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We consider the q-state Potts model on the triangular lattice with two- and three-site 

interactions in alternate triangular faces, and determine zeroes of the partition function 

numerically in the case of pure three-site interactions. On the basis of a rigorous reciprocal 

symmetry and results on the zeroes for finite lattices, we conjecture that zeroes of the 

partition function of the triangular Potts model with pure three-site interactions in alternate 

triangular faces lie on a circle and a segment of the negative real axis. It is shown that the 

conjecture holds for q = 2, and that it reproduces the known critical point for general q, 
including the q = 1 site percolation. 

1. Introduction 

Generally speaking, there exist several different kinds of exact results on 
lattice models in statistical mechanics. Ideally, one would like to obtain the 
exact, closed-form, expressions of thermodynamic quantities such as the per- 
site free energy, the surface tension, spontaneous magnetization, and correla- 
tion functions. A knowledge of these exact expressions leads to a complete 
description of the system including the phase boundary (critical frontier) and 
the location of zeroes of the partition function. However, exact evaluations of 
physical quantities are not always possible. In such cases one can sometimes 
determine the critical frontier from properties such as the duality [l] and the 
inversion [2] relations, or analyzes analyticity properties of the free energy by 
locating the zeroes of the partition function [3,4]. But other than in the case of 
some special one-dimensional model [5], exact results on the zeros have been 
confined mostly to the Ising model [3,4]. In this paper we report results of a 
calculation of the zeroes of the partition function of a Potts model with pure 
three-spin interactions. On the basis of the numerical results as well as a 
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rigorous reciprocal symmetry, we propose a conjecture on the exact location of 
zeroes of its partition function. 

We consider first the q-state Potts model on the triangular lattice with 
nearest-neighbor and three-site interactions in alternate, say, the up-pointing, 
triangular faces of the lattice. This model was first studied by Baxter et al. [6] 
in the framework of the analysis of the star-triangle relation. They showed that 
the partition function possesses a duality relation. Recalling the importance of 
the KagomC lattice for the resonating valence bond theory of high-T, supercon- 
ductivity [7], it is also worth noticing that this model is related to the standard 
Potts model on the KagomC lattice [8]. The duality relation has since been 
rederived using a graphical analysis [9] and identified as the exact critical 
frontier in the ferromagnetic regime [lo]. Here, we carry out a numerical 
determination of the zeroes of the partition function for the pure three-site 
interaction model on finite lattices. The results indicate that the zeroes lie on 
some loci which approach a circle and an interval of the negative real axis as 
the lattice size increases. In addition, we establish a rigorous reciprocal 
symmetry of the partition function in the thermodynamic limit. These results 
lead us to conjecture that, in the thermodynamic limit, the partition function 
zeroes for the pure three-spin model lie on a circle and a segment of the 
negative real axis. The conjecture is shown to hold for q = 2; it also reproduces 
the known critical point for general q including the q = 1 site percolation. 

2. The triangular Potts model 

Consider the q-state standard Potts model on a triangular lattice L of N sites 
with anisotropic two-site interactions K, , K, and K, in respective directions, 
and three-site interaction K surrounding every up-pointing triangular face. The 
reduced Hamiltonian now reads 

where the summation is taken over all up-pointing triangular faces and 

E abc = -(h’%,hc + Wca + K,%, + K%bc) ’ (2) 

Here a, b, c are the three sites surrounding a triangle, S,, = &,(a,, ebb) is the 
Kronecker delta, Soabc = acbSb,, and u0 = 1,2, . . . , q refers to the spin states at 
site a. The example of an N = 12 cluster with a twisted (helicoidal) periodic 
boundary condition preserving the rotational and translational symmetries is 
shown in fig. 1. 
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Fig. 1. A 12-site triangular lattice with twisted periodic boundary conditions. Open circles denote 

repeated lattice sites. 

