, BI] to the wronskian of the order-two linear
differential operator annihilating ®(x), namely the oF; hypergeometric function

2F1([%7 1_52]a [1]7 'I)

1.1. Modular forms, correspondences and physics.

The simplest example of a transformation * — y = y(z) occurring in the
“automorphy” relation (B]), or occurring as an ezxact generator of the renormalization
group of the square Ising model, or even of the Baxter model [32], corresponds to the
Landen transformation [32] [33]

2Vk .
T+k (5)
or to its compositional inverse, the inverse Landen transformation. As it should, the
eritical point of the square Ising model (resp. Baxter model) is a fized point [32] of
the Landen transformation: k£ = 1.

Let us introduce the j—invariantﬂ of an elliptic curve of modulus k, and its
transform by the Landen transformation ()

k — kL:

_ (1— K2+ k)3 , (1414 k% + k)3
k) = 256 —(————5 kr) = 16- 6
(k) e ) e ©
and let us also introduce the two corresponding Hauptmoduls [32):
1728 1728
) ) "

These two Hauptmoduls (7)) are related by the modular equation [35, 36} 37, [38] [39, 40]:
1953125 23y — 187500 2%y? - (z +y) + 375 xy - (16 2% — 4027 xy + 16 y?)
— 64 (z+y)- (22 + 1487 zy +y?) +1105922y = 0. (8)

The algebraic function y = y(z), defined from the modular curve ({), is a multivalued
function, but we can single out the series expansionfi:
9 31 3 1337 4 349115 5
— . _|_ [ 3 Y 1 + _ .
1728 62208 3359232 1088391168

94 A D-D-finite function is a function solution of a linear differentiable operator with D-finite function
coefficients [29].

11 A differentially algebraic function is a function solution of a non-linear differential equation of the
form P(z, y, v, y", - y(™) = 0, where P is a polynomial.

f The j-invariant [32] [34] (see also Klein’s modular invariant) regarded as a function of a complex
variable 7 (the ratio of periods), is a modular function of weight zero for SL(2, Z).

11 This series (@) has a radius of convergence 1, even if the discriminant of the modular equation (&])
which vanishes at x = 1, vanishes for values inside the unit radius of convergence, for instance at
x = —64/125.

y:
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20662501 O 1870139801 4 )
78364164096 8463329722368

The transformation x — y(x) = y, where y is given by the modular equation (§]), is
thus an algebraic transformation, corresponding to the Landen transformation (&), or
to the inverse Landen transformation. The emergence of a modular form [41], [42] [43]
corresponds to the remarkable automorphy identity (@) on the same hypergeometric
function, but where the pullback z is changed © — y(x) = y, according to the
modular equation ().

Let us consider another important modular equation. The modular equation of
order three corresponding to 7 — 3- 7, 0r 7 — 7/3, reads@:

E* 4+ 12K +6k20% +12k0° + 07 —16K°)% —16kX = 0. (10)
Recalling that

27 K. (1—k%)2 1728 27 M. (1-x3)° 1728
TS T WoEry w1 et - ooy WY
gives a modular equation P(z, y) = 0, yielding the series expansion:
z3 31z* 36221 2° 29537101 8

Y7 5085084 + 71663616 + 82556485632 + 71328803586048 (12)

Note that these two series (@) and ([2) commute. An alternative rational
parametrization of this last modular equation P(x, y) = 0 can be found in [19]:

17281 and 1728 ¢3 (13)
xTr = 1na: = .
(t+27)- (t+3)° Y7 [+ 27)- (t+243)3
Again we have an automorphy relation ([B) where y(x) is given by ([I2) with an
algebraic “automorphic prefactor” A(x).

1.2. Schwarzian condition

More generally, the Gauss hypergeometric function oF;([e, 8], [7], ) is solution of
the second order linear differential operatorﬁ:

Q = D? 4+ A(z)- D, + B(xz), where: (14)
5 = (a+B+1)-z -y  v(z) 2 = af
Al) x- (x —1) u(z)’ B(x) x- (x —1)

An automorphy relation, like @) but on 2Fi([a, 5], [7], ), amounts to saying that
the second order linear differential operator (I4]), pullbacked by = — y(x), reduces to
the conjugate of the linear differential operator (I4)). Let us assume that the pullback
y(x) is an algebraic series like in (@) and ([I2]). A straightforward calculation [31] allows
to find the algebraic cofactor A(z) in terms of the algebraic function pullback y(x):

Alw) = A (s @) (15)

Expression (IH) for A(z) is such that the two order-two linear differential operators (of
a similar form as (I4])) have the same D, coefficient. The identification of these two

€ Legendre already knew (1824) this order three modular equation in the form (kX)1/2 4 (k'N\)1/2 =
1, where k and k’, and X\, X’ are pairs of complementary moduli k2 + k2 = 1, A2 + X2 = 1, and
Jacobi derived that modular equation [45] [46].

t Note that A(z) is the log-derivative of w(z) = z7- (1 —z)*HA+1-7,
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linear differential operators thus corresponds (beyond (&) to just one (non-linear)
condition that can be rewritten (after some algebra ...) in the following Schwarzian
form:

W(z) —W(y)- (@) + {y(x),z} = 0, (16)

where

2. B), (17)
and where {y(x), z} denotes the Schwarzian derivative [47]:

b - Gl 3 (A - A 1)

For oF) ([1—12, 2], [1], ), the “automorphy” condition () yields the Schwarzian
condition (I6]) with:

322% — 41z + 36

7222 (x —1)%
The algebraic series [@) and ([I2)), associated with different modular equations (like
@), are both solutions of the same Schwarzian condition [I6) with W(z) given by
(@3). These two modular correspondences series (@) and ([I2), associated with modular
curves, are thus algebraic series. Consequently, the prefactor (I3 is an algebraic
Sfunction.

W(z) = (19)

1.8. One-parameter solution series of the Schwarzian condition ([I6)

Trying to generalize the modular equation (§), and its associated algebraic series (@),
let us try to find the series of the form a - x? + ---, solutions of the Schwarzian
equation ([I6) with W (x) given by ([@9). It is straightforward to find that such series
is, in fact, the following one-parameter series:

31-ax®  a- (5952a—9511) , a- (14945472 — 11180329)

P . 2 J— . J— . 5
N T 13824 v 20155392 v
o~ (88746430464 a? — 677409785856 a + 338926406215)
n S8 4 (20)
743008370688

which actually reduces to (@) for a« = 1/1728. Similarly, one also finds a one-
parameter family of solution-series of the Schwarzian condition () of the form
b- a3 4+ .-, namely

316 4 362210 4 b- (23141376b — 66458485)

o1 7 27648 ¢ T 53747712 '
b- (183649959936 b— 187769367601) .

- 165112971264 STt (21)

which reduces to (I2) for b = 1/2985984 = 1/1728>.

Remark [[11: Generically the two series ([20) and (21) are differentially algebraic
series (being solution of a Schwarzian condition (I6), with W (x) given by (I9)). For
selected values of the parameter, like a = 1/1728 and b = 1/17282, these series
become algebraic series (correspondences associated with modular curves). Are there
other selected values of the parameters for which the series becomes an algebraic
series 7 Are there selected values of the parameters for which the series become (non

ys = b-a® +
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algebraic) D-finite series ? Are there selected values of the parameters for which the
series become D-D-finitd]] series [48, [49] ?

1.4. The nome and mirror maps

Let us recall the concept of mirror map [411, 42} 50, 511 52, 53] [54] relating the reciprocal

of the j-function and the nome, with the well-known series with integer coefﬁcient&ﬁ :
X(q) = q —744¢% +356652¢° — 140361152¢* + 49336682190 ¢°

— 16114625669088 ¢° + 4999042477430456 "  + --- (22)

and the nome which is its compositional inverse:

Q(x) = x +7442% +7504202° + 8727696322 4 1102652742882 z°
+ 1470561136292880 2° + 2037518752496883080 27 + - (23)

The series ([22)) corresponds to x being the reciprocal of the j-function: 1/j . As a
consequence of the (modular form) hypergeometric identities @3)) (see (), we need z
to be identified with the Hauptmodul 1728/j.

The series X(q) = 1728 - X(q) (with X(g) given by ([@22)) is solution of the
Schwarzian equation:

X (Q))Q = 0. (24)

{X(9), ¢} —2%2 —W(X(Q)>'( a

The series Q(z) = Q(x/1728) (with Q(x) given by [23)) is solution of the Schwarzian

equation:

1 dQ(z) ) ?

. %% = 0. 25

QW) 2} + 5 (=2) +w@ (25)

The two mirror map series ([22)), 23] thus correspond to differentially algebraic [55],[50]

series: they are solutions of simple (non-linear) Schwarzian equations like in (I8]).
The two one-parameter series ([20) and (2I) correspond respectively to:

X(a : Q(IV) and: X(b : Q(x)?’). (26)
More generally, all the series
ynla, ) = X(a-Q)"), (27)

are solutions of the Schwarzian condition (I6]). For the selected values a = 1/1728"~}
these series (27)) turn out to be algebraic series: they are series actually associated with
correspondences, modular curves. The composition of two such series is also solution
of the Schwarzian condition ([I@). One easily finds that

yn(aa ym(ba LL‘)) = ymn(a' b", ,T) = a-b"- 2™ + .-
ym(b, yn(a, x)) = Ymnb-a™ ) = b-a™ 2™ + .- (28)
Generically the two series y, and ¥y, do not commudte.

1 D-finite functions are solutions of linear differential operators with polynomial coefficients, D-D-
finite series are solutions of linear differential operators with D-finite function coefficients, etc ...

t In Maple the series ([22) can be obtained substituting L = E‘llipticModulus(q1/2)27 in
1/j = L?- (L —1)?/(L? — L + 1)3/256. See https://oeis.org/A066395 for the series @2) and
https://oeis.org/A091406 for the series ([23)).
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Remark [M12: Do note that these two series do commute for the selected values
a= 1/1728""1 and b = 1/1728™~ 1, of the parameters a and b, actually associated
with modular correspondences (algebraic series). In that case, one has the identity:

n m 1 1 n 1

o bt =bra" = T (1728m—1) ~ Tragme (29)
Also note that if one assumes that the parameters a (resp. b) are of the form
p"1 (resp. p™7!) with p different from 1/1728 or 1, the series y,(a, z) and
ym (b, ) still commute@, even if they are not algebraic series but only differentially
algebraic series. The compositional identities (29) are inherited from the fact that the
composition of two algebraic series is an algebraic series, and that the composition
of two solutions of the Schwarzian condition () musﬂ also be a solution of the
Schwarzian condition ([I8). Such properties are reminiscent of the concept of replicable
functions [57, 58, 59, 60, 61, [62] 63, [64].

This set of solution series ([27)) of the Schwarzian condition (@], can also
be obtained by the composition of algebraic series associated with modular
correspondences (which have no parameter, see (@), ([I2), ...), together with the

following one-parameter series X (e : Q(x)) also solution of the Schwarzian condition
(I8). This series reads:

yle,z) = e-x +e-(e—1)- Se(a), where: (30)

31, (9907Te—20845)

Sel) = g 82944

4386286 €2 — 20490191 27274051

_( e et )-:1:4 L. (31)
161243136

Remark [13: It is straightforward to see that the series [B0) is an order-N
transformation when the parameter e is a N-th root of unity: e = 1. These N-th

root of unity are, thus, clearly selected values of the parameters. Are all these N-
th root of unity series algebraic series, or just D-finite series, or simply differentially
algebraic series ?

1.5. Multivaled functions and reversibility

The Landen algebraic transformation (B amounts to multiplying (or dividing because
of the modular group symmetry 7 < 1/7) the ratio 7 of the two periods of the elliptic
curves: 7 <— 27. The other (isogeny) transformationﬂ correspond to 7 <> N -,
for various integers N.

We, thus, see that a modular equation, like (), yields multivalued functions
corresponding to the different series solutions of the modular equation (for instance
@) and its compositional inverse). More generally, for 7 <> N - 7, we will have series
like 1/1728N-1. 2N 4+ ... and also (their compositional inverse Puiseux series)
1728 N=1)/N | 21/N L ...

In the textbooks the renormalization group is often presented as a semi-direct
grou[ﬂ. In fact the renormalization group generators have no reason to be such

€ In terms of the nome, this amounts to noticing that transformations g — a”~ ! . ¢"

qg— a™ 1.¢g™ commute.

t This is also a clear consequence of the automorphy property ().

11 See for instance (2.18) in [34].

# In most of the graduate text book on renormalization group, the critical fixed point is an attractive
fixed point. There is an “arrow of time”. The renormalization group is seen as an irreversible process.

and
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irreversible transformations. They are, at first sight, reversible transformations.
The modular equation (§) has a z ¢+ y symmetric polynomial, corresponding
to the Landen transformation, as well as its compositional inverse, the inverse
Landen transformation. These two transformations are both exact generators of the
renormalization group of the square Ising model, or of the Baxter model [32]. With
this exact renormalization group representation we see that the modular equation
restores, as a consequence of its x <> y symmetry, the reversible character of the
renormalization group, the price to pay being that the function y(x) is actually
multivalued.

The Schwarzian condition ([I6) encapsulates [30,[31] an infinite number of modular
correspondences associated with their modular curves and modular forms [14} [15] 16].
In these cases the automorphy relation (3] corresponds to algebraic function prefactors
A(z). However, for series with one-parameter, like [20) and (2I)), which are
generically differentially algebraic, we still have an “automorphy” relation (@), but
with differentially algebraic “automorphy” prefactors A(xz). We cannot expect a
modular equation, but is there a way to still see such transformations (20) and
@I)), as “correspondences” with some “appropriate” generalization of the concept
of correspondences ?

1.6. Correspondences, Schwarzian conditions and replicable functions

The Schwarzian condition (I6]) coincides exactly with one of the conditions G. Casale
obtained [65], [66] 67, 68], [69] [70, [71] in a classification of Malgrange’s D-envelopes and
D-groupoids [72] on P;. Denoting y'(x), y”(z) and y"'(z) the first, second and third
derivative of y(x) with respect to x, these conditionsﬁ read respectivel

D) — ) + L)
) y'(@) — @) + s 0, (32)
s W) 3 @)y
o) @) =)+ T =S () = o (33)
together with ~(y) - v'(z)™ — v(x) = 0 and h(y) = h(x), corresponding

respectively to rank two, rank three, together with rank one and rank nul groupoids,
where v(x), p(z), v(x) are meromorphic functions (h(x) is holomorph).

The previous examples of Schwarzian condition (Il correspond to elliptic curves
(modular curves, modular forms and modular correspondences), through pullbacked
oFy hypergeometric functions [I9]. In subsection 3.2 of [30] we have seen that the
Schwarzian condition (I6) can actually occur with Heun functions which cannot be
reduced to pullbacked o Fy hypergeometric functionﬂ, and which do not correspond to
globally bounded [43] [44] series. Similarly, we have seen Schwarzian conditions (8]
corresponding to (non globally bounded) pullbacked oF; hypergeometric functions,
associated with Shimura curves [75 [76]. The Malgrange-Casale approach for
Schwarzian conditions (B3) suggests that one should be able to find examples of
such Schwarzian conditions far beyond modular curves, or even Shimura curves (and
their associated modular forms [I4] 15, [16] and automorphic forms [10]). If such
generalizations exist, are they also associated with one-parameter series 7 How

1 Casale’s condition ([32) is exactly the same condition as the one we already found in [73], and this
is not a coincidence.

