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We show that the star-triangle equation possesses an infinite discrete group of symmetry. This group is the Coxeter group A§".
It explains the presence of the spectral parameter in solutions of the equations. We describe a strategy for the resolution of the

equations, and apply it to specific examples.

1. Introduction

The Yang-Baxter equations [1] and their higher
dimensional generalizations are now considered as
the defining relations of integrability. They are the
““deus ex machina” in a number of domains of math-
ematics and physics (knot theory, quantum inverse
scattering, S-matrix factorization, exactly solvable
models in statistical mechanics, Bethe ansatz, quan-
tum groups, chromatic polynomials and more
awaited deformation theories). The appeal of these
equations comes from their ability to give global re-
sults from local ones. For instance, they are a suffi-
cient and, to some extent, necessary [2] condition
for the commutation of families of transfer matrices
of arbitrary size and even of corner transfer matri-
ces. From the point of view of topology, one may un-
derstand these relations by considering them as the
generation of a large set of discrete deformations of
the lattice. This point of view underlies most studies
in knot theory and statistical mechanics (Z-invari-
ance [3,4]).

It is a challenging problem to exhibit and classify
all solutions of this highly overdetermined set of
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equations. Up to now, the quest for new solutions
has largely proceeded by slight modifications or new
avatars of the already known solutions. For instance,
the six-vertex model has been revisited in an incre-
dible number of ways in different domains of math-
ematical physics *'. It is rather easy to take different
representations of a particular solution and quantum
groups emerged as a way of writing Yang-Baxter
equations independently of the representation [5].

We want to analyze the Yang-Baxter equations and
their higher dimensional generalizations [6~9]
without prejudice about what should be a solution,
that is to say proceed by necessary conditions.

We will exhibit an infinite discrete group of trans-
formations acting on the ingredients of the Yang-
Baxter equations or their higher dimensional gen-
eralizations (tetrahedron equations).

These transformations act as an automorphy group
of various quantities of interest in statistical me-
chanics (partition function, critical manifolds, phase
diagram, ...), and are of great help for calculations,
even outside of the domain of integrability [10].

What we show here is that they form a group of

¥ The six-vertex model emerges from the critical standard sca-
lar Potts model and the Lieb-Temperley algebra, in the sym-
metric Ashkin-Teller model, in the S-matrix of the sine-Gor-
don model, in the XXZ quantum Hamiltonian. The list is not
exhaustive.
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symmetries of the equations defining integrability.
They consequently appear as a group of automorph-
isms of the algebraic varieties parametrizing the so-
lutions of the Yang-Baxter or tetrahedron equations.
We will denote this group Aut.

When searching for new solutions, one should keep
in mind the action of Aut globally on the whole pa-
rameter space.

The existence of Aut drastically constrains the va-
rieties where solutions may be found. This group of
symmetries is a powerful tool for burning the hay-
stack and home towards the (integrable) needle. In
the general case, it has infinite orbits and gives se-
vere constraints on the algebraic varieties which par-
ametrize the possible solutions (genus zero or one
curves, algebraic surfaces which are not of the gen-
eral type, ...). In the non-generic case, when Aut has
finite order orbits, the algebraic varieties can be of
general type, but the very finiteness condition allows
for their determination.

In the framework of infinite group representa-
tions, it is crucial to recognize the essential differ-
ence between what these symmetry groups are for the
Yang-Baxter equation and what they are for the
higher dimensional tetrahedron and hyper-simpli-
cial relations: the number of involutions generating
our groups increases from 2 to 29-! when passing
from two-dimensional to d-dimensional models and
the group jumps from the semi-direct product Z & Z,
to a much larger group, i.e. a group with an expo-
nential growth with the length of the word.

It is worth recalling that for the Zamolodchikov
solution of the tetrahedron relation [7,6], the par-
tition function is the same as the one of the two-di-
mensional checkerboard Ising model. This example
seems to indicate that three-dimensional integrabil-
ity can only occur when the 29-! generators of the
group satisfy additional relations allowing for a mere
polynomial growth of the size, and possibly reducing
to a semi-direct product of finite groups and Z factors.

