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Abstract.

Landen transformation, and more generally modular correspondences, can
be seen to be exact symmetries of some integrable lattice models, like the
square Ising model, or the Baxter model. They are solutions of remarkable
Schwarzian equations and have some compositional properties. Most of the known
examples correspond, in an elliptic curves framework, to an automorphy property
of pullbacked 2F1 hypergeometric functions, associated with modular forms. It
is, however, important to underline that these Schwarzian equations go beyond
an elliptic curves, and hypergeometric functions framework. The question of
a modular correspondence interpretation of the solutions of these “Schwarzian”
equations was clearly an open question. This paper tries to shed some light
on this open question. We first shed some light on the very nature of a one-
parameter series solution of the Schwarzian equation. This one-parameter series
is not generically a modular correspondence series, but it actually reduces to an
infinite set of modular correspondence series for an infinite set of (N-th root of
unity) values of the parameter. We also provide an example of two-parameter
series, with a compositional property, solution of a Schwarzian equation. We
finally provide simple pedagogical examples that are very similar to modular
correspondence series, but are far beyond the elliptic curves framework. These
last examples show that the modular correspondence-like series, or the nome-like
series, are not necessarily globally bounded. The results of that paper can be seen
as an incentive to study differentially algebraic series with integer coefficients, in
physics or enumeratice combinatorics.
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1. Introduction: infinite order symmetries.

There is no need to underline the crucial role played by the concept of symmetry
in physics, theoretical physics, mathematical physics. We will not consider
here continuous symmetry groups (Lie groups) but rather discrete symmetries,
not necessarily corresponding to geometrical symmetries (Coxeter groups, Weyl
groups of infinite-dimensional Kac–Moody algebras), or finite groups. At first
sight we do not expect any representation of these discrete symmetries as linear
transformations of vector spaces (no representation theory). Examples of such discrete
symmetries, without representation as linear transformations, are, for instance,
birational transformations [1, 2], which are known to be (infinite order) discrete
symmetries of integrable models [3, 4]. Such discrete symmetries can be studied,
per se, in a discrete dynamical perspective‡.

The simplest example of such discrete symmetries corresponds to a (univariate)
transformation x → y(x) preserving some structures†. These structures must be
invariant, or covariant, under the previous transformations x → y(x). The simplest
example of “structure” is certainely just a function. Let us consider a function
Φ(x), let us discard the (too simple) invariance situation, where we have a functional
equation Φ(y(x)) = Φ(x), and let us consider the following “covariance” property
for a function Φ(x)

Φ
(

y(x)
)

= A(x) · Φ(x), (1)

where the “automorphy” cofactor A(x) can be described in terms of the symmetry
transformation y(x). Along this line the function Φ(x) can be seen as an
“automorphic” function [10] with respect to the transformation x → y(x): the
composition of the transformation y(x) with itself, clearly yields another “covariance”
or “automorphy” property

Φ
(

y(y(x))
)

= A
(

y(x)
)

· Φ
(

y(x)
)

=
(

A
(

y(x)
)

· A(x)
)

· Φ(x), (2)

and so on, for every n-th iteration of y(x) with itself. From a mathematical view-
point such an “automorphy property” (1) is reminiscent of the theory of automorphic
forms [10, 11, 12, 13] (which can be generalized to Hilbert modular forms for two, or
more, variables), which generalizes the theory of modular forms [14, 15, 16, 17, 18, 19].
In the case where y(x) is not only a rational function, but a linear fractional
transformation, the “covariance” property (1) can be illustrated by the Poincaré
series [20, 21, 22], and other Theta-Fuchsian functions or series [13, 23, 24, 25].
From a physics view-point such an “automorphy property” (1) is reminiscent of the
renormalization group theory, revisited by Wilson [26, 27], seen as a fundamental
symmetry in lattice statistical mechanics or field theory. The graduate student
example of exact renormalization calculation of the partition function of the one-
dimensional Ising model, displayed in [28], relies on an “automorphy relation”
(1), where Φ(x) is the partition function per site, and y(x) corresponds to the
renormalization transformation symmetry tanh(K) → tanh(K)2.

In the following we will not restrict the transformation symmetry y(x) to be a
linear fractional transformation: the function y(x) is a series, analytic at x = 0, it

‡ One can recall that the theory of iteration of rational functions was seen, in the pioneering work
of Julia, Fatou and Ritt, as a method for investigating functional equations [5, 6, 7, 8]
† These structures can be linear (or non-linear) differential equations, systems of partial differential
equations [9], functional equations, etc ...
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can be a rational function, an algebraic function, a D-finite function, a D-D-finite
function¶, a differentially algebraic function††, ...

To be more specific, let us give a simple, but highly pedagogical, illustration
of a “covariance” property (1), which corresponds to Φ(x) being a selected 2F1

hypergeometric function [30, 31]

2F1

(

[
1

12
,
5

12
], [1], y(x)

)

= A(x) · 2F1

(

[
1

12
,
5

12
], [1], x

)

, (3)

where the “automorphic prefactor” A(x) reads

A(x) = λ ·
( u(x)

u(y(x))
· y′(x)

)1/2

, (4)

and where u(x) is related [30, 31] to the wronskian of the order-two linear
differential operator annihilating Φ(x), namely the 2F1 hypergeometric function

2F1([
1
12 ,

5
12 ], [1], x).

1.1. Modular forms, correspondences and physics.

The simplest example of a transformation x → y = y(x) occurring in the
“automorphy” relation (3), or occurring as an exact generator of the renormalization
group of the square Ising model, or even of the Baxter model [32], corresponds to the
Landen transformation [32, 33]

k −→ kL =
2
√
k

1 + k
, (5)

or to its compositional inverse, the inverse Landen transformation. As it should, the
critical point of the square Ising model (resp. Baxter model) is a fixed point [32] of
the Landen transformation: k = 1.

Let us introduce the j-invariant♯ of an elliptic curve of modulus k, and its
transform by the Landen transformation (5)

j(k) = 256 · (1− k2 + k4)3

k4 · (1− k2)2
, j(kL) = 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2 , (6)

and let us also introduce the two corresponding Hauptmoduls [32]:

x =
1728

j(k)
, y =

1728

j(kL)
. (7)

These two Hauptmoduls (7) are related by the modular equation [35, 36, 37, 38, 39, 40]:

1953125 x3y3 − 187500 x2y2 · (x+ y) + 375 xy · (16 x2 − 4027 xy+ 16 y2)

− 64 (x+ y) · (x2 + 1487 xy+ y2) + 110592 xy = 0. (8)

The algebraic function y = y(x), defined from the modular curve (8), is a multivalued
function, but we can single out the series expansion††:

y =
1

1728
· x2 +

31

62208
· x3 +

1337

3359232
· x4 +

349115

1088391168
· x5

¶ A D-D-finite function is a function solution of a linear differentiable operator with D-finite function
coefficients [29].
††A differentially algebraic function is a function solution of a non-linear differential equation of the
form P (x, y, y′, y′′, · · · y(n)) = 0, where P is a polynomial.
♯ The j-invariant [32, 34] (see also Klein’s modular invariant) regarded as a function of a complex
variable τ (the ratio of periods), is a modular function of weight zero for SL(2, Z).
††This series (9) has a radius of convergence 1, even if the discriminant of the modular equation (8)
which vanishes at x = 1, vanishes for values inside the unit radius of convergence, for instance at
x = −64/125.
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+
20662501

78364164096
· x6 +

1870139801

8463329722368
· x7 + · · · (9)

The transformation x → y(x) = y, where y is given by the modular equation (8), is
thus an algebraic transformation, corresponding to the Landen transformation (5), or
to the inverse Landen transformation. The emergence of a modular form [41, 42, 43]
corresponds to the remarkable automorphy identity (3) on the same hypergeometric
function, but where the pullback x is changed x → y(x) = y, according to the
modular equation (8).

Let us consider another important modular equation. The modular equation of
order three corresponding to τ → 3 · τ , or τ → τ/3, reads¶:

k4 + 12 k3λ + 6 k2λ2 + 12 kλ3 + λ4 − 16 k3λ3 − 16 kλ = 0. (10)

Recalling that

x =
27

4
· k

4 · (1 − k2)2

(k4 − k2 + 1)3
=

1728

j(k)
, y =

27

4
· λ4 ·

(

1− λ2
)2

(λ4 − λ2 + 1)3
=

1728

j(λ)
, (11)

gives a modular equation P (x, y) = 0, yielding the series expansion:

y =
x3

2985984
+

31 x4

71663616
+

36221 x5

82556485632
+

29537101 x6

71328803586048
+ · · · (12)

Note that these two series (9) and (12) commute. An alternative rational
parametrization of this last modular equation P (x, y) = 0 can be found in [19]:

x =
1728 t

(t+ 27) · (t+ 3)3
and: y =

1728 t3

(t+ 27) · (t+ 243)3
. (13)

Again we have an automorphy relation (3) where y(x) is given by (12) with an
algebraic “automorphic prefactor” A(x).

1.2. Schwarzian condition

More generally, the Gauss hypergeometric function 2F1([α, β], [γ], x) is solution of
the second order linear differential operator†:

Ω = D2
x + A(x) · Dx + B(x), where: (14)

A(x) =
(α+ β + 1) · x − γ

x · (x − 1)
=

u′(x)

u(x)
, B(x) =

αβ

x · (x − 1)
.

An automorphy relation, like (3) but on 2F1([α, β], [γ], x), amounts to saying that
the second order linear differential operator (14), pullbacked by x → y(x), reduces to
the conjugate of the linear differential operator (14). Let us assume that the pullback
y(x) is an algebraic series like in (9) and (12). A straightforward calculation [31] allows
to find the algebraic cofactor A(x) in terms of the algebraic function pullback y(x):

A(x) = λ ·
( u(x)

u(y(x))
· y′(x)

)

−1/2

. (15)

Expression (15) for A(x) is such that the two order-two linear differential operators (of
a similar form as (14)) have the same Dx coefficient. The identification of these two

¶ Legendre already knew (1824) this order three modular equation in the form (kλ)1/2 +(k′λ′)1/2 =
1, where k and k′, and λ, λ′ are pairs of complementary moduli k2 + k′2 = 1, λ2 + λ′2 = 1, and
Jacobi derived that modular equation [45, 46].
† Note that A(x) is the log-derivative of u(x) = xγ · (1 − x)α+β+1−γ .



Replicable functions 5

linear differential operators thus corresponds (beyond (15)) to just one (non-linear)
condition that can be rewritten (after some algebra ...) in the following Schwarzian
form:

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (16)

where

W (x) = A′(x) +
A(x)2

2
− 2 · B(x), (17)

and where {y(x), x} denotes the Schwarzian derivative [47]:

{y(x), x} =
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)

y′(x)

)2

=
d

dx

(y′′(x)

y′(x)

)

− 1

2
·
(y′′(x)

y′(x)

)2

. (18)

For 2F1

(

[ 1
12 ,

5
12 ], [1], x), the “automorphy” condition (3) yields the Schwarzian

condition (16) with:

W (x) = − 32 x2 − 41 x+ 36

72 · x2 · (x − 1)2
. (19)

The algebraic series (9) and (12), associated with different modular equations (like
(8)), are both solutions of the same Schwarzian condition (16) with W (x) given by
(19). These two modular correspondences series (9) and (12), associated with modular
curves, are thus algebraic series. Consequently, the prefactor (15) is an algebraic
function.

1.3. One-parameter solution series of the Schwarzian condition (16)

Trying to generalize the modular equation (8), and its associated algebraic series (9),
let us try to find the series of the form a · x2 + · · ·, solutions of the Schwarzian
equation (16) with W (x) given by (19). It is straightforward to find that such series
is, in fact, the following one-parameter series:

y2 = a · x2 +
31 · ax3

36
− a · (5952 a− 9511)

13824
· x4 − a · (14945472 a− 11180329)

20155392
· x5

+
a ·

(

88746430464 a2− 677409785856 a+ 338926406215
)

743008370688
· x6 + · · · (20)

which actually reduces to (9) for a = 1/1728. Similarly, one also finds a one-
parameter family of solution-series of the Schwarzian condition (16) of the form
b · x3 + · · · , namely

y3 = b · x3 +
31 b

24
· x4 +

36221 b

27648
· x5 − b · (23141376 b− 66458485)

53747712
· x6

− b · (183649959936 b− 187769367601)

165112971264
· x7 + · · · (21)

which reduces to (12) for b = 1/2985984 = 1/17282.

Remark 1.1: Generically the two series (20) and (21) are differentially algebraic
series (being solution of a Schwarzian condition (16), with W (x) given by (19)). For
selected values of the parameter, like a = 1/1728 and b = 1/17282, these series
become algebraic series (correspondences associated with modular curves). Are there
other selected values of the parameters for which the series becomes an algebraic
series ? Are there selected values of the parameters for which the series become (non
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algebraic) D-finite series ? Are there selected values of the parameters for which the
series become D-D-finite† series [48, 49] ?

1.4. The nome and mirror maps

Let us recall the concept ofmirror map [41, 42, 50, 51, 52, 53, 54] relating the reciprocal
of the j-function and the nome, with the well-known series with integer coefficients‡ :

X̃(q) = q − 744 q2 + 356652 q3 − 140361152 q4 + 49336682190 q5

− 16114625669088 q6 + 4999042477430456 q7 + · · · (22)

and the nome which is its compositional inverse:

Q̃(x) = x + 744 x2 + 750420 x3 + 872769632 x4 + 1102652742882 x5

+ 1470561136292880x6 + 2037518752496883080 x7 + · · · (23)

The series (22) corresponds to x being the reciprocal of the j-function: 1/j . As a
consequence of the (modular form) hypergeometric identities (3) (see (7)), we need x
to be identified with the Hauptmodul 1728/j.

The series X(q) = 1728 · X̃(q) (with X̃(q) given by (22)) is solution of the
Schwarzian equation:

{X(q), q} − 1

2 q2
− W

(

X(q)
)

·
(dX(q)

dq

)2

= 0. (24)

The series Q(x) = Q̃(x/1728) (with Q̃(x) given by (23)) is solution of the Schwarzian
equation:

{Q(x), x} +
1

2 · Q(x)2
·
(dQ(x)

dx

)2

+ W (x) = 0. (25)

The two mirror map series (22), (23) thus correspond to differentially algebraic [55, 56]
series: they are solutions of simple (non-linear) Schwarzian equations like in (16).

The two one-parameter series (20) and (21) correspond respectively to:

X
(

a ·Q(x)2
)

and: X
(

b ·Q(x)3
)

. (26)

More generally, all the series

yn(a, x) = X
(

a ·Q(x)n
)

, (27)

are solutions of the Schwarzian condition (16). For the selected values a = 1/1728n−1

these series (27) turn out to be algebraic series: they are series actually associated with
correspondences, modular curves. The composition of two such series is also solution
of the Schwarzian condition (16). One easily finds that

yn

(

a, ym(b, x)
)

= ymn(a · bn, x) = a · bn · xmn + · · ·

ym

(

b, yn(a, x)
)

= ymn(b · am, x) = b · am · xmn + · · · (28)

Generically the two series yn and ym do not commute.

† D-finite functions are solutions of linear differential operators with polynomial coefficients, D-D-
finite series are solutions of linear differential operators with D-finite function coefficients, etc ...

‡ In Maple the series (22) can be obtained substituting L = EllipticModulus(q1/2)2, in
1/j = L2 · (L − 1)2/(L2 − L + 1)3/256. See https://oeis.org/A066395 for the series (22) and
https://oeis.org/A091406 for the series (23).
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Remark 1.2: Do note that these two series do commute for the selected values
a = 1/1728n−1 and b = 1/1728m−1, of the parameters a and b, actually associated
with modular correspondences (algebraic series). In that case, one has the identity:

a · bn = b · am =
1

1728n−1
·
( 1

1728m−1

)n

=
1

1728mn−1
. (29)

Also note that if one assumes that the parameters a (resp. b) are of the form
ρn−1 (resp. ρm−1) with ρ different from 1/1728 or 1, the series yn(a, x) and
ym(b, x) still commute¶, even if they are not algebraic series but only differentially
algebraic series. The compositional identities (29) are inherited from the fact that the
composition of two algebraic series is an algebraic series, and that the composition
of two solutions of the Schwarzian condition (16) must† also be a solution of the
Schwarzian condition (16). Such properties are reminiscent of the concept of replicable
functions [57, 58, 59, 60, 61, 62, 63, 64].

This set of solution series (27) of the Schwarzian condition (16), can also
be obtained by the composition of algebraic series associated with modular
correspondences (which have no parameter, see (9), (12), ...), together with the

following one-parameter series X
(

e ·Q(x)
)

also solution of the Schwarzian condition

(16). This series reads:

y(e, x) = e · x + e · (e − 1) · Se(x), where: (30)

Se(x) = −31

72
· x2 +

(9907 e− 20845)

82944
· x3

− (4386286 e2− 20490191 e+ 27274051)

161243136
· x4 + · · · (31)

Remark 1.3: It is straightforward to see that the series (30) is an order-N
transformation when the parameter e is a N -th root of unity: eN = 1. These N -th
root of unity are, thus, clearly selected values of the parameters. Are all these N -
th root of unity series algebraic series, or just D-finite series, or simply differentially
algebraic series ?

