Pushing forward the dimension of fcc lattices

Christoph Koutschan (joint work with Jean-Marie Maillard)

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

> August 10, 2015 DART-VI, ICIAM'2015, Beijing, China

J O H A N N · R A D O N · I N S T I T U T E FOR COMPUTATIONAL AND APPLIED MATHEMATICS

Motivation: statistical physics, crystallography, atomic structure

Densest possible packing of spheres: Kepler conjecture (proved by Hales in 2005)

Motivation: statistical physics, crystallography, atomic structure

Densest possible packing of spheres: Kepler conjecture (proved by Hales in 2005)

Motivation: statistical physics, crystallography, atomic structure

Densest possible packing of spheres: Kepler conjecture (proved by Hales in 2005)

The *d*-dimensional fcc lattice is composed of $1 + \binom{d}{2}$ translated copies of \mathbb{Z}^d :

$$\mathbb{Z}^d + \sum_{1 \leq i < j \leq d} ig(rac{1}{2} (oldsymbol{e}_i + oldsymbol{e}_j) + \mathbb{Z}^d ig).$$

Random Walks

We consider random walks on the lattice points:

- Move to one of the nearest neighbors in each step.
- All steps have the same probability.
- A lattice point can be visited arbitrarily often.
- Starting point is the origin **0**.

Random Walks

We consider random walks on the lattice points:

- Move to one of the nearest neighbors in each step.
- All steps have the same probability.
- A lattice point can be visited arbitrarily often.
- Starting point is the origin **0**.

The set of permitted steps in the d-dimensional fcc lattice is

$$S = \{(s_1, \dots, s_d) \in \{0, -1, 1\}^d : |s_1| + \dots + |s_d| = 2\},\$$

i.e., there are $4\binom{d}{2}$ steps (called the *coordination number* c).

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x};z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x};z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

 \longrightarrow Note that $c^n p_n(x)$ is an integer and gives the total number of such (unrestricted) walks.

The lattice Green's function is the probability generating function

$$P(\boldsymbol{x}; z) = \sum_{n=0}^{\infty} p_n(\boldsymbol{x}) z^n$$

where $p_n(x)$ is the probability of being at point x after n steps.

 \longrightarrow Note that $c^n p_n(x)$ is an integer and gives the total number of such (unrestricted) walks.

Its multivariate generating function

$$F(\boldsymbol{y}; z) = \sum_{n=0}^{\infty} \sum_{\boldsymbol{x} \in \mathbb{Z}^d} p_n(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{x}} z^n = \frac{1}{1 - \frac{z}{|S|} \sum_{\boldsymbol{s} \in S} \boldsymbol{y}^{\boldsymbol{s}}}$$

is rational (S is the step set).

We are particularly interested in

$$P(\mathbf{0};z) = \sum_{n=0}^{\infty} p_n(\mathbf{0}) z^n = \left\langle y_1^0 \dots y_d^0 \right\rangle F(\mathbf{y};z) = \frac{1}{\pi^d} \int_0^{\pi} \dots \int_0^{\pi} \frac{\mathrm{d}k_1 \dots \mathrm{d}k_d}{1 - z\lambda(\mathbf{k})}$$

that encodes the return probabilities. It is D-finite.

Here $\lambda(\mathbf{k})$ is called the *structure function* of the lattice; it is given by the discrete Fourier transform of the single-step probabilities:

$$\lambda(oldsymbol{k}) = \sum_{oldsymbol{x} \in \mathbb{R}^d} p_1(oldsymbol{x}) e^{ioldsymbol{x} \cdot oldsymbol{k}}$$

We are particularly interested in

$$P(\mathbf{0};z) = \sum_{n=0}^{\infty} p_n(\mathbf{0}) z^n = \left\langle y_1^0 \dots y_d^0 \right\rangle F(\mathbf{y};z) = \frac{1}{\pi^d} \int_0^{\pi} \dots \int_0^{\pi} \frac{\mathrm{d}k_1 \dots \mathrm{d}k_d}{1 - z\lambda(\mathbf{k})}$$

that encodes the return probabilities. It is D-finite.