The existence of Aut as a symmetry for the equa-
tions has the following consequence: we may say that
solving the Yang-Baxter equation is equivalent to
solving all its images by Aut. These images generi-
cally tend to proliferate, simply because Aut is infi-
nite. Considering that the equations form an over-
determined set, it is easy to believe that the total set
of equations is “less overdetermined” when the or-
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bits of Aut are of finite order. One can therefore
imagine that the best candidates for the integrability
varieties are precisely the ones where the symmetry
group possesses finite orbits: the exact solutions of
Au-Yang et al. [11-13] seem to confirm this point
of view [14,15].

A contrario, if one gets hold of an apparently iso-
lated solution, the action of Aut will multiply it until
building up, in experimentally not so rare cases, a
continuous family of solutions from the original one.
This is the solution to the so-called Baxterization
problem (see ref. [16]). In all this, there is a subtle
interplay between generic (infinite, possibly er-
godic) and particular (finite) orbits of the symme-
try group Aut.

We first show that the simplest example of the
Yang-Baxter relation which is the star—triangle re-
lation [1] has an infinite discrete group of sym-
metries generated by three involutions. These in-
volutions are deeply linked with the so-called
inversion relations [17-20].

We then draw the practical consequences of the
existence of this symmetry on the resolution of the
star-triangle equations. The examples we investigate
are the five-state chiral Potts model, for which we
recover the known results of refs. [21-25]. We also
consider a particular six-state spin model.

In ref. [16], this analysis is extended to the Yang-
Baxter, the tetrahedron and hyper-simplicial equa-
tions, for vertex models in any dimension. This could
also be done in a similar manner for the “generalized
star-triangle relation” of interaction round the face
models [26,27].

2. The star-triangle relations
2.1. The setting

We consider a spin model with nearest neighbour
interactions on a square lattice of size M X M’, with
periodic boundary conditions. The spin g; can take
g values. The Boltzmann weight for an oriented bond
(ijy will be denoted hereafter by w(o; o;). The
weights w(g,, g;) can be seen as the entries of a gX g
matrix. In the following we will introduce a pictorial
representation of the star-triangle relation. An ar-
row will be associated to the oriented bond (ij}. The
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arrow from i to j indicates that the argument of the
Boltzmann weight w is (o;, 0;) rather than (o}, 0;).
This arrow will be relevant only for the so-called
chiral models, that is to say that the g X ¢ matrix de-
scribing w is not symmetric. An interesting class of
gX g matrices has been extensively investigated in
the last few years [11-13]: the general cyclic matri-
ces. It is important to note that we do not restrict
ourselves to this particular class of matrices. We will
for instance use the following non-cyclic non-sym-
metric 6 X 6 matrix as another illustrative example:

Xy zy z z
z Xy zy z
Yy z x z zy ()
Yy z z x zy
z y z y x z
z zy z ¥y x

2.2. The relations

We introduce the star-triangle equations both an-
alytically #2 and pictorially:

Z wi(ay, a)w, (0, 02)w;(0, 03)

=iw,(0,, 03)W, (01, 03)W3(0y, G7) . (2)

1 (stl.1)

We give to the reader as an exercise to see that to
satisfy eq. (2) together with the relation obtained by
reversing all arrows

(2)

1 (st.1.2)

(3)

%2 Since the w; and w; are homogeneous variables, there will al-
ways be a global multiplicative factor A floating around in the
star-triangle equations.
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1s a sufficient condition for the commutation of the
diagonal transfer matrices of arbitrary size M with
periodic boundary conditions T, {(w,, W,) and
Ta(W3, wa):

Note that for cyclic matrices [11-13] the star—tri-
angle relations (stl.1) and (st1.2) give the same
equation since one exchanges (st1.2) and (stl.1) by
spin reversal. There are other star-triangle relations
corresponding to other choices for the arrows on the
six bonds of the star and triangle, namely

1 (st2.1)

and of course its associated twin (st2.2) obtained by
reversal of all arrows or

(st3.1)

and its twin(st3.2). Of course, (1), (2) and (3) are
on the same footing and therefore their permutation
will give rise to equivalent star—-triangle relations. One
could obviously imagine many other choices for the
arrows on the six bonds; however, they do not lead
to the commutation of diagonal transfer matrices.
We therefore have three systems of equations to
study: (stl.1 and st1.2) or (st2.1 and st2.2) or (st.3.1
and st3.2).

