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Face-Centered Cubic (fcc) Lattice
Motivation: statistical physics, crystallography, atomic structure

Densest possible packing of spheres: Kepler conjecture
(proved by Hales in 2005)

The d-dimensional fcc lattice is composed of 1 +
(
d
2

)
translated

copies of Zd:

Z
d +

∑
1≤i<j≤d

(
1
2(ei + ej) + Z

d
)
.
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Random Walks

We consider random walks on the lattice points:

I Move to one of the nearest neighbors in each step.

I All steps have the same probability.

I A lattice point can be visited arbitrarily often.

I Starting point is the origin 0.

The set of permitted steps in the d-dimensional fcc lattice is

S =
{

(s1, . . . , sd) ∈ {0,−1, 1}d : |s1|+ · · ·+ |sd| = 2
}
,

i.e., there are 4
(
d
2

)
steps (called the coordination number c).
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Lattice Green’s Function

The lattice Green’s function is the probability generating function

P (x; z) =

∞∑
n=0

pn(x)zn

where pn(x) is the probability of being at point x after n steps.

−→ Note that cnpn(x) is an integer and gives the total number of
such (unrestricted) walks.

Its multivariate generating function

F (y; z) =

∞∑
n=0

∑
x∈Zd

pn(x)yxzn =
1

1− z
|S|
∑

s∈S y
s

is rational (S is the step set).
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Lattice Green’s Function
We are particularly interested in

P (0; z) =

∞∑
n=0

pn(0)zn =
〈
y01 . . . y

0
d

〉
F (y; z) =

1

πd

∫ π

0
. . .

∫ π

0

dk1 . . . dkd
1− zλ(k)

that encodes the return probabilities. It is D-finite.

Here λ(k) is called the structure function of the lattice; it is given
by the discrete Fourier transform of the single-step probabilities:

λ(k) =
∑
x∈Rd

p1(x)eix·k

In the case of the fcc lattice:

λ(k) =

(
d

2

)−1 ∑
1≤i<j≤d

cos(ki) cos(kj).
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Return Probability

What is the probability that a walker ever returns to the origin?

The return probability R (Pólya number) is given by

R = 1− 1∑∞
n=0 pn(0)

= 1− 1

P (0; 1)
.

It is well known that in 2D the return is certain.

For d = 3, the return probability is one of Watson’s integrals:

R = 1−

(
1

π3

∫ π

0

∫ π

0

∫ π

0

dk1 dk2 dk3

1− 1
3(c1c2 + c1c3 + c2c3)

)−1
= 1− 16 3

√
4π4

9(Γ(13))6

where ci = cos(ki).
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Approaches

1. Hand calculations

2. Automated guessing of ODEs
I Construct the ODE from a truncated Taylor expansion.
I Ansatz with undetermined coefficients leads to a linear system.
I Trade order for degree.
I Use homomorphic images (chinese remaindering, etc.)

The Taylor coefficients can be obtained in various ways:
I Expansion of the integrand
I Walk enumeration
I Reduction of dimension by multi-level guessing
I Recursive method

3. WZ proof theory (creative telescoping)
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Previous results

The minimal-order ODE for P (0; z) has been computed in several
dimensions:

d order degree ind. pol. at z = 0

3 3 5 λ3

4 4 10 λ4

5 6 17 λ5(λ− 1)
6 8 43 λ6(λ− 1)2

7 11 68 λ7(λ− 1)3(λ− 2)
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Expansion of the integrand
Example for d = 3 (ci denotes cos ki)

Expand the integrand in a geometric series:

1

1− z
3(c1c2 + c1c3 + c2c3)

=
∑
n

(z
3

)n
(c1c2 + c1c3 + c2c3)

n

(
c1c2 + (c1 + c2)c3

)n
Use the multinomial theorem:binomial theorem:

(c1c2 + c1c3 + c2c3)
n =

∑
n1+n2+n3=n

(
n

n1, n2, n3

)
(c1c2)

n1(c1c3)
n2(c2c3)

n3
(
c1c2 + (c1 + c2)c3

)n
=

n∑
j=0

(
n

j

)
(c1c2)

n−j(c1 + c2)
jcj3

Use Wallis’s integration formula:

1

π

∫ π

0
cos2n k dk = 4−n

(
2n

n

)
The n-th Taylor coefficient can be computed by a

((
d
2

)
− 1
)
-fold sum.recursive method.
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The Recursive Method
Define

Td(n, j) :=
4n+j

πd

∫ π

0
· · ·
∫ π

0

( ∑
1≤i<j≤d

cos(ki) cos(kj)

)n( d∑
i=1

cos(ki)

)2j
dk.