Here $\lambda(\mathbf{k})$ is called the *structure function* of the lattice; it is given by the discrete Fourier transform of the single-step probabilities:

$$\lambda(oldsymbol{k}) = \sum_{oldsymbol{x} \in \mathbb{R}^d} p_1(oldsymbol{x}) e^{ioldsymbol{x} \cdot oldsymbol{k}}$$

In the case of the fcc lattice:

$$\lambda(\boldsymbol{k}) = {\binom{d}{2}}^{-1} \sum_{1 \le i < j \le d} \cos(k_i) \cos(k_j).$$

Return Probability

What is the probability that a walker ever returns to the origin?

Return Probability

What is the probability that a walker ever returns to the origin?

The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Return Probability

What is the probability that a walker ever returns to the origin?

The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

For d = 3, the return probability is one of *Watson's integrals*:

$$R = 1 - \left(\frac{1}{\pi^3} \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \frac{\mathrm{d}k_1 \,\mathrm{d}k_2 \,\mathrm{d}k_3}{1 - \frac{1}{3}(c_1c_2 + c_1c_3 + c_2c_3)}\right)^{-1} = 1 - \frac{16\sqrt[3]{4}\pi^4}{9(\Gamma(\frac{1}{3}))^6}$$

where $c_i = \cos(k_i)$.

1. Hand calculations

- 1. Hand calculations
- 2. Automated guessing of ODEs
 - Construct the ODE from a truncated Taylor expansion.
 - Ansatz with undetermined coefficients leads to a linear system.
 - Trade order for degree.
 - Use homomorphic images (chinese remaindering, etc.)

- 1. Hand calculations
- 2. Automated guessing of ODEs
 - Construct the ODE from a truncated Taylor expansion.
 - Ansatz with undetermined coefficients leads to a linear system.
 - Trade order for degree.
 - Use homomorphic images (chinese remaindering, etc.)
 - The Taylor coefficients can be obtained in various ways:
 - Expansion of the integrand
 - Walk enumeration
 - Reduction of dimension by multi-level guessing
 - Recursive method

- 1. Hand calculations
- 2. Automated guessing of ODEs
 - Construct the ODE from a truncated Taylor expansion.
 - Ansatz with undetermined coefficients leads to a linear system.
 - Trade order for degree.
 - Use homomorphic images (chinese remaindering, etc.)
 - The Taylor coefficients can be obtained in various ways:
 - Expansion of the integrand
 - Walk enumeration
 - Reduction of dimension by multi-level guessing
 - Recursive method
- 3. WZ proof theory (creative telescoping)

d	order	degree	ind. pol. at $z = 0$
3	3	5	λ^3

d	order	degree	ind. pol. at $z = 0$
3	3	5	λ^3
4	4	10	λ^4

d	order	degree	ind. pol. at $z = 0$
3	3	5	λ^3
4	4	10	λ^4
5	6	17	$\lambda^5(\lambda-1)$

d	order	degree	ind. pol. at $z=0$
3	3	5	λ^3
4	4	10	λ^4
5	6	17	$\lambda^5(\lambda-1)$
6	8	43	$\lambda^6 (\lambda - 1)^2$

d	order	degree	ind. pol. at $z = 0$
3	3	5	λ^3
4	4	10	λ^4
5	6	17	$\lambda^5(\lambda-1)$
6	8	43	$\lambda^6 (\lambda - 1)^2$
7	11	68	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n (c_1c_2 + c_1c_3 + c_2c_3)^n$$

Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n (c_1c_2 + c_1c_3 + c_2c_3)^n$$

Use the multinomial theorem:

$$(c_1c_2 + c_1c_3 + c_2c_3)^n = \sum_{n_1+n_2+n_3=n} \binom{n}{n_1, n_2, n_3} (c_1c_2)^{n_1} (c_1c_3)^{n_2} (c_2c_3)^{n_3}$$

Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n (c_1c_2 + c_1c_3 + c_2c_3)^n$$

Use the multinomial theorem:

$$(c_1c_2 + c_1c_3 + c_2c_3)^n = \sum_{n_1+n_2+n_3=n} \binom{n}{n_1, n_2, n_3} (c_1c_2)^{n_1} (c_1c_3)^{n_2} (c_2c_3)^{n_3}$$

Use Wallis's integration formula:

$$\frac{1}{\pi} \int_0^\pi \cos^{2n} k \, \mathrm{d}k = 4^{-n} \binom{2n}{n}$$

The *n*-th Taylor coefficient can be computed by a $\binom{d}{2} - 1$ -fold sum.

Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n \left(c_1c_2 + (c_1 + c_2)c_3\right)^n$$

Use the multinomial theorem:

$$(c_1c_2 + c_1c_3 + c_2c_3)^n = \sum_{n_1+n_2+n_3=n} \binom{n}{n_1, n_2, n_3} (c_1c_2)^{n_1} (c_1c_3)^{n_2} (c_2c_3)^{n_3}$$

Use Wallis's integration formula:

$$\frac{1}{\pi} \int_0^\pi \cos^{2n} k \, \mathrm{d}k = 4^{-n} \binom{2n}{n}$$

The *n*-th Taylor coefficient can be computed by a $\binom{d}{2} - 1$ -fold sum.

Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n \left(c_1c_2 + (c_1 + c_2)c_3\right)^n$$

Use the binomial theorem:

$$(c_1c_2 + (c_1 + c_2)c_3)^n = \sum_{j=0}^n \binom{n}{j} (c_1c_2)^{n-j} (c_1 + c_2)^j c_3^j$$

Use Wallis's integration formula:

$$\frac{1}{\pi} \int_0^\pi \cos^{2n} k \, \mathrm{d}k = 4^{-n} \binom{2n}{n}$$

The *n*-th Taylor coefficient can be computed by a $\binom{d}{2} - 1$ -fold sum.

Example for d = 3 (c_i denotes $\cos k_i$)

Expand the integrand in a geometric series:

$$\frac{1}{1 - \frac{z}{3}(c_1c_2 + c_1c_3 + c_2c_3)} = \sum_n \left(\frac{z}{3}\right)^n \left(c_1c_2 + (c_1 + c_2)c_3\right)^n$$

Use the binomial theorem:

$$(c_1c_2 + (c_1 + c_2)c_3)^n = \sum_{j=0}^n \binom{n}{j} (c_1c_2)^{n-j} (c_1 + c_2)^j c_3^j$$

Use Wallis's integration formula:

$$\frac{1}{\pi} \int_0^\pi \cos^{2n} k \, \mathrm{d}k = 4^{-n} \binom{2n}{n}$$

The *n*-th Taylor coefficient can be computed by a recursive method.

The Recursive Method

Define

$$T_d(n,j) := \frac{4^{n+j}}{\pi^d} \int_0^{\pi} \cdots \int_0^{\pi} \left(\sum_{1 \le i < j \le d} \cos(k_i) \cos(k_j) \right)^n \left(\sum_{i=1}^d \cos(k_i) \right)^{2j} \mathrm{d}\boldsymbol{k}.$$

The Recursive Method

Define

$$T_d(n,j) := \frac{4^{n+j}}{\pi^d} \int_0^{\pi} \cdots \int_0^{\pi} \left(\sum_{1 \le i < j \le d} \cos(k_i) \cos(k_j) \right)^n \left(\sum_{i=1}^d \cos(k_i) \right)^{2j} \mathrm{d}\mathbf{k}.$$

A straightforward calculation leads to the recurrence:

$$\begin{split} T_d(n,j) &= \sum_{p=0}^n \sum_{q=q_1}^{q_2} \binom{n}{p} \binom{2j}{2q+p-n} \binom{2n+2j-2p-2q}{n+j-p-q} T_{d-1}(p,q) \\ \text{with } q_1 &= [(n-p+1)/2] \text{ and } q_2 = [(n-p+2j)/2]. \end{split}$$

Initial condition:

$$T_2(n,j) = \sum_{p=p_1}^{p_2} {\binom{2p}{p}} {\binom{2j}{2p-n}} {\binom{2n+2j-2p}{n+j-p}}$$

with $p_1 = [(n+1)/2]$ and $p_2 = [(n+2j)/2]$.

