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Abstract

We consider a family of birational measure-preserving transformations of two complex variables, depending on one param-
eter for which simple rational expressions for the dynamical zeta function have been conjectured, together with an equality
between the topological entropy and the logarithm of the Arnold complexity (divided by the number of iterations). Sim-
ilar results have been obtained for the adaptation of these two concepts to dynamical systems of real variables, yielding
to introduce a “real topological entropy” and a “real Arnold complexity”. We try to compare, here, the Kolmogorov-Sinai
metric entropy and this real Arnold complexity, or real topological entropy, on this particular example of a one-parameter
dependent birational transformation of two variables. More precisely, we analyze, using an infinite precision calculation, the
Lyapunov characteristic exponents for various values of the parameter of the birational transformation, in order to compare
these results with the ones for the real Arnold complexity. We find a quite surprising result: for this very birational example,
and, in fact, for a large set of birational measure-preserving mappings generated by involutions, the Lyapunov characteristic
exponents seem to be equal to zero or, at least, extremely small, for all the orbits we have considered, and for all values of the
parameter. Birational measure-preserving transformations, generated by involutions, could thus allow to better understand the
difference between the topological description and the probabilistic description of discrete dynamical systems. Many bira-
tional measure-preserving transformations, generated by involutions, seem to provide examples of discrete dynamical systems
which can be topologically chaotic while they are metrically almost quasi-periodic. Heuristically, this can be understood as a
consequence of the fact that their orbits seem to form some kind of “transcendental foliation” of the two-dimensional space
of variables. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

To study the complexity of continuous or discrete dynamical systems, a large number of concepts have been
introduced [1,2]. A non-exhaustive list includes the Kolmogorov—-Sinai metric entropy [3,4], the Adler-Konheim—
McAndrew topological entropy [5], the Arnold complexity [6], the Lyapunov characteristic exponents, the various
fractal dimensions [7,8], the Feigenbaum’s numbers of period doubling cascades [9,10], etc. Many authors have
tried to study and discuss the relations between these various notions in an abstract framework [11,12]. Inequalities
have been shown: for instance the Kolmogorov—-Sinai metric entropy is bounded by the topological entropy, and
one can also mention the Kaplan—Yorke relation [13,14]. Furthermore, many specific dynamical systems have been
introduced enabling to see these notions at work. Some of the most popular are the Lorentz system [15], the baker
map [16], the logistic map [17], the Hénon map [18]. Each of these systems has been useful to understand and
exemplify the previous complexity notions.

As far as dynamical systems are concerned one must say that there exist a quite sharp cultural difference between
physicists and mathematicians. In its most extreme form, physicists will consider as (physically) interesting the
mappings of a uniquk variable for which some results can be obtained, or, at least, some calculations can be
performed, like the mappings of the interval, the zig-zag maps, the logistic map, and two “historical” systems of more
than one variable, the Hénon map and the Lorentz system, and mathematicians will consider as (mathematically)
interesting the continuous (differentiable) systems (flows) for which theorems can be obtained, namely hyperbolic
systems which can be seen as smooth diffeomorphisms on smooth compact spaces.

However, if one does not have such prejudice, and is only willing to study the dynamical systems that occur in
true nonlinear physical phenomena, one is led to study dynamical systems of several variables which are neither
hyperbolic [19] nor smooth, and present some mix between regularity and chaos. Very few results are available.
In particular one would like to build some new tools in order to describe and understand the “complexity” of such
multi-dimensional dynamical systems. We want to understand, beyond the well-known phenomena occurring with
very few variables and widely described in the literature on chaos (strange attractors, period doubling, etc.), what
physics comes specifically from the occurrence of several variables (Arnold diffusion, etc.).

In this respect, polynomial transformations of several variables are the most natural and simple mappings to
study. In fact, the computer analysis of dynamical systems very often amounts to performing (quite uncontrolled)
sneaking polynomial truncations of the “true” systems. To be numerically rigorous one should compare a large
set of polynomial truncations and take into account only the results that are unchanged according to these various
truncations. This yields a strong (numerical) bias in favor of polynomials, and even polynomial iterations on rational
numbers. It should be noticed that the physics of polynomial mappings of several variables tends (generically) to be
dominated by the collapse to a few attracting fixed points, and by some features already encountered with mappings
of very few variables and corresponding to the (generically) irreversible character of the polynomial mappings
(strange attractors, period doubling, etc.). Therefore the next step, in order to get some interesting, or simply new,
physics, amounts to considering polynomial or rational transformations (so that many computer numerical or formal
calculations can actually be performed), which are reversible, in order to get some interesting new features for the
phase space. This allows to consider birational transformations [23,24]. This set of transformations is particularly
interesting from a numerical point of view, since one can totally control the calculations (see below). Actually let us
recall that birational transformations naturally occur in lattice statistical mechanics, in the framework of Yang—Baxter
equations, and, beyond, occur canonically as (infinite discrete) symmetries of the phase diagrams of the lattice models

Ln this respect renormalization type arguments are used to argue that the true multi-dimensional systems (turbulence, etc.) will reduce, at
the end of the day, to dynamical systems of very few variables. In addition, one can also argue that dynamical systems with very few variables
actually exhibit some features of the true multi-dimensional systems (see, for instance [20-22]).
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[25,26] far beyond the very narrow framework Yang—Baxter integrable models. Unfortunately, the set of birational
transformations is, generically, a huge one and, furthermore, the problem of the proliferation of singularities, in the
iteration process, is a very serious and involved one. However, let us emphasize that the birational transformations
inherited from lattice statistical mechanics are, in fact, birational transformations generated by involutions that
happen to be measure-preserving maps. Therefore, we are not considering the most general (and mathematically
difficult) framework of the most general birational transformations, but a more “controlled” framework of birational
measure-preserving transformations generated by involutions, thus providing naturally some nice reversibility and
regularity for the dynamical system. Let us, however, underline that a reversible measure-preserving transformation
canyield an extremely involved non-trivial dynamical system: its Kolmogorov—Sinai metric entropy, or its Lyapunov
characteristic exponents, have no reason to be equal to zero, neither its topological entropy.

We want to study such dynamical systems of many variables in this physically interesting framework (weak
chaos, nearly conservative systems). Our study is mostly a (infinite precision) numerical study, together with formal
calculations and exact analytical calculations (Section 6.1) and amounts to filing the gap between two approaches of
complexity of dynamical systems: the topological approach and “measure” (probabilistic) approach of dynamical
systems.

We would like to recall that birational transformations have not been extensively studied by mathematicians
because, from a mathematical point of view, one can expect, at first sight, some unpleasant, and uncontrolled,
proliferation of singularities. There is, however, some mathematical literature on this subject: among the few papers
concerning birational transformations one can cite Diller [27,28], as well as Favre [29], and also Russakovskii and
Shiffman [30]. Most of these papers heavily rely on complex analysis and are mainly concerned by the so-called
“general” or “typical” mappings, namely mappings such that the degree dfthéterate of a mapping of degree
d isd" . The problem with these general or typical mappings is that the various entropies one can introduce tend to
identify with the logarithm of this degreé& therefore, these typical mappings are not very well suited to classify,
compare and discriminate these various entropies. It should be noticed that the family of mappings we will study
here are not of this general-typical type: the degree of ithriterate grows like."V, wherex < d. This family is
thus well suited to be analyzed according to various entropy points of view (Arnold complexity, topological entropy,
Kolmogorov—Sinai metric entropy, etc.).

In order to study the rich and non-trivial physics of the birational measure-preserving transformations generated
by involutions, we will thus consider a family of birational transformations of two complex variables, depending on
one parameter: this one-parameter farfilyf maps is a particularly interesting test family as it is integrable for a
certain set of values of the parameter, has non-generic behavior at a certain countable set of values of the parameter,
and has generic behavior at all other values [31,32]. Considering this specific family of birational transformations of
two complex variables, depending on one parameter, simple exact rational expressions with integer coefficients, have
been conjectured for their dynamical zeta function [33], together with an equality between the (multiplicative rate of
growth of the) Arnold complexity and the (exponential of the) topological entropy [34,35]. These two complexities
have been shown to be associated with algebraic values for many birational mappings, possibly, all the birational
mappings, and possibly also, all the rational mappings [36]. However, the previous equality is probably not valid for
any rational, or even birational, transformation (see Section 2.4). On this very example, it has been found that the
identification of these two universal (or topological) evaluations of the complexities [33,34], namely the logarithm
of the Arnold complexity [6] (divided by the number of iterations) and the topological entropy [34], also applies
to the “adaptation” of these two notions to real analysis introduced in a previous paper [37], i.e. if one restricts the
mapping to two real variables.

2 This mapping originates from an exhaustive analysis of mappings generated by the composition of matrix inversion and permutation of entries
of 3 x 3 matrices [31].



390 N. Abarenkova et al./Physica D 144 (2000) 387—433

The purpose of this paper is to compare the Kolmogorov—Sinai metric entropy [38,39] and this adaptation of
the topological entropy [34] (or of the Arnold complexity) to real analysis. More precisely, we will compare the
metric entropy, or, practically, as many Lyapunov exponents as possible, and this real topological entropy on a
particular example of a one-parameter dependent birational transformation of two variables. In other words, we
want to compare the real topological description of discrete dynamical systems with the metric description, on
a specific two-dimensional birational example. This test family will explain how a mapping can look metrically
almost-periodic and be topologically chaotic at the same time, even as far as real analysis is concerned.

Let us give a brief outline of the paper. We will first recall, in Section 2, some previous résar notations,
concerning the topological entropy and the Arnold complexity, as well as their adaptations to real analysis. We
will then compare these topological notions with the metric entropy, or more precisely the characteristic Lyapunov
exponents. For this purpose we will display a large set of phase portraits and Lyapunov characteristic exponents. We
will provide a heuristic interpretation of the results, as well as a detailed study of a particula¢ eaSeJn order
to better understand the role played by the reversibility and measure-preserving properties in these results we will
consider two deformations of the mapping: a birational deformation breaking the measure-preserving property and a
rational deformation breaking the reversibility property. The conclusion will summarize the mechanisms occurring
in the topological-chaos versus metric-almost-integrability situation described here.

2. Topological entropy and growth (Arnold) complexity for a one-parameter family of birational mapping
2.1. A measure-preserving mapping generated by two involutions

Let us consider the following birational transformation(see (3) in [33]) of two (complex) variables depending
on one parameter.

Z—€
ke : 1-— . 1
< (y,z)—>(z+ e,yz+l) 1)

This birational transformation can be seen to be the product of two involutions [23,24,31]. This map is the product
of two involutions!y : (y, z) <> (—z, —y) and

7Z—€
I (n.2) — /,Z/:(__,e_l_z). 2
2:(,2) > (v, 2) PR (2)
These two involutiond; and I> have the lineg = —y andz = %(e — 1) as fixed point sets, respectively. The
inverse transformatiok: ! is nothing but transformation (1) wheye<s —z:
+e€
(y,z)—>(y/,z/)z(i_lz,e—ley). @)

There exists, for this mapping, a singled-out globally invariant jine 1 + z, on which the mapping just reduces
to a simple translatiory — y — €.

Mapping (1) has a remarkable property: itis a measure-preserving mapping [40]. A measure-preserving mapping
is @ mapping that is conjugate to an area-preserving mapping: it can be rewritten, up to a quite complicated, and
possibly singular transformation, into an area-preserving map [40]. Measure-preserving mappings were studied by
Poincaré [41].

3 Note, however, that Sections 2.1 and 2.4 provide new results.
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Calculating the Jacobian of transformation (1), one gets

dy’ d7 0 7—¢€
@ E _ z+1 _ L€

det &y d | = det yaiteo | = 1 (4)
dz dz (z+1)2

Let us note that the line = z + 1 is a line where the successive points of the iterations seem to accumulate
(see [37]). As far as seeking for an invariant measure for mapping (1) is concerned, one should thus have a higher
density of iterated points near this singled-out line. Thejire z + 1 is actually a globally invariant line on which
transformation (1) reduces to a simple translation as

ke i (y,2) = (y —€,z2—€). %)

Clearly, no fixed points of any order can exist on this singled-out line. For generic valaethef corresponds to
the only (algebraic) covariant of transformation (1), namely, z) = y — 1 — z (of course, they are many more,
say for integrable values ef etc.). Under transformation (1), the covariatt, z) = y — 1 — z transforms with a
cofactor which is nothing but the Jacobian (4):

ke:y—l—z—>y/—l—z’z—z_i(y—l—z). ©6)

z+
In other words, the Jacobian can always be written as thedatipz’) /c(y, z) (wherec(y’, ') is the covariant taken
at the image pointy’, z')). This is the key ingredient for having a measure-preserving map (see relation (2.20) in
[40]). Actually, introducing a change of variables z) — (u, v) such that the Jacobian of this change of variables
will be equal to the inverse of this covariant, one will change our measure-preserving map into an area-preserving
map:

du dv
dy dy |_ 1

det é d_i = o1 7)
dz dz

There are an infinite number of such change of variables. One (not very elegant) solution amounts to imposing
(u,v) = (v, v(y, 2)), the Jacobian (7) reading:

dv 1

—= ®)

dy »y—-1-z
which can be easily integrated into= In(y — 1 — z), its inverse beindy, z) = (u, u — €’ — 1). Rewriting the
mapping in theséu, v) variables one gets

u—e’"—1-—¢

w,v) = W, V)=Ww—-€"—e,v+InV)), V=
eV —uy

©)
One easily verifies that mapping (9) has a Jacobian equal to 1 everywhere. It is an area-preserving map.

As far as the forthcoming topological notions are concerned (dynamical zeta functions, Arnold complexity,
topological entropy, etc.), it is clear that they remain unchanged for the area-preserving mapping (9).