For example, if the Boltzmann weights are given
by the 6 X6 matrix (1), (stl.1) will correspond to
20 equations, and (stl1.2) gives the same equations.
On the other hand, (st2.1) leads to 35 equations and
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(st2.2) to the same equations also, and finally (st3.1)
and (st3.2) give the same system of 36 equations.

The spin g; may belong to some finite group (not
necessarily Abelian, the Fisher-Griess group Fl
would perfectly do), and the weights be functions of
the group element o;0;7' [28]. This is the case for
the model (1) with the group of permutations of
three elements %. It is easy to see that the number
of equations for one star-triangle relation is not N>
but at most N2,

2.3. First necessary conditions

The interest of the star-triangle relations is that it
implies the commutation of transfer matrices of ar-
bitrary size A. This is what makes the model inte-
grable. It is an extremely severe condition on the
Boltzmann weights. It is an overdetermined set of
eguations.

This starts with size M =1, i.e., a two-site transfer
matrix, the two sites being identified by the periodic
boundary conditions. For relation (st1.1), this com-
mutation means

2 WZ(G/’ O-)WZ(Ua O-/ )W3(GN7 O')W}(O", O'//)
Pz

= Z W3(6’7 U)W3(U, o’ )WZ(U”’ O')M‘/b(ﬂ", O.H) b
’ (3)

whose pictorial representation is

COC O C D

Other choices of arrow arrangement will lead to
slightly different relations.

More simple constraints on the matrix of Boltz-
mann weights may be obtained straightforwardly
from the star-triangle relation. For example if we
pinch spin (2) and (3) in (stl.1), we get

3 B 2
C 0o -—~CD
2 3

ie

WZ(G’ o’ )W3(07 a’ )Wl(o.ni a”

= 2 wi(0,0 )wy(0’, 0" )ws(0",0") . (4)

346

PHYSICS LETTERS A

5 August 1991

These relations point towards a commutation con-
dition on the matrices of Boltzmann weights them-
selves, although they are weaker. Notice that matri-
ces of the form (1) do commute.

3. Infinite discrete symmetry group for the star-
triangle relation

3.1. The inversion relation

Two distinct inverses act on the matrix of Boltz-
mann weights: the matrix inverse / and the dyadic
(element by element) inverse J. We write down the
inverse relations both analytically and pictorially:
2. wlo;, 0)I(w) (0, 0;) = Uy, , (5)

W(U,, Gj)J(W)(Ui»Gj)=1 5 (6)
where J,,, denotes the usual Kronecker delta,

w I(w) -

and
w

. . - [ ] L4
7 % a; 7

J(w)

The two involutions I and J generate an infinite
discrete group I (Coxeter group ) isomorphic to the
infinite dihedral group Z, & Z. The Z part of I is gen-
erated by IJ. In the parameter space of the model,
that is to say some projective space CP,_, (n ho-
mogeneous parameters), / and J are birational in-
volutions. They give a non-linear representation of
this Coxeter group by an infinite set of birational
transformations [29]. It may happen that the action
of I' on specific points yields a finite orbit. This
means that the representation of I identifies with the
p-dihedral group Z, & Z,,. However this is not the ge-
neric situation, and these points often happen, re-
markably enough, to lie on distinguished subvarie-
ties of the parameter space [29].
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3.2. The symmetries of the star-triangle reiations
The two inversions 7 and J act on the star—triangle

relation. We first give a pictorial representation of
this action, starting from (stl.1) as an example;

2
2
J(1) (tst)
3
The transformed equation reads
A Z I(w,) (7, 6,)W, (03, 03)
X Wy (0, 03)W3(0,, 6,)J (W) (02, 03)
= Z Z I(wy) (7, 0y)wi (0, 0)
X Wy(a, ;) ws(0, 63)J (W) (02, 05) , (7)

or equivalently, using the definition of the inverses
ITand J (5), (6):

A Z I(w;) (1, 01) W, (0,, 03)W3(0y, 03)

=w, (1, 02) W3 (7, 03)J (W) (02, 03) . (8)

We get an action on the space of solutions of the
star-triangle relation.