1.5. Multivaled functions and reversibility

The Landen algebraic transformation (5) amounts to multiplying (or dividing because
of the modular group symmetry τ ↔ 1/τ) the ratio τ of the two periods of the elliptic
curves: τ ←→ 2 τ . The other (isogeny) transformations†† correspond to τ ↔ N · τ ,
for various integers N .

We, thus, see that a modular equation, like (8), yields multivalued functions
corresponding to the different series solutions of the modular equation (for instance
(9) and its compositional inverse). More generally, for τ ↔ N · τ , we will have series
like 1/1728N−1 · xN + · · · and also (their compositional inverse Puiseux series)
1728(N−1)/N · x1/N + · · ·

In the textbooks the renormalization group is often presented as a semi-direct
group♯. In fact the renormalization group generators have no reason to be such

¶ In terms of the nome, this amounts to noticing that transformations q → αn−1 · qn and
q → αm−1 · qm commute.
† This is also a clear consequence of the automorphy property (1).
††See for instance (2.18) in [34].
♯ In most of the graduate text book on renormalization group, the critical fixed point is an attractive
fixed point. There is an “arrow of time”. The renormalization group is seen as an irreversible process.
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irreversible transformations. They are, at first sight, reversible transformations.
The modular equation (8) has a x ↔ y symmetric polynomial, corresponding
to the Landen transformation, as well as its compositional inverse, the inverse
Landen transformation. These two transformations are both exact generators of the
renormalization group of the square Ising model, or of the Baxter model [32]. With
this exact renormalization group representation we see that the modular equation
restores, as a consequence of its x ↔ y symmetry, the reversible character of the
renormalization group, the price to pay being that the function y(x) is actually
multivalued.

The Schwarzian condition (16) encapsulates [30, 31] an infinite number of modular
correspondences associated with their modular curves and modular forms [14, 15, 16].
In these cases the automorphy relation (3) corresponds to algebraic function prefactors
A(x). However, for series with one-parameter, like (20) and (21), which are
generically differentially algebraic, we still have an “automorphy” relation (3), but
with differentially algebraic “automorphy” prefactors A(x). We cannot expect a
modular equation, but is there a way to still see such transformations (20) and
(21), as “correspondences” with some “appropriate” generalization of the concept
of correspondences ?

1.6. Correspondences, Schwarzian conditions and replicable functions

The Schwarzian condition (16) coincides exactly with one of the conditions G. Casale
obtained [65, 66, 67, 68, 69, 70, 71] in a classification of Malgrange’s D-envelopes and
D-groupoids [72] on P1. Denoting y′(x), y′′(x) and y′′′(x) the first, second and third
derivative of y(x) with respect to x, these conditions‡ read respectively¶

µ(y) · y′(x) − µ(x) +
y′′(x)

y′(x)
= 0, (32)

ν(y) · y′′(x)2 − ν(x) +
y′′′(x)

y′(x)
− 3

2
·
(y′′(x)

y′(x)

)2

= 0, (33)

together with γ(y) · y′(x)n − γ(x) = 0 and h(y) = h(x), corresponding
respectively to rank two, rank three, together with rank one and rank nul groupöıds,
where ν(x), µ(x), γ(x) are meromorphic functions (h(x) is holomorph).

The previous examples of Schwarzian condition (16) correspond to elliptic curves
(modular curves, modular forms and modular correspondences), through pullbacked

2F1 hypergeometric functions [19]. In subsection 3.2 of [30] we have seen that the
Schwarzian condition (16) can actually occur with Heun functions which cannot be
reduced to pullbacked 2F1 hypergeometric functions††, and which do not correspond to
globally bounded [43, 44] series. Similarly, we have seen Schwarzian conditions (16)
corresponding to (non globally bounded) pullbacked 2F1 hypergeometric functions,
associated with Shimura curves [75, 76]. The Malgrange-Casale approach for
Schwarzian conditions (33) suggests that one should be able to find examples of
such Schwarzian conditions far beyond modular curves, or even Shimura curves (and
their associated modular forms [14, 15, 16] and automorphic forms [10]). If such
generalizations exist, are they also associated with one-parameter series ? How

‡ Casale’s condition (32) is exactly the same condition as the one we already found in [73], and this
is not a coincidence.
¶ More generally see the concept of differential algebraic invariant of isogenies in [74].
††See for instance the two Heun functions given by (164) in [77].
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to describe them ? Can they necessarly be seen, eventually, as generalization of
correspondences ?

In the next section we will first revisit the previous “classical” modular
correspondence results with a different normalization of the pullback (see (34) below)
which makes the occurrence of series with integer coefficients crystal clear. Revisiting
these calculations with a key role played by a function F (x) defined below by (170),
we will be able to find some new partial differential equations (see (197), or (198)
below), in the parameter of the series†. These new equations will help us to find many
examples of replicable-like [58, 59, 60, 61, 62] functions far beyond modular curves or
Shimura curves [75, 76].

2. Recalls

Some part of this section will be reminiscent of the results explained in [30], with
the difference that we have another normalization of the pullback, corresponding to
change x → 1728 x, the “automorphy” relation (3) thus becoming

2F1

(

[
1

12
,
5

12
], [1], 1728 · y

)

= A(x) · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)

, (34)

where¶:

A(x) = λ ·
( u(x)

u(y(x))
· y′(x)

)1/2

. (35)

As a consequence the (pullback) algebraic series y = y(x), corresponding to isogenies
like (9), (12), ... are normalized as x −→ xN + · · ·, and are series with integer
coefficients.

In our case, taking into account the exact expression of the wronskian, one has
u(x) = x · (1 − 1728 x)1/2, and, thus, we get:

A(x) = λ ·
(x · (1 − 1728 x)1/2

y · (1 − 1728 y)1/2
· y′(x)

)1/2

. (36)

Taking the square of (34) we can thus rewrite the “automorphic” relation (34) as

λ · y · (1 − 1728 · y)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
dx

, (37)

which is, in fact, nothing but

λ · dx

F (x)
=

dy

F (y)
. (38)

where F (x) reads:

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

(39)

= x − 744 x2 − 393768 x3 − 357444672 x4 − 394896727080 x5 + · · ·
The elimination of the “automorphic” cofactor A(x) gives the Schwarzian equation
on y(x)

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (40)

† See also (229) below for more parameters.
¶ Note a typo in (92) in [30]. the exponent −1/2 in (92) must be changed into 1/2.
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where now

W (x) = −1

2
· 1 − 1968 x + 2654208 x2

x2 · (1 − 1728 x)2
, (41)

namely:

− 1

2
· 1 − 1968 x + 2654208 x2

x2 · (1 − 1728 x)2
(42)

+
1

2
· 1 − 1968 y(x) + 2654208 y(x)2

y(x)2 · (1 − 1728 y(x))2
· y′(x)2 + {y(x), x} = 0.

3. Modular equation, modular correspondence

3.1. q −→ q2

Let us consider the modular equation†:
Γ2(x, y) = x y − (x + y) · (x2 + 1487 x y+ y2)

+ 10125 · x y · (16 x2 − 4027 x y+ 16 y2) (43)

− 8748000000 · x2 y2 · (x+ y) + 157464000000000 · x3 y3 = 0,

which has the following rational parametrization [19]:

x =
t

(t+ 16)3
and: y =

t2

(t+ 256)3
. (44)

It has the following algebraic series solutions with integer coefficients

y2 = x2 + 1488 x3 + 2053632 x4 + 2859950080 x5 + 4062412996608x6

+ 5882951135920128x7 + 8664340079503736832 x8 + · · · (45)

and

y1/2 = ω · x1/2 − 744 · x2/2 + 357024 · ω · x3/2 − 140914688 · x4/2

+ 49735011840 · ω · x5/2 − 16324041375744 · x6/2 + · · · (46)

where ω2 = 1 (i.e. ω = ± 1). These two algebraic series can be written respectively:

X̃
(

Q̃(x)2
)

and: X̃
(

ω · Q̃(x)1/2
)

. (47)

They amount, respectively, to changing the nome as follows: q −→ q2, together with
its compositional inverse q −→ ω · q1/2, where ω2 = 1. These two series, (45) and
(46), are actually solutions of the Schwarzian equation (40) with W (x), now, given
by (41). Note that we have the following relation:

2 · y2 · (1 − 1728 · y2)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y2

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy2
dx

. (48)

We have a similar relation for y1/2. Relation (48), and the corresponding one for y1/2,
are nothing but:

2 · dx

F (x)
=

dy2
F (y2)

and:
1

2
· dx

F (x)
=

dy1/2

F (y1/2)
. (49)

† Which is nothing but (8) with the change of variables x → x/1728, y → y/1728.
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3.2. Linear ODE for q −→ q2

The previous algebraic series (45), (46) are solutions of an order-three linear differential
operator M3 = M1 ⊕ M2 which is the direct sum (LCLM) of an order-two linear
differential operator M2, and an order-one linear differential operator M1 with the
following rational function solution:

S
(1)
1 =

x

496
· (496 + 13591125 x + 2916000000 x2)

(1 − 54000 x)3
(50)

= x +
93943125

496
x2 +

680168390625

31
x3 +

63705259687500000

31
x4 + · · ·

Let us introduce the two formal solution series of order-two linear differential operator
M2, namely:

S
(2)
1 = x +

46971563

248
x2 +

680168390718

31
x3 +

63705259687628352

31
x4 + · · ·

S
(2)
2 = x1/2 ·

(

1 + 357024 x + 49735011840 x2 + 5091284519436288 x3

+ 445924637193878765568 x4 + · · ·
)

One has the following relation

y2 = 496 · (S(2)
1 − S

(1)
1 ), (51)

y1/2(ω, x) = ω · S(2)
2 − 248 · (2S(1)

1 + S
(2)
1 ), (52)

where ω2 = 1.

3.3. q −→ q3

Let us consider the modular equation:

1855425871872000000000 · x3 y3 · (y + x)

+ 16777216000000 · y2 x2 · (27 x2 − 45946 x y+ 27 y2)

+ 36864000 · x y · (y + x) · (x2 + 241433 x y+ y2)

+ (x4 − 1069956 x3 y + 2587918086 x2 y2 − 1069956 x y3 + y4)

+ 2232 · x y · (y + x) − x y = 0, (53)

which has the following rational parametrization [19]:

x =
t

(t+ 27) · (t+ 3)3
and: y =

t3

(t+ 27) · (t+ 243)3
. (54)

This modular equation (53) has the following algebraic series solutions

y3 = x3 + 2232 x4 + 3911868 x5 + 6380013816 x6 + 10139542529238x7

+ 15969813236020944x8 + 25104342383076998772 x9 + · · · (55)

and its compositional inverse

y1/3(ω, x) = ω · x1/3 − 744 · ω2 · x2/3 + 356652 · x3/3 − 140360904 · ω · x4/3

+ 49336313166 · ω2 x5/3 − 16114360320000 · x6/3 + · · · (56)
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where ω3 = 1. The radius of convergence of the series (55) is R = 1/1728,
corresponding to the vanishing of the discriminant of the modular equation (53).
These two series can be written respectively

X̃
(

Q̃(x)3
)

and: X̃
(

ω · Q̃(x)1/3
)

, (57)

where ω3 = 1. They amount, respectively, to changing the nome as follows:
q −→ q3, together with its compositional inverse q −→ ω · q1/3 where ω3 = 1.
These two algebraic series, (55) and (56), are actually solutions of the Schwarzian
equation (40), with W (x) given by (41). Note that we have the following relation:

3 · y3 · (1 − 1728 · y3)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y3

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy3
dx

. (58)

We have a similar relation for y1/3. Relation (58), and the corresponding one for y1/3,
are nothing but:

3 · dx

F (x)
=

dy3
F (y3)

and:
1

3
· dx

F (x)
=

dy1/3

F (y1/3)
. (59)

3.4. Linear ODE for q −→ q3

The previous algebraic series (55), (56) are solutions of an order-four linear differential
operator M3 = M1 ⊕ M3, which is the direct sum (LCLM) of an order-three linear
differential operator M3, and an order-one linear differential operator M1 with the
rational function solution

S
(1)
1 =

x

267489
· p3(x)

(1 + 12288000 x)3
(60)

= x − 447621120000

9907
x2 +

324554085892096000000

267489
x3 + · · ·

where:

p3(x) = 267489 − 2225055744000 x + 192711491584000000 x2

− 463856467968000000000x3. (61)

The solutions of the order-three linear differential operator M3 read:

S
(2)
1 = x − 447621120000

9907
x2 +

108184695297365333333

89163
x3 + · · · ,

S
(2)
2 = x2/3 ·

(

1 − 8222718861

124
x +

62192008621897866

31
x2

− 2837950236255383813660913

62
x3 + · · ·

)

, (62)

S
(2)
3 = x1/3 ·

(

1 − 140360904 x + 4998903239356308x2

− 122558022956400494032656 x3 + · · ·
)

. (63)

The solutions (55) and (56) of the modular equation (53) can be expressed in terms
of the solutions of the previous linear differential operators M1 and M3

y3 = 267489 · (S(1)
1 − S

(2)
1 ). (64)

and:

y1/3(ω, x) = ω · S(2)
3 − 744 · ω2 · S(2)

2 + 89163 ·
(

3 · S(1)
1 + S

(2)
1

)

. (65)
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3.5. q −→ q5

We are not going to give explicitely the modular equation corresponding to q −→ q5

because it starts becoming a bit too large. Let us just say that it can (easily) be
obtained by the elimination of t in its rational parameterization [19]:

x =
t

(t2 + 10 t+ 5)3
and: y =

t5

(t2 + 250 t+ 3125)3
. (66)

This modular curve Γ5(x, y) = Γ5(y, x) = 0, has the following algebraic series
solutions

y5 = x5 + 3720 x6 + 9287460 x7 + 19648405600 x8 + 38124922672650x9

+ 70330386411705000x10 + 125698841122545005000x11 + · · · (67)

and

y1/5 = ω · x1/5 − 744 · ω2 · x2/5 + 356652ω3 · x3/5 − 140361152 · ω4 · x4/5

+ 49336682190 · x5/5 − 80573128344696

5
· ω · x6/5 + · · · (68)

where ω5 = 1. The series (67) and (68) are (algebraic) solutions of an order-six
linear differential operator L6 = L1 ⊕ L5, which is the direct sum of an order-one
linear differential operator with a rational function solution (p5(x) is a polynomial
with integer coefficients)

r(x) =
x

41113901825
· p5(x)

1 + 654403829760 x + 5209253090426880x2
(69)

= x − 4085556703324323840000

1644556073
x2 + · · ·

and an irreducible order-five linear differential operator operator L5. The solutions
of L5 read

S0 = x − 4085556703324323840000

1644556073
x2 + · · · (70)

and:

S1 = x1/5 ·
(

1 − 80573128344696

5
x +

851459104996461085786368168

25
x2 + · · ·

)

,

S2 = x2/5 ·
(

1 − 3124401548255651

465
x +

9703780710544581292971588992

775
x2 + · · ·

)

,

S3 = x3/5 ·
(

1 − 621945576635752328

148605
x +

31428560280309440232822493239667

4458150
x2

)

,

S4 = x4/5 ·
(

1 − 2163813797006375923833

701805760
x (71)

+
2096632093647521705592575109262587

438628600
x2 + · · ·

)

.

The series (67) can be written as a linear combination of (69) and (70) :

y5 = 41113901825 ·
(

r(x) − S0

)

. (72)

The series (68) can be written as a linear combination of the solutions of (71):

y1/5 = ω · S1 − 744 · ω2 · S2 + 356652 · ω3 · S3 − 140361152 · ω4 · S4

+ 8222780365 · S0 + 41113901825 · r(x), (73)
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where ω5 = 1. The series (67) and (68) can be written respectively

y5 = X̃
(

Q̃(x)5
)

and: y1/5 = X̃
(

ω · Q̃(x)1/5
)

, (74)

where ω5 = 1. They amount, respectively, to changing the nome as follows:
q −→ q5, and its compositional inverse q −→ ω · q1/5 where ω5 = 1. These
two series, (67) and (68), are actually solutions of the Schwarzian equation (40), with
W (x) given by (41). Note that we have the following relation:

5 · y5 · (1 − 1728 · y5)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y5

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy5
dx

, (75)

i.e.

5 · F (y5) = F (x) · dy5
dx

, (76)

and:

5 · dx

F (x)
=

dy5
F (y5)

and:
1

5
· dx

F (x)
=

dy1/5

F (y1/5)
. (77)

Remark 3.1: The series (46), (56), (68) (and also (80) below) can be seen to be
functions of ω · x1/N with ωN = 1.