€ More generally see the concept of differential algebraic invariant of isogenies in [74].

11 See for instance the two Heun functions given by (164) in [77].
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to describe them 7 Can they necessarly be seen, eventually, as generalization of
correspondences ?

In the next section we will first revisit the previous “classical” modular
correspondence results with a different normalization of the pullback (see ([B4) below)
which makes the occurrence of series with integer coefficients crystal clear. Revisiting
these calculations with a key role played by a function F(z) defined below by (I70),
we will be able to find some new partial differential equations (see (I91), or (I98)
below), in the parameter of the seriesﬁ. These new equations will help us to find many
examples of replicable-like [568] (9, [60, [61) [62] functions far beyond modular curves or
Shimura curves |75} [76].

2. Recalls

Some part of this section will be reminiscent of the results explained in [30], with
the difference that we have another normalization of the pullback, corresponding to
change © — 1728z, the “automorphy” relation [B]) thus becoming

oA (I b 11,1728 3) = A@)-oF (Ig5, ol [0, 1728- 7). (34)
Wheremz

Alw) = 3+ (s @) (35)

As a consequence the (pullback) algebraic series y = y(z), corresponding to isogenies
like @), ([2), ... are normalized as * — ¥ + ... and are series with integer
coefficients.

In our case, taking into account the exact expression of the wronskian, one has
u(z) = x- (1 —1728z)'/2, and, thus, we get:

S (1 —1728x)1/2 1/2

A- (x ( iy y ;v) i

y- (1 — 1728 )1/
Taking the square of ([34) we can thus rewrite the “automorphic” relation (34)) as

Alz) =

(36)

1 5 2
Aoy (U=1728- )25 (I o3l (1, 1728 )
1 5 2 d
= 2 (1 -1 )Y R (I, ol T8 a) - L @)
which is, in fact, nothing but
dz dy
A = =~ 38
Flo) ~ Fly) 38)
where F(z) reads:
1 5 2
F(x) = z- (1 —1728- 1)1/2. o F ([ﬁ’ 5]7 [1], 1728 - x) (39)

= x —T442® —3937682° — 357444672x" — 3948967270802° +
The elimination of the “automorphic” cofactor A(z) gives the Schwarzian equation
on y(z)
W(z) —Wy@) - y'@)?® + {y@),z} = 0, (40)

T See also ([229) below for more parameters.
€ Note a typo in (92) in [30]. the exponent —1/2 in (92) must be changed into 1/2.
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where now

1 1 —19687 + 2654208 22
W = ——. 41
(=) 2 22 (1 —17282)2 (41)

namely:

1 1 — 19682 + 2654208 2

2 22 (1 —17282)?

1 — 1968 y(z) + 2654208 y(x)>
y(@)? - (1 —1728y(2))>

> Y@ +ly), e} = o

3. Modular equation, modular correspondence

3.1. ¢ — ¢
Let us consider the modular equatior&:
To(x,y) = zy — (x+y)- (22 +1487xy +y?)
+10125- zy - (162% — 4027 xy + 16 4?) (43)
— 8748000000 - x2 y* - (x +y) + 157464000000000 - x> y> = 0,

which has the following rational parametrization [19]:

2
x = m and: y = (t—f—tTG)?’ (44)
It has the following algebraic series solutions with integer coefficients
yo = x® +14882% + 20536322 + 2859950080 2° + 4062412996608 z°
+ 5882951135920128 27 + 8664340079503736832 2% + - (45)
and
Yip = w-a? —744. 2% £357024- w- 2¥/? — 140914688 - 2V/?
+ 49735011840 - w - 2°/2 —16324041375744- 25/2 4+ ... (46)
where w? = 1 (i.e. w = £1). These two algebraic series can be written respectively:
X(Q(m)Q) and: X(w . Q(x)l/Q). (47)

They amount, respectively, to changing the nome as follows: ¢ — ¢2, together with
its compositional inverse ¢ — w - ¢'/?, where w? = 1. These two series, ([@H) and
g, are actually solutions of the Schwarzian equation {0) with W(z), now, given
by (I). Note that we have the following relation:

1 5 2
e (1 — )2 (_ 2 : )
2 Y2 (1 1728 yg) 2F1 [12, 12],[1],1728 Y2
1 5 2 d
- 21— nevy (_ 2 : ) 2}
v (1=1728- 2)' %R ([ o) (10,1728 @) - == (48)

We have a similar relation for y; ;. Relation ([48), and the corresponding one for y, /s,

are nothing but:
dzr dyg 1 dzr dyl/g
L = == and: — - = . 49
T ~ Fw) 2 F@ Tl ()

t Which is nothing but (8) with the change of variables z — z/1728, y — y/1728.
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3.2. Linear ODE for ¢ — ¢?

The previous algebraic series (45), [AQ) are solutions of an order-three linear differential
operator M3 = Mj; @& M, which is the direct sum (LCLM) of an order-two linear
differential operator Ms, and an order-one linear differential operator M; with the
following rational function solution:

1) _ @ (496 413591125z + 2916000000 z°) (50)
Lo 496 (1 — 54000 z)3
_ | 93943125 , . 680168390625 , . 63705250687500000 ,
496 31 31

Let us introduce the two formal solution series of order-two linear differential operator
Ms, namely:

46971563 , 680168390718 .,  63705259687628352
SRy 31 v 31 v

5 = gl/2. (1 +357024 & + 49735011840 22 + 5091284519436288 2

S =

+ 445924637193878765568 x*  + - )

One has the following relation

y2 = 496- (5{7 —5), (51)

yralw, 7)) = w- S —248. (250 4+ 5P, (52)

where w? = 1.

3.3 q— ¢
Let us consider the modular equation:
1855425871872000000000 - x3 4 - (y + )
+16777216000000 - y* 2% - (27 2 — 45946 z y + 27 9?)
+ 36864000 - zy - (y+ =) - (22 + 241433z y + o)
+ (2% — 1069956 2> y 4 2587918086 22y — 1069956  y° + y*)

+2232-zy- (y+x) —zy = 0, (53)
which has the following rational parametrization [19]:
¢ ¢3
T = and: y = (54)

(t+27)- (t+3)3 (t+27) - (t +243)3
This modular equation (B3] has the following algebraic series solutions

ys = % +22322% +39118682° +63800138162° + 10139542529238 27
+15969813236020944 2% + 251043423830769987722° + --- (55)

and its compositional inverse
Yipw, ) = w-a'P —744- 07 2P 4356652 2%F — 140360904 - w - 23
+ 49336313166 - w? z°/3  — 16114360320000- 2%/ + ... (56)



Replicable functions 12

where w® = 1. The radius of convergence of the series (B5) is R = 1/1728,
corresponding to the vanishing of the discriminant of the modular equation (G3).
These two series can be written respectively

X(Q(x)g) and: X(w . Q(z)l/g), (57)
where w3 = 1. They amount, respectively, to changing the nome as follows:
¢ — ¢°, together with its compositional inverse ¢ — w - ¢*/® where w® = 1.

These two algebraic series, (B0) and (B6l), are actually solutions of the Schwarzian
equation ({AQ), with W (z) given by (@I). Note that we have the following relation:

1 5 2
cys- (1 —1728- y3)'V/2 . o R ([—, =], [1], 1728 -
3 Y3 ( 7 8 y3) 2 1([127 12]; [ ]7 7 8 y3)
1 5 2 dy3
- (1 — )2 . .
- (1 —1728- z) 2F1([12, 12],[1], 1728 a:) o (58)

We have a similar relation for y; /3. Relation (B8), and the corresponding one for y, 3,
are nothing but:
d d d d
3. 2 _ %3 and: - Y1/3

1
F(x) F(ys) 3 Flz) F(y1/3)

(59)

3.4. Linear ODE for ¢ — ¢°

The previous algebraic series (B5), (56]) are solutions of an order-four linear differential
operator M3 = My @ Ms, which is the direct sum (LCLM) of an order-three linear
differential operator M3, and an order-one linear differential operator M; with the
rational function solution
a x p3(7)
517 T 6masy (1 + 12288000 )3 (60)
447621120000 324554085892096000000 4

9907 ¢ 267439

= =z
where:
ps(x) = 267489 — 2225055744000 x ~+ 192711491584000000 z?
— 463856467968000000000 3. (61)

The solutions of the order-three linear differential operator M3 read:

s, MT621120000 o 108184695297365333333 o
e 9907 89163 ’
@ _ a3 ( | 8222718861 62192008621897866
52 v s 7 31 v
2837950236255383813660913
- 2+ ) (62)
62

SiB = 2173, (1 — 140360904 =+ 4998903239356308 2>

— 122558022956400494032656 2° + ) (63)

The solutions (B3] and (BE) of the modular equation (B3) can be expressed in terms
of the solutions of the previous linear differential operators M; and M3

ys = 267489 (S — gy, (64)
and:
yisw, ) = w- S —7a4- 02 8P +89163- (3~ S +S§2)). (65)
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3.5 q— ¢

We are not going to give explicitely the modular equation corresponding to ¢ — ¢°
because it starts becoming a bit too large. Let us just say that it can (easily) be
obtained by the elimination of ¢ in its rational parameterization [19]:

t to
- d: - . 66
T T 2+ 10t+5)° o YT 24250t + 3125)° (66)

This modular curve Ts(z, y) = I's(y, z) = 0, has the following algebraic series
solutions

ys = x° +372025 4928746027 + 19648405600 2% + 38124922672650 2°
+ 70330386411705000 20 + 125698841122545005000 z'* 4 - (67)

and

yis = weat/t —T44- 0?2 43566520 - 2%/ — 140361152 w? - 21/
80573128344696 6/5
f . w . x
where w® = 1. The series (67) and (68) are (algebraic) solutions of an order-six
linear differential operator Lg = Lj & L5, which is the direct sum of an order-one

linear differential operator with a rational function solution (ps(x) is a polynomial
with integer coefficients)

+ 49336682190 - 2°/° — + o (68)

r(z) = . Ps(x) (69)
41113901825 1 + 6544038297602 + 5209253090426880 22

_ 4085556703324323840000 ,
1644556073

and an irreducible order-five linear differential operator operator Ls. The solutions
of Ly read

_ 4085556703324323840000 ,

%= @ 1644556073 vt (70)
and:
1/ 80573128344696 851459104996461085786368168
S1 == ~(1— 3 T + 9% T+ ),
G — 205 (14_ 3124401548255651 , 9703780710544581292971588992 , '”)
> 465 775 ’
3/5 621945576635752328  31428560280309440232822493239667
Sz = a°/7- (1 — T + x )7
148605 4458150
2163813797006375923833
S, = 24/5. (1 _ 71
S 701805760 (71)
. 2096632093647521705592575109262587 , )
438628600 '
The series ([€7) can be written as a linear combination of (€9) and (70 :
ys = 41113901825 - (r(x) —-sb). (72)

The series ([68) can be written as a linear combination of the solutions of (1))
Yis = w- S —T44-w’- S 4356652 w?- S5 — 140361152 w' - Sy
+ 8222780365 Sy + 41113901825 - r(x), (73)
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where w® = 1. The series (67) and (G8) can be written respectively
» = X(Q@?®)  and yijs = X(w- Q@)'?), (74)

where w® = 1. They amount, respectively, to changing the nome as follows:
g — ¢°, and its compositional inverse ¢ — w - ¢/% where w® = 1. These
two series, ([@7) and (G8)), are actually solutions of the Schwarzian equation [#0), with
W (z) given by (I]). Note that we have the following relation:

1 5 2
oy (1 — 1798+ o) /2. 12 .
5-ys- (1 —1728- ys) 2F1([127 12]7 [1], 1728 y5)
1 5 2
- (1 — /2. - 2 . .45
z- (1 - 1728 - ) 21«1([12, =, 1), 1728 x) 5, (75)
i.e.
d
5. Flys) = Fla)- =2, (76)
and:
dx dys 1 dz dyy/s
5. = and: - = . 77
F@ ~ Fw) 5 F@  Flus) 7

Remark [Bl1: The series [@6), (B6), (68) (and also (8U) below) can be seen to be

functions of w- /N with w? 1.
3.6. ¢ — ¢*
We are not going to give explicitely the modular equation corresponding to ¢ — ¢*

because it becomes a bit too large. Let us just say that it can (easily) be obtained by
the elimination of ¢ in its rational parameterization [19]:

t-(t+16) th- (t+16)
= d: = . 78
T 2116t +16)° o Y7 42 1256t +4096)3 (78)
This modular curve Ty(z,y) = Tu(y,z) = 0 can also be obtained from the

elimination of the variable z between the (fundamental) modular equation T'a(z, z) =
0, given by ([43]), and the same modular equation I's(z, y) = 0. The calculation of the
resultant, in z, between I'y(x, z) and T'(2, y) factorizes, and gives (z —y)?- T4(z, y).
This modular curve Ty(z, y) = T4(y, ) = 0, has the following algebraic series
solutions

ys = 2 +29762° +63228962° + 1183815142427 + 20872495228416 x°
+ 35647177050980352 27 + 59796357134115627008 2*°
+ 99264875397039869263872 211 + ... (79)

yiaw, ) = w- '/t 744 w2 2?2 4356652 w? - 2®/t — 140361152 2/

+ 49336682376 - w - z°/* — 16114625945856 - w? - x6/4
+4999042676442272 - w® - 27/* — 1492669488513712128 - 25/4

+ 432762805367932714848 - w - z%/4 4+ ... (80)
where w? = 1, together with the (involutive) series:
y1 = —x — 148827 —22141442% — 33376337922 — 5094329942016 z°
— 7859077093785600 2° — 12234039128005541888 " (81)

— 19190712499154486034432 2° — 30301349938167862039412736 2 +
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The radius of convergence of the series ([[9)), or [T, is R = 1/1728, corresponding to
the vanishing of the discriminant of the modular equation T'4(z, y) = T4(y, ) = 0.
These three series ([[9), B0) and (®Il), can be written respectively

X(Q(I)4) and: X(w : Q(z)1/4) and: X(—Q(x)), (82)

where w? = 1. These series can be obtain from the series [@5]) and (@8]) of subsection
@I). It is straightforward to sedf that ys(z) = ya(ya(z)), and that Y1/a(x) =
Y1/2(y1/2(x)), which amounts, on the nome, to performing ¢ — @ — (®)? = ¢*
and similarly ¢ — £¢'/? — £ (£¢/?)Y? = w. ¢'/*, where w* = 1. However,
the composition of y2 and y; /2 also corresponds, on the nome, to

g — +£¢"* = (£¢"*?=q o g ¢ = (A= +q  (83)