$$T_{d}(n,j) = \sum_{p=0}^{n} \sum_{q=q_{1}}^{q_{2}} {\binom{n}{p}} {\binom{2j}{2q+p-n}} {\binom{2n+2j-2p-2q}{n+j-p-q}} T_{d-1}(p,q)$$

$$T_d(n,j) = \sum_{p=0}^n \sum_{q=q_1}^{q_2} \binom{n}{p} \binom{2j}{2q+p-n} \binom{2n+2j-2p-2q}{n+j-p-q} T_{d-1}(p,q)$$

- 1. Main loop over d:
 - Have to fix the number of Taylor coefficients $T_d(n,0)$ a priori.
 - Recompute the coefficients in each iteration.
- 2. Main loop over n:
 - No knowledge about the necessary expansion order is needed.
 - Recomputation is avoided.
 - One needs to keep the full 3-dimensional array.

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6(\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6(\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
8	14	126	714	$\lambda^8(\lambda-1)^4(\lambda-2)^2$

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6(\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
8	14	126	714	$\lambda^8(\lambda-1)^4(\lambda-2)^2$
9	18	169	999	$\lambda^9(\lambda-1)^5(\lambda-2)^3(\lambda-3)$

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6(\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
8	14	126	714	$\lambda^8 (\lambda - 1)^4 (\lambda - 2)^2$
9	18	169	999	$\lambda^9(\lambda-1)^5(\lambda-2)^3(\lambda-3)$
10	22	300	1739	$\lambda^{10}(\lambda-1)^6(\lambda-2)^4(\lambda-3)^2$

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6 (\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
8	14	126	714	$\lambda^8(\lambda-1)^4(\lambda-2)^2$
9	18	169	999	$\lambda^9(\lambda-1)^5(\lambda-2)^3(\lambda-3)$
10	22	300	1739	$\lambda^{10}(\lambda-1)^6(\lambda-2)^4(\lambda-3)^2$
11	27	409	2464	$\lambda^{11}(\lambda-1)^7(\lambda-2)^5(\lambda-3)^3(\lambda-4)$
New Results

d	order	degree	terms	ind. pol. at $z=0$
3	3	5	20	λ^3
4	4	10	40	λ^4
5	6	17	88	$\lambda^5(\lambda-1)$
6	8	43	228	$\lambda^6(\lambda-1)^2$
7	11	68	391	$\lambda^7 (\lambda - 1)^3 (\lambda - 2)$
8	14	126	714	$\lambda^8(\lambda-1)^4(\lambda-2)^2$
9	18	169	999	$\lambda^9(\lambda-1)^5(\lambda-2)^3(\lambda-3)$
10	22	300	1739	$\lambda^{10}(\lambda-1)^6(\lambda-2)^4(\lambda-3)^2$
11	27	409	2464	$\lambda^{11}(\lambda-1)^7(\lambda-2)^5(\lambda-3)^3(\lambda-4)$
12*	32	617	3618	$\lambda^{12}(\lambda-1)^8(\lambda-2)^6(\lambda-3)^4(\lambda-4)^2$

* modulo prime

Landau Singularities

Leading coefficient of the order-6 operator for d = 5:

$$16(-5+z)(-1+z)z^{4}(5+z)^{2}(10+z)(15+z)(5+3z)$$

$$\times (-675000 + 3465000z - 1053375z^{2} + 933650z^{3}$$

$$+ 449735z^{4} + 144776z^{5} + 15678z^{6})$$

Landau Singularities:

- Singularities of a function defined by a multiple integral
- Can be found by imposing conditions on the integrand.
- ▶ For *P*(**0**; *z*) one obtains

$$\binom{d}{2}\frac{2(1-k)}{d^2 - (k+4j+1)d + 4j^2 + k + 4jk}$$

for $k = 0, 2, 3, \dots, d-1$ and $j = 0, 1, \dots, [(d-1)/2]$.

Can be used as a consistency check.