If (w,, w,, ws, W,, W,, W) is a solution of eq. (2)
(see picture (stl.1) for the specific arrangement of
arrows), then (I(w,), Wi, Wy, J(W,), w3, w,) is also
a solution of eq. (2), at the price of a permitted re-
definition of A. In this transformation, the weights w,
and w, play a special role.

At this point, it is better to formalize this action
by introducing some notations. We may choose as a
reference relation %7, the symmetric configuration
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(2) @
(1) =) sl (97)

2
(3) 3)

Any configuration may be obtained by reversing
some arrows and permuting some bonds. With evi-
dent notations, we will denote by R;,, R», R,3, R,
Ry, R the reversals of arrows, and by Py, 5, Py, Py
the permutations of bonds. Moreover [ and J act on
the bonds as [, I, ....

To illustrate this notation, configuration (stl.1) is
obtained from the reference configuration by the ac-
tion of R,R 3R, and we may write

(stl.1)=RoR; R, (ST) . 9)

The action of I and J described above (where (1)
was playing a special role) identifies with the action
of

‘%fl=R52R!3IslJIIPSZ,t3Ps3,12 . (10)
This action gives indeed (tst), that is to say
(tst) =R, R R I Jyy P 3 Ps o (99) (11)

It is easy to check that ] is an involution.

We may construct two similar involutions J and
M3, obtained by cyclic permutation of the indices 1,
2, 3. We consequently have

*}{l=Rs2Rt3IletlPs2.t3Ps3,129 J{%:l s (12)
% =R53Rtl152J12P53,thsl,13: f% =1 > (13)
%=RslRt21s3Jt3Ps],12Psl,ll’ .1/%:1 . (14)

If o is the cyclic permutation o=0,0, Wwith
0s= P 53P;1 52 and g,=Py, 3P, 15, the involutions
are related by

H=0Mo, H=0>H0. (15)

The involutions % (i=1, 2, 3) verify the defining
relations of the Weyl group of an affine algebra of type
ASY [30]:

() =(HA) = () =1. (16)

We will denote by Aut the group generated by the

three involutions % (i=1, 2, 3). We have con-
structed a non-linear representation of Aut.
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This symmetry group contains an action of IJ. It
may be obtained by successively operating with the
previous involutions: first act with 4], then with Jf,
then operate with 2% and finally with #{. This se-
quence of operations, when used on relations (stl1.1),
yields first (ist), and then a sequence of relations
ending with

3 12

) = JIQ (IJstl.1)

JI(2

This sequence of transformations amounts to acting
with the product

Gy =0 Ay A3 0
=R RaRu R (I (1) (1) (JD) 1z - (17)
We may define similarly

G, =0G36* =R R Ry Ry (J1) 3 (1)1 ()3 (WD

(18)
G, =0G,0?=R;3R>R3 R, (1)) 3 (D)2 (JD) 3 (L))2
(19)
We have the relations
G,G,Gs=1, (20)
G:G,=G,G, Yij=1,2,3. (21)

The symmetry group Aut is the semi-direct prod-
uct of the Weyl group of an A, (finite dimensional
simple of rank 2) Lie algebra by a bidimensional lat-
tice translation group ZX Z.

Note that we have constructed a non-linear rep-
resentation of Aut by birational transformations on
the parameter space CPy (see refs. {29,31]).

