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Abstract. Inversion relations are obtained for the standard scalar g-state triangular Polts
model with two- and three-spin interactions, generalizing previously known results for two-spin
interaction models. It is shown that these inversion relations generate a group of symmetries
of the mode! which is naturally represented in terms of birational transformations in & four-
dimensional parameter space. This group of birational transformations is generically a very large
one, namely a hyperbolic Coxeter group. In this framework of very large groups of symmetries,
a remarkable situation pops out: the one for which g corresponds to Tutte~Beraha numbers.

1. Introduetion

There generally exist two different approaches to the exact determination of critical
conditions (manifolds) of lattice models. First of all, many criticality conditions in algebraic
forms have been shown to be related to some ‘integrability’ (Yang—Baxter equations or star—
triangle relations) of the model, the algebraicity being a consequence of the integrability.
However, a notable exception exists. This is the Potts model on the triangular lattice with
two- and three-spin interactions in alternate lattice faces [1-3]. While its critical variety
{3} is algebraic, the model is nof integrable along this variety (except for zero three-spin
interactions) [1]. As a consequence, the usefulness of integrability in connection with
criticality in this model is limited.

Anather approach to the determination of critical variety comes from the analysis of
inversion relations [4-7] and the symmetry groups generated by these relations [8-10].
However, such studies in the past have often been restricted, for spin models, to edge
interactions. Here, we extend the inversion relation to triangular Potts models with non-
zero three-spin interactions, for which the integrability approach fails, and use it to analyse
the related symmetry groups. The corresponding symmetry groups will be seen to yield
remarkable birational representations of hyperbolic Coxeter groups. Remarkably, the Tutte—
Beraha numbers [11] also pop out from this analysis: additional relations among the
generators of the ‘Coxeter’ group occur.

We first briefly recall in section 2 some results on the nearest-neighbour interaction
standard scalar Potts models, including the known inversion relations and symmetry groups.
We then generalize, in section 3, this inversion relation to include three-spin interactions.
The group of symmetries generated by these inversions is next obtained in section 4. Finally,
in section 5 we briefly discuss how the analysis might be extended to other lattices, such
as the chequer-board and Kagomé lattices.
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2. Review of duality and inversion relations

In this section we recall the previously known duality and inversion relation for the triangular
Potts model.

The partition function of the triangular Potts model with two- and three-spin interaction
in alternate, say up-pointing, triangles reads

7 = Z n eXrdy l_I ekodp ]—[ afady ]—[ e )

foi} (6.1} {J.k} (k) 4

where 8;; = 8(o1, 0;), & = 8(gy, 5;)8(dy, o), the first three products are taken over the
edge-interaction Boltzmann weights along the three lattice directions and the last product
is over all up-poinsing triangles of the three-spin interaction Boltzmann weight, and where
the sum is over all spin configurations.

In this framework, we introduce the notations

x = ¥ i=1,23
x=e @
y=xxxox3—(x1+xy+x3)+2.
Then, there exists a duality transformation D which reads [1,2]
x = xf=1+g0x—1)/y
X35+ 5~ 24y

D: x—= x"= pr &)
y=> Yy =4y,
The duality transformation D is an involution (that is, D? = identity).
The simplest self-dual varieties obtained from (3) read
y=q (4)
and
y=-q. &)

It has been shown that (4) is a critical variety for ferromagnetic interactions [3].
In the case of pure edge interactions, namely X = 0, the triangular Potts model possesses
the following inversion relation [12-14]:

Ti: x1—2>2—g—-x1 x> 1/xs x3— U/x3 (6)
and I, I3 obtained by cyclic permutations of the indices. The symmetry group Iiyang

generated by 77, Z; and I can easily be studied when introducing the following convenient
variables [5]:

=229 21,23 a
Xy — 4
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where g are the roots of the second-order equation t2 + (g — 2)¢ 4+ 1 = 0. In terms of
these variables, transformation Z; reads