Getting rid of the identity transformation, we get ¢ — —g, which precisely
corresponds to the involutive series (8I]). These three series (T9), (80) and (&Il are
actually solutions of the Schwarzian equation {Q), with W(z) given by ([@Il). Note
that we have the following relation:

1 5 2
Aoy (1 — 1728 ya)'/2. 2Fl([ﬁ’ 5], [1], 1728- y4)
1 5 2 d
= - (1 — 1728 - ;[;)1/2. o F ([E’ E]’ [1]7 1728 - x) . ﬂj (84)
4 dx _ dy4 and: 1 dx dy1/4
F(z)  F(ya) ' 4 F(z)  F(yi)
dx dy
d =
o )~ Fly) (85)

3.7. Linear differential operators for ¢ — ¢*

The previous algebraic series ([9), (80) and (8I]) are solutions of an order-six linear
differential operator Mg = M; & My @ Mj, which is the direct sum (LCLM)
of an order-three linear differential operator Mj, an order-three linear differential
operator Ms, and an order-one linear differential operator Mi. Let us introduce Sl-(n)
(i =1,---n) the (normalized) solution-series of the linear differential operators M,
(n = 1,2,3), namely the (normalized) solution of the order-one linear differential
operator M,

1990225984684950000 , | 12420842277805932711852000000 5
187148203 . 187148203 . ’

together with the two (normalized) solutions of the order-two linear differential
operator My

S%l) =z +

9@ _ 4 331704330780824752 2 4 2070140379649322118641630976 .
o 31191367 31191367 ’
) 1/2 671442747744 5106946630014945047040

S2 = I . (1 + T - + 31 - + .. .),

1 The composition/iteration of multivalued functions, like algebraic functions, is a bit tricky, we have,
however, no problem to compose algebraic series, for instance = — ya(z) — ya(z) = y2(y2(z)).
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and the (normalized) solutions of the order-three linear differential operator Ms:
S = 3 41148827 +22141442° + 33376337932 + 5094329944992 + - -

S = gl (1 + 49336682376 ¢ + 432762805367932714848 22 + )

3/4 1249760669110568 2838197560249922422013408
o/ (1 T + < + )
89163 29721

Note that S§1), the solution of Mj, is a rational function:

S =

s _ ps(x)
M = 5. : (86)
187148203 - (1 — 2835810000 x + 6549518250000 x2)3

where:
ps(x) = 187148203 + 398075748036660000 =z + 4173268788948807866250000 22
+ 62885546488332818428095703125 223 — 31422194354407801042441406250000 z*
— 121645442598919219468125000000000000 z°. (87)

Remark [Bl2: The order of the linear operator Mg, corresponds to the four series
of the form y,; 4, together with the series y4, and the series y;, namely 6 = 4 +1 +1.
The series y4 (given by ([79)) can be seen to be an (algebraic) analytic continuation
of the involutive series y1 (given by (&I])).

Remark Bl3: Taking into account 1 + w + w? + w3 = 0, let us consider the
sum of the four algebraic series y;,4. This sum reads:

Yi/a(l, ) +y1ja(w, ) +y1/4(w2, ) +y1/4(w3, )

= 561444608z — 5970677954054848512 x>
— 37262526833687798135553785856 2 (88)
— 185766744391994261104411840078449475584 *
— 817583724079763955212555161997757454304107560960 2°  +

We have the following relations:
Yi/a(l, ) +y1ja(w, ) +y1/4(w25 ) +y1/4(w35 )
= —187148202- S\¥ — 374296406 SV (89)
Yi/a(l, ) +w- yija(w, ) +w?- y1/4(w25 z) +w? 'y1/4(w35 )
= 1426608 S$¥, (90)
Y1/4(1, @) +w?- Y1/a(w, ) +uwt- y1/4(w2, ) +w’- y1/4(w3, )
= yiya(l, ) —y1/4(w, x) +y1/4(w25 r) — y1/4(w3, )
= —2976- S, (91)
Y1/4(1, @) +w? Y1/a(w, ) +u° -y1/4(w2, z) +w’ -y1/4(w3, )
4. 89, (92)
Furthermore, we have the two relations:

187148202 - (S?’ —S{”) 58 =y 4y, (93)

Sgg) = —y1 t¥s (94)
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From (89) and ([@3) we get

o _ 1 ,
U= 561244609 (QO o +y4))’ (95)
@ _ L —9y; —2
51 561444606 (QO 1 y4))’ (96)
where:
Qo = wyial,2) +yija(w, x) +yl/4(w27 ) +yl/4(w3a33)- (97)

We can, thus, express all the six series SZ-(n), solutions of Mg, in terms of the algebraic
series Y1, ya and y;4(w", x), solutions of the modular equation T'y(z,y) = 0.
Conversely the algebraic series y1, ya and y,4(w", ) can be expressed in terms

of the six series S™. We have from (33) and (04)

1

yr = 93574101- (S — sy — 5 (¥ 4 5y, (98)
1

ys = 93574101- (S\P — sy + 5 (513 — gy, (99)

and from (89), @0), @), [@2):
Yjaw, z) = w- Ség) — 744 - W? . 552) + 356652 - w® - S?(,g)
93574101 ) (1) 1 (1)
5 (S1 +25¢ ) 5o si. (100)

The identification of the LHS of the modular equation T'y(z,y) = 0 with the
polynomial

Ply) = (y —yl) - (y —y4) (101)
X (y —y1/4(1, l’)) : (y _y1/4(w7 33)) : (y —y1/4(w2, l’)) : (y _y1/4(w35 l’)),
gives, straightforwardly, relation ([@5]) together with relation (86]) and also:

Y- Ya- y1/4(1, ) - y1/4(w7 ) - y1/4(w2, ) - y1/4(w3, 95)
1
= . (102)
(1 — 2835810000z + 6549518250000 x2)3

Remark [Bl4: The algebraic series w1, w4, y1/4(w", x), solutions of the modular
equation I'y(z, y) = 0, can be expressed as linear combinations of the solutions of
the three linear differential operators M,,, n = 1, 2, 3. If one introduces the (finite)
Galois group of the polynomial associated with the modular equation T'4(z, y) = 0,
and the differential Galois groups of the three linear differential operators M,,,
one sees that the relation between these different Galois groups is far from being
straightforward.

3.8. More correspondence series

Let us display@ more correspondence series. More examples of correspondence series
are displayed in

q For all these examples we used gfun of Bruno Salvy. We used the following commands:
algeqtodiffeq, diffeqtohomdiffeq, de2diffop, algeqtoseries, formal_sols.
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e The (algebraic) series

X(Q(x)5) = 2% +372025 + 928746027 + 19648405600 2% + 38124922672650 z°

+ 70330386411705000 2% + ... (103)
is solution of a modular equation I's(z, y) = T's(y, ) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19):

t t°
_ . _ . 104
YT @ 110t +5)3 Y7 # 1250t 1 3125)8 (104)
This series ([I03)) is solution of an order-six linear differential operator Lg = L1 @ Ls,

which is the direct sum of an order-one linear differential operator L, with a rational
function solution (69)), and an irreducible order-five linear differential operator Ls.

e The (algebraic) series
X(Q(x)6> = 25 +446427 +128055602° -+ 30222607872 2°
+ 64062187946172 20 + ... (105)

is solution of a modular equation T'g(z, y) = T's(y, ) = 0, that will not be written
here, but can easily be obtained from its rational parametrization [19):
t- (t+8)%- (t+9)?
(t+6)3- (13 + 1812 + 84t + 24)3’
0. (t+8)2- (t+9)3

- . 106
Y7 [+ 123 (£ + 25212 + 38881 + 15552)3 (106)

This series (I0H) is solution of an order-twelve linear differential operator Li» =
L1 ® L1, which is the direct sum of an order-one linear differential operator L, with
a rational function solution of the form

T pui(z)
(54000 — 1)3 - g3(z)3’

where pi1(x) is a polynomial of degree eleven, and where gs3(x) reads
1879994705688000000000 2> — 224179462188000000 2% + 151013228706000x — 1,

and an order-eleven linear differential operator Lq;.

Tr =

(107)

e We can also consider
X(Q(z)”) = 2% 496722 452031268215 + 216226356320 26 + .. (108)

which is solution of a modular equationl{ Iis5(z, y) = Ti3(y, ) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:
t
(2 +5t +13)- (t* + 763 4202 +19¢ +1)3”
nE
Yy = . (109)

(t2 +5¢ +13)- (t* +247¢3 +3380¢2 + 15379¢ + 28561)3
This series (I08) is solution of an order-fourteen linear differential operator L1y =
L1® Li3, which is the direct sum of an order-one linear differential operator L, with a

rational function solution, and an irreducible order-thirteen linear differential operator
L13.

xr =

1 The polynomial T'13(z, y) is of degree 14 in y (or x).
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e Let us consider

X(Q(m)g) = 2 +66962°0 +266810762' + 8264721110422 + .. (110)
which is solution of a modular equation T'g(z, y) = T'9(y, ) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:

t- (249t +27)) 9 (L2 +9t +27))
xTr = y =

(t+3)3. (t3 +912 +27¢ + 3)3’ (t+9)3- (13 +24312 + 2187t + 6561)3°
The polynomial T'g(z, y) is of degree 12 in y (resp. in ). We thus have twelve

algebraic solutions-series of the modular equation Tg(x, y) = 0. This series (II0) is
solution of an order-twelve linear differential operator Lio = L @& L1y, which is the
direct sum of an order-one operator L; with a rational function solution of the form
q11()
. 111
* (122880007 + 1)3 - gs(x)3’ (111)
where ¢11(z) is a polynomial of degree eleven, and where gs(z) reads
3338586724673519616000000000 2> — 3750657365033091072000000 22
+ 1855762905734664192000 ¢ + 1, (112)

and an order-eleven linear differential operator Li;. The (nine) series which are
compositional inverse of the series (II0), are also solutions of the modular equation
Ty(z, y) = 0, read:

X(Q(I)l/f’) = w744 w? 2?0 4356652 WP - ot/
— 140361152 - w* - 249 4 49336682190 - w® - 2%/ — 16114625669088 - w° - z2/3
+4999042477430456 - w” - £7/0 + ... (113)
where w? = 1. These (nine) series (II3)) are solutions of the order-twelve linear
differential operator Lqis. Note that the (two) order-three series
Yu(z) = yl/g(y3(x)> = w-z - w (wW-1)- 27
+36- w- (w—1)- (9907w — 20845) - a3 (114)
—32 - w- (w—1)- (—24876477w + 22887765) - z* + ...
where w? + w +1 = 0, are also solutions of the modular equation I'g(z, y) = 0,
and also of the order-twelve operator Lis. We thus have 1 +2+ 9 = 12 algebraic
solutions of the modular equation I'g(z, y) = 0, and solutions of Lis.

e The (algebraic) series
X(Q@)') = @0 + 74402 432413320212 + 1083955136002 + -+ (115)

is solution of a modular equation I'1g(x, y) = T'o(y, ) = 0, which has the rational
parameterization [19]:

7 t- (t+4)5- (t+5)? (116)
(1642045 + 160 ¢4 + 64013 + 128012 + 1040 + 80)3
tO (t+4)%. (t+5)°

(t6 + 260 t° 4 6400 t* + 64000 t3 + 320000 ¢ + 800000 ¢ 4+ 800000)3
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The degree of the polynomial in T'jp(z, y) = 0 in y (resp. in z) is 18. The other

(algebraic) series solutions of I'jo(x, y) = 0 are the compositional inverse of series
(II5), namely
Yi/10(x) = w- 210 744 w2 2?10 4356652 WP - 2?10
— 140361152 - w* - 2%/10 4 49336682190 - w® . 2°/1° (117)

— 16114625669088 - wb - 2%/10 4+ ...
where w!® = 1, together Wi‘n}ﬁ

ysp(x) = w-a®? 41860 w- 2™/? +2913930- w- 2% — 744 210/
+ 4404293000 - w - 2'Y/2 — 2767680 - 25 + 6624982333875 w - 132 4 ... (118)
where w? = 1, and
2/5 2 4/5 s 6/5 , 1488 7/5
Yos5(x) = w-x — 744w x + 356652 - w” - x —I—T-w-x
2214144
— 140361152 - w* - 2%/5 — — w? - 2%° 449336682190 - W - x10/°
1592094528
— w35 (119)
where w® = 1. We thus have 1 + 2 +5 + 10 = 18 algebraic solutions of
Tio(xz,y) = 0 and of Lig. The order-eighteen linear differential operator Lig is

the direct sum of an order-seventeen linear differential operator Li7, and an order-one
linear differential operator L, which has a rational function solution,

Dg

where pi7 is a polynomial of degree 17, where pg reads

66661978554978958501295319312489107870472732672000 2°
+ 62082816308629282586712746552975312469884928000 2

+ 21122955530832902270001123584504233628467200 x*

— 233405320133674124312518469774131200 3
+ 32278855882815402576742692253440 12

— 428244362959801779810720 x + 1. (121)

(120)

e The (algebraic) series
X(Q(m)%) = 2% +18600 2% + 184821300 2" + 1304017532000 2%% + .- (122)

is solution of a modular equation T'ys(x, y) = Tas(y, ) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]

=t %’;, y = 1. (%50, (123)
where:
ps = t* +5¢> +15¢% +25¢ + 25, (124)
pro = t'° +10¢° +55¢% +200¢7 +525¢° +1010¢° + 1425¢*
+1400¢% 4 875¢% + 250t + 5, (125)
qio = ' +250¢% +4375¢% +35000¢" + 178125t° + 631250¢°

+ 1640625 ¢* + 31250003 + 42968752 + 3906250t + 1953125. (126)

1 The series (II§) corresponds to ¥y /2(ys(x))-
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The polynomial in the modular equation T'y5(z, y) = 0 is of degree 30 in y (resp.
in x), and thus has thirty algebraic solution series, corresponding to the series (122,
together with the 25 compositional inverse of series (I122]), namely

w- 2V 744 W% 22 1356652 WP 22 — 140361152 w?t . 2/?°

+ 49336682190 - w® - 2%/ 4+ ... (127)
where w?® = 1, together with the four (order-fivdj)) series
yi5(5(2)) = w-r —TH-w- (W-1)- 2 4 (128)

with w® = 1 but w # 1. This thus gives 30 = 1 +4 +25 algebraic series. They

are solutions of an order-30 linear differential operator which is the direct-sum of an

order-29 linear differential operator, and an order-one linear differential operator with
a rational function solution

o P20

p%’

where pag is a polynomial of degree 29, and where pig is a polynomial of degree 10.