The following figure shows the usual representa-
tion of Aut with reflections, in the root space of
ASY . The involutions 4] (i=1, 2, 3) are reflections
around the straight lines 1, 2, 3. The fundamental
alcove is the triangle denoted A. The numbers 1, ...,
6 appearing in other triangles are the successive im-
ages of A under the successive action of ], 5, 45,
Ay, A5, A5 We see that the product H300 . A3,
is a translation of the lattice along axis 2, pictured by
the arrow.
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4. A strategy for the resolution of the star-triangle
equation

It would be of interest to detail the action of Aut
on the star-triangle relations for a general matrix of
weights, but we will not do it here. We want to use
the symmetry Aut both to furnish reasonable ansitze
for the form of the matrix of Bolizmann weights,
having in mind a reduction of the number of param-
eters, and to achieve the resolution of the equations.
To do so we will choose specific forms for this ma-
trix, preserved by the two basic inversions I and J.
This permits the reduction of the number of param-
eters, without trivializing the action of Aut. We have
at our disposal the “admissible” patterns introduced
in refs. [29,32]. We will use two specific examples:
the five-state chiral Potts model, and the six-state
model introduced above (see eq. (1)).

Moreover we know that the solutions of the star—
triangle relation (and more generally Yang-Baxter
or (hyper)simplicial equations) lie on algebraic va-
rieties in the space of parameters (homogeneous
space) [33,34].

The symmetry group Aut acts on these varieties as
a group of automorphisms. Since Aut is infinite, this
constrains very strongly these algebraic varieties. A
large proportion of the analysis of the star-triangle
relations relies on the use of the symmetry Aut, and
more precisely on the study of the orbits of Aut, or
even of IJ.

In the two examples we shall consider, generic or-
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bits of 1J lie on algebraic curves whose equations are
known.

4.1. First solutions

There are always solutions of the star-triangle
equations. We have one for example if we take

Wl(G',-, a:i)=5m'a,’ WI(O',-, aj)=l5
Wy =W3, W3;=W,. (22)

They are unfortunately a trivialization of some of the
six weights entering the equations, and are singular
points for the action of Aut. These solutions (which
single out 1) are not a very good starting point for
a perturbation, since we may not move the weights
w, or w,. They have however been used for IRF
models to construct a perturbative relation: the so-
called differential star-triangle relation [35].

Other solutions named disorder solutions, for
which a dimensional reduction of the model hap-
pens, are known [36,37]. The symmetry group Aut
acts on these solutions, and generates an infinity of
image varieties. The partition function is an auto-
morphic function for the action of I, and is known
exactly on the disorder varieties. The outcome is the
very rich structure of the (multivalued) partition
function on the image varieties, and the singulari-
zation of critical and integrable varieties (see the
study of the standard scalar checkerboard Potts
model [38]).

4.2. The star-triangle relation for the five-state
chiral Potts model

The matrix of Boltzmann weights for the five-state
chiral Potts model is the cyclic matrix

w(0) w(l) w(2) w(3) w(4)
w(4) w(0) w(l) w(2) w(3)
w(3) w(4) w(0) w(l) w(2)|. (23)
w(2) w(3) w(4) w(0) w(l)
w(l) w(2) w(3) w(4) w(0)

The original detailed proof of the star-triangle re-
lation for the chiral Potts model can be found in ref.
[39]. The cyclicity of this matrix immediately re-
duces the number of equations, since one may shift
all spins in the star-triangle relation by the same
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amount. Moreover any star-triangle relation and its
twin, obtained by reversing all arrows, leads to the
same set of equations.

4.2.1. The symmetric five-state model

We consider first the non-chiral model obtained
by setting w( 1) =w(4), and w(2) =w(3). The weight
matrix (23) is then symmetric, and the previous dis-
tinctions between different star-triangle relations due
to the presence of arrows disappears. The number of
equations drops to 13.

In this model a linear. pencil of algebraic curves
(elliptic curves) emerges in the study of the orbits
of the group I"generated by /and J [29]. The fraction

(404 3w) (u—-1) (v-1)
T 2uti2uv— (W) —uv(u+v)’

(24)

where u=w(1)/w(0) and v=w(2)/w(0), is invar-
iant by I and J. The curves in the pencil have as
equation 4=const.