One can easily deduce the following consequence from the measure-preserving property of the mapping: the
Jacobian oft" is equal to 1 at every fixed point @&¥ for any N. Of course the Jacobian is not equal to 1
everywhere, except for an area-preserving map.
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Remark 1. In [32], it has been shown that, in spite of its simplicity, birational mapgibgcan, however, have
quite different behaviors according to the actual values of the parameteor example, fore = 0, as well as

€ = —1, % % or 1, the mapping becomestegrable [32]whereas it is not integrable for all other values af
Other singled-out values efoccur[33—35],namelye = 1/m, wherem > 4ande = (m — 1)/(m + 3) where m

is odd andn > 7. For these singled-out values ofthe topological entropy gets smaller as compared to a generic
value[33-35] (see(15)).

Remark 2. From a mathematical point of view birational transformations might look difficult to analyze because
one can expect, at first sight, some unpleasant proliferation of singularities. Let us just point here that, fortunately,
we are in a very favorable situation and tiveleterminacy locu$ is far from being a dense set: it is very tame

for mappingq1). From Jacobian(4), one gets that the critical locus is the line= ¢, its critical image being the

point (y, z) = (1, 0). This is a point of indeterminacy fahgl. By inspectior(or from they < —z symmetrythe

point of indeterminacy fok. is (v, z) = (0, —1). Both critical points belong to the singled-out life= 1+ z on

which the action ok, (or k;l) reduces to a simple shifsee5). The backward and forward iterates of these two
critical points can thus be easily describ&dThe point of indetermination at infinity fag is (v, z) = (oo, 0) (resp

(v, 2) = (0, 00) for k1).

2.2. Topological entropy

It is well known that the periodic orbits (cycles) of a mappingtrongly characterize dynamical systems [43].
The fixed points of theVth power of the mapping being the cycles of the mapping itself, their proliferation with
N provides an evaluation of chaos [2]To keep track of this number of cycles, one can introduce the fixed points
generating function

H(t) =Y #fix(k")e", (10)
N=1

where #fixk") is the number of fixed points @, real or complex. This quantity only depends on the number of
fixed points, and not on their particular localizations. In this resg#t) is a topologically invariant quantity. In an
equivalent way, the same information can also be encoded in the so‘caljedimical zeta functiog(r) [45,46]
related to the generating functid#(z) by H(¢t) = ¢(d/dt) log(¢(¢)). The dynamical zeta function is defined as
follows [43,44,46-49]:

00 N
) = exp(Z#fix(kN)%) . (11)

N=1

The topological entropy [5,44—46], ldg is therefore defined by

41In this respect one should mention the paper by Nishimura [42], where birational maps are classified in terms of their points of indeterminacy.

5 Furthermore, this also enables to understand why the singled-out vatudgm, m = 1,2, 3,4, ... are special.

6 Chaos: Classical and Quantum — a web book to be found on Cvitanovic’s web site http://www.nbi.dk/ChaosBook.

" The dynamical zeta function has been introduced by analogy with the Riemann zeta function by Artin and Mazur [44].

8 This definition (see for instance [45]) is not the standard definition mathematicians are used to, namely a topological entropy defined for a
continuous transformation of a compact set. However, since we are not interested in flows but rather in discrete maps we prefer to take a definition
for the topological entropy in terms of the rate of growth of periodic points. The paper by Friedland [50] gives a definition of the topological
entropy for a rational map. For thegHon family of maps, the topological entropy does coincide with (12) (see Lemma 2 of [19]). A paper by
Favre [29] gives a good idea of a precise counting of periodic points for birational maps in the complex plane.
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log(#fix (kN))

logh = lim (12)

N—o00
If the dynamical zeta function is a rational expression theni will be the inverse of the pole of smallest modulus
of H(z) or ¢(¢). Since the number of fixed points remains unchanged under topological conjugacy (see [51] for
this notion), the dynamical zeta function is thus a topologically invariant function, i.e. invariant under a large set of
transformations: it does not depend on a specific choice of variables.
In the case of mapping (1) and for generic valliesf ¢, the expansion ofi. () coincidest® with one of the
rational function

t(1+1%)
H.(t) = , 13
which corresponds to a very simple rational expression for the dynamical zeta function
1—12
=—. 14

It has been conjectured in [33] thite simple rational expressiqii4) is the actual expression of the dynamical
zeta function for any generic value of(up to some algebraic values of like (26) or (27), where one obtains
another expression [35] but with the same singularity7l— r2). Similar calculations have been performed for the
other non-generic values efthat have been singled-out in the semi-numerical analysis [35]. For example, for the
non-generic values ef ¢ = 1/m with m > 4, we have obtained expansions [33—-35] compatible with the following
rational expression:

1—12

—f — 2 4 pm+2 (15)

Sym(@) = 1

giving a topological entropy smaller than the generic dne:(1.6108).

2.3. Arnold complexity

Another topological measure of complexity has been introduced for two-dimensional discrete dynamical systems,
namely the Arnold complexity [6]. The Arnold complexity amounts to counting the number of complex intersections
of a given (complex projective) liné with its Nth iterate under a given transformation. It can be shown that
(generically!?) this number is independent of the chosen (complex) line, and, of course, it is independent of the
variables used to describe the transformation. The Arnold complexity is thus, also, a topological invariant [6]. Since
such topological invariances are noticed for the Arnold complexity [36], as well as for the topological entropy,
it is thus tempting to make a connection between the rationality of the Arnold complexity generating function
(to be given below), and the rationality of the dynamical zeta function (if any, etc.). We have also compared the
singularities of these two sets of generating functions, namely the growth compleagitgl’, the (exponential of
the) topological entropy [33].

In general, for a rational transformation the Arnold complexty corresponding taV iterationsgrows expo-
nentiallywith N : Ay ~ AV . The iteration of rational transformations yields larger and larger rational expressions,

9Namelye # 1/m(m > 1) ore # (m — 1)/(m + 3) with m odd and, possibly different from a set of algebraic values like (26) or (27).
10wWe do not count here the fixed point at infinity [35].
11n fact, this can even be generalized to counting the number of (complex) intersections of a fixed (algebraic) curvaVitititetate.
12 For instance, there may exist singled-out lines which are globally invariant under the transformation one iterates. In that case, the number of
Arnold intersections of the line with it¥'th iterate is infinite. The lineg = z + 1 is such an example.
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at each iteration step, and it is simple to see that the degrees of the numerators (or denominators) of these ratio-
nal expressions also grow exponentially likker” , wherex is actually the same as the previouselated to the

Arnold complexity [6]. One can, of course, introduce generating functions corresponding to these successive Arnold
complexitiesA , or of these successive degrees

Aty = Ayt (16)

N=1
For the birational transformation (1), one finds, respectively, for generic valuesnfl for non-generic values of
the forme = 1/m:

t
_t_t2+tm+2'

Ae(t) = Aé:l/m(t) = 1 (17)

t
1—t—12
On these exact rational expressions (17), one sees that the valyeas$ociated with the Arnold complexity

(or, equivalently, with the growth of the degree of the successive rational expressions in the iterations), actually
identifies with i, the exponential of the topological entropy (see (14) and (15)). The possible identification of
these two topological complexities has been discussed in detail in previous publications [33—35]. This identification
has also been verified on a few other two-dimensional biratioredsure-preservingansformations generated

by involutions. It is, however, not clear to figure out if this identification actually holds for all the birational
transformations generated by involutions, or all the measure-preserving maps (see Section 2.4).

2.4. Some comments on the relations between various entropies and complexity measures

One should recall that upper estimations for the topological entropy [52], as well as relations between degree
complexity and topological entropy are discussed in the literature (see, e.g. [53] but o@fyriwaps). We do not
want to mention here the well-known inequalities between the metric entropy and the topological entropy, or even
the more general orderRenyi entropies [54]. We just want, here, to look at the relations betweetopwtogical
complexities, namely the topological entropy and Arnold complexity, and in the following, their real adaptations.
In this respect, one must certainly mention the relations and inequalities given by Newhouse [55] relating the
topological entropy of a smooth map to the growth rates of the volumes of iterates of smooth maffélols.
C*°-smooth mappings, Yomdin [57,58] proved the opposite inequality, thus showing the coincidence of the growth
rate of volumes and topological entropy. One should also recall the paper by Friedland [50] which shows that the
entropy is the same as the volume growth for rational self-maps of complex projective/shdnehat case, the
Arnold complexity coincides with the growth of homology [59] which should be the same as the volume growth.

In fact, it is not completely clear to see if one can actually use all these mathematical theorems for our birational
measure-preserving mappings. When mathematicians study birational transformations they tend to focus on the
indeterminacy set where a birational map cannot be defined and are very worried about the bad things that might
arise when this set grows with the iteration. In order to avoid such mathematically unpleasant proliferation of
singularities, they work in a framework which is a very smooth one with a point of departure of diffeomorphisms.
The conceptual framework, and even the definitions of the topological entropy, being slightly different, it is difficult
to see if these theorems really apply. Let us just point here that, fortunately, the indeterminacy locus is far from
being a dense set: it is very tame for mappings (1).

From a more down-to-earth point of view, the comparison between topological entropy and Arnold complexity can
be understood as follows. The componentsébty, 7), hamelyyy andzy, are of the formPy (y, z)/On (v, z) and

13 5chub [56] conjectured that the topological entropy of a smooth map on a compact manifold is bounded by the growth of the various algebraic
transformations that it induces.
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Ry (y,2)/Sn(y,2), wherePy(y,z), On(y,2), Ry(y,z) andSy(y, z) are polynomials of degree asymptotically
growing likeA" . The Arnold complexity amounts to taking the intersection ofAtik iterate of a line (for instance
a simple line likey = yg, whereyyg is a constant) with another simple (fixed) line (for instapce: yq itself or
any other simple line or any fixed algebraic curve). For instance, let us consid€thhiterate of they = yg line,
which can be parameterized as

v = Py (yo, 2) oy = Ry (yo, 2)
On(¥0,2)’ Sn(y0,2)’

with line y = yq itself. The number of intersections, which are the solutionBxfyo, z)/ O n (Yo, z) = yo, grows
like the degree oPy (yo, z) — Qn (o, z) yo: asymptotically it grows likex A . On the other hand, the calculation
of the topological entropy corresponds to the evaluation of the number of fixed poiks ak. the number of
intersections of the two curve®y (v, z) — On(y,z)y = 0 andRy(y, z) — Sn(y, z)z = 0 which are two curves
of degree growing asymptotically like AN. The number of fixed points is obviously bounded®ya?". The
exponential of the topological entropy, nameélyis thus bounded by the squareiof i < A2.

In fact, we have found a possible example where this upper bound seems actually to be reached. Let us consider
the quadratic transformation

(18)

(y,2) > ((A—y—B2y, (A—Cy—2)2). (19)

The mapping is not bipolynomial or birational. The dynamical zeta function reads (up to order 5 only, the calculations
now become really large, etc.) for this non-invertible mapping

1

_ o 20
¢ a- t)4(1 _ t2)5(1 _ t3)20(1 _ t4)60(1 _ t5)204 ( )
from which one can conjecture that
1—12
¢(@1) = 14 (21)

This provides an example for whidh = 12 = 4. Therefore, it seems that the identificationsofind 1 is not

valid in generall® It seems that the identification éfand i might be related to the “very tame” proliferation of
singularities of the (birational) transformations (1), or it might be a consequence of the measure-preserving property
of the mapping. This is a quite complicated analysis that we do not want to sketch here. Let us just say that this
identification seems to be a valid one in our particular example (1).

2.5. Real topological entropy

The previous definitions of the dynamical zeta functiqn(s), and of the generating functidtk (¢) counting the
number of fixed points, can be straightforwardly modified to describe the counting of real fixed points:

Hreallt) = Y HNtN = t%log(zrea'(t)), "y =Y "z, (22)
N N

where the number of real fixed poinﬁs{f also grows exponentially with the numh#&rof iterates, like~ hﬁ‘éal. A

guick examination of phase portraits associated with various generic values of the pataonetee side, and of the
corresponding visual complexities on the other side [37], shows an agreement with the correspondingale for

14 One canimagine that some equality like= Ahsingcould be valid, wherésing could correspond to the exponential proliferation of bifurcations
or singularities. Such speculative ideas remain to be studied.
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These real dynamical zeta functions have been extensively analyzed in [37] for various valukstaifs just
recall here some remarkable results for particular values A€tually for e = 3, the real dynamical zeta function
is very simple. One only has a single real fixed point namely the fixed point of,, and thuggea'(t) identifies
with a very simple rational expression:

real _ 1 — _t
(B0 =1 Hes® = (23)

Furthermore, let us specify the valae= % for which the real dynamical zeta functiqrjea'(t) seems to iden-

tify, up to the order for which its series expansion has been calculdtesith a simple rational expression
[37]:

14172 t(1+ 2t* + 5¢2)
real real
)= ——, H t) = . 24
§21/25( ) 1—7+ 2 _ 23 21/25( ) 1+ tz)(l —t 4+ 2 — 2[3) ( )
For e large enough, one also gets [37] a remarkably simple rational expression
1+1 1—1?
real
)= = 25
femoo (1) 1-12—B3 15 (A—t—1t3)+t*1—t+1?) (25)

yielding an algebraic value fafeal hrea > 1.4291. It is not clear whether this rationality property holds for any
value ofe.