3.6. q −→ q4

We are not going to give explicitely the modular equation corresponding to q −→ q4

because it becomes a bit too large. Let us just say that it can (easily) be obtained by
the elimination of t in its rational parameterization [19]:

x =
t · (t+ 16)

(t2 + 16 t + 16)3
and: y =

t4 · (t+ 16)

(t2 + 256 t + 4096)3
. (78)

This modular curve Γ4(x, y) = Γ4(y, x) = 0 can also be obtained from the
elimination of the variable z between the (fundamental) modular equation Γ2(x, z) =
0, given by (43), and the same modular equation Γ2(z, y) = 0. The calculation of the
resultant, in z, between Γ2(x, z) and Γ2(z, y) factorizes, and gives (x −y)2 · Γ4(x, y).
This modular curve Γ4(x, y) = Γ4(y, x) = 0, has the following algebraic series
solutions

y4 = x4 + 2976 x5 + 6322896 x6 + 11838151424 x7 + 20872495228416 x8

+ 35647177050980352x9 + 59796357134115627008 x10

+ 99264875397039869263872x11 + · · · (79)

y1/4(ω, x) = ω · x1/4 − 744 · ω2 · x1/2 + 356652 · ω3 · x3/4 − 140361152 · x4/4

+ 49336682376 · ω · x5/4 − 16114625945856 · ω2 · x6/4

+ 4999042676442272 · ω3 · x7/4 − 1492669488513712128 · x8/4

+ 432762805367932714848 · ω · x9/4 + · · · (80)

where ω4 = 1, together with the (involutive) series:

y1 = −x − 1488 x2 − 2214144 x3 − 3337633792 x4 − 5094329942016 x5

− 7859077093785600x6 − 12234039128005541888 x7 (81)

− 19190712499154486034432 x8 − 30301349938167862039412736x9 + · · ·
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The radius of convergence of the series (79), or (81), is R = 1/1728, corresponding to
the vanishing of the discriminant of the modular equation Γ4(x, y) = Γ4(y, x) = 0.
These three series (79), (80) and (81), can be written respectively

X̃
(

Q̃(x)4
)

and: X̃
(

ω · Q̃(x)1/4
)

and: X̃
(

−Q̃(x)
)

, (82)

where ω4 = 1. These series can be obtain from the series (45) and (46) of subsection
(3.1). It is straightforward to see† that y4(x) = y2(y2(x)), and that y1/4(x) =
y1/2(y1/2(x)), which amounts, on the nome, to performing q −→ q2 −→ (q2)2 = q4

and similarly q −→ ± q1/2 −→ ± (± q1/2)1/2 = ω · q1/4, where ω4 = 1. However,
the composition of y2 and y1/2 also corresponds, on the nome, to

q → ± q1/2 → (± q1/2)2 = q or: q → q2 → ± (q2)1/2 = ± q. (83)

Getting rid of the identity transformation, we get q → −q, which precisely
corresponds to the involutive series (81). These three series (79), (80) and (81) are
actually solutions of the Schwarzian equation (40), with W (x) given by (41). Note
that we have the following relation:

4 · y4 · (1 − 1728 · y4)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y4

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy4
dx

, (84)

4 · dx

F (x)
=

dy4
F (y4)

and:
1

4
· dx

F (x)
=

dy1/4

F (y1/4)

and:
dx

F (x)
=

dy1
F (y1)

. (85)

3.7. Linear differential operators for q → q4

The previous algebraic series (79), (80) and (81) are solutions of an order-six linear
differential operator M6 = M1 ⊕ M2 ⊕ M3, which is the direct sum (LCLM)
of an order-three linear differential operator M3, an order-three linear differential

operator M2, and an order-one linear differential operator M1. Let us introduce S
(n)
i

(i = 1, · · · n) the (normalized) solution-series of the linear differential operators Mn

(n = 1, 2, 3), namely the (normalized) solution of the order-one linear differential
operator M1

S
(1)
1 = x +

1990225984684950000

187148203
· x2 +

12420842277895932711852000000

187148203
· x3 + · · · ,

together with the two (normalized) solutions of the order-two linear differential
operator M2

S
(2)
1 = x +

331704330780824752

31191367
· x2 +

2070140379649322118641630976

31191367
· x3 + · · · ,

S
(2)
2 = x1/2 ·

(

1 +
671442747744

31
· x +

5106946630014945047040

31
· x2 + · · ·

)

,

† The composition/iteration of multivalued functions, like algebraic functions, is a bit tricky, we have,
however, no problem to compose algebraic series, for instance x → y2(x) → y4(x) = y2(y2(x)).
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and the (normalized) solutions of the order-three linear differential operator M3:

S
(3)
1 = x + 1488 x2 + 2214144 x3 + 3337633793 x4 + 5094329944992x5 + · · · ,

S
(3)
2 = x1/4 ·

(

1 + 49336682376 x + 432762805367932714848x2 + · · ·
)

,

S
(3)
3 = x3/4 ·

(

1 +
1249760669110568

89163
x +

2838197560249922422013408

29721
x2 + · · ·

)

.

Note that S
(1)
1 , the solution of M1, is a rational function:

S
(1)
1 = x · p5(x)

187148203 · (1 − 2835810000 x + 6549518250000 x2)3
, (86)

where:

p5(x) = 187148203 + 398075748036660000 x + 4173268788948807866250000 x2

+ 62885546488332818428095703125x3 − 31422194354407801042441406250000x4

− 121645442598919219468125000000000000 x5. (87)

Remark 3.2: The order of the linear operator M6, corresponds to the four series
of the form y1/4, together with the series y4, and the series y1, namely 6 = 4 +1 +1.
The series y4 (given by (79)) can be seen to be an (algebraic) analytic continuation
of the involutive series y1 (given by (81)).

Remark 3.3: Taking into account 1 + ω + ω2 + ω3 = 0, let us consider the
sum of the four algebraic series y1/4. This sum reads:

y1/4(1, x) + y1/4(ω, x) + y1/4(ω
2, x) + y1/4(ω

3, x)

= −561444608 x − 5970677954054848512x2

− 37262526833687798135553785856x3 (88)

− 185766744391994261104411840078449475584x4

− 817583724079763955212555161997757454304107560960x5 + · · ·
We have the following relations:

y1/4(1, x) + y1/4(ω, x) + y1/4(ω
2, x) + y1/4(ω

3, x)

= −187148202 · S(2)
1 − 374296406 · S(1)

1 (89)

y1/4(1, x) + ω · y1/4(ω, x) + ω2 · y1/4(ω2, x) + ω3 · y1/4(ω3, x)

= 1426608 · S(3)
3 , (90)

y1/4(1, x) + ω2 · y1/4(ω, x) + ω4 · y1/4(ω2, x) + ω6 · y1/4(ω3, x)

= y1/4(1, x) − y1/4(ω, x) + y1/4(ω
2, x) − y1/4(ω

3, x)

= −2976 · S(2)
2 , (91)

y1/4(1, x) + ω3 · y1/4(ω, x) + ω6 · y1/4(ω2, x) + ω9 · y1/4(ω3, x)

= 4 · S(3)
2 . (92)

Furthermore, we have the two relations:

187148202 ·
(

S
(2)
1 − S

(1)
1

)

− S
(1)
1 = y1 + y4, (93)

S
(3)
1 = −y1 + y4. (94)
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From (89) and (93) we get

S
(1)
1 = − 1

561444609
·
(

Q0 + y1 + y4)
)

, (95)

S
(2)
1 = − 1

561444606
·
(

Q0 − 2 y1 − 2 y4)
)

, (96)

where:

Q0 = y1/4(1, x) + y1/4(ω, x) + y1/4(ω
2, x) + y1/4(ω

3, x). (97)

We can, thus, express all the six series S
(n)
i , solutions of M6, in terms of the algebraic

series y1, y4 and y1/4(ω
n, x), solutions of the modular equation Γ4(x, y) = 0.

Conversely the algebraic series y1, y4 and y1/4(ω
n, x) can be expressed in terms

of the six series S
(n)
i . We have from (93) and (94)

y1 = 93574101 · (S(2)
1 − S

(1)
1 ) − 1

2
· (S(3)

1 + S
(1)
1 ), (98)

y4 = 93574101 · (S(2)
1 − S

(1)
1 ) +

1

2
· (S(3)

1 − S
(1)
1 ). (99)

and from (89), (90), (91), (92):

y1/4(ω, x) = ω · S(3)
2 − 744 · ω2 · S(2)

2 + 356652 · ω3 · S(3)
3

− 93574101

2
·
(

S
(2)
1 + 2S

(1)
1

)

− 1

2
· S(1)

1 . (100)

The identification of the LHS of the modular equation Γ4(x, y) = 0 with the
polynomial

P (y) =
(

y − y1

)

·
(

y − y4

)

(101)

×
(

y − y1/4(1, x)
)

·
(

y − y1/4(ω, x)
)

·
(

y − y1/4(ω
2, x)

)

·
(

y − y1/4(ω
3, x)

)

,

gives, straightforwardly, relation (95) together with relation (86) and also:

y1 · y4 · y1/4(1, x) · y1/4(ω, x) · y1/4(ω2, x) · y1/4(ω3, x)

=
1

(1 − 2835810000 x + 6549518250000x2)3
. (102)

Remark 3.4: The algebraic series y1, y4, y1/4(ω
n, x), solutions of the modular

equation Γ4(x, y) = 0, can be expressed as linear combinations of the solutions of
the three linear differential operators Mn, n = 1, 2, 3. If one introduces the (finite)
Galois group of the polynomial associated with the modular equation Γ4(x, y) = 0,
and the differential Galois groups of the three linear differential operators Mn,
one sees that the relation between these different Galois groups is far from being
straightforward.

3.8. More correspondence series

Let us display¶ more correspondence series. More examples of correspondence series
are displayed in Appendix C.

¶ For all these examples we used gfun of Bruno Salvy. We used the following commands:
algeqtodiffeq, diffeqtohomdiffeq, de2diffop, algeqtoseries, formal sols.
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• The (algebraic) series

X̃
(

Q̃(x)5
)

= x5 + 3720 x6 + 9287460 x7 + 19648405600 x8 + 38124922672650x9

+ 70330386411705000x10 + · · · (103)

is solution of a modular equation Γ5(x, y) = Γ5(y, x) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]:

x =
t

(t2 + 10 t + 5)3
, y =

t5

(t2 + 250 t + 3125)3
. (104)

This series (103) is solution of an order-six linear differential operator L6 = L1⊕ L5,
which is the direct sum of an order-one linear differential operator L1 with a rational
function solution (69), and an irreducible order-five linear differential operator L5.

• The (algebraic) series

X̃
(

Q̃(x)6
)

= x6 + 4464 x7 + 12805560 x8 + 30222607872 x9

+ 64062187946172x10 + · · · (105)

is solution of a modular equation Γ6(x, y) = Γ6(y, x) = 0, that will not be written
here, but can easily be obtained from its rational parametrization [19]:

x =
t · (t+ 8)3 · (t+ 9)2

(t+ 6)3 · (t3 + 18 t2 + 84 t + 24)3
,

y =
t6 · (t+ 8)2 · (t+ 9)3

(t+ 12)3 · (t3 + 252 t2 + 3888 t + 15552)3
. (106)

This series (105) is solution of an order-twelve linear differential operator L12 =
L1 ⊕ L11, which is the direct sum of an order-one linear differential operator L1 with
a rational function solution of the form

x · p11(x)

(54000 x − 1)3 · q3(x)3
, (107)

where p11(x) is a polynomial of degree eleven, and where q3(x) reads

1879994705688000000000 x3 − 224179462188000000x2 + 151013228706000 x − 1,

and an order-eleven linear differential operator L11.

• We can also consider

X̃
(

Q̃(x)13
)

= x13 + 9672 x14 + 52931268 x15 + 216226356320 x16 + · · · (108)

which is solution of a modular equation† Γ13(x, y) = Γ13(y, x) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t

(t2 + 5 t + 13) · (t4 + 7 t3 + 20 t2 + 19 t + 1)3
,

y =
t13

(t2 + 5 t + 13) · (t4 + 247 t3 + 3380 t2 + 15379 t + 28561)3
. (109)

This series (108) is solution of an order-fourteen linear differential operator L14 =
L1⊕ L13, which is the direct sum of an order-one linear differential operator L1 with a
rational function solution, and an irreducible order-thirteen linear differential operator
L13.

† The polynomial Γ13(x, y) is of degree 14 in y (or x).
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• Let us consider
X̃
(

Q̃(x)9
)

= x9 + 6696 x10 + 26681076 x11 + 82647211104 x12 + · · · (110)

which is solution of a modular equation Γ9(x, y) = Γ9(y, x) = 0, that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t · (t2 + 9 t + 27))

(t+ 3)3 · (t3 + 9 t2 + 27 t + 3)3
, y =

t9 · (t2 + 9 t + 27))

(t+ 9)3 · (t3 + 243 t2 + 2187 t + 6561)3
.

The polynomial Γ9(x, y) is of degree 12 in y (resp. in x). We thus have twelve
algebraic solutions-series of the modular equation Γ9(x, y) = 0. This series (110) is
solution of an order-twelve linear differential operator L12 = L1 ⊕ L11, which is the
direct sum of an order-one operator L1 with a rational function solution of the form

x · q11(x)

(12288000 x + 1)3 · q3(x)3
, (111)

where q11(x) is a polynomial of degree eleven, and where q3(x) reads

3338586724673519616000000000x3 − 3750657365033091072000000 x2

+ 1855762905734664192000 x + 1, (112)

and an order-eleven linear differential operator L11. The (nine) series which are
compositional inverse of the series (110), are also solutions of the modular equation
Γ9(x, y) = 0, read:

X̃
(

Q̃(x)1/9
)

= ω · x1/9 − 744 · ω2 · x2/9 + 356652 · ω3 · x1/3

− 140361152 · ω4 · x4/9 + 49336682190 · ω5 · x5/9 − 16114625669088 · ω6 · x2/3

+ 4999042477430456 · ω7 · x7/9 + · · · (113)

where ω9 = 1. These (nine) series (113) are solutions of the order-twelve linear
differential operator L12. Note that the (two) order-three series

yω(x) = y1/3

(

y3(x)
)

= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3 (114)

− 32 · ω · (ω − 1) · (−24876477ω + 22887765) · x4 + · · ·
where ω2 + ω + 1 = 0, are also solutions of the modular equation Γ9(x, y) = 0,
and also of the order-twelve operator L12. We thus have 1 + 2 + 9 = 12 algebraic
solutions of the modular equation Γ9(x, y) = 0, and solutions of L12.

• The (algebraic) series

X̃
(

Q̃(x)10
)

= x10 + 7440 x11 + 32413320 x12 + 108395513600 x13 + · · · (115)

is solution of a modular equation Γ10(x, y) = Γ10(y, x) = 0, which has the rational
parameterization [19]:

x =
t · (t+ 4)5 · (t+ 5)2

(t6 + 20 t5 + 160 t4 + 640 t3 + 1280 t2 + 1040 t+ 80)3
(116)

y =
t10 · (t+ 4)2 · (t+ 5)5

(t6 + 260 t5 + 6400 t4 + 64000 t3 + 320000 t2 + 800000 t+ 800000)3
.



