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Face-Centered Cubic (fcc) Lattice

Motivation: statistical physics, crystallography, atomic structure

Densest possible packing of spheres: Kepler conjecture
(proved by Hales in 2005)

The d-dimensional fcc lattice is composed of 1 + (g) translated
copies of Z%:
z'+ Y (Sei+ej)+27).
1<i<j<d
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Random Walks

consider random walks on the lattice points:

Move to one of the nearest neighbors in each step.
All steps have the same probability.

A lattice point can be visited arbitrarily often.

Starting point is the origin O.
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Random Walks

We consider random walks on the lattice points:

> Move to one of the nearest neighbors in each step.

v

All steps have the same probability.

v

A lattice point can be visited arbitrarily often.

v

Starting point is the origin O.

The set of permitted steps in the d-dimensional fcc lattice is
S = {(31,...,sd) S {0,—1,1}61 sls1] 4+ sl :2}7

i.e., there are 4(%) steps (called the coordination number c).
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Lattice Green's Function

The lattice Green's function is the probability generating function
oo
P(x;z) = an(m)z”
n=0

where p, () is the probability of being at point x after n steps.
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Lattice Green's Function

The lattice Green's function is the probability generating function
oo
P(x;z) = an(m)z”
n=0

where p, () is the probability of being at point x after n steps.

— Note that ¢"p,(x) is an integer and gives the total number of
such (unrestricted) walks.
Its multivariate generating function

o0

Fly;z) =Y Y palx)y®2" = .

_ 2 8
n=0 gc7zd 1 5] > scsY

is rational (S is the step set).
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Lattice Green's Function
We are particularly interested in

Z):ni:opn(()),zn: - ya)F( wd/ / ikiT

that encodes the return probabilities. It is D-finite.

Here A(k) is called the structure function of the lattice; it is given
by the discrete Fourier transform of the single-step probabilities:

Ak) =) pi(z)e™F

xzcR4
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Lattice Green's Function
We are particularly interested in

> . ™ dky ..

that encodes the return probabilities. It is D-finite.

Here A(k) is called the structure function of the lattice; it is given
by the discrete Fourier transform of the single-step probabilities:

Ak) =) pi(z)e™F

xzcR4

In the case of the fcc lattice:

)\(k):<;l>_1 S cos(hi) cos(k;).

1<i<j<d
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What is the probability that a walker ever returns to the origin?
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1 1
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Return Probability

What is the probability that a walker ever returns to the origin?

The return probability R (Pdlya number) is given by

1 1
R=1l- e =1—— .
anopn(o) P(O’ 1)

It is well known that in 2D the return is certain.
For d = 3, the return probability is one of Watson's integrals:

-1
R=1— 1/7r/7r/7T dkq dko dks :1_L\/zﬂ4
73 0oJoJo 1— %(6162 +cie3 + 6203) 9(1“(1))6

3

where ¢; = cos(k;).
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Walk enumeration
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Approaches

1. Hand calculations
2. Automated guessing of ODEs

» Construct the ODE from a truncated Taylor expansion.

> Ansatz with undetermined coefficients leads to a linear system.
> Trade order for degree.

» Use homomorphic images (chinese remaindering, etc.)

The Taylor coefficients can be obtained in various ways:

> Expansion of the integrand

> Walk enumeration

» Reduction of dimension by multi-level guessing
» Recursive method

3. WZ proof theory (creative telescoping)
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Previous results

The minimal-order ODE for P(0; z) has been computed in several
dimensions:

d order degree ind. pol. at z=0
3 3 5 A3
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The minimal-order ODE for P(0; z) has been computed in several

dimensions:

Previous results

d order degree ind. pol. at z=0
3 3 5 A3

4 4 10 A4
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6 8 43 A\ —1)2

7 11 68 AN (A—1)3(A—2)
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Expansion of the integrand
Example for d = 3 (¢; denotes cos k;)

Expand the integrand in a geometric series:

1 Z\"™
=> (*) (cre2 + cic3 + cpc3)”
n

1-— %(0162 + c1e3 + cac3) 3

8/16



Expansion of the integrand
Example for d = 3 (¢; denotes cos k;)

Expand the integrand in a geometric series:

1 Z\"™
=> (*) (cre2 + cic3 + cpc3)”
n

1-— %(0162 + c1e3 + cac3) 3

Use the multinomial theorem:

n
(croa + crcs + cocg)" = > ( )(0102)”1 (c1e3)™ (c2c3)™

nit+nz+nz=n 1,72, 3

8/16



Expansion of the integrand
Example for d = 3 (¢; denotes cos k;)

Expand the integrand in a geometric series:

1 Z\"™
=> (*) (cre2 + cic3 + cpc3)”
n

1-— %(0162 + c1e3 + cac3) 3

Use the multinomial theorem:

n
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Expansion of the integrand
Example for d = 3 (¢; denotes cos k;)

Expand the integrand in a geometric series:

1 = (g)n(clcz + (1 + ea)es)”

1-— %(0162 + c1e3 + cac3)

Use the binomial theorem:

(crea+(e14c2)es)" = (?) (cre2)" 7 (e1 4 ¢2) €}
=0

Use Wallis's integration formula:

l / cos? kdk = 4" <2n>
™ 0 n

The n-th Taylor coefficient can be computed by a recursive method.
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The Recursive Method

_4"+J / / < cos( cos(k])>n<§:cos(ki))2jdk.