2.6. Real Arnold complexity

Similarly, recalling the Arnold complexity [6] which counts the number of intersections between a fixed (com-
plex projective) line and it¥vth iterate [6], and the associated Arnold generating functions (16), one can slightly
modify these definitions to describe discrete dynamical systems bearing on real variables. For this, let us now
count the number of real points which are the intersections between a given real fixed line and itsr-
ate. We have actually calculated these real Arnold complexities for various valugsanél for various given
(real) lines. All these calculations have been cross-checked by a (maple) program calculating these numbers of
intersections using the Sturm procedure in majie_et us denote bydy the number of these (real) intersec-
tions for theNth iterate. It is clear that these real Arnold complexitidg;, are not as universal as the standard
Arnold complexities which are basically a degree counting: fhes depend on the given (real) line one iter-
ates. However, one can expect, in the laigdimit, that Ay will grow exponentially like~ Ar'\éal, Areal beiNg
independent of the (generic) line one iterates. Indeed, this has been checked for various lines and we have found
for the birational transformation (1), that the singled-out line= %(1 — ¢) is well suited to get quite regu-
lar, and long enough, series for they’s (see [37]). We will denote agl.(r) the generating function of these
.AN'S.

In order to estimate a real growth complexityss, we have calculatedﬁll\,/N, for various values of the num-
ber of iterations § = 13 14, 15), as a function o¢, in the range [01] where Aegq has a quite rich behav-
ior [37]. Let us show here an estimation bfea by Ai/313, as a function of the parameter in the interval
[-0.1,3.1].

151n fact, up to the order for which the series expansions have been calculated, it seegﬁ%a”(lnatemains associated with the same series
21 24

expansions foe in some interval like~ [ 5z, 5c]. This deserves further study.

16The Sturm procedure one can find in maple gives the number of real roots of a polynomial in any intebjjaéyen for the interval

] — o0, +o0o[. The Sturm procedure uses Sturm’s theorem [60] to return the number of real roots of poly®omitie interval i, b]. The

first argument of this Sturm procedure is a Sturm sequence,fathich can be obtained with another procedure, the procedure Sturmseq which

returns the Sturm sequence as a list of polynomials and replaces multiple roots by single roots.
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1.6 T T T T T T T

real

Fig. 1. An estimation of.rea by Aiém, as a function of the parameterin the interval 0.1, 3.1]. The integrable points = —1, 0, % % lare
represented by crosses.

Fig. 1 shows thakea, as a function ok, looks like a continuou¥’ function. In fact, it can be shown [37]
thatAi/sl3 (and more generall;All\{N for any finite integerV) is actually a staircase function, the limits of each
“interval-step” of the staircase being remarkable algebraic numbers. These algebraic values are distributed in various
families of values okt. The simplest family of singled-out algebraic valuesaforresponds to the fusion on an
N-cycle with the 1-cycle, and reads [35,61]

11— cos2rM/N)
€T 1+ cox2n M/N)

M 1-¢€
ivalentl 2r— ) = 26
or equivalently co< nN) Tre (26)

for any integerN (with 1 < M < %N, M not a divisor of N). Other cycle-fusion mechanisms [61] take place
yielding new families of algebraic values fer For instance, the coalescence of (Bex N)-cycles in the 3-cycle,

and the coalescence of ti# x N)-cycles in the 4-cycle yield, respectively (with some constraints on the integer
M that will not be detailed here [61]),

M 3 €(e—3)7? M €(l—e)?
cos([2zr— | =1—--———""—, cos|2r— | =1-32—F——. 27
(”N) 4dl-ol+e TN 1+ e)2(1— 2¢) 27)
The real complexity,eq is the largeN limit of these staircase functioné,lv/N , thus taking into account all these
families of algebraic values. It is, however, not clear to figure out if this limit will be a continuous functiofupf
to the non-generic values ef e = 1/m ...), like Fig. 1 would suggest at first sight, or if it will be more a “devil’s
staircase” function oé. These calculations have been extensively displayed in [37]. Let us just recall here a set of

170ne should note thaites takes smaller discontinuous values on the (infinite) discrete set of values/bich is the union of the set of
integrable values of, together with the two (infinite) discrete sets of non-generic valuespreviously mentioned (An with m > 4 and
(m —1)/(m + 3) with m > 7, m odd). All these values must be treated separately. The integrable peintsl, O, % % 1 are represented by
crosses in Fig. 1.
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values ofe corresponding to remarkable expressionsAe(r). First, fore = 3, one obtains

As() = ﬁ (28)

which is in perfect agreement with the expression of the real dynamical zeta fug@@:(m) (see (23)). Another

value ofe seems to yield an exact rational expression for the real Arnold generating fudction namelye = %—é:

t(A41+ 12413 —2r%
A-DHA+)2A -1+ 12— 213y’

Az1/25(t) = (29)

which is also in agreement with the real dynamical zeta function (24) with the same singularities. Finally, it is also
worth recalling the large limit, where, again, one gets a simple rational expression for the real Arnold generating
function, namely

t(1+ 1% 11+ 1%

Aoo(t) = A-2-B3-51-1 A-t1-1)+rAA—1+12)

(30)

All the results, displayed in this section and in [37], seem to show, again, that the identification batweand

Areal could actually hold [37] for mapping (1). However, in contrast with the universal behavior of the usual Arnold
complexity, or topological entropy, displayed in FigAJga andheq are quite involved functions of the parameter

€ (see Fig. 1).

3. From (real) topological complexity towards metric complexity and Lyapunov characteristic exponents

The real topological entropy Oreg associated with the real Arnold complexity are well-suited evaluations of
the visual complexity as it can be seen [37] on the phase portraits of transformation (1). Coming from an ergodic,
or probabilistic, or (real) functional analysis approach of dynamical systems, one may have the prejudice that
coping with real analysis (instead of complex projective analysis) could yield to lose most of the universality
properties. To some extent, dealing with mappings bearing on real variables, we have actually lost most of the
topological universality (Smale’s invariance [51]), but it is clear on some remarkable algebraic results, like (25)
or (30) for instance, that some underlying algebraic structure still rerdinspparently, notions like the two
previous (and possibly redundant for mapping (1)) notions of real topological entropy and real Arnold complexity
seem to fill “a little bit” the well-known (huge) gap existing, in the study of dynamical systems, between the
topological approach and the probabilistic appro€cf62]. In the framework of real analysis, the “probabilistic”
approach has created many concepts in order to describe, and better understand, the complexity of dynamical systems
(Lyapunov dimension, or Kaplan—Yorke dimension [63], fractal dimensions of some strange attractor, if any, etc.
Renyi's g-entropies [64], Lyapunov characteristic exponents [65,66], Kolmogorov—Sinai metric entropy [38,39],
etc.). These various notions concentrate on different aspects of the complexity of dynamical systems (sensitivity to
initial conditions, complexity of some natural geometrical objects like strange attractors, difficulty to go backwards
in the iteration process, “loss of memory”, etc.). Among these various notions some are quite “model-dependent”,
depending on many specific details, others are more interesting since they can be used to describe larger classes of
dynamical systems.

18 For instance, one could imagine to introduce a notion of real Smale’s invariance corresponding to all the conjugacies (change of variables)
preserving;[®a\(r) or A, (1).
19 0r, as mathematicians say, between the topological category and the measure category.



N. Abarenkova et al./ Physica D 144 (2000) 387-433 399

Inthis respect, the Kolmogorov—Sinai metric entropy [38] is an interesting notion, since ittakes into account “some
structure”, namely the metric structuf@.Furthermore, it has a quite large set of invariances, the measure-preserving
conjugacies. Similarly, the real topological entropy does not have the very large Smale’s topological invariance
[51] of the standard topological entropy, but exact algebraic results like (25), seem to indicate that there actu-
ally also exists a large enough set of invariances for this new concept. Therefore, the Kolmogorov—Sinai metric
entropy is, on the probabilistic side, a quite good “candidate” in order to be compared with our two real and
topological concepts (namely the real topological entropy and the real Arnold complexity). The metric entropy is
probably, among the various notions belonging to the probabilistic approach, the concept which is the “closest”
to the real topological entropy concept. Naively, on the specific example of the birational transformation (1),
one would like to see if the real topological entropy could be seen as some kind of “improved” metric entropy
taking into account all the metric (measure) description, and real analysis description, performed by the metric
entropy, but providing more than non-effective results of probabilistic theory and actually, from time to time, exact
results.

Fig. 1 has been obtained using the Sturm’s theorem [60] which enables to get the number of real intersections of
a line with its N'th iterate independently of the actual localizati6h®f these intersection points: Sturm’s theorem
is a very efficient tool in order to just get this number of (real) intersections which was actually the (topological)
information we were looking at. Of course, if one tries to get less topological and more metric informations, like
the actual localizations of these intersections, or the distances between these intersections, the calculations become
much more time consuming. Actually, we have also performed such “time consuming” calculations, trying to get
some hint on the actual localization of these intersections. We found, for some valebaifmany intersection
points can be localized at a quite large distance from the origin, i.e. out of the frame of a phase portrait (like Fig. 4).
Furthermore, one also finds (for 13, 14 or 15 iterations) that many of these intersection points can get extremely
close from each other for some valuespfnd that it becomes necessary to perform calculations with a precision
of more than 4000 digits. With a smaller precision, one gets smaller numbers of intersections since one is not able
to “discriminate” between some intersection points. The “visual complexity”, as it can be seen in Fig. 4, and as
it is described in Fig. 30 (see Appendix A), takes into account intersection points inside a given frame and for a
given precision (corresponding to the minimal distance between two points “our eyes” can discriminate). Actually,
one can calculate a “modified” Arnold complexityy, corresponding to a calculation with a finite, not too large,
precision (e.g. 1000 digits, etc.) and to intersection counting in some finite box, and thus corresponding more to
the “visual complexity”, as it can be seen on the phase portraits. Of course, one can also czi%fYIaMﬂich is
supposed to have a largelimit. This introduces a “less universal” (more metric), scale-dependent, notion of (real
Arnold) complexity. Some details are given in Appendix A. Of course, there are many (not very well-defined, etc.)
ways to change the real topological entropy, or the real Arnold complexity, into a less universal quantity turning it
into a more metric quantity, which tries to “fill the gap” between the metric point of view and the topological point
of view. We do not want to add more confusion. Therefore, on the specific example (1) and for various vajues of
we will just restrict ourselves to a comparison between two well-defined notions: the real topological entropy [37]
(or equivalently)ea) and the metric entropy [38].

The definition of the Kolmogorov—Sinai metric entropy being “not very effective” [3,4], let us recall Pesin’s
formula [68], which gives the metric entropy as an integral of the Lyapunov characteristic exponents hut is

20The “metric entropy” of a measure is a property of the invariant measure. It is invariant under measure-preserving transformations, which
have no relations with the metric property of the space. Therefore, the terminology “metric entropy” might seem misleading from a linguistic
point of view. This is, however, the terminology physicists are used too.

21 Concerning the geometric location of intersection points one can cite the paper by Bedford et al. [67] where it is shown, in the framework of
polynomial diffeomorphisms of 2 that there is a convergence of measures of the asymptotic location of the intersection points to the invariant
measure.
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only valid in the framework of hyperbolic systems:
Smetric = / duIn(v)™, (31)

where du denotes the invariant measure of the transformatfominfortunately, transformation (1) does not cor-
respond to a hyperbolic system: it is a measure-preserving map. Pesin’s formula which is valid in a hyperbolic
framework can thus only be considered as a possible evaluation of the metric entropy. Furthermore, any effective
calculation of the invariant measure is extremely difficult to be performed. Alternatively, one can also recall [69]
the Pesin inequality?®

D A = hau(f). (32)

2i>0

where ¢k denotes an invariant measukg denotes the set of Lyapunov exponents with respeciiiaddh g, the
metric entropy of g.. The Pesin inequali§* shows that whenever the Lyapunov exponents are zero, the metric
entropy is also zero.

Since we are not really able to actually calculate the metric entropy for our non-hyperbolic measure-preserving
transformation (1); we will calculate, instead of the metric entropy, as many Lyapunov characteristic exponents as
possible, as a function of the parameter

4. Phase portraits and Lyapunov characteristic exponents

Therefore, in order to fill the gap between the probabilistic point of view and the topological point of view on
this specific birational example, we will try to compare Lyapunov characteristic exponents with the real topological
entropy, or, in practice) e associated with the real Arnold complexity, which is much easier to evaluate, for the
birational transformation (1).

4.1. Aninfinite precision program to calculate the Lyapunov characteristic exponents

The calculations of the Lyapunov characteristic exponents have been performed using an infinite-precision
C-library.26 Let us briefly sketch the program calculating the Lyapunov characteristic exponents.

At each iteration step, we calculate for a given initial p@intz), the Jacobian matrix of transformatioff as the
product of the previous Jacobian matrices of transformatighgevaluated at the same point), whéfe< N — 1:

JadkN (v, D)=Jadke kY 71(y, 2))- - Jadkel k3(y, 2)) Jadkel(k2(y, 2)) Jadke] (ke (7, 2)) Jadke] (v, 2)  (33)

and calculate the two eigenvalues of this Jacobian ma?tﬁ&), and A(ZN). Finally, we take the logarithm of the

22 Qur birational transformation can be seen to be the product of two involutions [31]. There actually exist some theorems showing that a
mapping, product of two involutions, has necessarily an invariant measure. However, transformation (1) is not a hyperbolic system. In the case
of real mappings, liké, is seen in a large part of our paper, it would be interesting to know when these measures (defined a@ficarein

fact measures oR2. This question was answered for thérbn family [67].

23The hypothesis for this theorem is thais a smooth function of clagg?.

24There is also a generalization of Pesin’s inequality valid for any Borel measure which is ergodic and hyperbolic [70].

25The multi-precision library gmp (GNU MP) is part of the GNU project. It is a library for arbitrary precision arithmetic, operating on signed
integers, rational numbers and floating points numbers. It is designed to be as fast as possible both for small and huge operands. The current
version is 2.0.2. Targeted platforms and software/hardware requirements are any Unix machines, DOS and others, with an operating system with
reasonable include files dmm C compiler.