(129)

4. The one-parameter series solutions of the Schwarzian equation.

The Schwarzian equation (@0) has more solutions than the infinite discrete set of

algebraic series (see (@3), (B3), @), (M9, (I0F), ([I0O]), ...) corresponding to modular

correspondences. One also has a series depending on one parameter, namely:
yla,z) = a-x —T44-a-(a—1)-2% +36-a- (a—1)- (9907 a — 20845) - x>
—32-a- (a—1)- (4386286 a* — 20490191 a + 27274051) - z*
+6-a- (a—1)- (8222780365 a® — 61396351027 a*
+ 171132906629 a — 183775457147) - 2°

—144- a- (a—1)- (111907122702 a* — 1162623833873 a® + 5000493989295 a>
—10801207072185 a 4 10212230113145) - 2°
+8-a- (a—1)- (624880309678807 a” — 8367080813672297 a*
+ 48909476982869878 a® — 158792594445015178 o
+ 293243568886999823 0 — 254689844062110385) - 2.7
—192- a- (a—1)- (7774319708776120 a® — 127824707491524999 o
+ 946950323149342341 a* — 4101941044701784034 o (130)
+ 11156847890086765926 a> — 18508096006772656203 a
+ 15126379507970624425) - 2° +

Note that all the algebraic series [I), ([II4), ([I28), (see also ([I52) below), ...

associated with modular equations, are of the form (I30) where the parameter is
a N-th root of unity: a™ = 1.
Note that this one-parameter series (I30) is a series of the form

yla, ) = a-x +a-(a—1)~ZPn(a)~x", (131)
n=2

t The composition of series (I28)) with itself five times gives the identity transformation.
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where the polynomials P,(a) are polynomials of degree n — 2 in the parameter a,
with integer coefficientd]l.
This one-parameter series (I30), (I31]) verifies the following composition rule:

y(a, y(a', a:)) = y(a', y(a, a:)) = ylad, 7). (132)

These series commute. One can verify that this one-parameter series (I30) can, in
fact, be written

y(a, ‘T) = X(a Q(‘T))v (133)
where
X(q) = q —744¢* +356652 ¢° — 140361152 ¢* + 49336682190 ¢°
— 16114625669088 ¢° + 4999042477430456 4" + - -- (134)

ancﬁ its composition inverse:

Q(z) = = +7442% 47504202 + 8727696322 + 1102652742882 2°
+ 1470561136292880 2° + 2037518752496883080 7+ - - (135)

The nome series (I35]) has a radius of convergence R = 1/1728 = 0.00057870370 - - -
In the @ — 0 limit one has

y(a, @)

limo D2 = 4+ 74427 + 7504202 + 872769632 % + 1102652742882 1°
a—r a
+ 1470561136292880 2° + 2037518752496883080 27 + 2904264865530359889600 °
+4231393254051181981976079 7 + - -- (136)

which is nothing but the nome series Q(z) given by (I35). In the @ — oo limit one
has

lim y(a, f) — & —T442% +3566524° — 1403611522 + 49336682190 2°
a

a—r 0O

— 16114625669088 2° 4 4999042477430456 27 — 1492669384085015040 2.
+ 432762759484818142437 27 + - - (137)

which is nothing but X, the (elliptic modulus) series (I34).
Let us introduce the ratio of the polynomials in expansion (I31)):

P,(a)
R,(a) = ——. 138
@ = 50 (138)
One finds, in the n — oo and a — 0 limit, that the ratio (I38) becomes
1/1728 = 0.00057870 - - - For miscellaneous small values of the parameter a one can

see, that this ratio (I38) also becomes 1/1728 in the n — oo limit.
In the last n — oo and a — oo limit (I37), the ratio (I3R8) becomesty
—0.004316810242 - - - which corresponds to the radius of convergence of the series

1 This can be seen as a consequence of the fact that y(a, ) = X(a~ Q(x)), where X () and

Q(z) are actually series with integer coefficients (see [@2) and (Z3)).

t In Maple the X(q) series @2)), (I34) can be obtained substituting L = EllipticModulus(q*/?)2,
inl1/j = L?- (L—1)2/(L? — L +1)3/256. See https://oeis.org/A066395 for the series @2) and
https://oeis.org/A091406 for the series (23).

11 Obtained with 421 coefficients.
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22), (I34). This radius of convergence is according to Vaclav Kotesovedq
exp(— V3 77) —  0.004333420501 - - (139)

which is reminiscent of the selected values (see equation (55) in [32]):

t = exp(iwﬂ) = q- exp(—ﬁ- 7T) or: ](M) = 0. (140)
2 2 2

The nearest to = = 0 singularity of X is thus z. = t* = — exp(—+/3 - 7).

We have seen that the radius of convergence of the series ®I) (ie. a = —1) is

R = 1/1728, corresponding to the vanishing of the discriminant of the modular

equation T'4(z, y) = T4(y, ) = 0, and more generally, for |a| = 1, one can see that

the radius of convergence of the series (I30), (I31) for N-th root of unity, a®¥ = 1, is
alsd] R = 1/1728.

More generally, the radius of convergence of (I30), (I3I]) corresponds to the
singularities of (I33), namely the x = 1/1728 singularity of Q(x), and to the values

of x such that a- Q(z) = — exp(— V3- ﬂ'), which corresponds to the singularity of
X (z), namely:

x = X(—%~ exp(—\/g- 7T)) (141)

When the parameter a is large enough (|a| >~ 7.5), the radius of convergence no
longer corresponds to R = 1/1728, but to the singularity (I4I).

This transcendental value (I39), for the radius of convergence of the series X (9),
is a strong incentive to understand the “very nature” of the one-parameter series (I30),
(I31)), especially since it can be written in the simple form ([I33). Generically the one-
parameter series ([I30), being solution of a Schwarzian equation, is a differentially
algebraic series, but is it possible that this series could be, only for selected values of
the parameter, an algebraic series, or just a D-finite series, or possibly a D-D-finite
series 7

5. Trying to understand the one-parameter series solutions.

5.1. When the one-parameter series becomes an algebraic series

For a = —1 the (involutive) series y(a, x) (see series (&)
—x —14882% —2214144 23 —33376337922% — 5094329942016 2°
— 7859077093785600 2% — 12234039128005541888 7 + ---  (142)

has a radius of convergence 1/1728 = 0.00057870--- Let us generalize what we
have seen in subsection [B0) with series (8I). Let us first recall the algebraic series
(corresponding to ¢ — ¢*) ys, given by (GA)), and ¥ /3, given by (G6), where w? = 1,
and combine y3 and y; /3. We first get:

Y3 (y1/3(33)) = <. (143)

€ See https://oeis.org/A066395 and https://oeis.org/A066395/b066395.txt for the reciprocal of j-
function. See also in [81], Q(exp(—+/3- m) = 0or J(exp(—+3- m) = 0, where Q is the Eisenstein
series F4 and J is the Klein modular invariant.

1 This also corresponds to vanishing of the discriminant of the corresponding modular equations.
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More interestingly we also get the following algebraic series (see (II4) previously):

Yolx) = y1/3(y3(3:)) = w-zx —T4 w- (w-1) 22
+36-w- (w—1)- (9907w — 20845) - 2* (144)
—32-w- (w—1)- (22887765 — 24876477w) - z* +

where w? = 1. One can verify that series (I44) is actually series (I30) when a® = 1.
One can verify that this series is (for w # 1) a series of order 3:

Yo (Yo (Y (2))) = 2. (145)
Let us also recall the algebraic series (corresponding to ¢ — ¢°) s, given by
(6T7), and its compositional inverse yi /5, given by (G8), where w® = 1, and let us
compose ys and y; /5. We first get:
Ys (y1/5(3:)) = T (146)
More interestingly, we also get the following series (see series (I28]) previously):
Yolz) = 3/1/5(3/5(90)) = wr —TH4-w-(w-1)-2°

+36- w- (w—1)- (9907w — 20845) - x3
—32- w- (w—1)- (4386286 w? — 20490191 w + 27274051) - x*
+6-w- (w—1)- (8222780365 w® — 61396351027 w?
+ 171132906629 w — 183775457147) - z°
— 144 w- (w—1)- (—1274530956575 w* + 4888586866593 w”
—10913114194887 w + 10100322990443) - 2% 4 --- (147)

where w’ = 1.
One can verify that (I47) is actually (I30) when a® = 1. One can verify that
this series is (for w # 1) a series of order 5:

Yoo (Yoo (Vo (Yo (Y ())))) = . (148)

This is a straight consequence of (I33) with a® = 1. Similarly, let us now consider
Y13 = X(Q(m)l?’) = 213 406722 +520312682'° + 216226356320 216
+ 735033166074714 27 + 2200510278533887632 '8  + - -- (149)

Its compositional inverse (Puiseux) series reads
Y113 = X(Q(x)””) = w2 74402 2213 4356652 w3 - 2P/13

— 140361152 w* - 213 449336682190 - w® - 2°/13
— 16114625669088 - w’ - 2%/13 4+ ... (150)

where w'® = 1. Let us compose y13 and y;/13. We first get
Y13 (y1/13(33)) = T, (151)

13
which corresponds to: ¢ — wq'/?® — (wq1/13) = q.
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More interestingly, we also get the following algebraic series:

Yolr) = 91/13(%3(33)) = wzr T4 w (w-1) x?
+36- w- (w—1)- (9907w — 20845) - x*
—32-w- (w—1)- (4386286 w? — 20490191 w + 27274051) - z*
+6-w- (w—1)- (8222780365 w® — 61396351027 w?
+ 171132906629 w — 183775457147) - °
— 144 w- (w—1)- (111907122702 w* — 1162623833873 w* + 5000493989295 w?

—10801207072185 w + 10212230113145) - 5 4+ (152)
where w'® = 1. This series corresponds to ¢ — ¢ — w- (¢**)"/'® = w- ¢. One
can verify that this series is (for w # 1) a series of order 13:

Yoo (Yoo (Yoo (Yo (Yoo (Yo (Yoo (Yo (Yoo (Yo (Yo (0 (40 (2)))))))))))))) = . (153)
If we compare the series (I52) with the one-parameter series ([I30), we see that
yo(2) = ylw, x) where: wh? = 1. (154)
Conversely, denoting y(a, ) = yq(z) we see that the N-times composition of y, ()
becomes the identity transformation when w® = 1:
Ya(Wa(--- (Yal@)) ---)) = @ = W = 1. (155)

The series (I52)) is the solution series of the modular equation associated with the

nome-transformation ¢ — (11327 corresponding to the composition of the modular
equation associated with ¢ — ¢'3 with itself.

5.1.1. ¢ — qN2, qM2N
The previous results can be generalized for any prime number N. For instance, the
series (30
yla,2) = a-x —T44-a-(a—1)-2° + .- (156)

with @ = 1, is the solution series of the modular equation T'n2(z,y) = 0

associated with ¢ — ¢" 2, which can be obtained from the elimination of z between
I'n(z, z) and T'n(z, y), where T'n(z, y) = 0 is the modular equation associated with
q — ¢". The series (I56), with a’¥ = 1, corresponds to the following composition
of nome transformations: ¢ — ¢~ — w- (¢™M)V/V, with o = 1.

The modular equation I'y2(z, y) = 0, corresponding to ¢ — qN27 will have
1+(N—=1)+ N%? = N-(N +1) algebraic solution-series, corresponding respectively
to the series

y = oV 4744 N2 N 4o (157)
together with the N — 1 (order- N) series ([I56), namely
yynyn(z)) = w-z T4 w- (w—=1)-2* + .- (158)

with w™ = 1 but w # 1, and the N? compositional inverse (Puiseux) series of the

series (I2d). Series BI), (I43) and ([I41) are such examples.

One (modular correspondence) series solution of I'y(z, y) = 0 is of the form:

y = oV +744- N- 2N 4o (159)
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One can also compose such an algebraic (modular correspondence) series (5]
with the M-th root algebraic series ([I56) (here a = 1), to get more (modular
correspondence) algebraic series:

y = a-2¥ 4744 N-a- 2V 4 ... with: aM = 1. (160)
Series (I60) is a (modular correspondence) series solution of the modular equation
Ty ae2(z,y) = 0. The series (IG0) corresponds, in the nome, to transformation

g = q" = w- (")) = w- ¢, where M = 1.

5.1.2. The one-parameter series (I30) is not generically a D-finite series

The one-parameter series (I30) becomes an algebraic series when the parameter is a
N-th root of unity. All the previous algebraic series associated with modular equations,
can also be seen as D-finite series as displayed in the previous section ([B7)). Along this
line it is crucial to note that these series are solutions of a linear differential operator
(like Mj3 in the previous section [B1) of order increasing with N. Therefore, we see
that one cannot expect the one-parameter series (I30) to be generically D-finite, being
solution a finite order linear differential operator with coefficients polynomial in = and
in the parameter a, since the order of this linear differential operator grows with N
when the parameter is a IN-th root of unity.

5.2. When the one-parameter series becomes a globally bounded series

Note that, for integer values of the parameter a, the series y(a, z) are series with
integer coefficients. More generally, one can see easily that such series are globally
bounded [43), [44] for any rational number a = P/Q: the series (I30) can be recast
into a series with integer coeflicients if one rescales z as follows: z — Q- .

If one of these series is D-finite, the series should be, according to Christol’s
conjecture [82], a diagonal of a rational (or algebraic) function [43]. In particular this
series should reduce to algebraic function modulo any prime number |43, [44]. Let us
focus, for instance, on the particular value @ = 3. For a = 3 the series y(a, z) is a
series with integer coeflicients

S = 3z —44642> +19172162° — 1013769984 " — 33437759328 2°
— 420498625999104 5 — 452363497164804864 7 + - -- (161)
which has a radius of convergence 1/1728 = 0.00057870 - - - If one considers the series
(I61) modulo different primes p, it is very difficult to see (for p large enough) if this
series ([I6]]) is an algebraic series modulo p, or, even, is D-finite modulo p. We have,
however, found the following result. Introducing

o= 23T 9 L1 = 1 432 4+ 199714% — 105601042
3-25. 1 2
— 348309993 2* — 4380194020824 2° — 47121197621333842° + - (162)
this series reduces, modulo p = 2, to the algebraic series
o(@) = 1 +x +2% +at +25 +216 + 252 £ 284 4128 £ 2256 1 ... (163)
solution, modulo p = 2, of the algebraic polynomial:
o(z?) —o(x) +2 = o(x)? —o(x) +2 = 0. (164)

The nature of the series (I61]), or more generally of (I30) for integer, or rational values
of the parameter a, remains an open question. It seems that such globally bounded
series are not D-finite. At least, one has an infinite number of differentially algebraic
series. Are these globally bounded series D-D-finite series [48] [49] ?
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5.3. Miscellaneous calculations.