Replicable functions 20

The degree of the polynomial in Γ10(x, y) = 0 in y (resp. in x) is 18. The other
(algebraic) series solutions of Γ10(x, y) = 0 are the compositional inverse of series
(115), namely

y1/10(x) = ω · x1/10 − 744 · ω2 · x2/10 + 356652 · ω3 · x3/10

− 140361152 · ω4 · x4/10 + 49336682190 · ω5 · x5/10 (117)

− 16114625669088 · ω6 · x6/10 + · · ·
where ω10 = 1, together with†
y5/2(x) = ω · x5/2 + 1860 · ω · x7/2 + 2913930 · ω · x9/2 − 744 · x10/2

+ 4404293000 · ω · x11/2 − 2767680 · x6 + 6624982333875 · ω · x13/2 + · · · (118)

where ω2 = 1, and

y2/5(x) = ω · x2/5 − 744 · ω2 · x4/5 + 356652 · ω3 · x6/5 +
1488

5
· ω · x7/5

− 140361152 · ω4 · x8/5 − 2214144

5
· ω2 · x9/5 + 49336682190 · ω5 · x10/5

+
1592094528

5
· ω3 · x11/5 + · · · (119)

where ω5 = 1. We thus have 1 + 2 + 5 + 10 = 18 algebraic solutions of
Γ10(x, y) = 0 and of L18. The order-eighteen linear differential operator L18 is
the direct sum of an order-seventeen linear differential operator L17, and an order-one
linear differential operator L1, which has a rational function solution,

x · p17
p36

, (120)

where p17 is a polynomial of degree 17, where p6 reads

66661978554978958501295319312489107870472732672000x6

+ 62082816308629282586712746552975312469884928000x5

+ 21122955530832902270001123584504233628467200x4

− 233405320133674124312518469774131200x3

+ 32278855882815402576742692253440x2

− 428244362959801779810720 x + 1. (121)

• The (algebraic) series

X̃
(

Q̃(x)25
)

= x25 + 18600 x26 + 184821300 x27 + 1304017532000 x28 + · · · (122)
is solution of a modular equation Γ25(x, y) = Γ25(y, x) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]

x = t · p5
p310

, y = t25 · p5
q310

, (123)

where:

p5 = t4 + 5 t3 + 15 t2 + 25 t + 25, (124)

p10 = t10 + 10 t9 + 55 t8 + 200 t7 + 525 t6 + 1010 t5 + 1425 t4

+ 1400 t3 + 875 t2 + 250 t + 5, (125)

q10 = t10 + 250 t9 + 4375 t8 + 35000 t7 + 178125 t6 + 631250 t5

+ 1640625 t4 + 3125000 t3 + 4296875 t2 + 3906250 t + 1953125. (126)

† The series (118) corresponds to y1/2(y5(x)).
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The polynomial in the modular equation Γ25(x, y) = 0 is of degree 30 in y (resp.
in x), and thus has thirty algebraic solution series, corresponding to the series (122),
together with the 25 compositional inverse of series (122), namely

ω · x1/25 − 744 · ω2 · x2/25 + 356652 · ω3 · x3/25 − 140361152 · ω4 · x4/25

+ 49336682190 · ω5 · x5/25 + · · · (127)

where ω25 = 1, together with the four (order-five†) series
y1/5(y5(x)) = ω · x − 744 · ω · (ω − 1) · x2 + · · · (128)

with ω5 = 1 but ω 6= 1. This thus gives 30 = 1 + 4 + 25 algebraic series. They
are solutions of an order-30 linear differential operator which is the direct-sum of an
order-29 linear differential operator, and an order-one linear differential operator with
a rational function solution

x · p29
p310

, (129)

where p29 is a polynomial of degree 29, and where p10 is a polynomial of degree 10.

4. The one-parameter series solutions of the Schwarzian equation.

The Schwarzian equation (40) has more solutions than the infinite discrete set of
algebraic series (see (45), (55), (67), (79), (105), (108), ...) corresponding to modular
correspondences. One also has a series depending on one parameter, namely:

y(a, x) = a · x − 744 · a · (a− 1) · x2 + 36 · a · (a− 1) · (9907 a− 20845) · x3

− 32 · a · (a− 1) · (4386286 a2− 20490191 a+ 27274051) · x4

+ 6 · a · (a− 1) · (8222780365 a3− 61396351027 a2

+ 171132906629 a− 183775457147) · x5

− 144 · a · (a− 1) · (111907122702 a4− 1162623833873 a3+ 5000493989295 a2

− 10801207072185 a+ 10212230113145) · x6

+ 8 · a · (a− 1) · (624880309678807 a5− 8367080813672297 a4

+ 48909476982869878 a3− 158792594445015178 a2

+ 293243568886999823 a− 254689844062110385) · x7

− 192 · a · (a− 1) · (7774319708776120 a6− 127824707491524999 a5

+ 946950323149342341 a4− 4101941044701784034 a3 (130)

+ 11156847890086765926 a2− 18508096006772656203 a

+ 15126379507970624425) · x8 + · · ·
Note that all the algebraic series (81), (114), (128), (see also (152) below), ...
associated with modular equations, are of the form (130) where the parameter is
a N -th root of unity: aN = 1.

Note that this one-parameter series (130) is a series of the form

y(a, x) = a · x + a · (a− 1) ·
∞
∑

n=2

Pn(a) · xn, (131)

† The composition of series (128) with itself five times gives the identity transformation.
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where the polynomials Pn(a) are polynomials of degree n − 2 in the parameter a,
with integer coefficients‡.

This one-parameter series (130), (131) verifies the following composition rule:

y
(

a, y(a′, x)
)

= y
(

a′, y(a, x)
)

= y(a a′, x). (132)

These series commute. One can verify that this one-parameter series (130) can, in
fact, be written

y(a, x) = X̃
(

a · Q̃(x)
)

, (133)

where

X̃(q) = q − 744 q2 + 356652 q3 − 140361152 q4 + 49336682190 q5

− 16114625669088 q6 + 4999042477430456 q7 + · · · (134)

and† its composition inverse:

Q̃(x) = x + 744 x2 + 750420 x3 + 872769632 x4 + 1102652742882 x5

+ 1470561136292880x6 + 2037518752496883080 x7 + · · · (135)

The nome series (135) has a radius of convergence R = 1/1728 = 0.00057870370 · · ·
In the a → 0 limit one has

lim
a→ 0

y(a, x)

a
= x + 744 x2 + 750420 x3 + 872769632 x4 + 1102652742882x5

+ 1470561136292880 x6 + 2037518752496883080x7 + 2904264865530359889600x8

+ 4231393254051181981976079 x9 + · · · (136)

which is nothing but the nome series Q̃(x) given by (135). In the a → ∞ limit one
has

lim
a→∞

y
(

a,
x

a

)

= x − 744 x2 + 356652 x3 − 140361152 x4 + 49336682190 x5

− 16114625669088x6 + 4999042477430456 x7 − 1492669384085015040 x8

+ 432762759484818142437 x9 + · · · (137)

which is nothing but X̃, the (elliptic modulus) series (134).
Let us introduce the ratio of the polynomials in expansion (131):

Rn(a) =
Pn(a)

Pn+1(a)
. (138)

One finds, in the n → ∞ and a → 0 limit, that the ratio (138) becomes
1/1728 = 0.00057870 · · · For miscellaneous small values of the parameter a one can
see, that this ratio (138) also becomes 1/1728 in the n → ∞ limit.

In the last n → ∞ and a → ∞ limit (137), the ratio (138) becomes††
−0.004316810242 · · · which corresponds to the radius of convergence of the series

‡ This can be seen as a consequence of the fact that y(a, x) = X̃

(

a · Q̃(x)

)

, where X̃(x) and

Q̃(x) are actually series with integer coefficients (see (22) and (23)).

† In Maple the X̃(q) series (22), (134) can be obtained substituting L = EllipticModulus(q1/2)2,
in 1/j = L2 · (L − 1)2/(L2 − L + 1)3/256. See https://oeis.org/A066395 for the series (22) and
https://oeis.org/A091406 for the series (23).
††Obtained with 421 coefficients.
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(22), (134). This radius of convergence is according to Vaclav Kotesovec¶

exp
(

−
√
3 · π

)

= 0.004333420501 · · · (139)

which is reminiscent of the selected values (see equation (55) in [32]):

t = exp
(

i π
1 + i

√
3

2

)

= i · exp
(

−
√
3

2
· π

)

or: j
(1 + i

√
3

2

)

= 0. (140)

The nearest to x = 0 singularity of X̃ is thus xc = t2 = − exp(−
√
3 · π).

We have seen that the radius of convergence of the series (81) (i.e. a = −1) is
R = 1/1728, corresponding to the vanishing of the discriminant of the modular
equation Γ4(x, y) = Γ4(y, x) = 0, and more generally, for |a| = 1, one can see that
the radius of convergence of the series (130), (131) for N -th root of unity, aN = 1, is
also‡ R = 1/1728.

More generally, the radius of convergence of (130), (131) corresponds to the
singularities of (133), namely the x = 1/1728 singularity of Q̃(x), and to the values

of x such that a · Q̃(x) = − exp
(

−
√
3 · π

)

, which corresponds to the singularity of

X̃(x), namely:

x = X̃
(

− 1

a
· exp

(

−
√
3 · π

))

. (141)

When the parameter a is large enough (|a| >≃ 7.5), the radius of convergence no
longer corresponds to R = 1/1728, but to the singularity (141).

This transcendental value (139), for the radius of convergence of the series X̃(q),
is a strong incentive to understand the “very nature” of the one-parameter series (130),
(131), especially since it can be written in the simple form (133). Generically the one-
parameter series (130), being solution of a Schwarzian equation, is a differentially
algebraic series, but is it possible that this series could be, only for selected values of
the parameter, an algebraic series, or just a D-finite series, or possibly a D-D-finite
series ?

5. Trying to understand the one-parameter series solutions.

5.1. When the one-parameter series becomes an algebraic series

For a = −1 the (involutive) series y(a, x) (see series (81))

− x − 1488 x2 − 2214144 x3 − 3337633792 x4 − 5094329942016 x5

− 7859077093785600x6 − 12234039128005541888x7 + · · · (142)

has a radius of convergence 1/1728 = 0.00057870 · · · Let us generalize what we
have seen in subsection (3.6) with series (81). Let us first recall the algebraic series
(corresponding to q → q3) y3, given by (55), and y1/3, given by (56), where ω3 = 1,
and combine y3 and y1/3. We first get:

y3

(

y1/3(x)
)

= x. (143)

¶ See https://oeis.org/A066395 and https://oeis.org/A066395/b066395.txt for the reciprocal of j-
function. See also in [81], Q(exp(−

√
3 · π) = 0 or J(exp(−

√
3 · π) = 0, where Q is the Eisenstein

series E4 and J is the Klein modular invariant.
‡ This also corresponds to vanishing of the discriminant of the corresponding modular equations.
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More interestingly we also get the following algebraic series (see (114) previously):

yω(x) = y1/3

(

y3(x)
)

= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3 (144)

− 32 · ω · (ω − 1) · (22887765 − 24876477ω) · x4 + · · ·
where ω3 = 1. One can verify that series (144) is actually series (130) when a3 = 1.
One can verify that this series is (for ω 6= 1) a series of order 3:

yω(yω(yω(x))) = x. (145)

Let us also recall the algebraic series (corresponding to q → q5) y5, given by
(67), and its compositional inverse y1/5, given by (68), where ω5 = 1, and let us
compose y5 and y1/5. We first get:

y5

(

y1/5(x)
)

= x. (146)

More interestingly, we also get the following series (see series (128) previously):

yω(x) = y1/5

(

y5(x)
)

= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3

− 32 · ω · (ω − 1) · (4386286ω2− 20490191ω+ 27274051) · x4

+ 6 · ω · (ω − 1) · (8222780365ω3− 61396351027ω2

+ 171132906629ω− 183775457147) · x5

− 144 · ω · (ω − 1) · (−1274530956575ω3+ 4888586866593ω2

− 10913114194887ω+ 10100322990443) · x6 + · · · (147)

where ω5 = 1.
One can verify that (147) is actually (130) when a5 = 1. One can verify that

this series is (for ω 6= 1) a series of order 5:

yω(yω(yω(yω(yω(x))))) = x. (148)

This is a straight consequence of (133) with a5 = 1. Similarly, let us now consider

y13 = X̃
(

Q̃(x)13
)

= x13 + 9672 x14 + 52931268 x15 + 216226356320 x16

+ 735033166074714x17 + 2200510278533887632 x18 + · · · (149)

Its compositional inverse (Puiseux) series reads

y1/13 = X̃
(

Q̃(x)1/13
)

= ω · x1/13 − 744ω2 · x2/13 + 356652 · ω3 · x3/13

− 140361152 · ω4 · x4/13 + 49336682190 · ω5 · x5/13

− 16114625669088 · ω6 · x6/13 + · · · (150)

where ω13 = 1. Let us compose y13 and y1/13. We first get

y13

(

y1/13(x)
)

= x, (151)

which corresponds to: q −→ ω q1/13 −→
(

ω q1/13
)13

= q.
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More interestingly, we also get the following algebraic series:

yω(x) = y1/13

(

y13(x)
)

= ω · x − 744 · ω · (ω − 1) · x2

+ 36 · ω · (ω − 1) · (9907ω − 20845) · x3

− 32 · ω · (ω − 1) · (4386286ω2− 20490191ω+ 27274051) · x4

+ 6 · ω · (ω − 1) · (8222780365ω3− 61396351027ω2

+ 171132906629ω− 183775457147) · x5

− 144 · ω · (ω − 1) · (111907122702ω4− 1162623833873ω3+ 5000493989295ω2

− 10801207072185ω+ 10212230113145) · x6 + · · · (152)

where ω13 = 1. This series corresponds to q → q13 → ω · (q13)1/13 = ω · q. One
can verify that this series is (for ω 6= 1) a series of order 13:

yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(yω(x)))))))))))))) = x. (153)

If we compare the series (152) with the one-parameter series (130), we see that

yω(x) = y(ω, x) where: ω13 = 1. (154)

Conversely, denoting y(a, x) = ya(x) we see that the N -times composition of ya(x)
becomes the identity transformation when ωN = 1:

ya(ya( · · · (ya(x)) · · · )) = x ⇐⇒ ωN = 1. (155)

The series (152) is the solution series of the modular equation associated with the

nome-transformation q → q13
2

, corresponding to the composition of the modular
equation associated with q −→ q13 with itself.

5.1.1. q −→ qN
2

, qM
2 N

The previous results can be generalized for any prime number N . For instance, the
series (130)

y(a, x) = a · x − 744 · a · (a− 1) · x2 + · · · (156)

with aN = 1, is the solution series of the modular equation ΓN2(x, y) = 0

associated with q −→ qN
2

, which can be obtained from the elimination of z between
ΓN (x, z) and ΓN(z, y), where ΓN(x, y) = 0 is the modular equation associated with
q −→ qN . The series (156), with aN = 1, corresponds to the following composition
of nome transformations: q → qN → ω · (qN )1/N , with ωN = 1.

The modular equation ΓN2(x, y) = 0, corresponding to q → qN
2

, will have
1 +(N−1) + N2 = N · (N +1) algebraic solution-series, corresponding respectively
to the series

y = xN2

+ 744 · N2 · xN2+1 + · · · (157)

together with the N − 1 (order-N) series (156), namely

y1/N (yN (x)) = ω · x − 744 · ω · (ω − 1) · x2 + · · · (158)

with ωN = 1 but ω 6= 1, and the N2 compositional inverse (Puiseux) series of the
series (157). Series (81), (143) and (147) are such examples.

One (modular correspondence) series solution of ΓN (x, y) = 0 is of the form:

y = xN + 744 · N · xN+1 + · · · (159)



Replicable functions 26

One can also compose such an algebraic (modular correspondence) series (159)
with the M -th root algebraic series (156) (here aM = 1), to get more (modular
correspondence) algebraic series:

y = a · xN + 744 · N · a · xN+1 + · · · with: aM = 1. (160)

Series (160) is a (modular correspondence) series solution of the modular equation
ΓN ·M2(x, y) = 0. The series (160) corresponds, in the nome, to transformation
q → qN → ω · ((qN )M )1/M = ω · qN , where ωM = 1.

5.1.2. The one-parameter series (130) is not generically a D-finite series
The one-parameter series (130) becomes an algebraic series when the parameter is a

N -th root of unity. All the previous algebraic series associated withmodular equations,
can also be seen as D-finite series as displayed in the previous section (3.7). Along this
line it is crucial to note that these series are solutions of a linear differential operator
(like M3 in the previous section (3.7)) of order increasing with N . Therefore, we see
that one cannot expect the one-parameter series (130) to be generically D-finite, being
solution a finite order linear differential operator with coefficients polynomial in x and
in the parameter a, since the order of this linear differential operator grows with N
when the parameter is a N -th root of unity.

5.2. When the one-parameter series becomes a globally bounded series

Note that, for integer values of the parameter a, the series y(a, x) are series with
integer coefficients. More generally, one can see easily that such series are globally
bounded [43, 44] for any rational number a = P/Q: the series (130) can be recast
into a series with integer coefficients if one rescales x as follows: x −→ Q · x.

If one of these series is D-finite, the series should be, according to Christol’s
conjecture [82], a diagonal of a rational (or algebraic) function [43]. In particular this
series should reduce to algebraic function modulo any prime number [43, 44]. Let us
focus, for instance, on the particular value a = 3. For a = 3 the series y(a, x) is a
series with integer coefficients

S = 3 x − 4464 x2 + 1917216 x3 − 1013769984 x4 − 33437759328 x5

− 420498625999104x6 − 452363497164804864x7 + · · · (161)

which has a radius of convergence 1/1728 = 0.00057870 · · · If one considers the series
(161) modulo different primes p, it is very difficult to see (for p large enough) if this
series (161) is an algebraic series modulo p, or, even, is D-finite modulo p. We have,
however, found the following result. Introducing

σ =
S − 3 x

3 · 25 · x +
99

2
· x + 1 = 1 + 3 x + 19971 x2 − 10560104 x3

− 348309993 x4 − 4380194020824 x5 − 4712119762133384x6 + · · · (162)

this series reduces, modulo p = 2, to the algebraic series

σ(x) = 1 + x + x2 + x4 + x8 + x16 + x32 + x64 + x128 + x256 + · · · (163)

solution, modulo p = 2, of the algebraic polynomial:

σ(x2) − σ(x) + x = σ(x)2 − σ(x) + x = 0. (164)

The nature of the series (161), or more generally of (130) for integer, or rational values
of the parameter a, remains an open question. It seems that such globally bounded
series are not D-finite. At least, one has an infinite number of differentially algebraic
series. Are these globally bounded series D-D-finite series [48, 49] ?
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5.3. Miscellaneous calculations.