26 Information on the multi-precision library gmp (GNU MP) can be found at the following: Home site: http://www.nada.kth.se/tege/gmp!/; other
links: ftp://prep.ai.mit.edu/pub/gnu/(gmp-*.tar.gz); mailing lists/USENET; news groups: bug-gmp@prep.ai.mit.edu.
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modulus of these two eigenvalues divided by the nunNber iterations

(N) (N)

LY = In(|>;Vl D In(|>;V2 D (34
When the two previous quantities(lN) andLéN), tend to some finite limit&’ in the largeN limit, one can define a
Lyapunov characteristic exponent which will be the largest of these two limits. For an integrable mapping, these two
limits can be drastically different (see Fig. 3 (left)), while for a more “chaotic” orbit, the two previous numbers are
very much on the same footing, being quite close. In fact, in more chaotic situations, it is difficult to make a relevant
distinction, valid for anyv, bet\NeerL(lN) andL(ZN). Therefore, in the following, we will often plot both quantities, as
a function ofN, at the same time. Our program also calculates the determinant of the Jacobia/ggatik(y, z).
This program also uses extensively the reversible character of the birational transformation (1). Actually, we use the
factthatthe inverse transformatida;r,l, is a simple rational transformation to go backwards to the initial geing).
Due to the finite numerical precision, one does not come back exactly to the initial(poit and one can thus
compare the distance between this one-way and return point and the initial point. If this distance is not small enough
we increase the precision in our infinite-precision program. Typically, Jol8° iterations a calculation performed
with precision of 1x 10~24% can give a numerical deviation of110~-190when one returns to the initial point using
the inverse rational transformatigg . In other words, we can trust our calculations, namelyltﬂ@’s, and the
points of the orbit obtained this way, upto1 x 10-190. If one goes on iterating, this numerical deviation goes on
deteriorating: after % 10° more iterations the deviation to the initial point can be of the ordersoflD—3C. This is
just an example. In fact, this deterioration is highly sensitive to the transformation one considers (here the parameter
€) and especially the orbit one considers. Our program is built in such a way that one increases the precision as
much as necessary in order to have a deviation smaller thah( 3° when one performs the iterations and goes
back to the initial point using the inverse transformation. In fact, for most of the calculations performed here the
deviation is smaller than & 107199, |n the following, the most difficult situation will correspond to some analysis
near the point at infinity, for which a precision of 8000 digits is necessary in order to have a deviation smaller than
1x 10-3%when one performs & 10° iterations and goes back to the initial point. Let us remark that our calculations
correspond to the actual definition of the Lyapunov characteristic exponents [65]: it is a quantity associated to a
single orbit, we are not averaging over some set of orbits corresponding to some neighborhood of the initial point.

4.2. Checking the infinite precision program

In order to check the results of our infinite-precision program, we have used it on three different kinds of birational
transformations: the well-known Hénon map [18,19], several two-dimensional collineation transformations, and
mapping (1) for integrable values ef Let us just detail here the Lyapunov calculations corresponding to the
integrable values of of mapping (1). Mapping (1) is known to be integrable for various values, afamely

e =-1,0, % % 1 (see [32]). Foe = % one gets a linear pencil of elliptic curves, namedydenotes a constant)

1+z+2y2(1—y+2y(1+z—y—2y2 —)

l+z-y)2 (35)

A(y,z,3) =

The calculations of the Lyapunov characteristic exponents, performed with our program, clearly indicate Lyapunov
characteristic exponents equal to zero. One has a similar situation for most of the other integrable values for which
the accumulation of the infinite set of points is dense in the integrable, elliptic or rational, algebraic curves. In order

27 For instance, the assumptions of the Oseledec’s theorem [71] ensure a reasonably linear-friendly environment yielding the two previous
quantities,L(lN) andL(zN), to have some limits wheN gets large.
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to get some non-trivial non-zero values for the limits of lt)‘é')’s, let us consider mapping (1) for the integrable
valuee = 0. Fore = 0, it is straightforward to see that the orbits correspond to a foliation ofythe-plane into
rational curves, namely the very simple hyperbola

A(y,z,0) =yz=p. (36)

Using this rational foliation, one can rewrite transformation (1) as a simple homographic transformation on a single
variable, namely, with two fixed pointsy+

o
y> 143 e 31+ (1+4p)Y3), (37)
which enables to rewrite the homographic transformation (37) as
— — _ 1-@A+4p)t/2
b TN b TP R e € ') i 38)
y—y- y—y- y+ 1+ @Q+4p)Y

Forp < —%, one finds out that is on the unit circlez = e~2¢ where the anglé is such thattang)2 = —1 — 4p.

Forp > —711, one has an exponentially fast convergence to one of the two fixed points (37). Therefore, hyperbola
yz= —711 is a frontier, in the phase portrait, between a region of(the)-plane where the infinite set of points of

an iteration form a set of points dense in §f'= p = yozo hyperbola (corresponding to the iteration of the initial

point (yo, z0)), and another regiolyz > —, where all the orbits of an initial poiritig, zo) converge exponentially

fast (along theyz = ypzo hyperbola) to fixed points, like (37), whepe= ypzo. This partition of the(y, z)-plane

into two regions, an ergodic region, and a region of exponentially fast convergence, is well illustrated on the phase
portrait fore = 0.

Intheyz > —% region of “exponentially fast convergence” to fixed points of Fig. 2, “the initial points (numbering
70)" have been chosen randomly. One sees an accumulation of points on thedidet+ z, which corresponds
exactly to the elimination of betweenyy = 3 (1= (1+4p)Y/?) (see (37)) and+ = p/y+. Intheyz < —3 ergodic
region of Fig. 2, the Lyapunov'’s calculations, performed with our program, give Lyapunov characteristic exponents
equal to zero, while in the region of exponentially fast convergence to fixed points of Fig. 2, one gets non-trivial
negative values for the limits of th&af.N) s, in perfect agreement with the exact values which should, of course, be

Fig. 2. Phase portrait far = 0 in the(y, z) variables.
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Fig. 3. L(lN) andL(ZN), as a function ofV, for an orbit in the region of exponentially fast convergence of Fig. 2, namely ypzo = 2 (left)
versus an ergodic situation, namely= yozo = —2 (right).
1+2p — (14 4p)Y?
, (39)
2p

wherea is given by (38). Let us take an initial poitito, zo) such thap = ypzo = 2. This value o is chosen such
that the previous expression becomes simple, namgly= In % Letusjustgive, herEL(lN) andL<2N), asafunction
of N, for an orbit of an initial poin{yo, zo) in the region of exponentially fast convergence fo& yozo = 2, and
compare it with an ergodic situation corresponding te: yozo = —2.

One does see in Fig. 3 (left) that one has two quite different vzﬂq’@sandL(N) one value goes, very quickly,
to zero (as it should), and the other one converges very quickly to the asymptotic exact negative %aluetha

ergodic caseL(lN) andL(zN) quickly converge to a zero value.

Remark (The integrable situation in elliptic regionsThe zero Lyapunov results in all tifstegrablg ergodic

regions, where one gets an infinite set of points dense in the algebraic curves, can, heuristically, be easily understood
as follows: the movement on these regular orbits can be thought, in some well-suited véyiable simple shift

0 — 6 + A, the iteration beindin the real phase spagéomorphic to a rotation on the unit circl@vith an angle

not generically commensurate wilr). The distance between two very close points on these curves is constant in
the well-suited variablé, and, in the plain variables y and z, is a periodic functi®(). This distance between the

Nth iterates of two neighboring points of the initial point z), can be written, as a function of N, @6y + N 1),

wherefy corresponds to the initial pointy, z). The Lyapunov’s calculations amount to trying to see the previous
expression agxp(NLyap): it is clear that, after a transient regime, this will yield a zero valligsp = 0, for the
Lyapunov

4.3. Phase portrait and Lyapunov characteristic exponentsg fer0.185: the elliptic regions

In order to compare the real Arnold complexity and the metric entropy (or in practice the Lyapunov characteristic
exponents), let us consider the vaffiec = 0.185, which corresponds to a non-trivial real topological entropy
(~ In(1.38)). This choice corresponds to a valuesadiround which the real Arnold complexity has a rich enough

28\We have performed similar calculations for many other valuesyiélding similar results.
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Fig. 4. Phase portrait far = 0.185 in the(y, z) variables.

behavior (see Fig. 1), and such that one gets enough real fixed pokitsiof finite region of they, z)-plane, as
can be seen in Fig. 4 which represents the phase portrait of the mappingin theariables fore = 0.185.

The previously described program yields, for all the regular orbits (curves) in the elliptic regions, Lyapunov
characteristic exponents equal to zero.

Fig.5 givesL(lN) andL;N), as a function oV, for a typical orbit in the main regular elliptic region of Fig. 4. Both

values ofL(lN) andLéN) seem to decrease and to tend to zero, as a functioh ke some power law, as will be
seen later. This zero limit can, heuristically, be understood in the same way as in the previously described integrable
situation in elliptic regions, yielding, again, a zero value for the Lyapunov exponent, the only difference being that

the integrable algebraic curves are replaced by transcendental curves, the movement on these transcendental curves

being again a shiff — 6 + A, in some well-suited variabke. Do note that this kind of heuristic argument cannot

0.0004 {;
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Fig. 5.L(1N) andL(ZN), as a function oV, for an orbit in the elliptic region of Fig. 4.
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Fig. 6. Zoom of the phase portrait fer= 0.185 in the(y, z) variables near a hyperbolic point (left). One orbit sandwiched between the internal
and external orbits (right).
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be applied to a strange attractor (even if itis compact and even if it may look, for fractal dimension close to 1, similar
to the previous curves). For a strange attractor a continuous variabl Vikeild not be well suited to describe

the wandering of the point in the fractal structure. In fact, a continuous variablé likees not exist for strange
attractors. Two very close points will systematically see their mutual distance grow exponentially (finite positive
Lyapunov) since they will wander in different parts of the fractal structure after a certain number of iterations.

4.4. Phase portrait and Lyapunov characteristic exponentfer 0.185: the hyperbolic points near the elliptic
regions

When one looks at the phase portrait of Fig. 4, one sees some bubble-like curves (see Fig. 6 (right)) sandwiched
between two set of curves (see Fig. 7). This indicates the existence of hyperbolic points which balance the elliptic
fixed points at the center of the previous bubbles. Let us first analyze such hyperbolic fixed points located near
elliptic regions. Since Poincaré [72], the neighborhood of hyperbolic p&irissknown to be an appropriate locus
for seeking for chaos. Fig. 6 shows that these hyperbolic points located near the elliptic regions are not of the chaotic
type described by Poincaré [72] (infinite set of homoclinic points, intersections of the stable and unstable manifolds)
but correspond to a nice foliation looking, locally, like hyperbole, as can be seen in Fig. 6 (left). Fig. 7 shows that
this local hyperbola-like foliation is, in fact, part of global elliptic foliations. In the limit where the elliptic orbits get
closer and closer to the hyperbolic points, one gets sharp pointed orbits near the hyperbolic points, like “corners”
(see Fig. 7). There is no room left for the “Poincaré chaos” (see Fig. 6 (left)).

Fig. 6 (left) shows, in théy, z) variables, the phase portrait for= 0.185 near a hyperbolic point. Fig. 6 (left)
is in perfect agreement with the calculated slope of the stable and unstable manifolds. In Fig. 6 (left), one can
figure out that the stable and unstable manifolds are locally extremely regular having, locally, no intersection except
at the very hyperbolic point. Fig. 6 (right) shows an orbit sandwiched between the internal and external orbit of
Fig. 7. One sees that the orbit of Fig. 6 (right) is made of eight bubbles surrounding the elliptic fixed points of

29 poincaé [72] discovered that, for chaotic systems, the stable and unstable manifolds corresponding to the linearization around a hyperbolic
fixed point intersect in an infinite set of homoclinic points [73]: this monstrous situation is the very expression of chaos.
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Fig. 7. One internal orbit of,, for e = 0.185, getting very close to hyperbolic points (left). One external orhfit dér ¢ = 0.185 getting very
close to the same hyperbolic points (right).

order eight. Actually, one also remarks that each bubble can be seen as an bfbird thak® does not “mix”

together these eight connected components. The orbits of Fig. 7 correspond to curves which combine together the
stable and unstable manifolds described by Poincaré. Instead of being highly complicated twisted curves having an
infinite number of (homoclinic points) intersections, they are extremely simple, and regular, with no intersections,
even globally, far from the hyperbolic points. This extreme regularity near the hyperbolic points (see Fig. 6 (left))

excludes the Poincaré chaos.

Let us calculate the Lyapunov characteristic exponents for the previous three orbits: the internal, the external and
the sandwiched bubble-like one. We represent it and L}, as a function ofv, the number of iterations.

Fig. 8 representﬁ&m andL;N), as a function ofv, the number of iterations far = 0.185 and for the external
orbit of Fig. 7 (right). However, one must remark that one obtains almost indistinguishable plots for the internal

orbit of Fig. 7 (left), as well as for the sandwiched orbit of Fig. 6 (right). One also sees, beyond doubt, that the limits

0.0004

0.0002

-0.0002

-0.0004 [ -~ 4

0 50000 ' 250000 500000

Fig. 8.L(1N) andL(ZN), as a function oV, the number of iterations far = 0.185 for the external orbit of Fig. 7.
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Fig. 9. A phase portrait to visualize the frontier between the regular elliptic region and the spray-like regien @o49.

of L") andL$", go to zero and, therefore, that the Lyapunov characteristic exponents should be equal to zero, for
these curves, globally elliptic with their eight hyperbolic corners.

4.5. Phase portrait and Lyapunov characteristic exponentfer 0.185 the hyperbolic points near the
“spray-like” region

Since one heuristically understands that Lyapunov characteristic exponents should be equal to zero in the elliptic
regions, even for orbits passing near hyperbolic points, one can only expect that a more spray-like region, like
the one which can be seen in Fig. 4, is where chaos could possibly occur, yielding (at least!) non-zero Lyapunov
exponents.