The nome series (I35]) and the mirror map series (I34), are, respectively, solutions of
the following Schwarzian equations

- 1 dQ()\2
- . = 1
Q@) o) + 550 (Tg) + W@ = o (165)
and
5 1 - dX (z)\2 B
K@, 2} —5— - W(X@)- (57) = 0 (166)
where:
1 1 —1968z + 2654208 22
= —— 1
W(z) 2" T 22 (1 —17282)? (167)
Let us introduce the hypergeometric function:
1 5 2
Flz) = z- (1 —1728 2)"/2. 2F1([E, =), [1], 1728 a:) . (168)
Note that the Schwarzian equation (IB3), on Q(z), can be seen to be a consequence
of (see (301) below):
Qx) : Flx) 1 F'(x))2
F = — th th: - - 5 . 1
(z) o) together wi W (z) Fo) ) (F(x)) (169)

Therefore the nome Q(z) is also solution of the order-one linear differential
operator:

Ly = F(x)-D, —1 where: (170)
1 5 2
F(z) = z- (1 — 1728 z)/2. 2Fl([ﬁ, =), [1], 1728 ;v) .
It is thus DD-finitd:
Q(x) 1 ~ /m dx
= = or: r) = e - . 171
50 = IO Q@ = (] 7o) (171)
The one-parameter series y(z) = y(a, x), given by (I30), is solution of the rank-two
equation (see (32)

Ar(z) — Ar(y(z)) - ¥'(2) +y,($) = 0, (172)
with
F'(z)
and also solution of the Schwarzian condition
W(z) —W(y(x)- ' (=)?* + {y(z), 2} = 0, (174)
where:
Frl(z) 1 (F'(2)\2 , Ag(z)?
We) = F 3 (F(x)) = Aple) + =5

1 1 -1968z + 2654208 z* (175)
2 2. (1 —17287)2

t See [48, [49].
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Note that W (x) is a rational function, but this is far from being the case for Ar(x).

We will see, in the following, that the one-parameter series y(z) = y(a, ), given by
(@30), is also solution of:
yla, z) _ _ dy(a, x)
a —5— = Fyla,z)) = Flz) —5— (176)

5.4. More one-parameter series solutions.

If one combines y2, the “correspondence” series [@3]) solution of the modular equation
[3), with the one-parameter series (I30)), one gets a one-parameter series

u? = yla, p) = X(a- Q(x)2) = a2’ +1488-a- 2°

—24-a- (31a—85599)- 2* —256- a- (8649a — 11180329) - z°
+12- a- (29721 a* — 392019552 a + 338926406215) - 2° (177)
+192- a- (8292159 a® — 45872836768 a + 30686235044193) - 27 + ---

This series (IT7) is also solution of the Schwarzian equation ([@2). Furthermore we
have:

a a 1 5 a 2
2.yl (1 — 1728 y{)1/2. 2Fl([— 1, [1], 1728 - 3 ))

127 12
1 5 2 qyl®
= @ (11728 @)% R ([, 5] [ 1728 @) 22 178
£ ( .I) 241 [127 12]5 [ ]a T T ( )
When a = 1, the radius of convergence of (I77) is 1/1728 = 0.000578703703 - - -,
and this is also the case for any a, N-th root of unity a” = 1. Similarly to

what has been sketched in section ) (see equation ([I41))), let us remark that the
one-parameter series (I77) can be written X(a- Q(:z:)2) For generic value of the

parameter a, the radius of convergence of (IT@) will correspond, for a small enough,
to the singularity of Q(x), namely 1/1728, and for a large enough, to the values of

x such that a - Q(x)2 = — exp(— V3. w), which correspond to the singularity of
X (z), namely:

x = f(((—% exp(—\/g- W))l/z). (179)

More generally, all the series
X(a@(m)") = a-z" + - (180)

have a radius of convergence corresponding, for a small enough, to the occurrence of
the singularity of the nome-like series Q(z), namely = = 1/1728.

Similarly to ([I77), if one combines ys, the “correspondence” series (BA) solution
of the modular equation (B3], with the one-parameter series (I30]), one gets a one-
parameter series

yéa) = yl(a, y3) = X(a~ Q(x)g) = a-2° +2232-a-z* +3911868- a- 2°

—24-a- (31a—265833940) - 2° —54- a- (61504 a — 187769367601) - 27
— 1296 - a - (7351340 a — 12322394107529) - 2 + --- (181)
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This series (IXI]) is also solution of the Schwarzian equation ([@2). Furthermore we
have:
a a 1 5 a 2
127 12
dys”
x

1 5

2
= ok (1, 1728 @)

= o (1-1728 2)Y/2. 2Fl([ (182)

Similarly:
yéa)(:zr) = y(a, y5(3:)) = X(a- Q(x)5) = a-2° +3720-a- af
49287460 - a - =7 4 19648405600 a - ° + 38124922672650- a - z°
—24-a - (31a—2930432767154406) - 2*° (183)
—40- a- (138384 a — 3142471028063763509) - 2'!

—960 - a- (25120323 a — 229208433006295134073) - =% 4+ ..

This series (I83) is also solution of the Schwarzian equation ([@2). Furthermore we
have:

a a 1 5 a 2
50987 (1 —1728- )2 R ([55, 15l [0 1728 37)

127 12
1 5 2 gyl®

= @ (11728 )% 3R ([55, 15 [ 1728 @) - 2 184

One also easily gets:

a dys”) (x) 9y5” ()

5. F(yt”(x)) = F(z)- R (185)
More generally, let us introduce the modular correspondence series y,(x) =
" 4+ 744 - n - 2"t 4+ ... (for n > 2), one can verify that these series commute.

These modular correspondences y,(x) can easily be generalized to one-parameter
series y(a, yn(:v)) which are also solutions of the Schwarzian equations:
y(a, yn(:v)) = a-2" +744-n-a-2" £ ... (186)

Let us recall the one-parameter series y(a, ) given by ([I30), we have the following
relation:

y(an, yn(a?)) = yn(y(a, 3:)) = a" 2" + 744 -n-ad"- 2"+ 0 (187)

5.5. Composition in general
The one-parameter series (I86) can be written
y@) = X(a- Q)"). (188)

We have the following composition:

y,(;‘)(yﬁi)(:zr)) _ X(a- Q(X(b. Q(x)m))") = X(a~ (b- Q(x)m)n)

= X(a- 0" Q@) =yt (@). (189)
Note that the condition to have series solutions of the Schwarzian equation of the
form y,(f) (x) = a-a™ 4+ -+, with n > 2, amounts to having [30, BI] W (z) of

the form W(z) = —1/2/2*> + --- which is satisfied when F(z) = -z + ---, or
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6. The one-parameter series (d]) seen as a e-expansion.

In the a — 1 limit, let us denote ¢ = a — 1. The one-parameter series
y(z) = yl(a, x), given by ([I30), can, thus, be seen as an e-expansion:

yla,z) = = + Z €" - Bp(z), (190)

where Bj(z) = F(z), with F(x) given by (I68]), and where Ba(x) reads (see equation
(115) in [30]):
1 dBi(z
Bya) = 5 Fa)- ( dlgg ) —1). (191)
Assuming that (I90) is solution of the Schwarzian condition (I'T4) (with W (x) given

by ([I70)), we actually obtained the next B, (z)’s:

Byw) = 1 F(a) (22D 4B )
By(z) = i- F(z) - (dB;’f) - dBjx(I) + dlex(a:) - 1), (192)
i = e (B4 950 bl b )
s = e (S 00, 5l sb
More generally, one easily discovers the recursion

(n+1)- Byy1 +n- B, = F()- dB;x(x), (193)

which yields on the series (I90)

S (1) Bupi- € +> n- By " = F(:v)-( dB;x(x)-e”), (194)

n

or
0> Bpy1- el 0% Bp-€" 0% Bp(z)- €
n . n — F . n 1
de e B @ (=), )
yielding finally
dy(a,x) _ dy(a, x)
namely:
dy(a, ) 9y(a, x)
WG p(yy. LT 1
a 5a (z) o (197)
Note that y(a, x) is also solution of:
_ dy(a, )
F(y(a, a:)) = F(x)- 8 (198)
Recalling some relation on the nome ¢ (see equation (33) in [30]):
g 1 . d d
.~ T or: q i F(x) T (199)
we see that relation (I91) also reads more simply:
a- ay(a7 ‘T) — q . 6y(a’7 x) . (200)

da dq
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which is reminiscent of the fact that changing  — y(a,x) just amounts, on the
nome, to changing ¢ — a- ¢. Equation (I97) means that y(a, x) is a function of

/ (% +%) ~ Ina) + / (%), (201)

or, recalling (1)), a function of:

exp(/(% —|—%)) = a-Q(z). (202)

This is actually the case since y(a, z) is nothing but X(a . Q(x)) (see (I33)).

Remark [6l1: Do note that the previous calculations are still valid when F(x) is
not given by [I68). One can verify, for any function F(z), that the e-expansion (I90)
with coefficients B,, given by (I91)), (192), (T93), is actually solution of the Schwarzian
relation (TT4)), with W (z) given by:

F'(z) 1 (F’(arz))2

(203)

7. Generalization of W (z) in the Schwarzian equation: adding an extra
parameter o.

For a given function F'(z) let us consider the relation

dy(z
Fy@) = Fla). 20 (204)
which corresponds to:

dy dx dg
7 = = —. 205
Fo) © F@ 20

From (204)), namely F(y) = F(z)- v/, one gets
Flly)-y = Fla)-y +F@)-y", (206)

or

P, P@ Ly
Fo) Y T Fo Ty (207)

or, more generally, using (204)) in order to introduce an extra parameter «:

F(y) a / F(z) a y"
. = =. 2
(F *7w) Y = (rw T7w) 5 209
Let us introduce
F'(x) a
we see that ([208) can be written
11
Ap(z) —Ap(y) -y + 3;— — 0. (210)
which is (B2)) of section (LE). From (20d), that we rewrite

F'(y) = F'(z) +F(x)- Z;—/:, (211)
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one gets
F'(y)-y = F'(v) +F'(x)- Z—I: + F(z) - (Z—lll>/, (212)
or, using (204), written F(x) = F(y)/y":
R T RC
Taking the square of (207) one gets (up to a factor 2):
%' (?8)2' "= % (?8;)2 +%' ((Z_I)QJr 1;((;)) ' yy_' (214)
From (213) and (214) we deduce:
(50 -3 (RY) o = 5L (5 () - 5

or, recalling the Schwarzian derivative,

T () (i () o v <o

or, more generally, using (204]), which allows to introduce an extra parameter «

F'(z) 1 /F'(x)\2 1 a?
F(z) 2 (F(x)> 2 F(x)? (215)
F'ly) 1 (F'yy? 1 o : _
(T 3 (Fy) 3 FR) v @ =0
Note that (2I5]) is actually of the form
W) =W(y@): y'@)?* + {y@), 2} = 0, (216)
where (Ag given by (209)):
F'"(z) 1 /F'(x)\2 1 a? , Ag(z)?
We) = Foy "3 (F(:c)) 3 FEE - AR+ o @
Remark [7L1: Note that these calculations also work with
peFly) = F)- 2 219)

which corresponds to (@9)), (59), (T7), B3).

8. An “academical” Schwarzian equation: W (z) is no longer a rational
function

Recalling
" 1 5 2
Flz) = z- (11728 z)1/2. 2Fl([ﬁ, ), [1], 1728 ;v) , (219)
the one-parameter series y(x) = y(a, z), given by ([I30), is, for any value of «,
solution of the rank-two equation
1
x
Aplx) ~ An(y@)- V(@) + L8~ (220)
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with
F'(x) a
Ag(z) = o) + Fla)’ (221)
but is also solution of the Schwarzian condition
W(z) —Wy)- y'@)? + {y(z),z} = 0, (222)
where:
F'(z) 1 [F'(z)\2 1 a2 , Ag(z)?
_ _ (= . — = A
W) = Fo 73 (F(:c)) 3 @ R(@) + =5
_ 2 2
B _1. 1 — 1968 x + 2654208 x n 1 « . (223)
2 22 (1 —1728x)2 2 F(x)

For generic values of «, the solution-series of the form a- x + ---, of the rank-two
equation (220) with (22I]), as well as the Schwarzian equation [222)), with W (z) given
by (223), is just the one-parameter series y(z) = y(a, x), given by (I30). However,
for a selected set of values of «, namely (non-zero) integer values, the solution-series of
the form a-x +---, becomes a two-parameters series. For instance, for « = +1, the
extra parameter occurs with the coefficient of 2, for = £2 the extra parameter
occurs with the coefficient of 23, ... and, more generally, for o = £ N the extra
parameter occurs with the coefficient of 2™*!. Let us display the @ = 1 case in
detail.

8.1. The aw =1 case: two-parameters series

Let us consider the case @ = 1 in the Schwarzian equation ([222)) with W(z) given

by ([223)), or in the rank-two relation ([220) with ([22T]).

The two-parameter series
y(a, b z) = a-z + (1728- b—744- a- (a—1)) a2
+ (2985984- a-b® — 2571264 a- (a—1)- b (224)
+36-a- (a—1)- (9907a— 20845)) a3
+ (5159780352- a-b® — 6664716288 a- (a—1)- b2
4186624 - (9907 a® — 307524 + 19022) - a - b
~32.a- (a—1)- (43862864 — 20490191 a + 27274051)) cat 4

is actually solution of the Schwarzian equation [222)) with W (x) given by [223), or
of the rank-two relation (220) with [22I)), for « = 1. Note that the two-parameter

series (224 is also solutiorl]] of
ay(au ba :E) ay(au bu JI) _
ar S b S = F(y(a, b, :v)), (225)

with F'(z) given by ([2I9). We have the following composition rules for the two-
parameter series (224]):

y(a', v, y(a, b, 3:)) = y(a a,a’t +ad'b, 3:) (226)

t However it is not solution of F(z)-y' = F(y) or F(z) -y = a %
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Let us introduce an alternative parametrization of the two-parameter series (224)),
changing b into ab, in (224):

Y(a,bz) = a-z + (1728~ ab —744- a- (a—1)) 2
+ (2985984- a® - b? —2571264- a*- (a—1)-b (227)
+36-a- (a—1)- (9907a—20845)) L2+

We have the following composition rules for the two-parameter series (227])

Y(a', b, Y (a, b, x)) - Y(aa’, abl +b, :v) (228)
The series (221)) is, now, solution of:
Y (a, b
a- % - F(Y(a, b, 3:)), (229)
with F(z) given by ([2I9). Let us introduce the a — 0 limit:
_ o Y(a, b @)
@(@) = lim ——"——

= o + (744 4+1728b)- x* + (750420 + 2571264 b + 2985984 b?) - z°
+ (872769632 + 3549961728 b + 6664716288 b? + 5159780352 b%) - z*
+ (1102652742882 + 4945819779072 b+ 11680775258112 b
+ 15355506327552 b° + 8916100448256 b”) - z°
+ (1470561136292880 + 7027977959274240 b+ 19050621395927040 b*
+ 32624754548539392 b + 33167893667512320 b* + 15407021574586368 b°) - 2°
+ e (230)

In the b — 0 limit, this series (230) reduces to the nome series (I35]) or (I34]).
In the a — oo limit one gets:

Xy(z) = lim Y(a, b, f) = o — 7442 +3566522° — 1403611522
a—r 0O a
+ 49336682190 2° — 1611462566908 28 + 4999042477430456 27
— 1492669384085015040 2° + 4327627504848181424372° + ---  (231)