1 2 2
1, Yz, ¥3) = (—, q—"', q_+) (®)
S T

Let us also consider the (generically) infinite-order generators of pigag:
T =11 J2 =1L F=11. (9}

For instance, i reads
Y2 a
(1. y2, ¥3) —> ()’1, ;5'. q5 )’3) : (10
+

From (10), one sees directly that the J;’s do commute. Elements of the ‘infinite’ part of
Piiang thus read

THIE T Amnna,mle ZxZxZ. (11)
As a consequence of the property J, 273 = identity, [iiang 18, up to a semidirect product

by a finite group, isomorphic to Z x Z [12, 14).
Moreover, one easily gets the algebraic varieties invariant under [ijang:

Ny =g Yy =-—q;. (12)

In fact, the first variety is nothing but the self-dual variety (4) for x = 1, also known as the
ferromagnetic critical variety.

3. A new inversion relation

We now generalize the inversion relation when there are non-zero three-spin interactions on
the up-pointing triangles.

Starting from a friangular face of the lattice with interactions xi, x3, x3, and x, the
Boltzmann factor w(c, 8, ) reads

w(e, B, ¥) = x5y 13 xleer (13)
where ¢, B, y are the spin states of the three sites.

An inversion relation is one in which the new interactions x|, x5, x5, x” and the associated
Boltzmann factor w' satisfy the relation

Y w8, )W (B y) =M dge . (14)
B
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Figure 1, Schematic diagram representing the inversion transformation (14). The circles inside
the triangles indicate three-spin interactions.

Here w' is the same as w with interactions x{, x' replacing x;, x. The situation is shown in
figure 1. Note here that direction 1 is chosen to be the direction of inversion.

The Boltzmann weight w{e, 8, ) is invariant under a common shift of each spin state
o, B, ¥. Therefore, we may take y = 0 and represent the Boltzmann weight by a ¢ x ¢
matrix W whose entries are w(w, 8, 0):

XX1XaX3 X3 X3 o X3
X2 X1 1 |
W= X2 1 x o] (15)
: P 1
X2 1 (AR 1 X1

Then, condition (14) becomes the following matrix equation:
W-W=2x1l, (16)

where I, is the g x ¢ identity matrix, and W’ is obtained from W with x;, x replaced by
x;,x'

Using a Z,_, Fourier transform, the g x g matrix W can be block-diagonalized into one
2 x 2 block and (x; — 1) l;_2. Then, one can easily obtain x;, x’ in terms of x;, x. This
leads to

_ O —x)lxx (o +g —~2) ~ (g — 1]

M (xx; — 1) a7
and
o (xx; = 1% (x1 4+ —2)
[xx2 + (g — Dxxy — (g — D)(x1 — 1)

oo Ft @D —(g-2)

! xx; — 1 (18)
2 = x; =1

e x3(xx; — 1)
JC; - X1 -1

xalxxy — 1)
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The birational transformation
I {xyaxg, x, x} = {xg, x5, x5, %'} (19

together with the transformations 7; and I3 obtained by cyclic permutation of indices
corresponding to inversions in directions 2 and 3 respectively, is 2 new inversion relation
generalizing (6). Note that we have reversed the roles of x; and x; in the inversion relation
(19} so that it reduces to (6) upon putting x == 1,

Alternatively, one can rewrite (13} as

wig, B, ¥) =14+ wi Sap + wadpy + widpa + ¥ Sugy 2M
where
w,-=x,-—1 f=1,2,3 (2])

and y is given by (2). Substituting (20) and a similar expression for w’ into (14), setting
the coefficients of the Kronecker deltas equal after carrying out the summation over 8, one
obtains the conditions

A = wyw

g+ wy + wa + wi +wh + wawy =0

uwws +gwy + wzw) + y(1+wy) =0 (22)
wjwz +qws + wywy + Y (1 +uwy) =0

y(wy + w3) + ¥ (wy + ws) + quawy + 3y’ =0

from which one recovers (17) and (18).