The nome series (135) and the mirror map series (134), are, respectively, solutions of
the following Schwarzian equations

{Q̃(x), x} +
1

2 · Q̃(x)2
·
(dQ̃(x)

dx

)2

+ W (x) = 0, (165)

and

{X̃(x), x} − 1

2 · x2
− W

(

X̃(x)
)

·
(dX̃(x)

dx

)2

= 0, (166)

where:

W (x) = −1

2
· 1 − 1968 x + 2654208 x2

x2 · (1 − 1728 x)2
. (167)

Let us introduce the hypergeometric function:

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

. (168)

Note that the Schwarzian equation (165), on Q̃(x), can be seen to be a consequence
of (see (301) below):

F (x) =
Q̃(x)

Q̃(x)′
together with: W (x) =

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

. (169)

Therefore the nome Q̃(x) is also solution of the order-one linear differential
operator:

L1 = F (x) · Dx − 1 where: (170)

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

.

It is thus DD-finite†:
Q̃(x)′

Q̃(x)
=

1

F (x)
or: Q̃(x) = exp

(

∫ x dx

F (x)

)

. (171)

The one-parameter series y(x) = y(a, x), given by (130), is solution of the rank-two
equation (see (32))

AR(x) −AR(y(x)) · y′(x) +
y′′(x)

y′(x)
= 0, (172)

with

AR(x) =
F ′(x)

F (x)
, (173)

and also solution of the Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (174)

where:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

= A′

R(x) +
AR(x)

2

2

= −1

2
· 1 − 1968 x + 2654208 x2

x2 · (1 − 1728 x)2
. (175)

† See [48, 49].
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Note that W (x) is a rational function, but this is far from being the case for AR(x).
We will see, in the following, that the one-parameter series y(x) = y(a, x), given by
(130), is also solution of:

a · ∂y(a, x)
∂a

= F (y(a, x)) = F (x) · ∂y(a, x)
∂x

. (176)

5.4. More one-parameter series solutions.

If one combines y2, the “correspondence” series (45) solution of the modular equation
(43), with the one-parameter series (130), one gets a one-parameter series

y
(a)
2 = y(a, y2) = X̃

(

a · Q̃(x)2
)

= a · x2 + 1488 · a · x3

− 24 · a · (31 a− 85599) · x4 − 256 · a · (8649 a− 11180329) · x5

+ 12 · a · (29721 a2 − 392019552 a+ 338926406215) · x6 (177)

+ 192 · a · (8292159 a2 − 45872836768 a+ 30686235044193) · x7 + · · ·
This series (177) is also solution of the Schwarzian equation (42). Furthermore we
have:

2 · y(a)2 · (1 − 1728 · y(a)2 )1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y(a)2

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
2

dx
. (178)

When a = 1, the radius of convergence of (177) is 1/1728 = 0.000578703703 · · ·,
and this is also the case for any a, N -th root of unity aN = 1. Similarly to
what has been sketched in section (4) (see equation (141)), let us remark that the

one-parameter series (177) can be written X̃
(

a · Q̃(x)2
)

. For generic value of the

parameter a, the radius of convergence of (177) will correspond, for a small enough,
to the singularity of Q̃(x), namely 1/1728, and for a large enough, to the values of

x such that a · Q̃(x)2 = − exp
(

−
√
3 · π

)

, which correspond to the singularity of

X̃(x), namely:

x = X̃
((

− 1

a
· exp

(

−
√
3 · π

))1/2)

. (179)

More generally, all the series

X̃
(

a · Q̃(x)n
)

= a · xn + · · · (180)

have a radius of convergence corresponding, for a small enough, to the occurrence of
the singularity of the nome-like series Q̃(x), namely x = 1/1728.

Similarly to (177), if one combines y3, the “correspondence” series (55) solution
of the modular equation (53), with the one-parameter series (130), one gets a one-
parameter series

y
(a)
3 = y(a, y3) = X̃

(

a · Q̃(x)3
)

= a · x3 + 2232 · a · x4 + 3911868 · a · x5

− 24 · a · (31 a− 265833940) · x6 − 54 · a · (61504 a− 187769367601) · x7

− 1296 · a · (7351340 a− 12322394107529) · x8 + · · · (181)
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This series (181) is also solution of the Schwarzian equation (42). Furthermore we
have:

3 · y(a)3 · (1 − 1728 · y(a)3 )1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y(a)3

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
3

dx
. (182)

Similarly:

y
(a)
5 (x) = y

(

a, y5(x)
)

= X̃
(

a · Q̃(x)5
)

= a · x5 + 3720 · a · x6

+ 9287460 · a · x7 + 19648405600 · a · x8 + 38124922672650 · a · x9

− 24 · a · (31 a− 2930432767154406) · x10 (183)

− 40 · a · (138384 a− 3142471028063763509) · x11

− 960 · a · (25120323 a− 229208433006295134073) · x12 + · · ·
This series (183) is also solution of the Schwarzian equation (42). Furthermore we
have:

5 · y(a)5 · (1 − 1728 · y(a)5 )1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · y(a)5

)2

= x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

· dy
(a)
5

dx
. (184)

One also easily gets:

5 · F (y
(a)
5 (x)) = F (x) · dy

(a)
5 (x)

dx
= 5 · a · ∂y

(a)
5 (x)

∂a
. (185)

More generally, let us introduce the modular correspondence series yn(x) =
xn + 744 · n · xn+1 + · · · (for n ≥ 2), one can verify that these series commute.
These modular correspondences yn(x) can easily be generalized to one-parameter

series y
(

a, yn(x)
)

which are also solutions of the Schwarzian equations:

y
(

a, yn(x)
)

= a · xn + 744 · n · a · xn+1 + · · · (186)

Let us recall the one-parameter series y(a, x) given by (130), we have the following
relation:

y
(

an, yn(x)
)

= yn

(

y(a, x)
)

= an · xn + 744 · n · an · xn+1 + · · · (187)

5.5. Composition in general

The one-parameter series (186) can be written

y(a)n (x) = X̃
(

a · Q̃(x)n
)

. (188)

We have the following composition:

y(a)n

(

y(b)m (x)
)

= X̃
(

a · Q̃
(

X̃
(

b · Q̃(x)m
))n)

= X̃
(

a ·
(

b · Q̃(x)m
)n)

= X̃
(

a · bn · Q̃(x)mn
)

= y(a bn)
mn (x). (189)

Note that the condition to have series solutions of the Schwarzian equation of the

form y
(a)
n (x) = a · xn + · · ·, with n ≥ 2, amounts to having [30, 31] W (x) of

the form W (x) = −1/2/x2 + · · · which is satisfied when F (x) = α · x + · · ·, or
Q̃(x) = ρ · x1/α + · · ·
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6. The one-parameter series (4) seen as a ǫ-expansion.

In the a → 1 limit, let us denote ǫ = a − 1. The one-parameter series
y(x) = y(a, x), given by (130), can, thus, be seen as an ǫ-expansion:

y(a, x) = x +

∞
∑

n=1

ǫn · Bn(x), (190)

where B1(x) = F (x), with F (x) given by (168), and where B2(x) reads (see equation
(115) in [30]):

B2(x) =
1

2
· F (x) ·

(dB1(x)

dx
− 1

)

. (191)

Assuming that (190) is solution of the Schwarzian condition (174) (with W (x) given
by (170)), we actually obtained the next Bn(x)’s:

B3(x) =
1

3
· F (x) ·

(dB2(x)

dx
− dB1(x)

dx
+ 1

)

,

B4(x) =
1

4
· F (x) ·

(dB3(x)

dx
− dB2(x)

dx
+

dB1(x)

dx
− 1

)

, (192)

B5(x) =
1

5
· F (x) ·

(dB4(x)

dx
− dB3(x)

dx
+

dB2(x)

dx
− dB1(x)

dx
+ 1

)

,

B6(x) =
1

6
· F (x) ·

(dB5(x)

dx
− dB4(x)

dx
+

dB3(x)

dx
− dB2(x)

dx
+

dB1(x)

dx
− 1

)

, · · ·

More generally, one easily discovers the recursion

(n+ 1) · Bn+1 + n · Bn = F (x) · dBn(x)

dx
, (193)

which yields on the series (190)
∑

n

(n+ 1) · Bn+1 · ǫn +
∑

n

n · Bn · ǫn = F (x) ·
(

∑

n

dBn(x)

dx
· ǫn

)

, (194)

or

∂
∑

n Bn+1 · ǫn+1

∂ǫ
+ ǫ · ∂

∑

n Bn · ǫn
∂ǫ

= F (x) ·
(∂

∑

n Bn(x) · ǫn
∂x

)

, (195)

yielding finally

(1 + ǫ) · ∂y(a, x)
∂ǫ

= F (x) · ∂y(a, x)
∂x

, (196)

namely:

a · ∂y(a, x)
∂a

= F (x) · ∂y(a, x)
∂x

. (197)

Note that y(a, x) is also solution of:

F
(

y(a, x)
)

= F (x) · ∂y(a, x)
∂x

. (198)

Recalling some relation on the nome q (see equation (33) in [30]):

q′

q
=

1

F (x)
or: q · d

dq
= F (x) · d

dx
, (199)

we see that relation (197) also reads more simply:

a · ∂y(a, x)
∂a

= q · ∂y(a, x)
∂q

. (200)
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which is reminiscent of the fact that changing x → y(a, x) just amounts, on the
nome, to changing q → a · q. Equation (197) means that y(a, x) is a function of

∫

(da

a
+

dx

F (x)

)

= ln(a) +

∫

( dx

F (x)

)

, (201)

or, recalling (171), a function of:

exp
(

∫

(da

a
+

dx

F (x)

))

= a · Q̃(x). (202)

This is actually the case since y(a, x) is nothing but X̃
(

a · Q̃(x)
)

(see (133)).

Remark 6.1: Do note that the previous calculations are still valid when F (x) is
not given by (168). One can verify, for any function F (x), that the ǫ-expansion (190)
with coefficients Bn given by (191), (192), (193), is actually solution of the Schwarzian
relation (174), with W (x) given by:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

. (203)

7. Generalization of W (x) in the Schwarzian equation: adding an extra
parameter α.

For a given function F (x) let us consider the relation

F (y(x)) = F (x) · dy(x)
dx

, (204)

which corresponds to:

dy

F (y)
=

dx

F (x)
=

dq

q
. (205)

From (204), namely F (y) = F (x) · y′, one gets

F ′(y) · y′ = F ′(x) · y′ + F (x) · y′′, (206)

or

F ′(y)

F (y)
· y′ =

F ′(x)

F (x)
+

y′′

y′
. (207)

or, more generally, using (204) in order to introduce an extra parameter α:
(F ′(y)

F (y)
+

α

F (y)

)

· y′ =
(F ′(x)

F (x)
+

α

F (x)

)

+
y′′

y′
. (208)

Let us introduce

AR(x) =
F ′(x)

F (x)
+

α

F (x)
, (209)

we see that (208) can be written

AR(x) −AR(y) · y′ +
y′′

y′
= 0. (210)

which is (32) of section (1.6). From (206), that we rewrite

F ′(y) = F ′(x) + F (x) · y
′′

y′
, (211)
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one gets

F ′′(y) · y′ = F ′′(x) + F ′(x) · y
′′

y′
+ F (x) ·

(y′′

y′

)

′

, (212)

or, using (204), written F (x) = F (y)/y′:

F ′′(y)

F (y)
· y′2 =

F ′′(x)

F (x)
+

F ′(x)

F (x)
· y

′′

y′
+
(y′′

y′

)

′

. (213)

Taking the square of (207) one gets (up to a factor 2):

1

2
·
(F ′(y)

F (y)

)2

· y′2 =
1

2
·
(F ′(x)

F (x)

)2

+
1

2
·
(y′′

y′

)2

+
F ′(x)

F (x)
· y

′′

y′
. (214)

From (213) and (214) we deduce:
(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2)

· y′2 =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
(y′′

y′

)

′

− 1

2
·
(y′′

y′

)2

,

or, recalling the Schwarzian derivative,

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

−
(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2)

· y′2 + {y(x), x} = 0,

or, more generally, using (204), which allows to introduce an extra parameter α

F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)2
(215)

−
(F ′′(y)

F (y)
− 1

2
·
(F ′(y)

F (y)

)2

+
1

2
· α2

F (y)2

)

· y′2 + {y(x), x} = 0.

Note that (215) is actually of the form

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (216)

where (AR given by (209)):

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)2
= A′

R(x) +
AR(x)

2

2
. (217)

Remark 7.1: Note that these calculations also work with

µ · F (y(x)) = F (x) · dy(x)
dx

, (218)

which corresponds to (49), (59), (77), (85).

8. An “academical” Schwarzian equation: W (x) is no longer a rational
function

Recalling

F (x) = x · (1 − 1728 · x)1/2 · 2F1

(

[
1

12
,
5

12
], [1], 1728 · x

)2

, (219)

the one-parameter series y(x) = y(a, x), given by (130), is, for any value of α,
solution of the rank-two equation

AR(x) −AR(y(x)) · y′(x) +
y′′(x)

y′(x)
= 0, (220)
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with

AR(x) =
F ′(x)

F (x)
+

α

F (x)
, (221)

but is also solution of the Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (222)

where:

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)
= A′

R(x) +
AR(x)

2

2

= −1

2
· 1 − 1968 x + 2654208 x2

x2 · (1 − 1728 x)2
+

1

2
· α2

F (x)
. (223)

For generic values of α, the solution-series of the form a · x + · · ·, of the rank-two
equation (220) with (221), as well as the Schwarzian equation (222), with W (x) given
by (223), is just the one-parameter series y(x) = y(a, x), given by (130). However,
for a selected set of values of α, namely (non-zero) integer values, the solution-series of
the form a · x + · · ·, becomes a two-parameters series. For instance, for α = ± 1, the
extra parameter occurs with the coefficient of x2, for α = ± 2 the extra parameter
occurs with the coefficient of x3, ... and, more generally, for α = ±N the extra
parameter occurs with the coefficient of xN+1. Let us display the α = 1 case in
detail.

8.1. The α = 1 case: two-parameters series

Let us consider the case α = 1 in the Schwarzian equation (222) with W (x) given
by (223), or in the rank-two relation (220) with (221).

The two-parameter series

y(a, b, x) = a · x +
(

1728 · b − 744 · a · (a− 1)
)

· x2

+
(

2985984 · a · b2 − 2571264 · a · (a− 1) · b (224)

+ 36 · a · (a− 1) · (9907 a− 20845)
)

· x3

+
(

5159780352 · a · b3 − 6664716288 · a · (a− 1) · b2

+ 186624 · (9907 a2 − 30752 a+ 19022) · a · b
− 32 · a · (a− 1) · (4386286 a2 − 20490191 a+ 27274051)

)

· x4 + · · ·

is actually solution of the Schwarzian equation (222) with W (x) given by (223), or
of the rank-two relation (220) with (221), for α = 1. Note that the two-parameter
series (224) is also solution† of

a · ∂y(a, b, x)
∂a

+ b · ∂y(a, b, x)
∂b

= F
(

y(a, b, x)
)

, (225)

with F (x) given by (219). We have the following composition rules for the two-
parameter series (224):

y
(

a′, b′, y(a, b, x)
)

= y
(

a a′, a2 b′ + a′ b, x
)

. (226)

† However it is not solution of F (x) · y′ = F (y) or F (x) · y′ = a ∂y
∂a

.
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Let us introduce an alternative parametrization of the two-parameter series (224),
changing b into a b, in (224):

Y (a, b, x) = a · x +
(

1728 · a b − 744 · a · (a− 1)
)

· x2

+
(

2985984 · a3 · b2 − 2571264 · a2 · (a− 1) · b (227)

+ 36 · a · (a− 1) · (9907 a− 20845)
)

· x3 + · · ·

We have the following composition rules for the two-parameter series (227)

Y
(

a′, b′, Y (a, b, x)
)

= Y
(

a a′, a b′ + b, x
)

. (228)

The series (227) is, now, solution of:

a · ∂Y (a, b, x)

∂a
= F

(

Y (a, b, x)
)

, (229)

with F (x) given by (219). Let us introduce the a → 0 limit:

Qb(x) = lim
a→ 0

Y (a, b, x)

a

= x + (744 + 1728 b) · x2 + (750420 + 2571264 b+ 2985984 b2) · x3

+ (872769632+ 3549961728 b + 6664716288 b2+ 5159780352 b3) · x4

+ (1102652742882+ 4945819779072 b+ 11680775258112 b2

+ 15355506327552 b3+ 8916100448256 b4) · x5

+ (1470561136292880+ 7027977959274240 b+ 19050621395927040 b2

+ 32624754548539392 b3+ 33167893667512320 b4+ 15407021574586368 b5) · x6

+ · · · (230)

In the b → 0 limit, this series (230) reduces to the nome series (135) or (136).
In the a → ∞ limit one gets:

Xb(x) = lim
a→∞

Y
(

a, b,
x

a

)

= x − 744 x2 + 356652 x3 − 140361152 x4

+ 49336682190 x5 − 16114625669088 x6 + 4999042477430456 x7

− 1492669384085015040 x8 + 432762759484818142437x9 + · · · (231)

This series (231) is nothing but (134) or (137), and, thus, does not depend on the
second parameter b.