This series (231)) is nothing but (I34)) or [I31), and, thus, does not depend on the

second parameter b.
One actually finds that the two parameter series ([227) is nothing but:

Y(a, b, 2) = X (a : Qb(az)). (232)
From (232) we can also deduce that ([229), is, in fact, nothing but equation:
0Xp(a -
a- % = F(Xb(a . ;v)) (233)
Furthermore, since a - axbai(:-m) = x- BX%(;'I), relation ([233)) also gives:
0Xp(a -
z- 17(;7‘””) = F(Xy(a ). (234)
x
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In contrast with the b = 0 case, the two functions, @, and X, given by the
two limits (230), @31)), are not compositional inverse. In the a — 1 limit, the
decomposition [232]) becomes:

Y(1, b 2) = Xb(Qb(x)>
= x +1728 - b- 2 42985984 b? - 2® + 186624 - (27648b* — 1823)- b- 2*

+ 110592 - (80621568 b — 15947604 b — 5249233) - b- 2® + ---  (235)
The series (235]) is a one-parameter family of commuting series:
Y(1, b, Y(1, ¥, a:)) - Y(1, B, Y(1, b, 3:)) = Y(1,b+V, ) (236)
In particular the compositional inverse of Y (1, b, z) is Y (1, —b, x):
Y(1, b, Y(1, —b, x)) - Y(1, b, Y(1, b, x)) _— (237)
Note that:
Qb(Xb(:v)) - % = 1z +1728-b-2® + .- (238)

From (238) we deduce an alternative expression for @Qy(x) in terms of the nome (23]
(i.e. the compositional inverse of (231]), or, equivalently Qp(z) for b= 0):

oW
Qu(z) = 1 _17280- b- Qolz)

Conversely, the nome (23)), which does not depend on the parameter b, can be simply
expressed in terms of the series (230):

Qo(z) =

(239)

Qu(z)
1 117280 Qu(z)’

Note that the composition rule relation ([228)) can, now, be seen as a straightforward
consequence of relation ([239). From relation (239) one can see that the radius of
convergence of the series (230) corresponds, for small enough values of the additional
parameter b, to the singularity of Qo(z), (i.e. R = 1/1728), and for large enough
values of the parameter b, to the singularity Qo(z) = 1/1728/b, namely:

(240)

1 - 1
- X (_) _ X(_) 241
v "\ 17285 1728 (241)
Remark [8l1: Do note that, in contrast with the o = 0 case, there is no
solution-series of the form a- 22 4+ --- or, more generally, of the form a- ¥ + -

with N # 1, of the Schwarzian equation ([222), when W (z) is given by ([223).
This corresponds to the fact that, when o # 0, W(z) is no longer of the form
W(z) = —1/2/2% + - (see [30, B31]).

9. Polynomial examples for F(z).

Modular correspondences, modular curves, correspond to a (transcendental) function
F(z) associated to elliptic functions like (IGS), ([219).

provides a (non globally bounded) Heun function example showing
that the previous results and calculations also work, mutatis mutandis with Shimura
curves [75] (and their associated automorphic forms [10]).



Replicable functions 36

Let us now recall the general results of section (@l), which describes the one-
parameter solution-series (I90) of the Schwarzian equation (I74), and also the partial
differential equations (I97), (I98)), and the fact that these equations are actually valid
for any function F(x).

Let us consider, here, one-parameter functions y(a, ), corresponding to
miscellaneous polynomial examples of functions F(x), that are, thus, far from
being associated with the previous “classical” modular forms [I4, 15, 19 and
hypergeometric/elliptic functions [45] [46], or even Shimura curves/automorphic forms
examples, possibly with Heun functions [83] (see [Appendix B]). Even more simple
polynomial examples are given in

From the general results of the previous section (@) we will, thus, get a set of
miscellaneous examples. All the corresponding one-parameter series, below, will verify
the composition rule:

y(ay(@. 2) = ylad, 2). (242)
All these one-parameter series will also verify:
_ dy(a, x) _ dy(a, )

One will also consider a polynomial that will be the truncation of the
hypergeometric function ([I68). One will, then, get a one-parameter solution-series,
very similaiff to ([30), which also verifies the composition rule ([3Z), but does not
correspond to globally bounded series [43].

9.1. A first simple polynomial example for F(x)
Let us first consider the following polynomial expression for F(x):

Flz) = z-(1-22)- (1 —3x). (244)
One deduces, from (I69), [203), the following rational expression for W (z):

1 1-362%2 +1202% — 108 2*

W@ = =3 1200 (1 =327

(245)

The Schwarzian condition
W(z) —W(y(e) ' (@)? + {yl@), 2} = 0, (246)
has the following one-parameter solution
yla,z) = a-z —5-a-(a—1)-2° +2-a- (l4a—11)(a—1)- 2
—15-a- (a—1)*(11a—6)- 2* +a- (a—1)*. (1001a® — 1298 a + 351) - z°
—7-a-(a—1)>(884a* —923a+ 189) - z° (247)
+60-a-(a—1)3- (646a® — 1156 a® + 600a — 81) - =7
—3-a- (a—1)* (817194 — 125324 a® + 54162 a — 5832) - 2° +
as well as modular equation-like series (with no parameter) like
yo = 2 +1023 +642* +3002° +9242° +5627 — 2414028
— 209856 2° — 11586002'° + ... (248)

1 The three first terms are the same.
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or:
ys = x° +15z% + 14125 +10502° + 670527 + 37854 2% + 189603 2°
+ 820584 10 + 2777004 x'! + 4024890 21 4+ ... (249)
More generally, for the solution series of the form x — z? + ... we have:
dx dy
- — 250
Fa) ~ Fly) (250)

From ([244) we get:

dx x- (1 —2x2)?
— ) = e —7 251
exp(/ F@;)) BT —32)3 (251)
From (250), and (251), we get the algebraic curve:

(w- (1 —246)2)1’ _ oy (1 -2y
PP\ —32r ) T (1 -3y
One finds that ys, given by (248)), is actually solution of the algebraic condition ([252])
for p = 2 and p = 1, namely:

(m- (1 —236)2)2 oy (1 -2y
(1 -3z)3 S (1 -3y)p
One also finds that ys, given by ([249), is actually solution of the algebraic condition
@52), for p = 3 and p = 1, namely:

(:v- (1 —2:0)2)3 _ oy (1 -2y

(1 —3x)3 (1 -3y)p
On the other hand one finds that the one-parameter series y(a, ), given by (247,

is actually solution of the algebraic condition [252)) for p = 1 and p = a, namely:

2 2
(1 —3z)3 (1 —3y)3

Remark[0l1: Note, from (255), that the one-parameter series y(a, x), given by (247),
is actually an algebraic series for any value of the parameter a (and not only N-th
root of unity). The algebraic equations ([253) and ([254), and their corresponding
algebraic series solutions (248) and ([249), could be seen to be the “equivalent” of the
modular equations (@3] and (B3]), and their corresponding algebraic series solutions
@3) and (B3). However, one should note that the modular equations [A3) and (B3] are
T <+ y symmetric, and, consequently, the modular equation (@3] represents ¢ — ¢>
and q — ¢/? in the same time (see series (@) but also [@G)). Similarly the modular
equation (53] represents ¢ — ¢° and q¢ — q'/3 in the same time (see series (BH) and
also @O)). In contrast 253) and 254) break the = <« y symmetry. Therefore, the
“equivalent” of the modular equation ([43)) is rather

(252)

(253)

(254)

- —272)2\2 . — 2 . — 2,2 T - —9272)2
((%) - y(1(1—3;2/)y3) ) ((y(1(1—35)%) ) - (1(1—3;3) ) =0
when the equivalent of the modular equation (53] is rather:
- —212)2\3 . — 2 . — 2.3 T - —927)2
(( (1(1—3325)3) ) - y(1(1—3;2/)y3) ) ((y(1(1—35)%) ) - (1(1—3;3) ) =0

The series (241) verifies the composition rule:

y(a,y(a’, a:)) = ylad, ). (256)
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The series (247) also verifies the relations:

) )
F(y(a, ;v)) = F(x)- y(%,x) = a- %. (257)
Let us introduce the two limits:
Ox) = hmoM = 2 +522 +224% +902" +3512° +13232°
a— a
+ 486027 + 17496 2% + 6196527 4216513210 4 ... (258)

X(z) = lim y(a, f) = 2 —5z® +282° — 1652t +10012° — 61882°
a

a—r 00

+3876027 —2451572% + 156227527 — 100150052 4+ ... (259)

One can verify that these two series Q(z) and X(x) are compositional inverse. The
radius of convergence of the “nome-like” series Q(z), given by 258), is R = 1/3.
The radius of convergence of the series X (z), given by ([@59), is R = 4/27.

These two series, with integer coefficients, are solutions of the two Schwarzian
equations

- 1 dQ(z)\?
{Qa), 2} +2.Q(x)2'( c2) + W@ = o (260)

and

(X(2), 2} _2.1352 (K@) (%)2 _— (261)

where W (z) is given by (243)). In fact using the explicit algebraic form of y(a, z),
given by ([253)), one can find a closed exact expression for the “nome-like” series Q(x),

namely:
2
Qz) = % (262)
in agreement with series (258). Relation ([253]) is nothing but:
a- Q) = Q(y(a ). (263)
The one-parameter series (247) can thus be written:
y(a, z) = X(a- Q(x)) (264)

From (264)), and from the fact that y(a, ) = x for a = 1, one can deduce that X(z)
must be the compositional inverse of the “nome-like” series ([262]). Note that X (z) is
an algebraic function. It is solution of the polynomial equation:

(272 +4)- X(z)® — 27z +4)- X(2)? + Oz +1)- X(z) —x = 0, (265)

in agreement with the R = 4/27 radius of convergence of the series X ().

9.2. Another simple polynomial example for F(z)

Let us now consider the polynomial

Fz) = - (1 =373-2)- (1 =371-2) = 2z —T7442% 413838323,  (266)
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which has the same first two terms as the series expansion of the hypergeometric

function ([I68). The function W (z) in the Schwarzian equation is given by (203)):
1 1 —830298 2% + 411827808 2® — 57449564067 z*
W) = —=- s . (6T
2 22 (1 —373x)2- (1 —371x)?

A solution of the Schwarzian equation, with W (x) given by (267), reads:

1
yla,z) = a-x —T44-a- (a—1)- 2? +5a (1245455 a — 968689) - (a — 1) - 2*
—620- a- (885656a — 470507) - (a — 1) z* + ... (268)
The functional relation F(y) = F(z)- y'(x), gives dy/F(y) = dz/F(x), and thus
dy \ A, dv \ (1 —3712)%71/2
e eXp(/ F(;,)) = Q@) = eXp(/ F(x)) T T — 373232
968689 s

= z +T7442* + +2917143402* + .- (269)

We actually have the relation:
o Q@) = Q(yla,v)). (270)

In that case, since Q(x) is an algebraic function, we see that the one-parameter series
y(a, z), given by [26]), is actually an algebraic series for any value of the parameter
a. The series y = y(a, x) is actually solution of:

1 —3712)%" 1 —371y)%"
CL2 . I2 . ( .I) _ y2 . ( y) _ 0. (271)

(1 —373x)373 (1 —373y)373
Taking into account the large degree in x or y of the polynomial condition @7T]),
one should note that it can actually be quite difficult to get this polynomial equation

fromq a large series (268). The compositional inverse of Q(z) is:

_ 1245455 3989599188003
X(z) = = —7442% + - 3 — 549106720 z* " z°
6928370820171415659
— 461623555588416 2% + TG c 2T
—410201463628637176320 2% + --- (272)

This is an algebraic series y = f((x), solution of:
22 (1 =373- 9% — 2 (1-371-9)%" = 0. (273)

Note that, even with a very large series (272)), it is also quite hard, because of the high
degree in y of (273), to find the algebraic expression (273)) even if it is really simple.

9.2.1.  Two-parameter family. Following the calculations displayed in subsection
1), let us generalize W (x) given by ([267), to the form (223]):

F"(x) 1 /F'(z)\2 1 o2
_ 1 1. 274
W) = Foy 73 (F@)) 2 F@) (274)
For a = 1 with F(x) given by ([266), W (x) reads:
2 _
W(z) = 415149 . 138383 x 992z +2 (275)

2 2%- (1 —3732)%- (1 —37la)%

¢ Using, for instance, the command seriestoalgeq of gfun of Bruno Salvy.
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The two-parameter series (generalizing (263)))

y(a, b z) = a-z + (172& b—744- a- (a—l)) a2
b2
+ (2985984 = — 2571264+ (a—1)- b (276)
a
1
+ 5 a- (1245455 — 968689) - (a - D)

b b

+ (5159780352 7 — 6664716288+ (a—1)- =

a a

(=l

+ 864 - (3736365 a® — 6642432 a + 3044450) -

—620- a- (885656 a — 470507) - (a — 1)) - 2*

. +

given by ([275)). Note

e

is actually solution of the Schwarzian equation [222) with W (x
that, again, the two-parameter series (270 is also solution of

ay(au b7 :E) ay(au bu JI) _
a = +b — = F(y(a, b, ;v)), (277)

with F(z) given by ([266). We have, again, the two-parameters composition rules
(226):

y(a', v, y(a, b, 3:)) = y(a a,a?b +ad'b, 3:) (278)
similarly to subsection (BIJ), let us introduce an alternative parametrization of the
two-parameter series (276]), changing b into a b, in (270):

Y(a,b,z) = a-z + (1728- ab—T44- a- (a—l)) - 2?
+%~ (5971968~ a-b? —5142528 (a—1)-a- b
ta- (12454550 — 968689) - (a — 1)) S BT (279)
Again, we have the following composition rules for the two-parameter series (279)
Y(a’, b, Y(a, b, 3:)) - Y(a a, abl +b, x) (280)
The series (279)) is, now, solution of:
a- W F(Y(a, b, x)), (281)

with F(x) given by (260).