Let us consider an elliptic orbit which could “mimic” the frontier between the elliptic region in Fig. 4 and a more
spray-like region where chaos seems to occur, possibly yielding non-zero Lyapunov exponents. Let us change here
the value ofe in order to have a simpler diamond-shaped frontier than the frontier, one can imagine from Fig. 4.
For this, we consider, in this section, a vafleof € near the integrable value= % namelye = 0.49.

Again, let us calculate the Lyapunov characteristic exponent for an orbit in the elliptic region, but near the frontier,
and let us compare it with the Lyapunov characteristic exponent for an orbit in the spray-like region corresponding
to an initial point near this frontier (see Fig. 9).

One sees, quite clearly in Fig. 10 that the Lyapunov characteristic exponent, for the orbit in the elliptic region
(corresponding to (1) in Fig. 10) seems to be equal to zero, and this also seems to be the case for the orbit near the
diamond-shaped frontier, in the spray-like region (corresponding to (Il) in Fig. 10). Fig. 10 (right) is a magnification
of L(lN) andLéN), as a function ofv, for the first 1x 10 iterations. In fact, we have performed a large number
of Lyapunov calculations for various orbits outside the elliptic region, in this spray-like region which seems to
be controlled by the point at infinity (see also Section 4.6). All these Lyapunov calculations seem to indicate (af-
ter 5x 10° iterations) that one has a Lyapunov characteristic exponent equal to zero, rlal{?ﬁely 0G=12.A

30 One gets similar results for the previotis= 0.185 value.
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Fig. 1O.L§N) andLéN), as a function ofV, for e = 0.49, for an orbit in the elliptic region but near the frontier, indexed by (1), and for an orbit,
indexed by (), in the spray-like region, corresponding to an initial point near this frontier. 'Iltj@(ébs are given for 5x 10° iterations (left)
and for only 1x 10* iterations (right).

more precise analysis shows that lh[(é’)’s seem, phenomenologically, to behave like

In(a™)

- N, i=12 (40)

L =
where the exponent seems to be the same fbf\’) andL(zN). More details are given in Appendix B. Appendix B
underlines that the extensivity of the(lmlfN) |)'s is certainly not satisfied: one has here an under-extensive behavior
for the In(|2\""|)’s yielding Lyapunov exponents equal to zero.

4.6. Lyapunov characteristic exponents in the spray-like region near the point at infinity

Let us now try to calculate, again, Lyapunov characteristic exponents for other orbits (that will be depicted in
the next sections), in the spray-like region dominated by the point at infinity. These orbits yield systematically the
LEN)’S to tend to zero, as a function &f, and one can see, again, that the|)lﬁv)|)’s are certainly not extensive
guantities such that the limit of thefN)'s could be a non-zero finite value whahgets large.

Fig. 11 represents thEEN)’s, as a function ofN, for four orbits (like Fig. 15) corresponding to four initial
points near the point at infinitgY, Z) = (0, 0). These four orbits correspond to the iteration of an initial point
(Y, Z) = (=38, 48) for four different values o8, namelys = 1 x 1072, 1 x 103, 1 x 10-2 and 1x 10~L. For an
initial point very close taY, Z) = (0, 0) (namelys = 1 x 10>, curve (1) in Fig. 11), thengN)’s take very small
values (~ 1 x 10-°), and seem to have a zero limit whangets large. The zero limit for thBl?N)’s, whenN gets
large, is also very clear for the two other initial points corresponding, respectivély-tt x 10~2 and 1x 102
(curves (2) and (3) in Fig. 11). The last initial point yields a less obvious zero limit foLﬁﬁéfs, however, one
can see that the local deviation aroundl 2 10° iterations is similar to other deviations one can see for other orbits
which actually yield, forN large enough, a zero limit for trkEN)'s. Let us also remark that this local deviation of
the LEN)’S around 25 x 10° iterations does not correspond to the orbit exploring some new domain of the phase
space (like getting trapped in some strange attractor, etc.). The orbit, beSord &P iterations, and after.8 x 10°
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Fig. 11. TheL,@N)’s, as afunction oiV, corresponding to four orbits of an initial poit¥, Z) = (—38, 45) near the point atinfinityY, Z) = (0, 0).
Curves (1), (2), (3) and (4) correspondste= 1 x 1075, 1 x 1073, 1 x 10~2 and 1x 101, respectively.

iterations, are really on the same footing. In addition to the glmﬁjﬁ — 0 trend, one just sees some modulation
phenomenon foLl(N), as a function oV. These modulations will be studied elsewhere.

To sum up, all our calculations yield a non-extensive behavior foLfHé’s, as a function oiv, for orbits inside
the spray-like region, suggesting zero Lyapunov characteristic exponents. They thus seem to showniiaicthe
entropy is either equal to zear, in any casesignificantly smaller than the topological entropy and, even, the real
topological entropy

Remark (Lyapunov characteristic exponents of complex orbis3.far as Lyapunov’s calculations with our in-
finite precision program are concerned, one can modify the program in order to calculaﬂ-:‘flmts for orbits
corresponding to the iterations of a complex initial point z) instead of aealone. All the calculations performed

give similar results: the Lyapunov characteristic exponents, or at Ieaslt,i%és, were not significantly larger, for
complex orbits3! as compared to the ones for real orbits. Of course, since the set of initial complex points is much
larger compared to the set of initial real points, we cannot claim that the Lyapunov characteristic exponents of all
the complex orbits are equal to zero or are very small

5. Heuristic interpretation of the zero Lyapunov in the spray-like region

The analysis of the previous sections seems to show tharﬁﬁs tend to zero, as a function of, even in the
spray-like region, for which the orbit is not confined to any elliptic regular region, and for which one could have
expected some chaos. The only difference with the elliptic regular regions is that the convergence to zero is slower.
Let us try to understand this numerical result.

For the orbits in the spray-like region, the points seem to wander in the plane, getting quite far from the main
elliptic region towards the point at infinity, then coming back towards the elliptic region and again getting far towards
the point at infinity, and again — balancing indefinitely between these two regions. In order to better understand
this situation, let us consider the neighborhood of the point at infinity by performing a change of variables. For this,
let us changéy, z) into (¥, Z) = (1/y, 1/z). Then mapping (1) becomes

31The Lyapunov exponents of complex orbits of polynomial diffeomorphisms are discussed in [74].
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Fig. 12. Phase portrait far= 0.185 in the(Y, Z) variables.

ke:(Y,Z)—>< z ,Y1+Z>. (41)
1+1-e)Z 1—-€Z

One can now revisit the phase portrait of Fig. 4 in these (W) variables, well suited to analyze the vicinity of
the point at infinity, which is another fixed point of the mapping (see Fig. 12).

5.1. Analysis near the point at infinity: seeking for transcendental invariants

Zooming the previous phase portrait, near the point at infi(kityZ) = (0, 0), one gets a surprisingly regular
phase portrait. The points seem to form a very regular foliation.

Fig. 13 indicates a phase portrait corresponding very much to a foliation (at led3t oy small enough) and
shows, furthermore, a remarkable structural instabiftylo see this, let us plot the first 10 000 iterations of a single
orbit of a point near the point at infinity¥, Z) = (0, 0).

One can (atleast near the point atinfinity Z) = (0, 0)) imagine an interpretation of the orbit as atranscendental
curve, made of an infinite number of branches, each branch looking very much like a curve. If one goes on iterating
k. and notc1, one gets more and more branches going, each time, closer and closer to the point a¢iffifity:

(0, 0). This transcendental curve has an infinite number of branches (the price to pay for being transcendent, etc.).
Fig. 14 illustrates this interpretation giving the first branches of this infinite set of branches.

Near the fixed point at infinity(Y, Z) = (0, 0), the phase portrait looks very much like a hyperbola-like foliation
but with three asymptotes instead of two. A first approximation of the equations of these branches §aigld be
Z) >~ p, wherep is a constant. Considering a simple linearization around(the) = (0, 0) fixed point, it

32 The notion of structural stability has been introduced by Andronov and Pontryaguin [75]. A structurally stable [75,76] dynamical system is a
system such that its phase portrait is slightly modified, and remains topologically similar, under small perturbations of the system. Most of the
two-dimensional dynamical systems are structurally stable, this is no longer the case in dimensions greater than 2.
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Fig. 13. Phase portrait fer = 0.185 in the(Y, Z) variables near the point at infinity, Z) = (0, 0).
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Fig. 14. A single orbit of a point near the point at infinity, Z) = (0, 0) for ¢ = 0.185.

seems, at first sight, difficult to understand these three singled-out directions (three eigenvectorsdt thatpix
corresponding to the linearized part of transformation (41), etc.). In fact, this structural instability can be understood
as follows: the linearization of the squareof transformation (41) around’, Z) = (0, 0) gives (at order three)

33f, instead of the square of transformation (41), one linearizes transformation (41) itself, one gets a transformation which gives at the first-order
&.zZ) > (Z,Y)+---.
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Fig. 15. The single orbit of Fig. 14 with a larger scale.

Y = Y1=Y + Y((e = 1)Y + (14 €)Z) + Y(—2YZ+ €Z? + €27 + 2¢2YZ+ Y2 — 2eY? + 2Y)) + - .-,
Z— Z1=Z 4 Z((€ —1D)Z + 1+ €)Y) + Z(2eYZ+ €Y? + 2e°YZ+ €?Y? — 2¢ 7% + 2722 + Z%) + - - - .
(42)

We are thus in the situation of a diffeomorphism tangent to identity (see also [77]), thus allowing, around the
fixed point at infinity (Y, Z) = (0, 0), the appearance of three singled-out directions, instead of the generic two
eigenvectors for linearized two-dimensional mappings (tangent map).

In factY — Z = 0 is the first-order approximation for one of the three asymptotes, as can be seen, easily, in
Fig. 14. However, one can see, that this is just the first-order approximation of a slightly more complicated algebraic
expression, namelil — Y)(1+ Z) — 1 = 0, as can be seen by looking at the orbit of Fig. 14, but with a larger scale.
The hyperboldl — Y)(1+ Z) — 1 = 0 corresponds to the singled-out globally invariant ine 1 + z written in
terms of the(Y, Z) variables. This is quite clear in Fig. 15, and in particular, on the insert, in Fig. 15.

Therefore, a second approximation for the transcendental invariant could be

h=YZ1-1-YA+2Z)+---=YZAY —Z+YD) +---. (43)

Actually Z; = p is a quite good approximation of the various branches one sees in Figs. 13 and 14 or in Fig. 15.
This gives some hope of a possible heuristic description of the movement on these transcendental curves as a shift
t — t + p in some well-suited variables, again yielding zero Lyapunov exponents. Of course, all these calculations
should only be considered as a very preliminary heuristic description of this diffeomorphism tangent to identity (see
also [77]). Let us make a few comments on the fact that Fig. 13 looks like a foliation. In Fig. 14, one seems to get
(at least near the point at infinity, etc.) curves, however, the way these curves are densified is slow as compared to
the previously described way transcendental curves are densified in the elliptic regions (a situation isomorphic to a
rotation on a unit circle). The way these curves are densified is more like a shift on the real-axis{ p), i.e. a
“borderline” parabolic situation between the elliptic situatién$ 6 + 1) and the hyperbolic situation (— wx).

This fact will be fully confirmed later by the analysis of the= 3 case (see Section 6) which gives some idea of
what a transcendental curve could be. Looking at the infinite number of branches of an orbit when one moves away
from the point at infinity (see Fig. 13), one can imagine that the set of points could actually be on curves, but that
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Fig. 16. Left: A single orbit in thgY, Z) variables for = 0.33333 corresponding to the deformation of ¢he % integrable algebraic foliation
(45). Right:Iny(e = %) as a function of the number of iterations for the previous orbit.

the “lazy” way of densifying the curves (~ r + p) gives, more and more, the feeling of a spray of points. This
spray point of view is the one that dominates at the scale of Fig. 12.

One may consider that the question of qualifying transcendental curve, the single orbit of Fig. 14 is a quite
metaphysical question. Therefore, let us give, in Section 5.2, another heuristic interpretation that does not rely on
such a transcendental curve notion, but also tries to explain the vanishing of the Lyapunov characteristic exponents.

5.2. An alternative interpretation: deformation of the algebraic foliationdar %

One verifies, quite easily using (42), that the square of transformation (41) acting on (43) yields, at order four in
Y andZ that

(I, I2) > i+ Do, I+ (44)

whereZy; = (3¢ — 1)(Y + Z)Z1 + - - - . These calculations seem to suggest a perturbative approach neat t%ne
integrable value. In this respect, let us recall the invariant for the integcabl% situation written in thgY, Z)
variables. It reads [37] that

Y2Z2(YZ+ Y — Z)?

1\ _
Invie = 3) = B+Y+Z+YDB-Y+Z-YD(B-Y—-Z+YD9+3Y -3Z+5Y2° (45)

In Fig. 16, one sees, quite clearly, how a single orbitfer 0.33333 can be seen to be related to the elliptic foliation
fore = 1.

In particular, one sees that the base points of the algebraic foliation (45) do play a singled-out role for the orbit of
Fig. 16. This special role is confirmed by Fig. 17 which shows a single orbit associated with a larger deformation
frome = 1, namelye = 0.3333.

In Fig. 17, one recovers a situation very similar to the one depicted in Fig. 13, namely some branches which look
very much like curves and other branches which are probably curves also, but densified in a more “sparse” way. A
single orbit, like Fig. 16 or Fig. 17 (left), is heuristically, in a first approximation, like a set of curves of the algebraic
foliation (45), the successive values Bf(e = %) one encounters being described by the step-like functions of
Fig. 16 or Fig. 17 (right). The transition, from one valuelpf(e = %) to another one, occurs near the base points
of foliation (45) (as one could have easily guessed). Note that considering the inverse transfotgri'ambe same
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Fig. 17. Left: One orbit for = 0.3333 corresponding to the deformation of the- % integrable algebraic foliation. Rightiy (e = %) as a
function of the number of iterations for the previous orbit.

set of values of (e = %) will be encountered successively, but in the reversed order. All these calculations have
been performed with our infinite precision gmp program: all the points, and all the valdigg«o& %), are exact,
there is no numerical deviations.