One actually finds that the two parameter series (227) is nothing but:

Y (a, b, x) = Xb

(

a · Qb(x)
)

. (232)

From (232) we can also deduce that (229), is, in fact, nothing but equation:

a · ∂Xb(a · x)
∂a

= F
(

Xb(a · x)
)

. (233)

Furthermore, since a · ∂Xb(a·x)
∂a = x · ∂Xb(a·x)

∂x , relation (233) also gives:

x · ∂Xb(a · x)
∂x

= F
(

Xb(a · x)
)

. (234)
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In contrast with the b = 0 case, the two functions, Qb and Xb, given by the
two limits (230), (231), are not compositional inverse. In the a → 1 limit, the
decomposition (232) becomes:

Y (1, b, x) = Xb

(

Qb(x)
)

= x + 1728 · b · x2 + 2985984 · b2 · x3 + 186624 · (27648 b2 − 1823) · b · x4

+ 110592 · (80621568 b3 − 15947604 b − 5249233) · b · x5 + · · · (235)

The series (235) is a one-parameter family of commuting series:

Y
(

1, b, Y (1, b′, x)
)

= Y
(

1, b′, Y (1, b, x)
)

= Y (1, b + b′, x). (236)

In particular the compositional inverse of Y (1, b, x) is Y (1, −b, x):

Y
(

1, b, Y (1, −b, x)
)

= Y
(

1, −b, Y (1, b, x)
)

= x. (237)

Note that:

Qb

(

Xb(x)
)

=
x

1 − 1728 · b · x = x + 1728 · b · x2 + · · · (238)

From (238) we deduce an alternative expression for Qb(x) in terms of the nome (23)
(i.e. the compositional inverse of (231), or, equivalently Qb(x) for b = 0):

Qb(x) =
Q0(x)

1 − 1728 · b · Q0(x)
. (239)

Conversely, the nome (23), which does not depend on the parameter b, can be simply
expressed in terms of the series (230):

Q0(x) =
Qb(x)

1 + 1728 · b · Qb(x)
. (240)

Note that the composition rule relation (228) can, now, be seen as a straightforward
consequence of relation (239). From relation (239) one can see that the radius of
convergence of the series (230) corresponds, for small enough values of the additional
parameter b, to the singularity of Q0(x), (i.e. R = 1/1728), and for large enough
values of the parameter b, to the singularity Q0(x) = 1/1728/b, namely:

x = Xb

( 1

1728 b

)

= X̃
( 1

1728 b

)

. (241)

Remark 8.1: Do note that, in contrast with the α = 0 case, there is no
solution-series of the form a · x2 + · · · or, more generally, of the form a · xN + · · ·
with N 6= 1, of the Schwarzian equation (222), when W (x) is given by (223).
This corresponds to the fact that, when α 6= 0, W (x) is no longer of the form
W (x) = −1/2/x2 + · · · (see [30, 31]).

9. Polynomial examples for F (x).

Modular correspondences, modular curves, correspond to a (transcendental) function
F (x) associated to elliptic functions like (168), (219).

Appendix B provides a (non globally bounded) Heun function example showing
that the previous results and calculations also work, mutatis mutandis with Shimura
curves [75] (and their associated automorphic forms [10]).
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Let us now recall the general results of section (6), which describes the one-
parameter solution-series (190) of the Schwarzian equation (174), and also the partial
differential equations (197), (198), and the fact that these equations are actually valid
for any function F (x).

Let us consider, here, one-parameter functions y(a, x), corresponding to
miscellaneous polynomial examples of functions F (x), that are, thus, far from
being associated with the previous “classical” modular forms [14, 15, 19] and
hypergeometric/elliptic functions [45, 46], or even Shimura curves/automorphic forms
examples, possibly with Heun functions [83] (see Appendix B). Even more simple
polynomial examples are given in Appendix C.

From the general results of the previous section (6) we will, thus, get a set of
miscellaneous examples. All the corresponding one-parameter series, below, will verify
the composition rule:

y
(

a, y(a′, x)
)

= y(a a′, x). (242)

All these one-parameter series will also verify:

F
(

y(a, x)
)

= a · ∂y(a, x)
∂a

= F (x) · ∂y(a, x)
∂x

. (243)

One will also consider a polynomial that will be the truncation of the
hypergeometric function (168). One will, then, get a one-parameter solution-series,
very similar‡ to (130), which also verifies the composition rule (132), but does not
correspond to globally bounded series [43].

9.1. A first simple polynomial example for F (x)

Let us first consider the following polynomial expression for F (x):

F (x) = x · (1 − 2 x) · (1 − 3 x). (244)

One deduces, from (169), (203), the following rational expression for W (x):

W (x) = −1

2
· 1 − 36 x2 + 120 x3 − 108 x4

x2 · (1 − 2 x)2 · (1 − 3 x)2
. (245)

The Schwarzian condition

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (246)

has the following one-parameter solution

y(a, x) = a · x − 5 · a · (a− 1) · x2 + 2 · a · (14 a− 11) (a− 1) · x3

− 15 · a · (a− 1)2 (11 a− 6) · x4 + a · (a− 1)2 · (1001 a2 − 1298 a+ 351) · x5

− 7 · a · (a− 1)3 · (884 a2 − 923 a+ 189) · x6 (247)

+ 60 · a · (a− 1)3 · (646 a3 − 1156 a2 + 600 a− 81) · x7

− 3 · a · (a− 1)4 · (81719 a3 − 125324 a2 + 54162 a− 5832) · x8 + · · ·
as well as modular equation-like series (with no parameter) like

y2 = x2 + 10 x3 + 64 x4 + 300 x5 + 924 x6 + 56 x7 − 24140 x8

− 209856 x9 − 1158600 x10 + · · · (248)

‡ The three first terms are the same.
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or:

y3 = x3 + 15 x4 + 141 x5 + 1050 x6 + 6705 x7 + 37854 x8 + 189603 x9

+ 820584 x10 + 2777004 x11 + 4024890 x12 + · · · (249)

More generally, for the solution series of the form x → xp + · · · we have:

p · dx

F (x)
=

dy

F (y)
, (250)

From (244) we get:

exp
(

∫

dx

F (x)

)

= µ · x · (1 − 2 x)2

(1 − 3 x)3
. (251)

From (250), and (251), we get the algebraic curve:

ρ ·
(x · (1 − 2 x)2

(1 − 3 x)3

)p

=
y · (1 − 2 y)2

(1 − 3 y)3
. (252)

One finds that y2, given by (248), is actually solution of the algebraic condition (252)
for p = 2 and ρ = 1, namely:

(x · (1 − 2 x)2

(1 − 3 x)3

)2

=
y · (1 − 2 y)2

(1 − 3 y)3
. (253)

One also finds that y3, given by (249), is actually solution of the algebraic condition
(252), for p = 3 and ρ = 1, namely:

(x · (1 − 2 x)2

(1 − 3 x)3

)3

=
y · (1 − 2 y)2

(1 − 3 y)3
. (254)

On the other hand one finds that the one-parameter series y(a, x), given by (247),
is actually solution of the algebraic condition (252) for p = 1 and ρ = a, namely:

a ·
(x · (1 − 2 x)2

(1 − 3 x)3

)

=
y · (1 − 2 y)2

(1 − 3 y)3
. (255)

Remark 9.1: Note, from (255), that the one-parameter series y(a, x), given by (247),
is actually an algebraic series for any value of the parameter a (and not only N -th
root of unity). The algebraic equations (253) and (254), and their corresponding
algebraic series solutions (248) and (249), could be seen to be the “equivalent” of the
modular equations (43) and (53), and their corresponding algebraic series solutions
(45) and (55). However, one should note that the modular equations (43) and (53) are
x ↔ y symmetric, and, consequently, the modular equation (43) represents q → q2

and q → q1/2 in the same time (see series (45) but also (46)). Similarly the modular
equation (53) represents q → q3 and q → q1/3 in the same time (see series (55) and
also (56)). In contrast (253) and (254) break the x ↔ y symmetry. Therefore, the
“equivalent” of the modular equation (43) is rather
((x · (1 − 2 x)2

(1 − 3 x)3

)2

− y · (1 − 2 y)2

(1 − 3 y)3

)

·
((y · (1 − 2 y)2

(1 − 3 y)3

)2

− x · (1 − 2 x)2

(1 − 3 x)3

)

= 0,

when the equivalent of the modular equation (53) is rather:
((x · (1 − 2 x)2

(1 − 3 x)3

)3

− y · (1 − 2 y)2

(1 − 3 y)3

)

·
((y · (1 − 2 y)2

(1 − 3 y)3

)3

− x · (1 − 2 x)2

(1 − 3 x)3

)

= 0.

The series (247) verifies the composition rule:

y
(

a, y(a′, x)
)

= y(a a′, x). (256)
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The series (247) also verifies the relations:

F
(

y(a, x)
)

= F (x) · ∂y(a, x)
∂x

= a · ∂y(a, x)
∂a

. (257)

Let us introduce the two limits:

Q̃(x) = lim
a→ 0

y(a, x)

a
= x + 5 x2 + 22 x3 + 90 x4 + 351 x5 + 1323 x6

+ 4860 x7 + 17496 x8 + 61965 x9 + 216513 x10 + · · · (258)

X̃(x) = lim
a→∞

y
(

a,
x

a

)

= x − 5 x2 + 28 x3 − 165 x4 + 1001 x5 − 6188 x6

+ 38760 x7 − 245157 x8 + 1562275 x9 − 10015005 x10 + · · · (259)

One can verify that these two series Q̃(x) and X̃(x) are compositional inverse. The
radius of convergence of the “nome-like” series Q̃(x), given by (258), is R = 1/3.
The radius of convergence of the series X̃(x), given by (259), is R = 4/27.

These two series, with integer coefficients, are solutions of the two Schwarzian
equations

{Q̃(x), x} +
1

2 · Q̃(x)2
·
(dQ̃(x)

dx

)2

+ W (x) = 0, (260)

and

{X̃(x), x} − 1

2 · x2
−W

(

X̃(x)
)

·
(dX̃(x)

dx

)2

= 0, (261)

where W (x) is given by (245). In fact using the explicit algebraic form of y(a, x),
given by (255), one can find a closed exact expression for the “nome-like” series Q̃(x),
namely:

Q̃(x) =
x · (1 − 2 x)2

(1 − 3 x)3
, (262)

in agreement with series (258). Relation (255) is nothing but:

a · Q̃(x) = Q̃
(

y(a, x)
)

. (263)

The one-parameter series (247) can thus be written:

y(a, x) = X̃
(

a · Q̃(x)
)

. (264)

From (264), and from the fact that y(a, x) = x for a = 1, one can deduce that X̃(x)
must be the compositional inverse of the “nome-like” series (262). Note that X̃(x) is
an algebraic function. It is solution of the polynomial equation:

(27 x + 4) · X̃(x)3 − (27 x + 4) · X̃(x)2 + (9 x + 1) · X̃(x) − x = 0, (265)

in agreement with the R = 4/27 radius of convergence of the series X̃(x).

9.2. Another simple polynomial example for F (x)

Let us now consider the polynomial

F (x) = x · (1 − 373 · x) · (1 − 371 · x) = x − 744 x2 + 138383 x3, (266)
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which has the same first two terms as the series expansion of the hypergeometric
function (168). The function W (x) in the Schwarzian equation is given by (203):

W (x) = −1

2
· 1 − 830298 x2 + 411827808 x3 − 57449564067 x4

x2 · (1 − 373 x)2 · (1 − 371 x)2
. (267)

A solution of the Schwarzian equation, with W (x) given by (267), reads:

y(a, x) = a · x − 744 · a · (a− 1) · x2 +
1

2
· a · (1245455 a − 968689) · (a− 1) · x3

− 620 · a · (885656 a − 470507) · (a− 1)2 · x4 + · · · (268)

The functional relation F (y) = F (x) · y′(x), gives dy/F (y) = dx/F (x) , and thus

µ · exp
(

∫

dy

F (y)

)

= Q̃(x) = exp
(

∫

dx

F (x)

)

= x · (1 − 371 x)371/2

(1 − 373 x)373/2

= x + 744 x2 +
968689

2
x3 + 291714340 x4 + · · · (269)

We actually have the relation:

a · Q̃(x) = Q̃
(

y(a, x)
)

. (270)

In that case, since Q̃(x) is an algebraic function, we see that the one-parameter series
y(a, x), given by (268), is actually an algebraic series for any value of the parameter
a. The series y = y(a, x) is actually solution of:

a2 · x2 · (1 − 371 x)371

(1 − 373 x)373
− y2 · (1 − 371 y)371

(1 − 373 y)373
= 0. (271)

Taking into account the large degree in x or y of the polynomial condition (271),
one should note that it can actually be quite difficult to get this polynomial equation
from¶ a large series (268). The compositional inverse of Q̃(x) is:

X̃(x) = x − 744 x2 +
1245455

2
· x3 − 549106720 x4 +

3989599188003

8
· x5

− 461623555588416x6 +
6928370820171415659

16
· x7

− 410201463628637176320 x8 + · · · (272)

This is an algebraic series y = X̃(x), solution of:

x2 · (1 − 373 · y)373 − y2 · (1 − 371 · y)371 = 0. (273)

Note that, even with a very large series (272), it is also quite hard, because of the high
degree in y of (273), to find the algebraic expression (273) even if it is really simple.

9.2.1. Two-parameter family. Following the calculations displayed in subsection
(8.1), let us generalize W (x) given by (267), to the form (223):

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

+
1

2
· α2

F (x)
(274)

For α = 1 with F (x) given by (266), W (x) reads:

W (x) =
415149

2
· 138383 x2 − 992 x + 2

x2 · (1 − 373 x)2 · (1 − 371 x)2
. (275)

¶ Using, for instance, the command seriestoalgeq of gfun of Bruno Salvy.
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The two-parameter series (generalizing (268))

y(a, b, x) = a · x +
(

1728 · b − 744 · a · (a− 1)
)

· x2

+
(

2985984 · b
2

a
− 2571264 · (a− 1) · b (276)

+
1

2
· a · (1245455 a − 968689) · (a− 1)

)

· x3

+
(

5159780352 · b
3

a2
− 6664716288 · (a− 1) · b

2

a

+ 864 · (3736365 a2− 6642432 a+ 3044450) · b
− 620 · a · (885656 a − 470507) · (a− 1)2

)

· x4 + · · ·

is actually solution of the Schwarzian equation (222) with W (x) given by (275). Note
that, again, the two-parameter series (276) is also solution of

a · ∂y(a, b, x)
∂a

+ b · ∂y(a, b, x)
∂b

= F
(

y(a, b, x)
)

, (277)

with F (x) given by (266). We have, again, the two-parameters composition rules
(226):

y
(

a′, b′, y(a, b, x)
)

= y
(

a a′, a2 b′ + a′ b, x
)

. (278)

similarly to subsection (8.1), let us introduce an alternative parametrization of the
two-parameter series (276), changing b into a b, in (276):

Y (a, b, x) = a · x +
(

1728 · a b − 744 · a · (a− 1)
)

· x2

+
1

2
·
(

5971968 · a · b2 − 5142528 · (a− 1) · a · b

+ a · (1245455 a − 968689) · (a− 1)
)

· x3 + · · · (279)

Again, we have the following composition rules for the two-parameter series (279)

Y
(

a′, b′, Y (a, b, x)
)

= Y
(

a a′, a b′ + b, x
)

, (280)

The series (279) is, now, solution of:

a · ∂Y (a, b, x)

∂a
= F

(

Y (a, b, x)
)

, (281)

with F (x) given by (266).