It is known that the pairs (1, 1) (respectively (2,
2) and (3, 3)) play a symmetric role and have to lie
on the same algebraic variety in CP, XCP, [40]. We
will assume that w, and w, (respectively 2, 3) lie on
the same algebraic curve. This finds its justification
in our study of the orbits of the group I in CP, X CP,:
the orbits of (w,, w,) under I/ X JI lie on curves only
if 4 is the same for w, and w; [29,41]. We choose
such a curve, that is to say a definite value of 4.

If this is a generic curve, i.e. if 1/ has infinite order,
we may essentially bring (w,, w,, ws, W, W,, W;) to
an ‘“isotropic” point where w;=w,=ws. Strictly
speaking one would have to consider an infinite se-
quence which of course converges.

From such a definite solution (one point (w,, w,,
ws, Wy, W,, W3)), the action of Aut yields more
solutions.

The isotropic point verifies w, =w,=Ww;. Why go
to this isotropic point? Simply because in this iso-
tropic limit, the number of equations (and of un-
knowns) reduces considerably (five equations), 1,
2, and 3 being on the same footing in the star-tri-
angle relations. The point is that we can solve this
system explicitly.

We use the variables u=w(1)/w(0), v=w(2)/
w(0), a=w(1)/w(0), i=w(2)/w(0). By elimina-
tion of 7 and 7, we find that ¥ and v have to be a so-
lution of
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(1—4y—4y*+y°+y*) (1 +y+y>+y*+y*)
X (p*+16y°—19y2 —4y+ 1) (—1+4y—2y?
—14y34+12y%+4y>—16y°+8y7)
X (4y*+2y—1)°(y—1)"
X (4y"+4y°+2y5+6y*—y3+5y2—y+1)p!3
X (113 +12p24+3y—1)
X (4y*424y3+ 14y —16y—1) =0, (25)

and we calculate directly # and 7 from the star—tri-
angle telations.

The factor —1—-2)>—14p3+4y+12y*+4y°
—16y°+ 8y’ corresponds to an illicit elimination.
Among the other factors, a number correspond to
various trivializations. The only relevant conditions
are

1—dutu*—4u’+u’=0, (26)
v +160°—1902—40v+1=0. (27)

Eq. (26) (respectively (27)) has four real solutions
Uy, Uy ooy Vgl

u; ~—1.82709..., u,~0.20905...

Uy~ —1.33826..., 1s~1.95629..., (28)
v & —17.09739.., v,~0.15312...,
v~ 1.24987..., w4~ —0.30560.... (29)

The points we are looking at have as coordinates (u,,
v), i=1, ..., 4, with this definite correspondence be-
tween the roots. We also have the points obtained by
the exchange u<—v. We can check that the points (u,
v), and (i@, D) are on the same curves 4=13(3+
J3) fori=1, 2 or 4=1(3—=./5) for i=3, 4. These
orbits have two characteristic features:

(1) They decompose into hyperbolae. If we set
w=exp(2in/5) these hyperbolae are

(=) (w*+w>)—u(l-v)=0 (30)

and its symmetric with respect to the line u=u, for
4=1(3+/5), and

(=) (w+w?)—u(l—-v)=0 (31)

and its symmetric with respect to the line u=uv, for
4=1(3-/5).
(i1) All points on these curves have a finite orbit
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under the action of T, since 1J is of order five.

Remark. This result eliminates the possibility of
integrability for generic elliptic curves in the pencil,
where 1J has infinite order.

The elliptic parametrization, and the addition law
on the curves of this pencil will be given elsewhere
{42]. The parametrization of the curves 4=4(3 =+
ﬁ ) reduces to a rational one. On the hyperbola
(30) 1t reads

ttw? v o
U= 2. = .
l+wt u 14wt

(32)

The hyperbola (31) is obtained by the replacement
w—-w~" in (32). We shall use in the sequel one of
the four “isotropic” points, corresponding to

liso =€xp(16i6) , (33)
fso =€Xp(38i8) , (34)
with
f=mn/30, (35)
that is
-4
Uiso = c(20) =~ 1.827090...,
_c(4) c(2)
Viso = 2(20) —6(14) =-—17.097396...,
o= — S0 _0.74723827...,
c(l)
c(7)e(13)