This heuristic interpretation of the orbit as an exploration of successive valuggof= %) is still, to a large
extent, valid for alarger deformation fram= % like the one of Fig. 18 which correspondste- 0.333, withthe only
difference that the lengths of some intervals of the step-like functions depicted in Fig. 18 (right) become, sometimes,
quite small. The orbit description presented here does not require a concept like the notion of transcendental curve.
It corresponds to a weaker kind of compatibility of the true orbit with curves, namely some “hopping” in a set of
curves. In this approximation, the previdus> 6 + A shift argument yielding zero Lyapunov exponents is certainly
valid when one moves on each of these curves corresponding to these particular vahu&s:ef%), and thus, on
the whole orbit. The various right figures of Figs. 16—18 correspond to a quite good approximation of these orbits
(whatever they actually are, etc.) as a successive exploration of various curves of the integrable algebraic foliation
(45). This heuristic description of the orbits is in agreement with the zero value of the Lyapunov characteristic
exponent encountered in the three previous cases (and in many others).

) ¥ Py s a

4 0 2000 2000 6000 8000 70000

Fig. 18. Left: One orbit foe = 0.333 corresponding to the deformation of the= % integrable algebraic foliation. Rightiy (e = %) as a
function of the number of iterations for the previous orbit.
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Fig. 19. Phase portrait in the, z) variables of the birational transformation (1), o= 3, near the fixed point of.

Remark. Allthe previous computations of Lyapunov exponents at various points representative of the phase space,
come up with exponents equalt@r, at least, very small. However, since the topological entropy is pogéixan the

real topological entropy, except arourd> 3), there must exist some invariant measure with positive entropy. The
important question would be to find out typical points with respect to this invariant measure and find their positive
Lyapunov exponents. Beyond a quite systematic analysis ofyredl points, all our infinite precision computer
calculations have failed to localize such typical poiriste they complex points localized near the- 1+ 7 line,

or near the indeterminacy loc@%

6. The birational transformation (41) for e = 3

As far as a comparison between the metric entropy and the real topological entropy, or the real Arnold complexity,
is concerneds = 3 is obviously an interesting singled-out value, for which one can claim that the real topological
entropy is, not only extremely small, but really equal to zero (see (23) and also (28)). Therefore, one can expect,
for this very value, a very clean comparison between the metric entropy and the real topological entropy, or the real
Arnold complexity.

Let us thus consider the birational transformation (1)fet 3. This value ok is singled out as far as the phase
portrait of transformation (1) is concerned: instead of a quite chaotic phase portraitin theariables (see Fig. 3
in [33]), the iteration of, for ¢ = 3 gives a very regular phase portrait in the z)-plane, especially around the
fixed point ofke for e = 3: (y,z) = (=1, 1). Fig. 19 seems to indicates a structural instability [75] of a slightly
different nature than the one which pops out in Figs. 13 and 14 above. Instead of having hyperbola-like curves with
three asymptotes, one sees, at the scale of Fig. 19 and {m,thevariables, three singled-out directions. In fact, a
magnification of the neighborhood of the fixed point obviously shows a structural instability (see Figs. 19 and 20).

In order to get some simple hint on this new structural instability [75], let us linearize transforrhatsee (1))
near its fixed point. For generic valueseafthe linearization of (1) near the fixed point bj (y,2) = (1,1,
gives, with the notationg = —1+46,, z =14 4;:
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Fig. 20. Left: A single orbit of (1) corresponding to 2000 iterations of an initial point) = (1 + €1, —1 + €1) very near the fixed point of
(2). The curve corresponds to the polynomial of degree 36 associated with the truncation of the divergent series (56). Right: A single orbit of an
initial point (y, z) = (1+ €1, —1 + €1) slightly further the fixed point of (1).

(e —1D(=2+¢) (e+DE—-4
e . G R e G L 7 Te SR (46)
where the Jacobian matrix of this tangent map has a determinant equal to 1.eln+h@& limit, relation (46)
becomes at the first orde#,, ;) — (8, ;). One has, again, a diffeomorphism tangent to identity. This very fact

allows the existence of three singled-out directions (see Fig. 20).

8y —

6.1. An exact functional equation fer= 3

The orbits fore = 3 (see Fig. 19) seem to be curves, exactly similar to the foliation of the plane in algebraic
elliptic curves (linear pencil of elliptic curves) one gets for integrable mappings [32], although=tt®value can
actually be seen to correspond [35] to the chaotic complexity 1.61803 (generic complexity value, see (14)).
The question we address in this section is how to reconcile these apparently opposite facts. For this, let us first
introduce a parameterization of these curygesz) = (y(¢), z(¢)), and let us consider the representation, restricted
to these curves, df. in terms of this parameter

In fact, a visualization of the curves obtained by the iteratioh.dor ¢ = 3, singles out three curveBy, I'y
andI3, intersecting at the fixed point &f for ¢ = 3, namely(y, z) = (-1, 1), which play, more or less, the role
of the stable and instable manifolds, but there are three of them! Note that each curve is globally stébimdy
that k., andk2, map one of the three curvés into the two others. The appearance of these three cutvés
reminiscent of the coalescence, in the> 3, limit of the three fixed points da‘f namely(y, z) = (2—e, %(e —-1)
or (3(1—e), e — 2) or (-1, 1), with the fixed point of., namely(3 (1 — €), 3(e — 1)). In this limit, the triangle,
made from these three confluent fixed points, actually corresponds to the three directions) at (—1, 1), of
the three singled-out curvés (see below).

Let us concentrate on one of these three curl’gsSinceI'; is globally stable b)kE3 but not byk,, one can
only expect a representationkﬁ (and not ofk.) in terms of a well-suited variablearound the fixed point of,:

(y,z) = (=1, 1). Recalling transformation (1), yields, fer= 3, the following expressions for the twoandz
components of2:

4412y + 7z — Tyz— 32 +y2 3 (yz— 2 — 3y — 22)(3+ 15y — 8yz— 372 + y2A)

, 47
1-3y+z+yz z (74 3y +47 —4yz— 322+ y2)(1 +2) 47

3_
K3 =
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Let us now try to find the parameterization(z), z(¢)) of curvesl'; (as an expansion near the fixed poinkpfor

€ = 3, namely(y, z) = (—1, 1) which belongs to the curves). A simple Iinearizatiork@faround this fixed point

(v, z) = (—1, 1) yields the identity matrix: therefore, one cannot have (near this fixed point) a representation of the
iteration ofk€3 like t — ur, it must be a shift representation— u + . However, such a shift representation is not
well suited to deal with an expansion around the fixed point) = (—1, 1) (the fixed point would correspond to

t = 00). We must represent the shift, associated with the actiép,@fsr — ¢/(1+1),i.e. 1/t — 1/(t +1). Letus

then write, using this last shift representation, that one of the (three) curves, ngmedyactually invariant under

k2
30 _ 4 30 _ 4

Eq. (48), when solved, gives, order by order, three solutions. One solution corresponds to the following expansion,
depending on only one parameterfor y(¢) andz(z):

2 10 3 5 5 9
y(o,t) = -1+ ét—atz— (———02> B+ <—+ o——o3> i

8l 2 7207 9° "2
545 10 5, 27 .\, (1085 2725 25 , 25 ; Bl g\
<6561 243" 3% Tg° )t 78732t 43747 " 162° 67 T167 )!

117935 1085 2725, 25 5 75 , 243 ¢\ ;
— — o — o —o0 —0" — —0
1062882 8748 972 54 8 32

73175 | 825545 7595 , 19075 5 175 , 315 5 729 7\ o @9)
2125764 708588 11664  1944° ' 144° T 16° ~ 64 ’
2 (4 14 4 3
Hn=1+=r—(= (= —-20—-202)°
z2(o, 1) + 3 (9+a) (81 30 20 )
31 7 , 9 .\ 4 (631 62 7, . 27 N\
(729 g T3 4° )t (6561+ 243° ~3° %)t
409 3155 155 , 35 , 45 , 81 .\ ¢
(26244 43787 16" T8 T T1e” )t
128683 409 3155 , 155 ; 105 , 81 5 243 o)
To62882" 2016~ 972° " 54° T 8° T4 t33°
35363 900781 2863 , 22085 ; 1085
— o
6377292 708588 3888~ ' 1044 144
441 5 567 o 729
—_— t 50
167 " 167 e’ ) + (50)

One thus gets (at first sight) a family of curves depending on one parameter, ranefact, this is not a family
of curves: parameter corresponds to a simple reparameterization of a single curve. Considering expansions (49)
and (50), one immediately verifies that

t t
y(o—i—%r, t):y(o, m) Z(G—i—%f,l):Z(U, (1_’_n)). (51)

This parametes corresponds to transformation— /(1 + tt), which just amounts to changing the shift corre-
sponding tdcf, from (a normalized value) 1 to another value
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1 1

This means that one does not have a family of curves indexedtnyt rather, a single curve with a reparameterization
parametes . Therefore, without any loss of generality, one can restrict to a specific vatudafinstancer = — %.
One then gets

2 2, 4 67 119 7031 9004 498563
yt) =1+t 42— —13— —* 5 I 17 8

t -, 53
3 9 81 729 6561 78732 531441 318864é (53)
2 2, 4 67 119 7031 9004 498563
H=1+t— 42— 34 ¢4 2 — 6 — ¢’ 8 4., 54
(@) + 3 9 81 + 729 6561 78732 531441 318864é + (54)

One remarks, for this particular valae= —%, the following relation:
y(1) = —z(=1). (55)

This is a remarkable result: it means that, in order to get, order by order, the parameterization of the curve, one just
needs to find the expansion of a only one functign) instead of two ¢(¢) andz(z)). The expansion of(¢) at
higher orders can be found in Appendix C. This divergent series seems to be Borel summable [78] (see also (69) in
Appendix C).

This solution, corresponds to one of the three previously mentioned curvef;saye two other solutions of
(48) correspond to the following expansions f@r) andz(z), depending on a only one parameteror o3:

2 10 3 5 5 9
y(Gz,t)=—1+—t—02t2—(———02)t3 ( —02 + 02>t + -

3 gL 27 729 9
4 2 2 2 2 1 3 9
H=1—t4+(Z420) 2+ (5 —Z0p—302)s ) PZ
z(02,1) 3 +<9+ oz> +<81 302 2> (81+902 202~ 502 )
(56)
and
4 2 2 2 2 1 3 9
) =—-1——t—=—203)¢? — 302 )¢ o3 — ot + —od |+,
y(03,t) 3 (9 Ug) +<81+303 03) +<81 903 203+2 3 +
2 10 3 5 5 9
) =14+t—o03’— = — 202 )13 — o3 )t 57
dos ) =1+ 3003 (81 2“3> +<729+903 4G3> + ®7)

A straightforward calculation shows that these two expansions are nothing but the expansionbf tiansformed
by k. andkf. The parameters; in (56) and (57) are also just reparameterization parameters; liké49) and (50).
The slopes aty, z) = (—1, 1), corresponding to the three curvs are just the first-order term in (53), (56) and
(57), namely(3, 3), (3, —%), and(—4, 3). They correspond exactly to the three edges of the triangle built from
the three confluent fixed points bf whene — 3.

Since the thred;’s are on the same footing, let us restrictlip. With theo = —% choice, the expansion
corresponding td@'; (see (53) and (54)), actually verifies, as a consequence of (55), the exact nonlinear functional
equation:

t t
<<l+)+y(0+{yﬂ 0+$ﬂ0+@(ﬂ—b( G;;)—@Gﬂ—4>=0 (58)

This equation is obtained from the equality of theomponents okf coming, respectively, from (47) and (48). Of
course one can obtain another, similar, nonlinear functional equation, deduced from the equalitycmitiponent
of k3 in (47) and (48):
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Fig. 21. Left:LfN)’s, as a function ofv, for orbit of Fig. 20 (right). Right: TheLfN)’s, as a function ofv, for a generic orbit of the point
y=082z=-12.

((1 ()Y (%) — () y(—1) — By(t) + 2y(~1) — 2)

x (Y ()Y (=02 + 4y(1)y(—1) — 3y(—=1)% — 4y(—=1) + 3y(1) + 7) + By () y(—1)
+12y(r) — 4+ 4y(—1))(2y(—1) — 2 = 3y(t) — y(t)y(—1)) = 0. (59)

One easily verifies that the expansionydf), at higher orders (see Appendix C), is actually a solution of these two
functional equations (58) and (59).

6.2. Checking numerically the divergent series

Similarly to what has been done for the neighborhood of the point at infinity for various valee# &f worth
considering a single orbit near the fixed point of mapping (1kfet 3. The orbit corresponding to Fig. 20 (left)
originates from the iteration of an initial poity, z) = (14 €1, —1+ €1) whereey is very small (tangent to the true
curve parameterized by (53) and (54)). One finds that the points of this orbitare in perfectagreement (see Fig. 20 (left))
with the plot of the curve parameterized by (53) and (54), up to order 36. Of course, this curve is just a polynomial
approximation of the transcendental curve corresponding to the divergent series (53) (see also (C.1) in Appendix
C). The polynomial curve, parameterized by (53) up to order 36, makes two cornely ngar (0.8, —1.2) and
near(y, z) ~ (1.2, —0.8) when the last;36, term becomes dominant, and thus differs from the true transcendental
curve associated to the divergent series (53) (see also (C.1) in Appendix C). After all, asymptotic series are not so
bad: despite their monstrous character, one sees that they can be very well, and simply, approximated.