9.3. Truncation of the hypergeometric function F (x).

The hypergeometric function F (x) given by (168), expands as x−744 x2−393768 x3 +
· · · Let us consider a simple truncation of this hypergeometric function:

F (x) = x − 744 x2 − 393768 x3. (282)

From (203) this gives:

W (x) = −1

2
· 1 + 2362608 x2 − 1171853568 x3 − 465159713472x4

x2 · (1 − 744 x − 393768 x2)2
. (283)
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The Schwarzian equation (174) with the previous W (x), namely (283), has the
following one-parameter solution-series:

y(a, x) = a · x − 744 · a · (a− 1) · x2 + 36 · a · (a− 1) · (9907 a− 20845) · x3

− 80352 · a · (a− 1)2 · (264 a− 9379) · x4 (284)

− 648 · a · (a− 1)2 · (250310357 a2 + 598043050 a− 1207272939) · x5

+
482112

5
· a · (a− 1)3 · (1944308192 a2− 424834349 a− 8498464743) · x6 + · · ·

This one-parameter series (284) is quite similar† to the one-parameter series (130).
The series (284) actually verifies the composition rule:

y
(

a, y(a′, x)
)

= y(a a′, x). (285)

Let us introduce the two limits

Q̃(x) = lim
a→ 0

y(a, x)

a
= x + 744 x2 + 750420 x3 + 753621408 x4 (286)

+ 782312864472 x5 +
4097211834177216

5
x6 +

4331866321367059104

5
x7 + · · ·

and:

X̃(x) = lim
a→∞

y
(

a,
x

a

)

= x − 744 x2 + 356652 x3 − 21212928 x4 (287)

− 162201111336 x5 +
937374311061504

5
x6 − 563689525139743392

5
x7 + · · ·

One verifies that the one-parameter series (284) is actually of the form:

y(a, x) = X̃
(

a · Q̃(x)
)

. (288)

Again, from (288) and from the fact that y(a, x) = x for a = 1, we see that the
series (287) is actually the compositional inverse of the “nome-like” series (286):

y(1, x) = x = X̃
(

Q̃(x)
)

. (289)

The one-parameter series (284) is also solution of

a · ∂y(a, x)
∂a

= F (y(a, x)) = F (x) · ∂y(a, x)
∂x

, (290)

and one can verify that:

Q̃
(

y(a, x)
)

= a · Q̃(x). (291)

Conversely, from (291), we get, recalling (205)

dy

F (y(a, x))
=

dx

F (x)
+

da

a
, (292)

which gives for a fixed

F (y(a, x)) = F (x) · ∂y(a, x)
∂x

, (293)

and for x fixed:

a · ∂y(a, x)
∂a

= F (y(a, x)). (294)

† The first three coefficients are actually the same.
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Let us introduce the series

y2 = X̃
(

Q̃(x)2
)

= x2 + 1488 x3 + 2053632 x4 + 2621653632 x5

+ 3244440682476 x6 +
19627900112688192

5
x7 +

23401843163094440736

5
x8

+
193179165341208747259392

35
x9 + · · · (295)

This series (295) is solution of the Schwarzian equation (174), with W (x) given by
(283), and is also solution of

2 · F (y2) = F (x) · ∂y2
∂x

, (296)

i.e.

2 ·
(

y2 − 744 y22 − 393768 y32

)

=
(

x − 744 x2 − 393768 x3
)

· ∂y2
∂x

, (297)

and one also has:

Q̃
(

y2(x)
)

= Q̃(x)2. (298)

Let us introduce the one-parameter series

y
(a)
2 = y(a, y2) = X̃

(

a · Q̃(x)2
)

= a · x2 + 1488 a · x3

− 24 · a · (31 a− 85599) · x4 − 35712 · a · (62 a− 73473) · x5

+ 36 · a · (9907 a2 − 130673184 a+ 90254015568) · x6 (299)

+
160704

5
· a · (49535 a2 − 262999040 a+ 122399922528) · x7 + · · ·

This one-parameter series (299) is solution of the Schwarzian equation (174), with
W (x) given by (283). It is also solution of

Q̃
(

y
(a)
2 (x)

)

= a · Q̃(x)2, (300)

and also solution of

2 · F (y
(a)
2 ) = F (x) · ∂y

(a)
2

∂x
= 2 · a · ∂y

(a)
2

∂a
. (301)

where

F (x) = x − 744 x2 − 393768 x3 = x ·
(

1 − p · x
)

·
(

1 − q · x
)

, (302)

with:

p = 372 + 6 · 147821/2, q = 372 − 6 · 147821/2, (303)

Let us denote

α =
1

2
· p+ q

q − p
= − 31

14782
· 147821/2 = −0.25497 · · · (304)

Following the previous calculations in section (9.2), one easily finds that the “nome-
like” series (286) reads:

Q̃(x) =
x · (1 − p · x)p/(q−p)

(1 − q · x)q/(q−p)
=

x
(

(1 − p · x) · (1 − q · x)
)1/2

·
(1 − p · x
1 − q · x

)α

= x + 744 x2 + 750420 x3 + 753621408 x4 + 782312864472 x5

+
4097211834177216

5
x6 +

4331866321367059104

5
x7 + · · · (305)
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This “nome-like” series (305) is actually D-finite. It is solution of the order-one
linear differential operator (θ = x · Dx is the homogeneous derivative):

L1 = F (x) ·Dx − 1 = (x − 744 x2 − 393768 x3) ·Dx − 1

= (1 − 744 x − 393768 x2) · θ − 1. (306)

Do note, however, that this “nome-like” series (305) is not globally bounded. The
radius of convergence of the “nome-like” series (305) is 1/p, with p given by (303):

R =
1

p
=

147821/2

65628
− 31

32814
= 0.0009078632370 · · · (307)

This “nome” series (305) is D-finite, with a finite radius of convergence, but it is not
globally bounded. Note that X̃(x) is only a differentially algebraic function.

Note that the order-one linear differential operator L1, given by (306), is not
globally nilpotent [83]. The corresponding p-curvatures are null (or nilpotent that is
the same for order-one linear differential operators) for the following primes:

3, 11, 13, 17, 23, 31, 47, 61, 73, 79, 89, 101, · · · (308)

but non-zero for the following primes:

5, 7, 19, 29, 37, 41, 43, 53, 59, 67, 71, · · · (309)

Note that, since 14782 = 2 · 19 · 389, we could have expected that one does not
see the transcendence of the “nome” mod. 19, the “nome” reducing to an algebraic
function (see (303), (304)), and thus one could expect a zero p-curvature. This is not
the case.

Note that the exponent of the “nome-like” series (305), at the singularity
x = 1/p, is

p

q − p
= −1

2
− 31

147821/2
= −0.7549735291 · · · (310)

which is not a rational number. This rules out the fact that the order-one linear
differential operator (306) could be globally nilpotent [83].

Let us consider the simplest example of series y(a, x), namely the (involutive)
series (284) for a = −1:
y(−1, x) = −x − 1488 x2 − 2214144 x3 − 3099337344 x4 − 4030574598144 x5

− 23640158283604992

5
x6 − 23310435220175683584

5
x7 (311)

− 20590422517553304526848

7
x8 +

12494610391145690921435136

7
x9 + · · ·

Calculating the first fifty coefficients of this series, one can see that this (involutive)
series is not globally bounded.

Remark 9.2: Following subsection (9.2.1), the generalization to two-parameter
series can be performed on this last polynomial example, mutatis mutandis.

10. Comments and speculations on differentially algebraic series.

We have displayed miscellaneous series solutions of Schwarzian equations (and thus
having a compositional property [30, 31]), which can be seen to be, or to generalize,
modular correspondences [76]. We remark that we have the following situation:
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we have series depending on one parameter (sometimes two parameters for slightly
“academical” examples like in subsection (8.1)), which reduce to series with integer
coefficients for an infinite set of values of the parameter(s), namely the integer values‡.
These one-parameter series are generically only differentially algebraic, even for integer
values of the parameter (where they are probably not even D-finite, see for instance
(161)). In contrast, and remarkably, when the parameter is a N -th root of unity, the
generically differentially algebraic one-parameter series become algebraic functions.
We thus have an infinite number of algebraic functions.

It is interesting to note that a totally and utterly similar situation have been seen
to occur in other very interesting situations in physics, or enumerative combinatorics.
Along this line, differentially algebraic series with integer coefficients¶ exist, and
correspond to remarkable solutions of differentially algebraic equations in physics,
or enumerative combinatorics, like λ-extensions of Ising correlation functions [84, 85],
or solution of a differentially algebraic Tutte equation [55]. We have an infinite set of
differentially algebraic series with integer coefficients that are not D-finite [55, 84, 85].
We also have the occurence of an infinite number of algebraic series for an infinite set
of Tutte-Beraha values of the λ parameter. Note that these selected values can also
be seen as N -th root of unity situation.

At first sight, these Tutte-Beraha examples [55], or λ-extension of correlation
functions of the Ising model [84, 85], are not related to Schwarzian equations with
their composition function properties†. Is it possible that such differentially algebraic
series could also reduce (in a more or less involved way ...) to exact decompositions

like X
(

ω · Qn(x)
)

, that we found systematically through this paper, since many of

the results of this paper are, in fact, consequences of such exact decompositions ?

• One motivation of this paper was to understand the very nature of the one-
parameter series y(a, x) : we have seen that this series cannot be solution of an
order-N linear differential operator (for some integer N independent of the parameter
a) with coefficients polynomials in x and in the parameter a.

• The relation between the Schwarzian equations (such that W (x) = −1/2/x2 +
· · ·, see [30, 31]), and modular correspondences was also an important motivation. The
solutions of the Schwarzian equations are larger that just the (infinite) set of “modular
correspondences”, precisely because of the occurrence of one-parameter series y(a, x).
Along this line we have first seen that the solution of the Schwarzian equations can
actually correspond to series with more than one parameter. Modular correspondences
are associated with modular curves and modular forms [14, 15, 16]. Consequently,
another question was to know if one can generalize these concepts beyond the elliptic
curves and modular forms framework.

We have also shown, with very simple (polynomial) examples for the function
F (x), that these structures can actually be generalized far beyond the elliptic curve
(modular curve, Shimura curves, modular form, automorphic form) framework. Along
this line, a first polynomial example (9.2) provides an example of one-parameter series
y(a, x), algebraic for any value of the parameter. We also found that the equivalent of
the nome is a simple algebraic function (square root of a rational function). With that

‡ More generally, for rational values of the parameters we have globally bounded differentially
algebraic series.
¶ Not simply reducible to ratio of globally bounded D-finite series, or composition of globally bounded
D-finite series.
† These λ-extension of Ising correlation functions are solutions of Painlevé equations [84, 85].
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example one also understands why it can be extremely hard to see that some series are
algebraic, even if the algebraic function to guess is of a quite simple form. Furthermore,
a “truncated” example (9.3) shows that the “modular equation-like” series (see for
instance (295), (311)) can actually be non globally bounded. The “nome-like” series is
a non globally bounded, but still D-finite, series (see (306)), the corresponding linear
differential operator being non globally nilpotent.

11. Conclusion

This paper provides a simple, and pedagogical, illustration of exact non-
linear symmetries in physics (exact representations of the renormalization group
transformations like the Landen transformation for the square Ising model [32, 33], ...)
and is a strong incentive to discover more differentially algebraic equations involving
fundamental symmetries, and to develop more differentially algebraic series analysis
in physics [55, 56], beyond examples like the full susceptibility of the square-lattice
Ising model [56, 84, 85, 92, 93].

In this paper we first focused, essentially, on identities relating the same
hypergeometric function with two different algebraic pullback transformations related
by modular equations. This corresponds to the “classical” modular forms [19] (resp.
automorphic forms) that emerged so many times in physics [41, 42, 43]: these algebraic
transformations can be seen as simple illustrations of exact representations of the
renormalization group of some Yang-Baxter integrable models [32, 33, 73]. These
transformations are seen to be solutions of some Schwarzian relation.

The Schwarzian relation is seen to “encapsulate”, in one differentially algebraic
(Schwarzian) equation, all the modular forms and modular equations of the theory of
elliptic curves. The Schwarzian condition can thus be seen as some quite fascinating
“pandora box”, which encapsulates an infinite number of highly remarkable modular
equations, and a whole “universe” of Belyi-maps‡. It is however important to
underline that these Schwarzian conditions are actually richer than just elliptic
curves, and go beyond†† “simple” restrictions [91] to pullbacked 2F1 hypergeometric
functions. In a more general perspective, such Schwarzian conditions occur in
Malgrange’s pseudo-group approach [65, 66, 67, 72] of D-enveloppes. At this level
of mathematical abstraction, the question of a modular correspondence interpretation
of these “Schwarzian” series was clearly an open question. This paper sheds some light
on this open question. It shed some light on the very nature of the one-parameter series
solution of the Schwarzian equation, which is not generically a modular correspondence
series, but actually reduces to an infinite set of modular correspondence series for an
infinite set of (N -th root of unity) values of the parameter. This paper also provides
(polynomial) examples that are very similar to modular correspondence series, but are
far beyond the elliptic curves framework.

Acknowledgments: We would like to thank A. Bostan and G. Casale, for very
fruitful discussions. We thank A. Bostan for some p-curvature calculations. This work
has been performed without any ERC, ANR, PES or MAE financial support.

‡ Belyi-maps [86, 87, 88, 89, 90] are central to Grothendieck’s program of “dessins d’enfants”.
††See the two Heun functions given by (164) in [77].
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Appendix A. Miscellaneous modular correspondences.

• Let us consider
X̃
(

Q̃(x)7
)

= x7 + 5208 x8 + 16877196 x9 + 43972589024 x10

+ 101156052918270 x11 + 215029151897268240x12 + · · · (A.1)

which is solution of a modular equation Γ7(x, y) = Γ7(y, x) = 0 that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t

(t2 + 13 t + 49) · (t2 + 5 t + 1)3
, y =

t7

(t2 + 13 t + 49) · (t2 + 245 t + 2401)3
.

This series (A.1) is solution of an order-eight linear differential operator L8 =
L1 ⊕ L7, which is the direct sum of an order-one linear differential operator L1 with
a rational function solution of the form

x · p6(x)

(11356800389480448000000x2 + 34848505552896000 x + 1)3
, (A.2)

where p6(x) is a polynomial of degree six, and an order-seven irreducible linear
differential operator L7.

• Let us also consider

X̃
(

Q̃(x)8
)

= x8 + 5952 x9 + 21502368 x10 + 61310179840 x11 + · · · (A.3)

which is solution of a modular equation Γ8(x, y) = Γ8(y, x) = 0 that we will not
write here, but can easily be obtained from its rational parametrization [19]:

x =
t · (t+ 4)2 · (t+ 8)

(t4 + 16 t3 + 80 t2 + 128 t + 16)3
,

y =
t8 · (t+ 4) · (t+ 8)2

(t4 + 256 t3 + 5120 t2 + 32768 t + 65536)3
. (A.4)

The polynomial, associated with the modular equation Γ8(x, y) = 0, is of degree 12
in y (resp. in x). This series (A.3) is solution of an order-twelve linear differential
operator L12 = L1 ⊕ L11, which is the direct sum of an order-one linear differential
operator L1 with a rational function solution of the form

x · p11(x)
p4(x)3

, (A.5)

where p11(x) is a polynomial of degree eleven, and where p4(x) reads

1080060886113159937649308593750000x4 − 826335556188178615474500000000x3

− 15705521635909735050750000x2 + 8041801037378436000 x − 1, (A.6)

and an order-eleven linear differential operator L11. The other algebraic solution
series of Γ8(x, y) = 0 are the compositional inverse of series (A.3), namely

ω · x1/8 − 744 · ω2 · x2/8 + 356652ω3 · x3/8 − 140361152 · ω4 · x4/8

+ 49336682190 · ω5 · x5/8 − 16114625669088 · ω6 · x6/8 + · · · (A.7)

where ω8 = 1, together with

− x2 − 1488 x3 − 2055120 x4 − 2864378368 x5 − 4071821465856x6

− 5900566305239040x7 − 8695398352685449216 x8 + · · · (A.8)
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which is¶ y1(y2(x)) (where y1 is (81) and y2 is (45)), and

ω · x1/2 − 744 · ω2 · x2/2 + 356280 · ω3 · x3/2 − 139807616 · ω4 · x4/2

+ 48938964576 · ω5 · x5/2 + · · · (A.9)

where ω2 = −1. The number of algebraic solution series of Γ8(x, y) = 0, or L12, is
1 + 1 + 8 + 2 = 12.

• The (algebraic) series

X̃
(

Q̃(x)11
)

= x11 + 8184 x12 + 38699100 x13 + 138966918112 x14 + · · · (A.10)

is solution of a modular equation Γ11(x, y) = Γ11(y, x) = 0 that we will not write
here. The polynomial, associated with the modular equation Γ11(x, y) = 0, is of
degree 12 in y (resp. in x). In contrast with the previous examples, this modular
equation is a genus-one curve†. We, thus, do not have a rational parametrization of
the modular equation [19]. This series is solution of an order-twelve linear differential
operator L12 = L1 ⊕ L11, which is the direct sum of an order-one linear differential
operator L1 with a rational function solution

x · p11
p34

, (A.11)

where p11 is polynomial of degree eleven, and where p4 reads

1577314437358442913340940353536000000000000 x4

− 496864268553728774541064273920000000000 x3

+ 45688143672322270430861721600000000x2

+ 98823634118413525094400000 x + 1, (A.12)

and an order-eleven linear differential operator L11.