Viso = — (1) ¢(25) =0.17939378...,

if we set c(p) =cos(pf#). We use the parametrization
(32), where a special role is given to u, and the ob-
vious notation ¢,, z;. With this parametrization of (1,
2,3, 1, 2, 3) we have verified that the star-triangle
equations become

Lt =—w?, (36)
Lty =w?. (37)

The one-parameter family of solutions we find here

1s the one of ref. [43]. It is interesting to recall that

we have not presupposed any self-duality property.
The action of the group Aut reads

Itisw?*/t, J:t,-1/t, (38)
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Kt b, s, E, b, 1)

= (w4t 15,6, 1/8,,15, 1), (39)
Gi:(t, ta, 13, By, Iy, £3)

— (1, 0, 0%, [, w*hL, wiy) . (40)

This form makes transparent the presence of a dis-
crete bidimensional translation group ~Z X Z inside
Aut, in a multiplicative form.

4.2.2. Infinitesimal resolution around the isotropic
point

We come back to the chiral model, with five ho-
mogeneous parameters w(k), k=0, 1, 2, 3, 4 and
weight matrix (23).

The above (symmetric) isotropic point is a par-
ticular solution of the star—triangle relation for this
model. We shall use the non-homogeneous variables
x(k)=w(k)/w(0), k=1, ..., 4. We introduce the in-
finitesimal perturbation X;(k) of x;(k), and X,(k)
of x;(k), with obvious notations.

The linearized star-triangle relations yield a ho-
mogeneous linear system for X;(k), X;(k). This sys-
tem is not only compatible, but it has a four-dimen-
sional space of solutions.

The solutions verify

X1 (k) + X5 (k) + X3 (k)
=X',(k)+X_'2(k)+X_'3(k)=O s
k=1,..,4. (41)

If we introduce the symmetric and antisymmetric
vectors X® and X2 (respectively X* and X?)

1 1
x=° = 2|,
S —da
1 —1
1 1
=] x=| ¢, (42)
S —a
1 -1
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with

s=[2—4c(2)—c(4)+c(6)
+7¢(8)—7c(10)—c(12)=3c(14)]
X[—2—4c(2)+8c(4)—c(6)
+2c(8)—4c(10)+c(12)—2¢(14)]7",

a=[-2+4+4c(2)+c(4)—c(6)
~9¢(8)+9c(10)+c(12)—c(14)]
X[—=6+2c(2)+8c(4)+17¢(6)
—42¢(8)+2c(10)+23¢(12)+22¢(14)] 7,

§=[-2+10c(2)—12¢(4)+7c(6)
—7c(8)+3c(10)+4c(12)—-2¢(14) ]
X [10=15¢(2)+11c(4)—9¢(6)
+2c¢(10)+c(12) +4c(14)17',

a=[10—-4c(2)—-12¢(4)+18¢(6)
—26c(8)+14c(10)+8c(12) —8c(14)]
X[114+20c(2)—60c(4)+68c(6)
—90c(8)+50c(10) +32¢(12)—50c(14)]1 71,

with ¢(p)=cos(pf), i.e., numerically:

s~ —58.28463..., a=x~-1.0308189...,

§~—1.834537..., a=~4.543390...,

and set
Xi=s;X°+a, X, (43)
X =5X+a,xX? i=1,2,3, (44)
we get

sy +s;+s3=a,+a,+a;=0,

Si=—as;, d,=p(a,—a;),
a,=p(az—a,), a;=p(a—-ay), (45)
with

— m ~—0.2527617250..., (46)
B=31—3tc(1)+53c(3) +55c(7)

~0.0108158287... (47)
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This proves **> the existence of a four-parameter
Jfamily of solutions of the star-triangle equations con-
taining the isotropic point. This family contains in
particular the Fateev—Zamolodchikov solution where
all weights w; (respectively w;) belong to the hyper-
bola (30) of the curve 4= (3+ﬁ ). The vectors
X® and X* are tangent to that hyperbola. We know
that IJ is of finite order on this curve (the order is
five). We have the prejudice that the integrability
surface is of the same nature, i.e. is a locus of points
where (IJ)>=1. Notice that such a locus is auto-
matically invariant by both I and J. Such a surface
is given by the two equations