Fig. 20 (right) corresponds to another initial point of the previous foyny) = (1 + €1, —1 + €1) but witheg
slightly larger (and therefore one is not exactly on the transcendental curve corresponding to the divergent series
(53) anymore). One is back to a quite generic orbit of the foliation depicted in Fig. 19. One sees, however, in this
region near the fixed point that such a generic curve of the foliation gets extremely close to the transcendental curve
corresponding to the divergent series (53) and (54). Not surprisingly, our Lyapunov program, performed on the
orbits of Fig. 20, do suggest Lyapunov characteristic exponents also equal to zero (see Fig. 21).

The orbits oﬂcf, in the reaky, z)-plane, build a very regular phase portrait which looks very much like a foliation
of the plane in curves [32]. The previous expansions (49) and (50) give some hint on only three of these curves.
It would be interesting to perform similar calculations for the curves not including the fixed @eintl). This
remains to be done. The parameterization of, at least, the three duyreesresponding to the divergent series,
seems to exclude a parameterization in algebraic elliptic curves. Actually, using a systematic method well suited for
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two-dimensional rational transformations, introduced in [32], we have not been able to find any algebraic invariant
corresponding to a possible linear pencil of this very regular foliation. This seems to correspond exactly to the notion
of non-algebraic integrability* developed by Rerikh [81-83]. In fact, complexity growth calculations, performed

for thise = 3 case, do show [35] the same value for the complexity growtmamely 161803. .., than for the

other generic values ef. The system is actually chaotic fer= 3, even if its restriction to the red, z)-plane

is extremely regular (the real topological entropy being zero [35]). The corresponding function which gives nice
real curves corresponds to a divergent series which is certainly quite monstrous in the non-real (complex) plane.
One can imagine that this kind of function corresponding to divergent series is actually compatible with pictures
like the one of the Vague Attractor of Kolmogorov (see the VAK in [84] or the Nested KAM tori [85], p. 441)
together with the occurrence of a nice curve in the real space. The occurrence of such divergent series solves the
paradox of the compatibility between a regularity of the (real) phase portrait together with a chaotic (complex)
dynamics (complexity growth ~ 1.61803). This example shows that simple functional equations, yielding curves,

or even foliation in curves, but only for real values of the variables, are actually compatible with a chaotic dynamical
system. One can actually calculate, order by order, all the coefficients of the divergent series (53) from the functional
equations (58), however, the growth of the computing time is exponential, not polynomial (see also Appendix C).

7. A simple birational deformation breaking the measure-preserving property and its associated Lyapunov
exponents

In view of the previous results, one may think that reversibility, especially in the algebraic framework of birational
transformations, leads naturally to systems of zero metric entropy. Let us see, in this section, that this is not the
case, and that the previous zero (or at least very small, etc.) metric entropy is in fact a consequence of the specific
character of transformation (1) and in particular its measure-preserving property.

Let us consider a simple birational transformation which is a simple birational deformation of the birational
transformation (1):

(60)

z+1—€ z-—¢€
ke,ﬁ:(ysz)_)< )

1+ 8z R}

One easily verifies that transformation (60) is actually birational and*hssil a growth complexity, ~ 1.61803,
the generating function of the degrees of the numerator of-t@mponents being
1+1¢
G(@t) = TJFIZ — 1426+ 32 4+ 53 + 84 + 135 4+ 2145 4 347 4+ 558 4+ 89°
+14410 4 23311 4 37712 ... . (61)

This birational deformation does not modify the growth-complexitgf transformation (1) X ~ 1.61803), but
does modify the phase portrait: for instance one easily verifies that the determinant of the Jacobian ntﬁgrix of

evaluated at a fixed point @Q’ﬂ, is no longer equal to 1. This propef of the determinant being equal to 1 was,
in fact, a consequence of the fact that transformation (1) is a measure-preserving map.

34 Non-algebraic integrability of the Chew—Low reversible dynamical system of the Cremona type [79,80] has been addressed by Rerikh [81-83].
35 Generically for the generic values efand for many non-generic values of(%, %, 1,...) excepte = —1, for which one recovers the
integrable(1 — t) singularity.

36 This measure-preserving property obviously helps the systems to have elliptic trajectories around the fixed ffoiateldhe mapping to

be a diffeomorphism tangent to identity at the fixed point at infinity, these two properties being crucial to have a very regular phase portrait,
yielding a very weak metric entropy.
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Fig. 22. Left: An expanding spiraling orbit of the initial poipg = 0.1, zo = —0.5 fore = 0.34 andg = 1 x 10~*. We have represented the
first 10 000 iterations (inside) and the 10 000 iterations after 50 000 iterations (outside). Riglﬂ.g‘:]\?he as a function ofV, for the previous
orbit.

Letus study the birational transformation (60), comparing its phase portraits with the phase portraits of transforma-
tion (1), and also comparing the corresponding Lyapunov exponents. Let us first see the birational transformation
(60) as a deformation of (1), and let us restrict ourselves to small values of the deformation payanketer
B ~ 1 x 104, the curves in the elliptic regular region (see Fig. 4) become (as a consequence of the determinant
of the Jacobian matrix cﬁg’ﬁ, evaluated at a fixed point 62’5, being no longer equal to 1) orbits spiraling around
the fixed elliptic points.

Fig. 22 (left) represents such an expanding spiraling orbit (more precisely two parts of this orbit, namely the first
10000 iterations and the 10 000 iterations after 50000 iterations). The orbit is in expansion from an orbit inside (see
the first 10 000 iterations) to the shield-graft limit of this region. Fig. 22 (right) represenlézmtas, as a function
of N, for the previous orbit. The linearization, near the (expansive) fixed point at the middle of this region, gives a
Jacobian matrix with two (complex conjugate) eigenvalues of modulus very close to 1, but slightly larger than 1:
this is in fact in agreement with Fig. 22 (left and right).

Let us recall, for transformation (1), the partition of the (réal)z)-plane into the regular elliptic regions and the
region associated with the point at infinity (the extension of the hyperbolic regions being very small, possibly zero).

Fig. 23 (left) represents an orbit in the region associated with the point at infinity, but (i te = (1/y, 1/z)
variables. In they, z) variables the orbit is more fuzzy as compared to the equivalent one for transformation (1).
The orbit looks, at first sight, quite similar to Fig. 15 corresponding to the birational transformation (1). However,
this similarity is probably just superficial: the point at infinity which is a fixed point of mapping (1), is not a fixed
point of mapping (60) any longer. The region of {tfe Z)-plane, associated with the point at infinity, is more subtle
than the obvious, previously mentioned (see Fig. 22), expanding, or contracting, regions around fixed points. In
order to understand, more clearly, what is really going on in this region associated with the point at infinity, let us
perform a much larger deformation of transformation (1), considegirg1.1.

One finds some strange attractor (see Fig. 24 (left)), the calculations of the Lyapunov characteristic exponents
yielding a negative value for one of the tvléN)'s, but also a small, but positive, Lyapunov exponent (see Fig. 24
(right) and the insert corresponding to a magnification of the posﬂf\l)'é‘s). One thus sees, with this example,
that one may have a non-zero metric entropy for a birational transformation having the same topological entropy as
(2). The previously noticed zero (or, at least, very weak) metric entropy is not a consequence of the birationality of
the transformation only: the measure-preserving property is certainly crucial.
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Fig. 23. Left: An orbit of the initial pointp = 11, zo = —17 fore = 0.34 andg = 1 x 1074, in theY andZ variables. Right: TheLEN)’s, asa
function of N, for the previous orbit.
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Fig. 24. Left: An orbit of the initial pointyo = 0.82, zo = 0.456 fore = 0.34 andg = 1.1. Right: TheL!""s, as a function ofv, for the
previous orbit. The insert corresponds to a magnification of the poijWé

8. A simple rational deformation breaking the reversibility property and its associated Lyapunov exponents

The breaking of reversibility, linked to some loss of memory, is at the origin of many phenomena associated with
chaos (occurrence of strange attractors, etc.). Let us consider another deformation of the birational transformation
(1), namely a non-invertible rational transformation:

7+1—c¢ z—e>. 62)

9 % b
. 2) < 1+ By yz—i—l

One easily verifies that the rational transformation (62)*asgrowth complexity. = 2, the generating function
of the degrees of the numerator of theomponents being

37 Generically for the generic values efand for many non-generic values of(%, 711, 1,...), excepte = —1, for which one recovers the
1 —t — 12 denominator and for which the mapping becomes birational again.
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Fig. 25. Left: One confined orbit fg# = 1 x 10~* ande = 0.34. Right:LlfN), as a function ofv, for another annulus-like orbit of the initial

pointyp = —0.3,z0 = 0.4 fore = 0.34 andg = 1.1. The expected negative limit for tHéN)’s equals ta~ —0.486315 is indicated by an
arrow.

1—2r24 25
A-A+n1-21
= 1421+ 324+ 663+ 11* + 24° + 47°% + 96:7 + 1918 + 384° + 76710 + 153611 + ... . (63)

G(t) =

Fore = —1, the rational transformation (62) becomes biratiGRand the previous generating function reads (up
to order 12)

122+ 15445
A—t—13)(1—-12)°

The analysis of this (generically) rational (but not birational) deformation of transformation (1) gives, at first sight,
results similar to the ones of Section 7. The curves of the regular elliptic region of Fig. 4, again, become spiraling
orbits.

Fig. 25 (left) shows such a spiraling orbit, slowly contracting towards a central fixed point. For another orbit
(not represented here, corresponding tonﬁ@’s of Fig. 25 (right)), one also gets such a spiraling orbit quickly
contracting to a fixed point. These results are in agreement with the linearization around the fixed point. For the
second orbit, one expects a negative limit for ﬂfé{)’s equal to~ —0.486315, in quite good agreement with the
calculations of theLlfN)’s after only 100 iterations, as shown in Fig. 25 (right).

Recalling the results of Fig. 23, one can also try to analyze the region of the point at infinity for small values
of the deformation parametgr For 8 = 1 x 10~°, one gets, in theY, Z) variables, orbits similar to the orbit of
Fig. 23 (left).

However, itis again clear that the similarity of Fig. 26 with Fig. 23, correspondifigtd0, can only be superficial,
since the point at infinity is not a fixed point of mapping (62) anymore. Despite these superficial similarities in the

G@t) = (64)

38|ts inverse transformation is a simple polynomial transformation, narely) — (z, —2 + y + By2) and the generating function of the
degrees of the numerator of thecomponents becomes(r) = (14t — 23 — %) /(1 — 1 — 1?), the 1— ¢ — 12 denominator being a direct
consequence of the linear recursion on the degtge; = d,_1 + d,,. For (y,z) — (z, =2+ y + By*z”) one would have a & pr — ur?
denominator.



424 N. Abarenkova et al./Physica D 144 (2000) 387—433

 —

08
06}
04}
02}
0
02}
041

06}

08}

1

408 06 04 02 0 02 04 06 08 1

Fig. 26. One orbit fog = 1 x 107> for ¢ = 0.34.

region associated with the point at infinity, it is however worth noticing that, trying to calculate the corresponding
Lyapunov characteristic exponerﬂé’v)’s, and plotting them as a function &f, one gets quite different behaviors
for theLl(N)’s, for the birational situatio = 0 and forg = 1 x 1076, even if8 = 1 x 10~ yields orbits visually,
almost indistinguishable from thg = 0 ones for the first % 10* iterations (see Fig. 27).

The number of iterations where the systems feels the irreversibility can be estimated, for this particular orbit, to
1 x 10* iterations. These results confirm the crucial role played by the reversibility in the analysis of the Lyapunov
characteristic exponents of birational transformations. Let us consider larger vahliesofler to better understand
the dynamics. Whep is not very small, the phase portrait often becomes quickly trapped by some fixed points to
which all the orbits quickly converge with spiraling orbits, however, for some valu@s ofie can see that there

0.4}
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0 5000 10000 15000 20000 25000 30000

Fig. 27. TheLEN)‘s, as a function ofV, for the birational transformation (1) far = 0.34 andg = 0 (indexed by (1)), and the rational
transformation (628 = 1 x 10> (indexed by (lI1)) and for3 = 1 x 10~ (indexed by (II)).
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Fig. 28. Left: An orbit of the initial pointyg = —1.6, zo = 0.15 fore = 0.34 andg = 1.1. The insert corresponds to a zoom of the strange
attractor. Right: ThaLEN)’s, as a function ofV, for the previous orbit.

exists (at least) one strange attractor located in the region associated to the point at infinity, previously described
for B = 0. The occurrence of this strange attractor is confirmed by the Lyapunov’s calculations yielding, clearly, a
positive Lyapunov characteristic exponent (see Fig. 28).
Let us consider the strange attractor which corresponds=00.333333 ang8 = 0.5: this attractor is a very
skinny attractor, that we will not show here. Let us recall the algebraic invariant (45) corresponding to the integrable
= % case B = 0), but written in they, z) variables as

(5+3—-3y+%Y2)(1-z—y+3y2(1+z—y—-3y2(1+z+y+3y2
1+z-y)? B

A(y,z. %) =

An evaluation of the = % algebraic invariani(y, z, %) for the successive points of this skinny strange attractor
corresponding te = 0.333333 ang8 = 0.5, shows, in Fig. 29 (left), a quite remarkable spectrum of discrete values
of A(y,z, 3).