4, Analysis of the new symmetry group

Analogous to discussions given in section 2, the inversion iransformations Z;'s generate
a symmetry group of the model. Again, one considers the (generically) infinite order
generators of this group, namely, the J:’s defined in (9). Since the Z;’s are involutions,
property J1.2.05 = identity still holds, but the J;'s do not commute as in the x = 1 case.
Hence the symmetry group of the model is now a free group, with two generators 77 and
J>. This amounts to considering the symmefry group as a ‘Coxeter’ group, defined by its
generators and relations among the generators (the Z;'s, or the 7;’s,.. .).

At this point, let us recall that the critical manifold needs to be compatible with all the
symmetries of the model. As a consequence, the algebraic variety (4), which is critical,
needs to be stable under this ‘huge’ Coxeter group. A direct calculation reveals that (4) is
actually stable under the whole free group of symmetries of the model. This analysis thus
offers an alternate way of locating the critical variety (4). Moreover, this group is so huge
that there probably exists no other stable algebraic varietyt and hence no other algebraic
critical condition.

1 We thank C M Viallet for providing an answer to this question ruling out the existence of other stable varieties
of degree 4 or less,
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The above results are valid for arbitrary 4. We now consider particular values of g, the
Tutte—Beraha numbers [11], for which additional relations among the generators occur. In
the x = I case, one directly sees from (10) that the 7;’s become finite-order transformations
of order N, when g2 = e /¥ } =1,2,..., N -1, or equivalently g = 22 cos(k /N).
Amazingly, this situation also holds for x # 1. However, when x £ 1, it appears that the
Jis do not commute and the group still grows in an ‘arborescent’ way with the exceptions
of N=1,2,3. For N=1(g =0o0r g =4) and for N = 2 {g = 2}, the symmetry group
degenerates into a finite group. For N =3 (g = 1 or g = 3), the symmetry group is, up to a
semidirect product by a finite group, isomorphic to Z % Z, recovering the situation for x == 1
and arbitrary g. This particular case will be analysed elsewhere in a forthcoming publication.

5. Inversion relation for the Kagomé lattice

Let us consider here another lattice, with a 27 /3-rotation symmetry: the Kagomé lattice.

The most general Kagomsé lattice can be regarded as a chequer-board interaction-round-
face (IRF) model with the elementary cell shown in figure 2. The Boltzmann weights of
this cell read

Wi, 8,0, 8) = Z &F1 s K2 00 K3 das oK1 80y oKa by, ex; e 23)
-4

It should be noted that the role played by the special direction 1 in (23) can also be replaced
by directions 2 or 3.

o B’ Figure 2. A unit cell of the Kagomé lattice
viewed as a chequer-board Iattice.

1 - !3/ ¥ =Y
Y .
// o=y’
o’ B T’

Figure 3. Schematic diagram representing the inversion transformation (24).
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The inversion relation Iy, for this particular choice of direction shown schematically
in figure 3, reads

Y W@ o, BYW By, B.y) = A bay by - (24)

o« .p
Here, the Boltzmann weight is best represented by a ¢ x ¢ matrix. Straightforward
calculation shows that the inversion relation It, does existt. It is tempting to consider a
similar inversion relation in the ‘vertical’ direction. However, a detailed calculation shows
that the g2 x g? ‘vertical’ matrix Boltzmann weight is not invertible, since its rank is g.

Similarly one can also introduce transformations Jp,, and f5; corresponding, respectively,

to the ‘horizontal’ inversion transformations in directions 2 and 3. The analysis of these
transformations and their group action in a larger parameter space, including the six-
dimensional Kagomé model, will be discussed elsewhere.

6. Conclusion

We have obtained the inversion relation for the two- and three-site interaction g-state
standard Potts model on the triangular lattice. The symmetry group generated by this
inversion relation has been seen to be generically a very large one (a free group). The critical
variety of this model has been shown to be invariant under this large group. When g is a
Tutte-Beraha number, the representations of these symmetry groups are drastically modified.
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