A straightforward calculation leads to the recurrence:

Td(n, j) =

n∑
p=0

q2∑
q=q1

(
n

p

)(
2j

2q + p− n

)(
2n+ 2j − 2p− 2q

n+ j − p− q

)
Td−1(p, q)

with q1 = [(n− p+ 1)/2] and q2 = [(n− p+ 2j)/2].

Initial condition:

T2(n, j) =

p2∑
p=p1

(
2p

p

)(
2j

2p− n

)(
2n+ 2j − 2p

n+ j − p

)
with p1 = [(n+ 1)/2] and p2 = [(n+ 2j)/2].
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Computational Scheme

Td(n, j) =

n∑
p=0

q2∑
q=q1

(
n

p

)(
2j

2q + p− n

)(
2n+ 2j − 2p− 2q

n+ j − p− q

)
Td−1(p, q)

1. Main loop over d:
I Have to fix the number of Taylor coefficients Td(n, 0) a priori.
I Recompute the coefficients in each iteration.

2. Main loop over n:
I No knowledge about the necessary expansion order is needed.
I Recomputation is avoided.
I One needs to keep the full 3-dimensional array.
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New Results

d order degree terms ind. pol. at z = 0

3 3 5 20 λ3

4 4 10 40 λ4

5 6 17 88 λ5(λ− 1)
6 8 43 228 λ6(λ− 1)2

7 11 68 391 λ7(λ− 1)3(λ− 2)

8 14 126 714 λ8(λ− 1)4(λ− 2)2

9 18 169 999 λ9(λ− 1)5(λ− 2)3(λ− 3)
10 22 300 1739 λ10(λ− 1)6(λ− 2)4(λ− 3)2

11 27 409 2464 λ11(λ− 1)7(λ− 2)5(λ− 3)3(λ− 4)
12∗ 32 617 3618 λ12(λ− 1)8(λ− 2)6(λ− 3)4(λ− 4)2

∗ modulo prime
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Landau Singularities
Leading coefficient of the order-6 operator for d = 5:

16(−5 + z)(−1 + z)z4(5 + z)2(10 + z)(15 + z)(5 + 3z)

× (−675000 + 3465000z − 1053375z2 + 933650z3

+ 449735z4 + 144776z5 + 15678z6)

Landau Singularities:

I Singularities of a function defined by a multiple integral

I Can be found by imposing conditions on the integrand.

I For P (0; z) one obtains(
d

2

)
2(1− k)

d2 − (k + 4j + 1)d+ 4j2 + k + 4jk

for k = 0, 2, 3, . . . , d− 1 and j = 0, 1, . . . , [(d− 1)/2].

I Can be used as a consistency check.
12 / 16



Landau Singularities for d = 11

The leading coefficient of the differential operator is

x22 (x+ 11)6 (55 + x)2 (x− 1) (8x+ 55) (29x+ 55)

(4x+ 55) (2x+ 55) (4x+ 11) (7x+ 165) (7x− 55)

(2x+ 33) (17x+ 55) (x+ 44) (13x+ 275) (3x+ 55)

(7x− 11) (13x+ 55) (7x+ 110) (x+ 35) (3x+ 22)

(x+ 99) (19x− 55) (7x+ 33) (9x+ 11) (x+ 15)

(9x+ 55) (17x+ 275) (3x+ 77) (23x+ 165)

× 〈irreducible polynomial of degree 352〉

13 / 16



Properties of the Operators

1. All operators are irreducible.

2. For odd dimension d:
I Symmetric square has a drop of order by 1.
I Galois group is included in SO(r,C).

3. For even dimension d:
I Exterior square has a drop of order by 1.
I Galois group is included in Sp(r,C).

4. There exists a nontrivial homomorphism that maps the
solutions of the operator L to the solutions of its adjoint:

∃Lhom : adj(Lhom) · L = adj(L) · Lhom

This gives rise to a “canonical decomposition”.
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Canonical Decomposition
Perform successive Euclidean right divisions of L and Lhom:

L0 := L

L1 := Lhom

Li := Ui+1Li+1 + Li+2

I The quarks Ui are self-adjoint.
I Tower of intertwiners: adj(Li+1) · Li = adj(Li) · Li+1

I Also the Li have special Galois groups.
I This yields a canonical decomposition of L in terms of the Ui.

Example: (d = 7, r = 11)

L =
(
U1U2U3U4U5 + U1U2U5 + U1U4U5 + U1U2U3 +

U3U4U5 + U5 + U3 + U1

)
· r

where U1, U2, U3, U4 have order 1, the order of U5 is 7, and r is a
rational function.
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