Actually, these singled-out values af(y, z, %) seem to correspond to finite-order orbits (for instakt® =
identity). Of course, it is clear that the attractor cannot be reduced to such a finite set of values. This is just a first
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Fig. 29. Left:A(y, z, %), as a function of the number of iteratioNs corresponding to the strange attractor orbit associatedewitt.333333
andg = 0.5. Right:A(y, z, %), as a function of the number of iteratioVs corresponding to the strange attractor orbit of Fig. 28.
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approximation of the true orbit. However, one recovers, here, the standard interpretation of strange attractor as a

limit of sets of finite-order fixed points in the infinite-order limit. On the other hand, Fig. 29 (right) givesz, %),

as a function of the number of iterations for the strange attractor orbit of Fig. 28. In that case, it is clear that the

distribution ofA(y, z, %) is much more involved as compared with the previous distribution for the skinny attractor.
Recalling Figs. 16 and 17 or Fig. 18 (right) also givingy, z, %), as a function of the number of iteration,

one sees a drastic difference with the previous analysis performed for strange attractors (see Fig. 29): for strange

attractors one jumps, all the time, from one valueAdfy, z, %) to another one belonging to some, more or less,

complicated spectrum of values, while for the orbits described in Figs. 16 and 17 or Fig. 18 (transcendental-like

curves? etc.), one seems to explore various values of z, %) consecutively.

9. Conclusion

The results presented here seem to be in agreement with very small metric entropies for birational transformation
(1) for any value of the parameter The possibility that the metric entropy could actually be very small, for most
of the invariant measures, for a large set of birational measure-preserving transformations generated by involutions
is not excluded.

Calculating characteristic Lyapunov exponents amounts to performing local calculations (like derivatives: cal-
culating a Jacobian matrix for théth iteratek”, etc.) yielding floating numbers, while the topological approach
amounts to calculating global quantities encoded by integers like some number of intersections, or number of fixed
points, wherever these points and intersections are (very far away, or very close from each other, etc.). In the met-
ric approach, the question of the actual localization of these points is crucial (one can imagine to neglect elliptic
regions of very small extensions, etc.), this question is irrelevant in the topological approach. This gap between
local and global (or real functional analysis versus complex projective, or metric versus topological) approach
can be narrowed by some assumptions on the density of periodic orbits at infinity (see the work of Fornaess and
Sibony [86,87] on biholomorphic transformations i), or some ergodic hypothesis which are quite hard to
control. With some birational transformations which naturally occur in lattice statistical mechanics [23], namely
birational measure-preserving transformations generated by involutions we seem to be able to get a large set of
examples of discrete dynamical systems which can be topologically chaotic when they seem to be metrically almost
guasi-periodic. This measure-preserving property is a necessary (but probably not sufficient) condition to have a
phase portrait so reguldt that it yields very weak metric entropy.

We have tried, here, to understand such a metric almost periodicity together with a topological chaos situation on
avery simple (but non-trivial) birational toy example where it has been seen that this situation seems to be the conse-
guence of two phenomena. First, there is no chaotic hyperbolic regions (infinite set of homoclinic points, intersections
of stable and unstable manifolds) for this two-dimensional birational example: an orbit can be locally hyperbolic but,
globally, it will be elliptic. Thus, the whole two-dimensional (real) space seems to be partitioned into regular elliptic
regions, where one can easily understand that the metric entropy will be zero, and a region associated with the point
at infinity. Secondly, this region associated with the point at infinity, corresponds to some kind of transcendental fo-
liation, or, at least, to a quasi-foliation in curves (see Section 5.2). Again, because of this (quasi-)foliation, the metric
entropy could be zero, or in any case, should be very smalle Ba@ situation is an extreme example of such a sit-
uation: the topological entropy is non-zero but one seems to have a zero real topological entropy when the mapping
is restricted to real variables. The= 3 mapping has certainly zero metric entropy, the transcendental curves of the
foliation of the two-dimensional space, satisfying remarkable nonlinear functional equations. As a consequence of

39 This measure-preserving property has the following consequence: the Jacablais @iqual to 1 at every fixed point &', for any N.
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this foliation, there is no serious metric chaos. However, the transcendental character of this foliation correspondsto a
clear exponential computing complexity: to sum up, and in simple words, a topological chaos is perfectly compatible
with a metric quasi-periodicity. Recalling Fornaess and Sibony’s [86] assumption on the density of periodic orbits at
infinity, the possible existence of a foliation for our birational example is actually a situation where this density is very
particular.

The results presented here may look a bit paradoxical: computing Lyapunov exponents at various typical (with
respect to some invariant measuwjegpoints one seems to always get a zero value. By the Pesin—Ruelle inequality
the Lyapunov being zero means that the metric enttqpy of the invariant measunewould be zero. However, the
topological entropy is the supremum of thége) taken over alk.-invariant measures, and is clearly non-zero:
therefore, there must exist some invariant measaed some points somewhere such that the Lyapunov exponents
of the corresponding orbits are non-zero. We have no idea where such points could be. In particular, we have no idea
where points such that the Lyapunov exponents of their orbits could be of the order of the real topological entropy
=~ log(heq) OF Of the order of the topological entropy log(h).

Of course, all the results presented here are very preliminary. One can, however, hope that birational measure-
preserving transformations generated by involutions could thus allow to better understand the gap between the
topological universe and the measure universe, i.e. between the topological description and the probabilistic de-
scription of discrete dynamical systems. Corresponding to topological chaos and weak metric chaos, some birational
measure-preserving transformations generated by involutions, might be seen as a possible frontier between these two
universes. Despite their reversible and algebraic character, birational measure-preserving transformations generated
by involutions correspond to a huge set of transformations. It would be interesting to see if the “topological-chaos
with metric-weak-chaos” situation, described here, is, beyond the measure-preserving property, also a consequence
of the specificity of the mapping considered here, in particular its two-dimensional character and, especially, the
structural instability of the point at infinity.
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Appendix A. Less universal Arnold complexities

Let us calculate a modified Arnold complexity,y, corresponding to a calculation with a finite, not too large,
precision (say 1000 digits, etc.) and to intersection counting in some finite box. Of course, one also chates
which is supposed to have a largyelimit. This introduces a less universal (more metric), scale-dependent, notion
of (real Arnold) complexity. Of course, this can also be introduced for the counting of the real fixed pdigits of
i.e. for the calculation of the real topological entropy, thus yielding a far less universal new real topological entropy,
closer to a notion of visual complexity as it can be seen on the phase portraits (see Fig. 4). Such new complexity
notions will take into account a more metric point of view, which amounts to saying that an elliptic region of a
too small extension could be neglected, the extension of this region being a weighting parameter. This is a way to
introduce a notion of measure of these topological structures. Let us compare such calculations performed with only
1000 digits, with the infinite precision calculations of Fig. 1. For instance, let us con%ié]ér, corresponding to
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Fig. 30.11@13, as a function ot, corresponding to the counting of Arnold intersections with a precision of 1000 digits togetheA%@]t%
corresponding to an infinite precision calculation, in the interv&%00.35]. The right insert corresponds to the 1000 digits calculatio&ﬁé]f?’
and the left insert corresponds to the infinite precision (exact) calculatig/gf.

the counting of Arnold intersections with a precision of 1000 digits, which, from time to time, cannot discriminate
between some points that are too close and count them as a single point. Theﬁ@?p&s a function ot, gives
a result almost indistinguishable from Fig. 1, except in the neighborhood of the non-gererigm values (as
well as thes = (m —1)/(m + 3)). Let us give here a plot corresponding to such a calculatioﬁ@?, as a function
of €, performed with only 1000 digits arourd= %
One remarks that the neighborhood of the % value is singled out in such a calculation, but in a quite different

way as compared to the way tke= 1/m values are singled out in Fig. 1. near this= % value, the visual

complexityﬁiélg becomes smaller. One has a similar phenomenon around all thel/m values, yielding a

decrease oﬁ%éls similar to the one in Fig. 30, around all these values. Around thesel/m values, one also

remarks another phenomenon which has some impact on the visual complexity, as it can be seen on the phase
portrait of Fig. 4 for instance. One actually finds out that several of these Arnold intersections migrate to infinity
(whenN gets large) thus being out of the frame of a given phase portrait (like Fig. 4 for instance):Fﬁ)raround

two-third of the Arnold intersections of the line= %(1 — €) with its 13th iterate correspond tovalues in the

interval [-1, +1], most being close to ~ —0.66 orz ~ —0.62, however, some values obviously do not belong

to this narrow box{ >~ —15037,z >~ +71.87,...). We do not want to analyze, here, in detail this distribution

of z values whenV — oo together withe — 1/m. It is clear that one can introduce many complexiﬁ%l;\’,,
corresponding to the counting of Arnold intersections inside a given inten| §-R], or inside a given disk of
radiusR. Of course, there are many (not very well-defined, etc.) ways to change the real topological entropy, or the
real Arnold complexity, into a less universal quantity turning it into a more metric quantity, which tries to fill the

gap between the metric (measure) point of view and the topological point of view.
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Fig. 31. a(’) s, as functions of the number of iteratioiVs for ¢ = 0.49, for two orbits close to the diamond-shaped frontier of Fig. 9.

Appendix B. Zero limit of the Lyapunov exponents

In Section 4.5 (corresponding to hyperbolic points near the spray-like regioﬂﬂﬂs seem, phenomenologi-
cally, to behave like

In(IA™
L§N>=M:N“, i=1,2 (B.1)
N

where the exponent seems to be the same fb(iN) andL(N) In this respect, let us introduce the two variables
N) defined by

N
i _ In(|L§ N

s Vg0 B.2
*N NNy 0 T (B-2)

which have the Iimibz](\;) — «, ifthe phenomenological relation (40) is actually valid. Non-zero Lyapunov exponents
correspond tac = O for which one has a non-zero finite limit for tli[éN)'s. Thea = —1 value corresponds, for
instance, to the ImlfN)D’s being bounded by a value independent\ofthis is the case for elliptic orbits). Let

us plot theoz(’)’s as a function of the number of iterations for the orbit in the spray-like region, but near the
diamond shaped frontier (indexed by (ll) in Fig. 10).

Fig. 31 is, up to 5« 10° iterations, in quite good agreement with the phenomenologlcal relation (40). Of course,
one could argue that thé\’, 's seem, again, to behave like another powerdaw +BN~¢', thus introducing further
corrections. Our point here is just that the extensivity of tr(ekfﬁ') |)’s is certainly not satisfied: we have here an
under-extensive behavior for the(lm,?N)D’s yielding Lyapunov exponents equal to zero. Fig. 31 giveaxlﬁ(}?éﬁ,
as functions of the number of iteratiois for two orbits close to the diamond-shaped frontier in Fig. 9. One orbit is
outside the diamond-shaped frontier in the spray-like region and corresponds to the upper curve in Fig. 31, while the
lower fuzzy set of data in Fig. 31 corresponds to an orbit inside the diamond-shaped frontier (see Fig. 9). Keeping in
mind that the orbit inside the diamond-shaped frontier is in the elliptic region, and, especially, keeping in mind the
6 — 6 + A shiftinterpretation of the movement on this very orbit, one can certainly argue that,Anldrge limit,

(’) should tend to &, = —1 limit (bounded periodic function). This lar@é limit, ., = —1, is notincompatible
W|th Fig. 31.
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Appendix C. The expansion ofy(t) for the e = 3 case

Let us give here, up to order 28, the expansion of the divergent series (56) satisfying the two functional equations
(58) and (59):
20 :_1+gt+2t _it3_£t4 119t5+ 7031t6 9004 7 498563 4
3 9 81 729 6561 78732 531441 318864é
4012423 4 9273016087, 65639286071,, 3919438859951,
133023135 ' 21695547384 781039705824 2343119117472
5870249338192?13 3695449229824288tz4_ 296783900798299309;
173976594472296 4175438267335104 1628420924260690%6
_ 10689162361376574962%+ 35214116841342109656@4_ 87316901519642015063642@
17586945982015458048 = 276994399216743464256 1661966395300460785536
_636080264571303689411114;}3 1532625560773982348924929261557
572131931582183625420768 27462332715944814020196864
24863817552774676540801842410§1+ 132736579097260552611348063340597
2087137286411805865534961664 1857781540652266759432218624t
B 4809337322739099418205059004605t22§z 34666340109953257893099809606832084623
313254752134101333288967922688 31951984717678335995474728114176
5114577498745621O6370004372638208573622?599
218264007606460713185087867747936256
5049577702077337611690749714429840713565%51
2619168091277528558221054412975235072
B 3285107938031962088347171490616619256005;12379
7857504273832585674663163238925705216
B 189183099578052801080437416188689042799128699574; §
477343384635329579735787166764736591872

One easily verifies that this expansion satisfies, order by order, the functional equations (58) and (59).
Let us denote by, the ordem coefficient ofy(z). From the nonlinear functional equations (58) (or (59)), one
can deduce the following recursion (with = —1 anda; = %):

i—2 : ;
—4 =1 2(-D)ai g = Y (DI (—4(;: 11) - 2(;:21> “1)

j=1

i—2 i—k
1
+Y (~Diay (4(( D* = Daj g +2) (=17~ k( j'il )aj)

k=2 j=1

(C.1)

i—-1 k k—1 i—k—1 '
> | Dfa+ ) et (p ~ 1) ap| Y —Vajai s, (C2)
k=1 p=1 Jj=1

Where(;) is the binomial symbol. This recursion gives ; in terms of thez;’s of lower order. We have calculated
these coefficients up to order 300. One can numerically see that this series seems to be Borel summable. Actually,
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it seems that the,,’s behave asymptotically like

a, — (=12l  forneven

~

n+D! | —(=1)@ D22, fornodd

With aeven ™ aodq =~ 0.1591, yielding a radius of convergenceyjraroundR ~ 6.285.

One remarks that the numerators of the coefficients in this expansion often factorize in quite large prime numbers
(in contrast with the denominators). For instance, the numerator of the coeffici#Atfattorizes into the product
of 73,5327767 and 131504822681376234536009451871189. The numerator of the coeffiéfdattdrizes into
the product of 5417, 183088852209431303 and 50913660439290187318201. The numerator of the coefficient of
128 factorizes into the product of 58237, 8933 and 363652022997779867691608968908050087221. This function
can thus be seen to produce large prime numbers.
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