9.3. Truncation of the hypergeometric function F(x).

The hypergeometric function F(x) given by ([68), expands as x —744 2 —393768 x> +
-+ Let us consider a simple truncation of this hypergeometric function:

F(z) = x —T7442* —3937682°. (282)
From (203) this gives:
1 1 +2362608 2% — 1171853568 2° — 465159713472 %

W) = =3 2% (1 — 744z — 393768 27)? - (289)
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The Schwarzian equation (I74)) with the previous W(x), namely (283), has the
following one-parameter solution-series:

yla,2) = a-x —T44-a-(a—1)- 2> +36-a- (a—1)- (9907 a — 20845) - z°

—80352- a- (a—1)?- (264a —9379) - z* (284)
— 648 a- (a—1)%- (250310357 a* + 598043050 a — 1207272939) - z°
482112

a- (a—1)3- (1944308192 a® — 424834349 a — 8498464743) - 2% 4+ ---

5

This one-parameter series ([284]) is quite similatff to the one-parameter series (@30).
The series (284 actually verifies the composition rule:

y(a,y(a’, a:)) = ylad, ). (285)

Let us introduce the two limits

Qz) = lim ya 2 + 744 2% 4750420 2% + 753621408 z* (286)
a— a
7831986447225 + 40972118534177216 N 433186632;367059104 7

and:
X(z) = lim y(a, 3) = o — 7442 +3566522° — 2121292827  (287)
a

a— o0
937374311061504 S 563689525139743392 o7
) )
One verifies that the one-parameter series (284)) is actually of the form:

y(a,z) = X(a~ Q(:z:)) (288)

Again, from (288) and from the fact that y(a, ) = « for a = 1, we see that the
series (287) is actually the compositional inverse of the “nome-like” series (286):

— 162201111336 2° +

y(le) = = = X(Q)), (289)
The one-parameter series (284) is also solution of
dy(a, x) _ _ 9y(a, x)
@ 54 F(y(a,z)) = F(z) or (290)
and one can verify that:
Q(yla. ) = a- Q). (201)
Conversely, from (291), we get, recalling (205])
dy dx da
— + & 292
Myl ) ~ F@ T 22
which gives for a fixed
oy(a,
Flyla, ) = Fla)- 2480 (203)
and for x fixed:
T iy, ) (201)
a 5a = y(a, )).

t The first three coefficients are actually the same.
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Let us introduce the series
yo = X(Q(x)2) = 22 +14882° + 20536322 + 262165363227

1962 112688192 234018431 444
4 3944440682476 2° + 96 79005 68819 - 3401843 65309 0736x8

193179165341208747259392
+ = 2 (205)

This series ([293) is solution of the Schwarzian equation (I74)), with W (z) given by
([283), and is also solution of

2 Fly) = Fla) 22, (206)
1.€.
2. (y2 442 —393768y§) - (x 74442 —393768:53) : %, (297)
and one also has:
Q@) = Q? (298)
Let us introduce the one-parameter series
Y = ylaw) = X(a-Q@?) = a-a® 148802’
—24-a- (3la—85599)- z* —35712- a- (62a — 73473) - 2°
+36- a- (9907 a® — 130673184 a + 90254015568) - (299)
1605704 - a- (49535 a® — 262999040 a + 122399922528) - =7+ -

This one-parameter series (299)) is solution of the Schwarzian equation (I74), with
W (z) given by ([283). It is also solution of

Q@) = a- Q@) (300)
and also solution of
(a) ()
Pl — Oy, 9%
2-F(ys ') = F(x) o 2-a P (301)
where
F(z) = = —7442% —3937682° = z- (1 —p- :v) (1 —q- x) (302)
with:
p = 372 +6- 14782'/2 g = 372 —6- 14782'/2, (303)
Let us denote
1 p+gq 31 1/2
= .2 = 147822 = _—0.25497 --- 4
o 2 T—p e | AT8 0.25497 (304)

Following the previous calculations in section (@.2]), one easily finds that the “nome-
like” series (286) reads:
Q(x) oz (1 —p- x)P/(a=p) B T 1 —p-z\@
- 1 —q- x)1/(@p) 12’ (1— :1:)
o) (0 =p- ) (1 —q- ) ‘

= x +7442% 4750420 22 + 753621408 z* + 782312864472 2°
4097211834177216 4331866321367059104 -,
+ + "+ - (305)

5 . 5
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This “nome-like” series [BUH) is actually D-finite. It is solution of the order-one
linear differential operator (6 = x - D, is the homogeneous derivative):

Ly = F(x)-D, —1 = (z —7442® —3937682%) D, —1
= (1 —744x —3937682%)- 60 —1. (306)
Do note, however, that this “nome-like” series (B0H) is not globally bounded. The
radius of convergence of the “nome-like” series (B05) is 1/p, with p given by (B03):

1 147821/2 31
R= - = - = 0.0009078632370 - - - 307
P 65628 32814 (307)

This “nome” series [B03) is D-finite, with a finite radius of convergence, but it is not
globally bounded. Note that X(x) is only a differentially algebraic function.

Note that the order-one linear differential operator Ly, given by [B06), is not
globally nilpotent [83]. The corresponding p-curvatures are null (or nilpotent that is
the same for order-one linear differential operators) for the following primes:

3, 11, 13, 17, 23, 31, 47, 61, 73, 79, 89, 101, --- (308)

but non-zero for the following primes:
5, 7,19, 29, 37, 41, 43, 53, 59, 67, 71, --- (309)

Note that, since 14782 = 2- 19 - 389, we could have expected that one does not
see the transcendence of the “nome” mod. 19, the “nome” reducing to an algebraic
function (see (B03)), (304)), and thus one could expect a zero p-curvature. This is not
the case.

Note that the exponent of the “nome-like” series ([B0Z), at the singularity
x = 1/p,is

P 1 31
—_— = —— ——— = —0.7549735291 --- 310
qg—0p 2 147821/2 (310)
which is not a rational number. This rules out the fact that the order-one linear
differential operator (B0 could be globally nilpotent [83].

Let us consider the simplest example of series y(a, x), namely the (involutive)

series [284)) for a = —1:

y(—1,z) = —x — 148827 —22141442% — 3099337344 2% — 4030574598144 x5
23640158283604992 ,  23310435220175683584
- 7 - E x (311)
_ 20590422517553304526848 ¢ 12494610391145690921435136
7 7

Calculating the first fifty coefficients of this series, one can see that this (involutive)
series is not globally bounded.

Remark [912: Following subsection ([@.2]), the generalization to two-parameter
series can be performed on this last polynomial example, mutatis mutandis.

10. Comments and speculations on differentially algebraic series.

We have displayed miscellaneous series solutions of Schwarzian equations (and thus
having a compositional property [30, [31]), which can be seen to be, or to generalize,
modular correspondences [76]. We remark that we have the following situation:
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we have series depending on one parameter (sometimes two parameters for slightly
“academical” examples like in subsection ([8.I)), which reduce to series with integer
coefficients for an infinite set of values of the parameter(s), namely the integer valueeﬁ.
These one-parameter series are generically only differentially algebraic, even for integer
values of the parameter (where they are probably not even D-finite, see for instance
(IET)). In contrast, and remarkably, when the parameter is a N-th root of unity, the
generically differentially algebraic one-parameter series become algebraic functions.
We thus have an infinite number of algebraic functions.

It is interesting to note that a totally and utterly similar situation have been seen
to occur in other very interesting situations in physics, or enumerative combinatorics.
Along this line, differentially algebraic series with integer coefﬁcients@ exist, and
correspond to remarkable solutions of differentially algebraic equations in physics,
or enumerative combinatorics, like A-extensions of Ising correlation functions [84] [85],
or solution of a differentially algebraic Tutte equation [55]. We have an infinite set of
differentially algebraic series with integer coefficients that are not D-finite [55] 84} [85].
We also have the occurence of an infinite number of algebraic series for an infinite set
of Tutte-Beraha values of the A\ parameter. Note that these selected values can also
be seen as N-th root of unity situation.

At first sight, these Tutte-Beraha examples [55], or A-extension of correlation
functions of the Ising model [84] [85], are not related to Schwarzian equations with
their composition function propertieiﬂ. Is it possible that such differentially algebraic
series could also reduce (in a more or less involved way ...) to exact decompositions

like X (w . Q"(:v)), that we found systematically through this paper, since many of
the results of this paper are, in fact, consequences of such exact decompositions ?

e One motivation of this paper was to understand the very nature of the one-
parameter series y(a, x) : we have seen that this series cannot be solution of an
order- N linear differential operator (for some integer N independent of the parameter
a) with coefficients polynomials in 2 and in the parameter a.

e The relation between the Schwarzian equations (such that W(x) = —1/2/2? +
-+, see [30, B1]), and modular correspondences was also an important motivation. The
solutions of the Schwarzian equations are larger that just the (infinite) set of “modular
correspondences”, precisely because of the occurrence of one-parameter series y(a, ).
Along this line we have first seen that the solution of the Schwarzian equations can
actually correspond to series with more than one parameter. Modular correspondences
are associated with modular curves and modular forms [14, (15, [I6]. Consequently,
another question was to know if one can generalize these concepts beyond the elliptic
curves and modular forms framework.

We have also shown, with very simple (polynomial) examples for the function
F(x), that these structures can actually be generalized far beyond the elliptic curve
(modular curve, Shimura curves, modular form, automorphic form) framework. Along
this line, a first polynomial example ([@.2]) provides an example of one-parameter series
y(a, ), algebraic for any value of the parameter. We also found that the equivalent of
the nome is a simple algebraic function (square root of a rational function). With that

i More generally, for rational values of the parameters we have globally bounded differentially
algebraic series.

€ Not simply reducible to ratio of globally bounded D-finite series, or composition of globally bounded
D-finite series.

t These A-extension of Ising correlation functions are solutions of Painlevé equations |84} [85].
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example one also understands why it can be extremely hard to see that some series are
algebraic, even if the algebraic function to guess is of a quite simple form. Furthermore,
a “truncated” example (@3] shows that the “modular equation-like” series (see for
instance (295]), (311)) can actually be non globally bounded. The “nome-like” series is
a non globally bounded, but still D-finite, series (see ([B04)), the corresponding linear
differential operator being non globally nilpotent.

11. Conclusion

This paper provides a simple, and pedagogical, illustration of exact non-
linear symmetries in physics (exact representations of the renormalization group
transformations like the Landen transformation for the square Ising model [32]33], ...)
and is a strong incentive to discover more differentially algebraic equations involving
fundamental symmetries, and to develop more differentially algebraic series analysis
in physics [55, [66], beyond examples like the full susceptibility of the square-lattice
Ising model [56 84l [85], 92] 93].

In this paper we first focused, essentially, on identities relating the same
hypergeometric function with two different algebraic pullback transformations related
by modular equations. This corresponds to the “classical” modular forms [19] (resp.
automorphic forms) that emerged so many times in physics [41],[42],[43]: these algebraic
transformations can be seen as simple illustrations of exact representations of the
renormalization group of some Yang-Baxter integrable models [32 B3] [73]. These
transformations are seen to be solutions of some Schwarzian relation.

The Schwarzian relation is seen to “encapsulate”, in one differentially algebraic
(Schwarzian) equation, all the modular forms and modular equations of the theory of
elliptic curves. The Schwarzian condition can thus be seen as some quite fascinating
“pandora box”, which encapsulates an infinite number of highly remarkable modular
equations, and a whole “universe” of Belyi-mapdll. It is however important to
underline that these Schwarzian conditions are actually richer than just elliptic
curves, and go beyoncﬂ “simple” restrictions [91] to pullbacked 2F37 hypergeometric
functions. In a more general perspective, such Schwarzian conditions occur in
Malgrange’s pseudo-group approach [65] 66] 67, [72] of D-enveloppes. At this level
of mathematical abstraction, the question of a modular correspondence interpretation
of these “Schwarzian” series was clearly an open question. This paper sheds some light
on this open question. It shed some light on the very nature of the one-parameter series
solution of the Schwarzian equation, which is not generically a modular correspondence
series, but actually reduces to an infinite set of modular correspondence series for an
infinite set of (N-th root of unity) values of the parameter. This paper also provides
(polynomial) examples that are very similar to modular correspondence series, but are
far beyond the elliptic curves framework.

Acknowledgments: We would like to thank A. Bostan and G. Casale, for very
fruitful discussions. We thank A. Bostan for some p-curvature calculations. This work
has been performed without any ERC, ANR, PES or MAE financial support.

1 Belyi-maps [86], [87] [88], [89] [90] are central to Grothendieck’s program of “dessins d’enfants”.
11 See the two Heun functions given by (164) in [77].
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Appendix A. Miscellaneous modular correspondences.

e Let us consider

X (Q(m)7) = o7 +52082% +168771962° + 43972580024 2.0

+101156052918270 ' 4 215029151897268240 22  + .. (A1)
which is solution of a modular equation I'z(z, y) = T'7(y, ) = 0 that we will not
write here, but can easily be obtained from its rational parametrization [19]:
¢ t7
y =

T (2113t +49)- (2 +5¢ +1)3 (2 + 13t +49)- (2 +245¢ + 2401)3°
This series (AJ) is solution of an order-eight linear differential operator Lg =
L1 @ L7, which is the direct sum of an order-one linear differential operator L, with
a rational function solution of the form

(11356800389480448000000 22 + 34848505552896000  + 1)3° '
where pg(x) is a polynomial of degree six, and an order-seven irreducible linear
differential operator Lr.

e Let us also consider

X(Q(I)g) = 2% +59522° + 21502368210 + 613101798402 + .- (A.3)

which is solution of a modular equation I's(x, y) = T's(y, ) = 0 that we will not
write here, but can easily be obtained from its rational parametrization [19]:

t- (t+4)% (t+38)
(t* +16t3 +80t2 +128¢ + 16)3’
- 8. (t+4)- (t+8)? (A4)
v= (t* + 25613 + 512042 4 32768t + 65536)3° '
The polynomial, associated with the modular equation T's(z, y) = 0, is of degree 12
in y (resp. in z). This series (A3)) is solution of an order-twelve linear differential
operator Lio = L1 @ L11, which is the direct sum of an order-one linear differential
operator L; with a rational function solution of the form

xr =

) p11(7)
T p—4(x)3 , (A.5)

where pi1(x) is a polynomial of degree eleven, and where p4(z) reads
1080060886113159937649308593750000 z* — 826335556188178615474500000000 z*
— 15705521635909735050750000 22 + 8041801037378436000 2 — 1, (A.6)

and an order-eleven linear differential operator Li;. The other algebraic solution
series of I's(x, y) = 0 are the compositional inverse of series (A.3]), namely

w-zt/® =744 w? . 2?® 43566520 - 2%/® — 140361152 wt - /8
+ 49336682190 - w® - 2%/ — 16114625669088 - w5 - 2%/ + ... (A7)
where w® = 1, together with

— 2?2 —14882% — 2055120 2% — 2864378368 z° — 4071821465856 2:°
— 5900566305239040 27 — 8695398352685449216 z° + --- (A.8)
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which idq y1(y2(z)) (where yq is (8I) and y, is [@3)), and
w-zt/? — 744 W% 2?2 4356280 - w232 — 139807616 - wt - /2
+ 48938964576 - w® - z%/2 4+ ... (A.9)

where w? = —1. The number of algebraic solution series of I's(x, y) = 0, or Lja, is

14+14+8+2=12
e The (algebraic) series

X(Q@)") = @ 48184212 + 386991002 + 1389669181122 + -+ (A.10)

is solution of a modular equation I'1i(z, y) = I'11(y, ) = 0 that we will not write
here. The polynomial, associated with the modular equation T'11(z, y) = 0, is of
degree 12 in y (resp. in z). In contrast with the previous examples, this modular
equation is a genus-one curveﬁ. We, thus, do not have a rational parametrization of
the modular equation [19]. This series is solution of an order-twelve linear differential

operator Lis = L1 @® Lq1, which is the direct sum of an order-one linear differential
operator L; with a rational function solution
v 2L (A.11)
Y

where pj; is polynomial of degree eleven, and where p4 reads
1577314437358442913340940353536000000000000 z*
— 496864268553728774541064273920000000000 2
+ 45688143672322270430861721600000000 22
+ 98823634118413525094400000 x + 1, (A.12)

and an order-eleven linear differential operator L.
e The (algebraic) series

X(Q(z)”) = 22 89282 + 455384162 + 1747732554242 + .. (A.13)

is solution of a modular equation T'i2(x, y) = T2(y, ) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19):