1<i<j<d i=1

Define
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The Recursive Method
Define

i [ 3 ot (et

1<i<j<d

A straightforward calculation leads to the recurrence:

“ 2n 425 —2p — 2q
ZZ()(Q N _n>< n+j._ , )le(Z%Q)
p=0d=q1 qTp J—Pp
with ¢1 = [(n —p+1)/2] and ¢2 = [(n — p+ 2j)/2].
Initial condition:
p2 . .
N 2p 27 2n+25 —2p
TQ(n’j)_gp:l(p><2p—n>< n+j—p

with p; = [(n 4+ 1)/2] and pa = [(n + 2j)/2].
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Computational Scheme
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p=0q=q1

Computational Scheme

()

A

2n+25 —2p — 2q
n+j—p—q
‘e
N

)Td—l(p» q)
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Computational Scheme
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Computational Scheme

_iqi(nx 2;j ><2n+2j—2p—2q>T .0
— ~—~ \p/\2¢+p—n n+j—p—q -1

A
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Computational Scheme

i 2 ( ) <2q +1; - n> <2nn++2§ :;p—_q2q> Tea(p.g)

p=0q=q1

1. Main loop over d:
> Have to fix the number of Taylor coefficients T4(n,0) a priori.
> Recompute the coefficients in each iteration.

2. Main loop over n:
> No knowledge about the necessary expansion order is needed.
> Recomputation is avoided.
> One needs to keep the full 3-dimensional array.
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New Results

d order degree terms ind. pol. at z=0
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New Results

d order degree terms ind. pol. at z=0

3 3 5 20 A3

4 4 10 40 A4

5 6 17 88 MA—1)

6 8 43 228 A\ —1)2

7 11 68 391 ATA =13\ —-2)

8 14 126 714 A= DN =2)?

9 18 169 999 MA=1)PA=2)3(\=3)
10 22 300 1739 MOA = 15X —2)*(\ —3)?

11 27 400 2464 AN -1)T(A-2)5(A-3)3(\—4)
12 32 617 3618 A2(A—1)8(A —2)5(\ —3)*(\ —4)?

* modulo prime
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Landau Singularities
Leading coefficient of the order-6 operator for d = 5:

16(—5 4 2) (=1 + 2)2*(5 + 2)%(10 + 2) (15 + 2)(5 + 32)
x (—675000 + 3465000z — 105337522 + 9336502°
+ 4497352* 4 1447762° + 156782°)

Landau Singularities:
> Singularities of a function defined by a multiple integral
» Can be found by imposing conditions on the integrand.
» For P(0; z) one obtains

d 2(1 — k)
2)d?— (k+4j+ 1)d+ 452 + k + 45k

for k=0,2,3,...,d—1and j =0,1,...,[(d—1)/2].
» Can be used as a consistency check.
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Landau Singularities for d = 11

The leading coefficient of the differential operator is

2% (x+11)% (55 4+ 2)* (x — 1) (8 + 55) (29 + 55)
(4z+55) (22 +55) (4o +11) (Tx + 165) (7T — 55)
(22 +33) (17x + 55) (x + 44) (13 + 275) (3x + 55)
(Tx—11) (132 4+ 55) (Tx + 110) (x + 35) (3z + 22)
(x+99) (192 —55) (T +33) (92 + 11) (x + 15)
(92 +55) (17x + 275) (3x + 77) (23 = + 165)

x (irreducible polynomial of degree 352)
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Properties of the Operators

1. All operators are irreducible.
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Properties of the Operators

. All operators are irreducible.
. For odd dimension d:

> Symmetric square has a drop of order by 1.
> Galois group is included in SO(r, C).

. For even dimension d:

> Exterior square has a drop of order by 1.
> Galois group is included in Sp(r, C).

. There exists a nontrivial homomorphism that maps the
solutions of the operator L to the solutions of its adjoint:

Ethom : adj(Lhom) L= adj (L) . Lhom

This gives rise to a “canonical decomposition”.
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Canonical Decomposition
Perform successive Euclidean right divisions of L and Lyom:

The quarks U; are self-adjoint.
Tower of intertwiners: adj(L;11) - L; = adj(L;) - Li+1
Also the L; have special Galois groups.

vV vy VY

This yields a canonical decomposition of L in terms of the U;.

15/ 16



Canonical Decomposition
Perform successive Euclidean right divisions of L and Lyom:

The quarks U; are self-adjoint.
Tower of intertwiners: adj(L;11) - L; = adj(L;) - Li+1
Also the L; have special Galois groups.

vV vy VY

This yields a canonical decomposition of L in terms of the U;.

Example: (d=7,r =11)

L = (WU U3U4Us + Uy UsUs + Uy UgUs + Uy UsUs +
UsUyUs + Us +Us + Uy ) - 1

where Uy, Us, Us, Uy have order 1, the order of Us is 7, and r is a

rational function.
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