• The (algebraic) series

X̃
(

Q̃(x)12
)

= x12 + 8928 x13 + 45538416 x14 + 174773255424 x15 + · · · (A.13)

is solution of a modular equation Γ12(x, y) = Γ12(y, x) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]:

x = t · (t+ 2)3 (t+ 3)4 (t+ 4)3 (t+ 6)

(t2 + 6 t+ 6)3 · p36
, y = t12 · (t+ 2) (t+ 3)3 (t+ 4)4 (t+ 6)3

(t2 + 12 t+ 24)3 · q36
,

where:

p6 = t6 + 18 t5 + 126 t4 + 432 t3 + 732 t2 + 504 t + 24, (A.14)

q6 = t6 + 252 t5 + 4392 t4 + 31104 t3 + 108864 t2 + 186624 t + 124416.

The polynomial, associated with the modular equation Γ12(x, y) = 0, is of degree
24 in y (resp. in x). The (algebraic) series solutions of the modular equation
Γ12(x, y) = 0 are solutions of an order-24 linear differential operator L24 = L1⊕L23,
which is the direct sum of an order-one linear differential operator L1, with a rational
function solution

x · p23
(6549518250000 x2 − 2835810000 x + 1)3 · p36

(A.15)

¶ In contrast, note that y2(y1(x)) = y2(x).
† See Appendix I in [44], which is the unabridged arXiv version of [43].
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where p23 is a polynomial of degree 23, and where p6 is the polynomial

42889619864187195342544128412237640625000000000000 x6

+ 3869372376492639837782614434923625000000000000x5

+ 34904627315764077727184412247908187500000000 x4

+ 1007059405271040783775694468925000000000x3

+ 280179539493990596285512318134750000x2

− 22804995243537595825782822000 x + 1, (A.16)

and an order-23 linear differential operator L23. The other (algebraic) series are,
respectively, the compositional inverse of series (A.13), namely

ω · x1/12 − 744 · ω2 · x2/12 + 356652 · ω3 · x3/12 − 140361152 · ω4 · x4/12

+ 49336682190 · ω5 · x5/12 − 16114625669088 · ω6 · x6/12

+ 4999042477430456 · ω7 · x7/12 + · · · (A.17)

where ω12 = 1, together with

− x3 − 2232 x4 − 3911868 x5 − 6380015304 x6 − 10139549171670 x7 + · · · (A.18)

which is nothing but y3(y1(x)) = y1(y3(x)) (with y3 given by (55), and y1 given by
(81)), and

ω · x1/3 − 744 · ω2 · x2/3 − 356652 · x + 140361400 · ω · x4/3

− 49337051214 · ω2 · x5/3 − 16114891018176 · x6/3

+ 4999181715881876 · ω · x7/3 + · · · (A.19)

where ω3 = 1,

ω · x4/3 + 992 · ω · x7/3 − 744 · ω2 · x8/3 + 1123568 · ω · x10/3 + · · · (A.20)

where ω3 = −1, and
ω · x3/4 − 744 · ω2 · x6/4 + 558 · ω · x7/4 + 356652 · ω3 · x9/4 + · · · (A.21)

where ω4 = 1. This gives 1 + 1 + 12 + 3 + 3 + 4 = 24 algebraic series, solutions
of Γ12 = 0 and L24.

Remark 3.6: Recalling the algebraic series y3, given by (55), and the algebraic
series y1 given by (81), one can see that the algebraic series (A.18) is nothing but:

y3(y1(x)) = y1(y3(x)) = −x3 − 2232 x4 − 3911868 x5 + · · · (A.22)

• The (algebraic) series

X̃
(

Q̃(x)16
)

= x16 + 11904 x17 + 78431040 x18 + 378584548352 x19

+ 1496557573544352 x20 + · · · (A.23)

is solution of a modular equation Γ16(x, y) = Γ16(y, x) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]:

x = t · (t+ 2)4 (t+ 4) (t2 + 4 t+ 8)

p38
, y = t16 · (t+ 2) (t+ 4)4 (t2 + 4 t+ 8)

q38
,

where:

p8 = t8 + 16 t7 + 112 t6 + 448 t5 + 1104 t4 + 1664 t3 + 1408 t2 + 512 t + 16,

q8 = t8 + 256 t7 + 5632 t6 + 53248 t5 + 282624 t4 + 917504 t3 + 1835008 t2

+ 2097152 t + 1048576. (A.24)
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The polynomial in the modular equation Γ16(x, y) = 0 is of degree 24 in y (resp.
in x), and, thus, has twenty four algebraic solution series, corresponding to the series
(A.23), the compositional inverse of series (A.23), namely

ω · x1/16 − 744 · ω2 · x2/16 + 356652 · ω3 · x3/16

− 140361152 · ω4 · x4/16 + · · · (A.25)

where ω16 = 1, together with

− x4 − 2976 x5 − 6322896 x6 − 11838151424 x7 − 20872495229904 x8

− 35647177059836928 x9 + · · · (A.26)

and

ω · x1/4 − 744 · ω2 · x2/4 + 356652 · ω3 · x3/4

− 140361152 · ω4 · x4/4 + · · · (A.27)

where ω4 = −1, and:
ω · x − 744 · ω · (ω − 1) · x2 + · · · (A.28)

where ω2 = −1. The (algebraic) series solutions of the modular equation Γ16(x, y) =
0 are solution of an order-24 linear differential operator L24 = L1 ⊕ L23, which is
the direct sum of an order-23 linear differential operator L23, and an order-one linear
differential operator L1, with a rational function solution

x · p23
p38

, (A.29)

where p23 is a polynomial of degree 23, and where p8 is the polynomial

15926143836920796849094002857387135460968690480161221686575776100158691406250000 x8

− 6042818923606714182438083804301870179528875596947614517314453125000000000000x7

+ 4900698705373764641365354757988280247136785578572898154329101562500000000 x6

+ 46721890317786185410700227174952944124137546155237676733203125000000000 x5

+ 81580198367732340212612911642019252294658707587093110574218750000 x4

+ 736154608709059015006498116049282929703692588255135000000000 x3

+ 259399171372225204966661002550162965440584749500000x2

− 64670563924749466394147714711210760000 x + 1. (A.30)

Remark 3.7: Recalling the algebraic series y4, given by (79), and the algebraic
series y1 given by (81), one can see that the algebraic series (A.26) is nothing† but:

y1(y4(x)) = −x4 − 2976 x5 − 6322896 x6 + · · · (A.31)

We thus have 1 + 1 + 16 + 4 + 2 = 24 algebraic solutions of the modular equation
Γ16(x, y) = 0, and also solutions of L24.

• The (algebraic) series

X̃
(

Q̃(x)18
)

= x18 + 13392 x19 + 98198568 x20 + 522607392000 x21

+ 2259156547520244x22 + · · · (A.32)

† In contrast y4(x) = y4(y1(x)).
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is solution of a modular equation Γ18(x, y) = Γ18(y, x) = 0, that we will not write
here, but can easily be obtained from its rational parametrization [19]:

x = t · (t+ 2)9 · (t+ 3)2 · (t2 + 3 t+ 3)2 (t2 + 6 t+ 12)

(t3 + 6 t2 + 12 t+ 6)3 · p39
,

y = t18 · t+ 2)2 · (t+ 3)9 · (t2 + 3 t+ 3) (t2 + 6 t+ 12)2

(t3 + 12 t2 + 36 t+ 36)3 · q39
, (A.33)

where:

p9 = t9 + 18 t8 + 144 t7 + 666 t6 + 1944 t5 + 3672 t4

+ 4404 t3 + 3096 t2 + 1008 t + 24,

q9 = t9 + 252 t8 + 4644 t7 + 39636 t6 + 198288 t5 + 629856 t4

+ 1294704 t3 + 1679616 t2 + 1259712 t + 419904. (A.34)

The polynomial in the modular equation Γ18(x, y) = 0 is of degree 36 in y (resp. in
x), and thus has thirty-six algebraic solution series, corresponding to the series (A.32),
together with the compositional inverse of series (A.32), namely

ω · x1/18 − 744 · ω2 · x2/18 + 356652 · ω3 · x3/18

− 140361152 · ω4 · x4/18 + · · · (A.35)

where ω18 = 1, together with

ω · x2 + 1488 · ω · x3 + (744 + 2055120 · ω) · x4

+ (2214144 + 2864378368 · ω) · x5 + · · · (A.36)

where 1 + ω + ω2 = 0, and

ω · x1/2 − 744 · ω2 · x2/2 + (356652 · ω3 + 372 · ω) · x3/2

+ (139807616ω2 + 140361152) · x4/2 + · · · (A.37)

where ω4 + ω2 + 1 = 0, and

ω · x2/9 − 744 · ω2 · x4/9 + 356652 · ω3 · x6/9 + · · · (A.38)

where ω9 = 1, and:

ω · x9/2 + 3348 · ω · x11/2 + 7735986 · ω · x13/2 + · · · (A.39)

where ω2 = 1. We thus have 1 + 18 + 2 + 4 + 9 + 2 = 36 algebraic series of the
modular equation Γ18(x, y) = 0. These algebraic series are solutions of an order-36
linear differential operator L36 which is the direct-sum of an order-35 linear differential
operator L35, and an order-one linear differential operator with a rational function
solution

x · p35
p33 · p39

, (A.40)

where p35 is a polynomial of degree 35, where p3 reads

1879994705688000000000x3 − 224179462188000000x2 + 151013228706000x − 1,

and p9 reads:

141600617083186841426749541059379178266125496444877735060776646144000000000000000000000000000x9

− 91940358193098820927255075706021981712433442298247865135275206912000000000000000000000000 x8

+ 23575127643124642999337421097401673608067186617214973940390237696000000000000000000000x7

+ 472396958753110140888731003718496465436906620981212557050651392000000000000000000 x6
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+ 9765441515113592938914449083136683600667888100995340182803776000000000000000x5

+ 14038814920070381530487981789718895908787729404706990128672000000000000 x4

+ 6390980152781882840426709358572754975540778747694537696000000000x3

+ 7559858588621896366536922746878187128255472000000x2

+ 3443855962300764146093216928806375326182000 x − 1. (A.41)

Appendix B. Beyond pullbacked 2F1 hypergeometric functions: a selected
Heun function.

Let us show that the results displayed on the classical modular curves and their
associated modular forms with pullbacked 2F1 hypergeometric functions, also work on
Shimura curves [75] and their associated automorphic forms [10] with a Heun function
which cannot be reduced to pullbacked 2F1 hypergeometric functions.

Recalling† Krammer’s counterexample to Dwork’s conjecture [78, 79, 80], let us
consider the Heun function Heun(81, 1/2, 1/6, 1/3, 1/2, 1/2; x) which is solution of
an order-two linear differential operator L2 which is globally nilpotent [83]. The series
expansion of this Heun function is not globally bounded [43, 44]. Let us introduce the
following function F (x):

F (x) = x1/2 ·
(

1− x

81

)1/2

· (1− x)1/2 · HeunG
(

81,
1

2
,
1

6
,
1

3
,
1

2
,
1

2
; x

)2

, (B.1)

or, more simply, the following (non globally bounded) series:

81 · F (x)2 = x · (81− x) · (1− x) · HeunG
(

81,
1

2
,
1

6
,
1

3
,
1

2
,
1

2
; x

)4

= 81 x − 78 x2 − 137

81
x3 − 3892

6561
x4 − 44495

177147
x5 − 1900594

14348907
x6 + · · · (B.2)

Let us consider the Schwarzian equation associated with the order-two linear
differential operator L2. The corresponding function W (x) reads (see subsection
(1.2)):

W (x) = −35 x4 − 3680 x3 + 244242 x2 − 244944 x + 177147

72 · x2 · (x− 1)2 · (x− 81)2
. (B.3)

One can actually verify that W (x), given by the rational function (B.3), can actually
also be written in terms of the Heun function (B.1):

W (x) =
F ′′(x)

F (x)
− 1

2
·
(F ′(x)

F (x)

)2

=
(F ′(x)

F (x)

)

′

+
1

2
·
(F ′(x)

F (x)

)2

. (B.4)

Note that introducing a “nome”

Q(x)′

Q(x)
=

1

F (x)
or: Q(x) = exp

(

∫ x dx

F (x)

)

, (B.5)

relation (B.4) is nothing but relation (25), namely:

W (x) = −{Q(x), x} − 1

2 · Q(x)2
·
(dQ(x)

dx

)2

. (B.6)

A one-parameter series y(a, x) is actually solution† of the Schwarzian equation

W (x) −W (y(x)) · y′(x)2 + {y(x), x} = 0, (B.7)

† See also subsection 2.3 of [83].
† Note that there are no solutions of the form a · xn + · · · with n ≥ 2, since W (x) is not of the
form −1/2/x2 + · · ·. The series expansion of W (x) reads −3/8/x2 + · · ·
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with W (x) given by (B.3):

y(a, x) = a · x − 26

81
· a · (a− 1) · x2 +

1

6561
· a · (a− 1) · (243 a − 1109) · x3

− 2

3720087
· a · (a− 1) · (4013 a2 − 62326 a + 201028) · x4 + · · · (B.8)

One can easily verify the functional equation:

a · F
(

y(a, x)
)2

= F (x)2 · dy(a, x)
dx

2

, (B.9)

or:

a1/2 · F
(

y(a, x)
)

= F (x) · dy(a, x)
dx

. (B.10)

One can also verify the following compositional formula:

y
(

a, y(a′, x)
)

= y(a a′, x). (B.11)

Let us introduce the two a → 0 and a → ∞ limits of the one-parameter series
(B.8):

Q̃(x) = lim
a→ 0

y(a, x)

a
= x +

26

81
x2 +

1109

86561
x3 +

402056

3720087
x4

+
2565526

33480783
x5 +

471402140

8135830269
x6 + · · · (B.12)

and:

X̃(x) = lim
a→∞

y
(

a,
x

a

)

= x − 26

81
x2 +

1

27
x3 − 8026

3720087
x4

+
38603

301327047
x5 − 3200

301327047
x6 + · · · (B.13)

One verifies that the one-parameter series (B.8) is actually of the form:

y(a, x) = X̃
(

a · Q̃(x)
)

. (B.14)

From the exact decomposition (B.14), together with the fact that the one-parameter
series (B.8) is such that y(1, x) = 1, one deduces immediately that the series (B.13)
is actually the compositional inverse of the series (B.12).

Appendix C. Very simple polynomial examples for F (x).

Let us display some very simple examples for F (x), and the corresponding one-
parameter functions y(a, x), solutions of the Schwarzian equation (17).
• For F (x) = x · (1 + p x), one has W (x) = −1/2/x2/(1 + p x)2, and a one-

parameter function y(a, x), solution of the Schwarzian equation (17) with that W (x)
reads:

y(a, x) =
a · x

(1 + p x) − a · p · x. (C.1)

It is straightforward to see that y(a, x) can be written y(a, x) = X̃(a · Q̃(x)), where:

X̃(x) =
x

1 − p · x and: Q̃(x) =
x

1 + p · x . (C.2)
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• For F (x) = x + p, one has W (x) = −1/(x + p)2/2, and a one-parameter

function y(a, x), solution of F (y(a, x)) = F (x)· ∂(a, x)∂x and of the Schwarzian equation
(17) with that W (x) reads (p is fixed):

y(a, x) = a · (x + p) − p. (C.3)

• For F (x) = x2, one has† W (x) = 0, and a one-parameter function y(a, x),

solution of F (y(a, x)) = F (x) · ∂(a, x)
∂x and of the Schwarzian equation (17) with

W (x) = 0 reads:

y(a, x) =
x

1 − ln(a) · x. (C.4)

• For F (x) = p, one has W (x) = 0, the one-parameter function y(a, x),

solution of F (y(a, x)) = F (x) · ∂(a, x)
∂x and of the Schwarzian equation (17) with

W (x) = 0 reads (p is fixed):

y(a, x) = x + p · ln(a). (C.5)

• For F (x) = p · x, one has¶ W (x) = −1/2/x2, and the one-parameter function

y(a, x), solution of F (y(a, x)) = F (x) · ∂(a, x)
∂x and of the Schwarzian equation (17)

with that W (x) reads (p is fixed):

y(a, x) = ap · x. (C.6)

All these one-parameter functions (C.1), (C.3), (C.4), (C.5), (C.6) verify the
composition rule:

y
(

a, y(a′, x)
)

= y(a a′, x). (C.7)

All these one-parameter functions (C.1), (C.3), (C.4), (C.5), (C.6) verify:

F
(

y(a, x)
)

= a · ∂y(a, x)
∂a

= F (x) · ∂y(a, x)
∂x

. (C.8)
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http://arxiv.org/abs/1606.08796
http://www.physics.fsu.edu/courses/Spring05/phy6938-02/decimation.pdf
http://arxiv.org/pdf/math-ph/0706.3367
http://arxiv.org/abs/math-ph/0701016


Replicable functions 55

[38] M. Hanna, The Modular Equations, Proc. London Math. Soc. 28, 46-52, 1928.
[39] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects
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