(t+2)3(t+3)* (t+4)3(t+6) Ty (t+2)(t+3)%(t+4)* (t+6)°

v (t24+6t+6)3 p} ’ (12 + 12t +24)3 - ¢} ’
where:
ps = t° +18¢° +126¢* +432¢° +732¢% 4504t + 24, (A.14)
g = t° +252¢° +4392¢* +31104¢> + 108864 % + 186624t + 124416.
The polynomial, associated with the modular equation T'j2(x, y) = 0, is of degree
24 in y (resp. in z). The (algebraic) series solutions of the modular equation
I2(x, y) = 0 are solutions of an order-24 linear differential operator Loy = L1® Los,

which is the direct sum of an order-one linear differential operator L, with a rational
function solution

. P23 (A.15)
(6549518250000 22 — 2835810000 + 1)3 - pg

€ In contrast, note that y2(y1(z)) = y2(z).
t See Appendix I in [44], which is the unabridged arXiv version of [43].
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where ps3 is a polynomial of degree 23, and where pg is the polynomial
42889619864187195342544128412237640625000000000000
+ 3869372376492639837782614434923625000000000000 z°
+ 34904627315764077727184412247908187500000000 z*
+1007059405271040783775694468925000000000 2
+ 280179539493990596285512318134750000 2
— 22804995243537595825782822000z + 1, (A.16)

and an order-23 linear differential operator Los. The other (algebraic) series are,
respectively, the compositional inverse of series (A13]), namely

w2 744 WP 2?12 1356652 wB - 2312 — 140361152 wt - /12
+ 49336682190 - w° - %/12 — 16114625669088 - w° - 20/12

+4999042477430456 - " - £7/2 4+ ... (A.17)
where w'? = 1, together with
— 2% —22322% — 3911868 2° — 6380015304 2% — 10139549171670 " + --- (A.18)

which is nothing but y3(y1(z)) = y1(ys(z)) (with ys given by (B3, and y; given by
@), and
w- a3 744 w? 2?3 - 356652 ¢ + 140361400 - w - 2*/?
— 49337051214 - w? - 2%/ —16114891018176 - 2%/3

+4999181715881876- w - x7/®  + ... (A.19)
where w? = 1,
w4992 w2 — 744 W2 2¥P 41123568 w- 2% 4+ ... (A20)
where w?® = —1, and
weadt — 744 W2 2t 4558 w- 2Tt £356652- Wi 2%t 4 o0 (A21)

where w* = 1. This gives 1 +1 +12 +3 +3 +4 = 24 algebraic series, solutions
of Flg =0 and L24.

Remark [B16: Recalling the algebraic series ys, given by (B5), and the algebraic
series y; given by (8I]), one can see that the algebraic series (AI8) is nothing but:

y(yi(2)) = m(ys(z)) = —2® —22322% —39118682° + ... (A.22)
e The (algebraic) series
X(Q(:c)“") = 20 41100427 + 7843104028 + 378584548352 210
+ 1496557573544352 220 + ... (A.23)

is solution of a modular equation Tg(z, y) = T'16(y, ) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19):
(t+2)4(t+4)(t2 +4t+38) 46 (t+2)(t+4)*(t2+4t+38)

xr = t 5 y:
2 e

)

where:
ps = 8 +16¢7 +112¢5 +448¢° +1104t* +1664¢> + 1408¢% + 512¢ + 16,
gs = 8 +256t7 +5632t° +53248¢° +282624t* + 917504t + 1835008 ¢2
+2097152t + 1048576. (A.24)
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The polynomial in the modular equation T'16(z, y) = 0 is of degree 24 in y (resp.
in z), and, thus, has twenty four algebraic solution series, corresponding to the series
(A23)), the compositional inverse of series (A:23), namely

w- /1 744 w? . 2?10 4356652 wd - 23/16

— 140361152 w* - 216 4+ ... (A.25)
where w!® = 1, together with
—a* —29762° —63228062° — 1183815142427 — 20872495229904 2*
— 35647177059836928 2° + - -- (A.26)
and
w744 W% 2t 4356652 w3 2¥/4
— 140361152 w* - 24 4+ ... (A.27)
where w* = —1, and:
w-r =744 w- (w—-1)-2% 4+ .- (A.28)
where w? = —1. The (algebraic) series solutions of the modular equation I'ig(z, y) =
0 are solution of an order-24 linear differential operator Loy = L1 @ Log, which is

the direct sum of an order-23 linear differential operator Loz, and an order-one linear
differential operator L, with a rational function solution

z- %f”, (A.29)
where psa3 is a polynomial of degree 23, and where pg is the polynomial
15926143836920796849094002857387135460968690480161221686575776100158691406250000 2
— 6042818923606714182438083804301870179528875596947614517314453125000000000000 .7
+ 4900698705373764641365354757988280247136785578572898154329101562500000000 2:°
+ 46721890317786185410700227174952944124137546155237676733203125000000000 z°
+ 81580198367732340212612911642019252294658707587093110574218750000
+ 736154608709059015006498116049282929703692588255135000000000 3
+ 259399171372225204966661002550162965440584749500000 2
— 64670563924749466394147714711210760000 x  + 1. (A.30)
Remark Bl7: Recalling the algebraic series y4, given by ([9), and the algebraic
series y; given by (&), one can see that the algebraic series (A26) is nothingjl but:
yi(ya(z)) = —azt —29762° —63228962° + .- (A.31)

We thus have 1 +1 +16 +4+ 2 = 24 algebraic solutions of the modular equation
T'6(z, y) = 0, and also solutions of Lay.

e The (algebraic) series
X(Q(a:)lg) — 1 113392210 10819856822 + 522607392000 221
+ 2259156547520244 22 + ... (A.32)

t In contrast ya(z) = ya(y1(x)).
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is solution of a modular equation T'ig(x, y) = T'is(y, ) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]:
(t+2)° (t+3)% (2 +3t+3)* (2 +6t+12)
(83 +6t2 +12¢t+6)3 - p} ’
18 1+2)% (t43)7- (£ +3t+3) (12 + 6t +12)°

= ¢ A.33
4 (t*+ 1262+ 36¢+36)° - @@ ’ (A.33)

x = t-

where:
po = t° +18t% 414417 +6661° 4 1944¢> 4 3672t
+ 4404t 4 3096t> + 1008t + 24,
g = t7 +252¢% +4644¢7 +396361° + 198288¢° + 629856 t*
+ 1294704 % +16796161% + 1259712¢ + 419904. (A.34)

The polynomial in the modular equation T'1s(z, y) = 0 is of degree 36 in y (resp. in
x), and thus has thirty-six algebraic solution series, corresponding to the series (A.32)),
together with the compositional inverse of series (A.32)), namely

w1 —7ad . 2 4356652 WP 23/18

— 140361152 - w* - 2/ 4+ ... (A.35)
where w'® = 1, together with
w-az? +1488- w- 2® + (744 + 2055120 - w) - 2*
+ (2214144 4 2864378368 - w) - 2° + --- (A.36)

where 1 +w +w? = 0, and
w-zt/? —T744 - W 2?4+ (356652 WP 4372 w) - x%/?

+ (139807616 w? + 140361152) - /% 4+ ... (A.37)
where w* +w? +1 = 0, and
w-z 744 W% 2V £356652- W3- L0 + ... (A.38)
where w? = 1, and:
w-a”? £3348- w- 2'V? 47735986 w- 22 4+ ... (A.39)

where w? = 1. We thus have 1 +18 +2 +4 +9 +2 = 36 algebraic series of the
modular equation I'ig(x, y) = 0. These algebraic series are solutions of an order-36
linear differential operator Lsg which is the direct-sum of an order-35 linear differential
operator L35, and an order-one linear differential operator with a rational function
solution

P35
. , A .40
3 - P} (A.40)

where p35 is a polynomial of degree 35, where ps3 reads
1879994705688000000000 =3 — 224179462188000000 2% + 151013228706000 2 — 1,
and pg reads:
141600617083186841426749541059379178266125496444877735060776646144000000000000000000000000000 2:°
— 91940358193098820927255075706021981712433442298247865135275206912000000000000000000000000 22
+ 23575127643124642999337421097401673608067186617214973940390237696000000000000000000000 7
+ 472396958753110140888731003718496465436906620981212557050651392000000000000000000
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+ 9765441515113592938914449083136683600667888100995340182803776000000000000000

+ 14038814920070381530487981789718895908787729404706990128672000000000000 z*
+ 6390980152781882840426709358572754975540778747694537696000000000 2

+ 7559858588621896366536922746878187128255472000000 2

+ 3443855962300764146093216928806375326182000 x — 1.

Appendix B. Beyond pullbacked >F; hypergeometric functions: a selected
Heun function.

Let us show that the results displayed on the classical modular curves and their
associated modular forms with pullbacked F} hypergeometric functions, also work on
Shimura curves [75] and their associated automorphic forms [I0] with a Heun function
which cannot be reduced to pullbacked oFy hypergeometric functions.

Recallingﬂ Krammer’s counterexample to Dwork’s conjecture [78|, [79] [80], let us
consider the Heun function Heun(81,1/2,1/6,1/3, 1/2, 1/2; ) which is solution of
an order-two linear differential operator Lo which is globally nilpotent |83]. The series
expansion of this Heun function is not globally bounded [43) [44]. Let us introduce the
following function F(z):

1/2 11111 2
F(z) = 1/2-(1—3) -2V H (1 ————— : ) B.1
@ = = R L el (LR NESE SR S AR
or, more simply, the following (non globally bounded) series:
11111 4
1. F@)? = - ®l—2)- (1—2)- H ( 1=, = = = = : )
8 (x) x- (8l—2) - (1—2x) eunG(8 e Ty ¢
137 3892 44495 1900594

— 81z — 2 _ 3 _ 4 _ 5 6 B.2
Blo =180 = 7 ¥ ~ 561" ~ Trrar” 14348007 (B2)

Let us consider the Schwarzian equation associated with the order-two linear
differential operator Ls. The corresponding function W(x) reads (see subsection

(@.2)):

35z — 368023 + 244242 2% — 244944 x + 177147
a 72- 22 (x—1)2- (x —81)2 '
One can actually verify that W (z), given by the rational function (B3], can actually
also be written in terms of the Heun function (BJ):

W) = F'(z) 1 (F’(:z:))2 _ (F’(x))’ +%. (F’(I))Q' (B.4)

W(z) = (B.3)

Note that introducing a “nome”
Q(z) 1 / * dx
= or: Q(x) = exp( —), B.5
Q@) ~ F@ @ @) ()
relation (B4) is nothing but relation (25]), namely:
1 dQ(z)\?
W) = — z) — : ( ) . B.6
@) = —{QW).7) ~5gmm - (74, (B.6)
A one-parameter series y(a, z) is actually solutiorﬂ of the Schwarzian equation
W(z) —Wy) y'(@)? + {y@),z} = 0, (B.7)
1 See also subsection 2.3 of [83].
t Note that there are no solutions of the form a- 2™ + --- with n > 2, since W (x) is not of the

form —1/2/x2 4 ---. The series expansion of W (z) reads —3/8/x2 + ---

(A.41)
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with W(z) given by (B.3):

B 26 s 1 ;
yla, ) = a- x 5 ¢ (a—1)-x +6561 a-(a—1)-(243a —1109) - x
2 2 4
One can easily verify the functional equation:
2 d 2
o F(yan) = P2 28D (B.9)
or:
d
al’?. F(y(a, :C)) = F(x)- w. (B.10)
T

One can also verify the following compositional formula:

y(a,y(a’, :C)) = y(ad, ). (B.11)

Let us introduce the two ¢ — 0 and a — oo limits of the one-parameter series

B.3):

. _ y(a, ) 2% , 1100 5 402056
= 1 _— p— —_— —_—
Q) = lim = T Tseer” T 3m20087 "
256552 47140214
565526 5 471402140 (B12)
33480783 8135830269
and:
i x 2 1 8026
X - K ( , _) _ _4b o L og sUib
() = JMim yla Tt Tt 3720087
38603 - 3200
_O 5 0 B.13
301327047 © 301327047 " (B.13)

One verifies that the one-parameter series (BR) is actually of the form:

yla,z) = X(a- Q(:z:)). (B.14)

From the exact decomposition (B.I4)), together with the fact that the one-parameter
series (B.8)) is such that y(1, ) = 1, one deduces immediately that the series (B.I3))
is actually the compositional inverse of the series (B.12]).

Appendix C. Very simple polynomial examples for F(z).

Let us display some very simple examples for F(x), and the corresponding one-
parameter functions y(a, x), solutions of the Schwarzian equation (IT).

e For F(z) = x- (1 +px), one has W(x) = —1/2/2%/(1 + px)?, and a one-
parameter function y(a, x), solution of the Schwarzian equation (I7)) with that W (x)
reads:

a-x
(1 +px) —a-p-x

y(a, .’L‘) = (Cl)

It is straightforward to see that y(a, x) can be written y(a, ) = X(a- Q(x)), where:
~ €T ~ X

X(z) = F—— and: Qx) = Tip o (C.2)
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e For F(z) = x + p, one has W(z) —1/(3: +p)?/2, and a one-parameter

function y(a, x), solution of F(y(a, x)) = F(x)- 8(a %) and of the Schwarzian equation
(@) with that W (x) reads (p is ﬁxe d):

yla, z) = a-(z +p) —p. (C.3)

e For F(z) = 22, one had] W(z) = 0, and a one-parameter function y(a, x),

solution of F(y(a, z)) = F(z) - % and of the Schwarzian equation (7)) with
W(zx) = 0 reads:
x

= — C4

Waa) = T ()

e For F(x) = p, one has W(z) = 0, the one-parameter function y(a, x),

solution of F(y(a, z)) = F(z) - % and of the Schwarzian equation (7)) with
W(z) = 0 reads (p is fixed):

yla, z) = = +p- In(a). (C.5)
e For F(z) = p-x, one hadq) W(z) = —1/2/2?, and the one-parameter function

y(a, z), solution of F(y(a, z)) = F(z) - % and of the Schwarzian equation (I7))
with that W (z) reads (p is fixed):

yla, z) = aP- x. (C.6)
All these one-parameter functions (CI)), (C3), (C4), (CH), (CH) verify the

composition rule:

y(au(@,2)) = ylad, @), (k)
All these one-parameter functions (C.1I)), (C3), (C4), (C3), (C.8) verify:
_ dy(a, x) _ dy(a, )
F(y(a, x)) = a 50 = Fl(x) . (C.8)
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