Landau Singularities for d = 11

The leading coefficient of the differential operator is

$$\begin{array}{l} x^{22} \ (x+11)^6 \ (55+x)^2 \ (x-1) \ (8 \ x+55) \ (29 \ x+55) \\ (4 \ x+55) \ (2 \ x+55) \ (4 \ x+11) \ (7 \ x+165) \ (7 \ x-55) \\ (2 \ x+33) \ (17 \ x+55) \ (x+44) \ (13 \ x+275) \ (3 \ x+55) \\ (7 \ x-11) \ (13 \ x+55) \ (7 \ x+110) \ (x+35) \ (3 \ x+22) \\ (x+99) \ (19 \ x-55) \ (7 \ x+33) \ (9 \ x+11) \ (x+15) \\ (9 \ x+55) \ (17 \ x+275) \ (3 \ x+77) \ (23 \ x+165) \\ \times \ \langle \text{irreducible polynomial of degree } 352 \rangle \end{array}$$

1. All operators are irreducible.

- 1. All operators are irreducible.
- 2. For odd dimension d:
 - Symmetric square has a drop of order by 1.
 - Galois group is included in $SO(r, \mathbb{C})$.

- 1. All operators are irreducible.
- 2. For odd dimension d:
 - Symmetric square has a drop of order by 1.
 - Galois group is included in $SO(r, \mathbb{C})$.
- 3. For even dimension *d*:
 - Exterior square has a drop of order by 1.
 - Galois group is included in $Sp(r, \mathbb{C})$.

- 1. All operators are irreducible.
- 2. For odd dimension *d*:
 - Symmetric square has a drop of order by 1.
 - Galois group is included in $SO(r, \mathbb{C})$.
- 3. For even dimension *d*:
 - Exterior square has a drop of order by 1.
 - Galois group is included in $Sp(r, \mathbb{C})$.
- 4. There exists a nontrivial homomorphism that maps the solutions of the operator *L* to the solutions of its adjoint:

$$\exists L_{\text{hom}}: \quad \operatorname{adj}(L_{\text{hom}}) \cdot L = \operatorname{adj}(L) \cdot L_{\text{hom}}$$

This gives rise to a "canonical decomposition".

Canonical Decomposition

Perform successive Euclidean right divisions of L and L_{hom} :

$$L_0 := L$$

$$L_1 := L_{\text{hom}}$$

$$L_i := U_{i+1}L_{i+1} + L_{i+2}$$

- The quarks U_i are self-adjoint.
- Tower of intertwiners: $\operatorname{adj}(L_{i+1}) \cdot L_i = \operatorname{adj}(L_i) \cdot L_{i+1}$
- Also the L_i have special Galois groups.
- ▶ This yields a canonical decomposition of *L* in terms of the *U*_i.

Canonical Decomposition

Perform successive Euclidean right divisions of L and L_{hom} :

$$L_0 := L$$

$$L_1 := L_{\text{hom}}$$

$$L_i := U_{i+1}L_{i+1} + L_{i+2}$$

- The quarks U_i are self-adjoint.
- Tower of intertwiners: $\operatorname{adj}(L_{i+1}) \cdot L_i = \operatorname{adj}(L_i) \cdot L_{i+1}$
- Also the L_i have special Galois groups.
- ▶ This yields a canonical decomposition of *L* in terms of the *U*_i.

Example: (d = 7, r = 11)

$$L = (U_1 U_2 U_3 U_4 U_5 + U_1 U_2 U_5 + U_1 U_4 U_5 + U_1 U_2 U_3 + U_3 U_4 U_5 + U_5 + U_3 + U_1) \cdot r$$

where U_1, U_2, U_3, U_4 have order 1, the order of U_5 is 7, and r is a rational function.

Pushing forward the dimension of fcc lattices

Christoph Koutschan (joint work with Jean-Marie Maillard)

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

> August 10, 2015 DART-VI, ICIAM'2015, Beijing, China

J O H A N N · R A D O N · I N S T I T U T E FOR COMPUTATIONAL AND APPLIED MATHEMATICS