A[w(D)w(3)w(4)?=3w(2)?w(4)?
+2w(1)w(2)w(4)w(0)+w(3)w(2)*w(0)
3w (1)w(3)*w(0)+2w(4)w(2)w(3)?]
—4w(2)*w(4)2—4aw(1)w(3)*w(0)
+3w(3)w(2)2w(0)+3w(1)w(3)w(4)?
+w(Hw2I)w(3)2+w(1)w(2)w(4)w(0)=0

(48)
and

AL =2w(3)*w(0)>=2w(1)w(2)w(4)>
—w(HHw(3)2w(1)+3w(0)w(3)w(4)?
+3w(2)w(1)w3)w(0) —w(2)w(0)*w(4)]
—w(Dw(2)w(4)2+2w(2)w(0)*w(4)
—w(0)w(3)W(4)>+2w(4)w(3)?w(1)
—w(3)2w(0)2—w(2)w(1)w(3)w(0)=0,

(49)

with A=4(-1 i\/g ). These surfaces cut the sym-
metric subset w(l)=w(4), w(2)=w(3), along the
two hyperbolae (30) and (31) for A=4(—-1+
\/g yand A=—1(1 +\/§ ) respectively. The vectors
Xs, X*, X, X* are tangent to this surface for 4=
H(—1+./5).

The consequences of eq. (45) on the commuta-
tion of transfer matrices 7,=T,,(W,, w;) are the fol-
lowing: locally near the isotropic point 7; depends on
(s;, a;, $;, @;). The commutation of 7, and T is ob-

#3 As a consequence of the implicit function theorem and the
algebraicity of the solutions of the star-triangle equations.
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tained by imposing relations (45). We first need
5, = —as, which allows three parameters for 7. At
this point (45) fixes a, and @, and the only free pa-
rameter for T, is s,, giving a one-parameter family
of commuting transfer matrices.

4.3. Analysis of a non-cyclic model

We consider the model introduced above with
weight matrix given by (1). The interest of this model
is that there exists an algebraic invariant for the ac-
tion of I and J, and consequently of the group I
[29,44]. The orbits lie in elliptic curves [29,44]. The
existence of this algebraic invariant makes the model
a good candidate for integrability. The weight matrix
being non-symmetric, we have to specify the ar-
rangement of arrows in the star—triangle relations.

The presence of this true chirality (as opposed to
what happens for the model (23) where a reversal
of arrows amounts to a spin relabelling) breaks the
symmetry between 1, 2, and 3. Eqgs. (sti.1), (st2.1),
and (st3.1) are three different systems of equations.
By a direct investigation one sees that the only so-
lutions, up to trivial ones, are obtained for y=z, that
is to say when the model reduces to the standard sca-
lar six-state Potts model.

5. Conclusion

We have described and used the infinite symmetry
group of the Yang-Baxter relations for nearest neigh-
bour spin models. It is important to stress two im-
portant facts about this symmetry.

The first is that it also exists for vertex models as
well as for the higher dimensional generalizations of
the Yang-Baxter equations as the tetrahedron equa-
tions [16].

The second one is that, as always in this field of
integrability in statistical mechanics, one sees three
faces of the subject.

There is a topological aspect, related for example
to knot theory, for the Yang-Baxter relations have to
do with deformations of knots [45].

There is also a purely algebraic aspect, already in
the writing of the equations, but also in the finer de-
scription of their content (quantum inverse scatter-
ing, algebraic Bethe ansatz, quantum groups and all
that [46]).
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Finally there is an analytical aspect, as soon as for
example elliptic curves and functions defined on
them pop out.

All these three aspects were present from the early
years of existence of the field, but their fascinating
interrelations have been emerging only step by step.

The symmetry we have described permits such a
progress. Indeed it has a very simple graphical rep-
resentation and it bridges directly an algebraic sym-
metry and the analytical aspect, via the construction
of the algebraic varieties of parameters
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