We first summarize relevant established results on this Potts model. The 
partition function 2 of the model (1) satisfies a duality relation [6] 

Z(xl,x2,x3,y)~Cne-E~bc-(ylq)NZ(x;,x~,x;,y’), 
A 

(3) 

where 

xL!-l=q(x,-l)ly, Y’ =4*/y > y = XX1X2X~ -(x1 +x,+x,)+2, 

x=eK, xi=eKt, (4) 

and - denotes the validity in the thermodynamic limit. The fixed point of this 
duality transformation is located at 

y=q. (5) 

It is noteworthy to point out that, in terms of the variables 

w=ylq=llw’, ui = (Xi - 1)/v% = UI ) (6) 

the duality relation (3) takes the more simple form 

Z(U 1,242, u3, w> - wN-&, u*, ug,l/w) (7) 

for q 2 2, in which the variables ui are invariant. 
It can be readily seen that (5) admits physical solution only in the 

ferromagnetic regime+’ 

K+K,+K2+K,>{0,Ki}, (8) 

where the critical frontier is indeed (5) [lo]. For pure two-site interactions and 

*’ The corresponding expressions in [lo] contain misprints. The inequality signs in (11) of [lo] 

should be reversed. 
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q 3 4, the critical variety (5) can also be obtained by applying the Lee-Yang 

circle theorem [3] in a vertex model formulation of the model [ll], or by 

applying an inversion relation type argument [2]. For pure three-site interac- 

tions, (5) reduces to the simple form 

w=l or eK-l=q. (9) 

3. Expansion of the partition function 

The partition function of the Potts model (1) can be written as 

(10) 

where 

u=eK-1, ui=eKc-1, (11) 

and the product is taken over the up-pointing triangles. It is convenient to 

represent terms in the expansion of the partition function by graphs G in which 

the up-pointing triangular faces are either occupied by a solid triangle with a 

fugacity u, or unoccupied. If the triangular face is unoccupied, then the three 

edges of the triangle can be independently occupied by bonds with fugacities 

ui, i = 1,2,3. This is a weak-graph expansion (for definition of weak and strong 

graphs and embeddings, see [12]) m which G is a weak embedding of vertices, 

lines, and triangles, on L. 

We next evaluate the weight W(G) associated with the graph G. It is clear 

that each solid triangle contributes to W(G) a factor u, and each bond a factor 

u,. In addition, by combining with the associated bond factors, each solid 

triangle contributes an additional factor (1 + ul)( 1 + u:)( 1 + u?) = eK1+KZ+K,. 

Consider next the q dependence of W(G). For a graph representing N isolated 

points we have simply W(G) = qN. For other graphs, each triangle reduces the 

factor qN by q*, and each bond by q. But whenever the triangles and bonds 

close up to form a circuitff2, the reduction must be restored by a factor q due 

to the overlapping of one lattice site summation. Thus we have 

*2 Here, we use the term circuit in the topological sense that solid triangles can be regarded as 

stars having three branches, each of which can be connected to other triangles and bonds. 
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where the summation is over all graphs G in which lines and triangles do not 
overlap. m(G) is the number of solid triangles, hi(G) the number of bonds with 
weight uj, and c(G) the number of independent circuits in G. A typical graph 
G occurring in (12) is shown in fig. 2. The expression (12) generates the 
high-temperature expansion of the partition function. 

We have generated the exact partition function (12) for the 27-site lattice 
with twisted periodic boundary conditions for q = 3#3. In the case of pure 
three-site interactions, (12) reduces to 

z = Z(q, w) = q”? (Wlq)“‘G’qc’G’ , (13) 

wherew=(eK- 1)/q. The expression (13) suggests a more efficient bookkeep- 
ing for the expansion. This is to consider an associated lattice 2, which is also 
triangular, by shrinking the up-point triangular faces in L into points. Regard 
the presence of a solid triangle in L as denoting the corresponding site of 9 
being occupied, and connect all pairs of occupied neighboring sites of 9 by 
bonds. A weak graph G on L is then mapped onto a strong graph 99 on .Z, and 
vice versa [12]. An example of this mapping is shown in fig. 3. However, as 
seen in fig. 3, elementary down-pointing triangles in 3, which form circuits in 
9, do not contribute to c(G). Taking this correction into consideration, we can 
rewrite the summation (13) as 

Z(9, w) = qN c w+t w) , W(%, w) = w 
m(Y) c(a)-d(V)-m(S) 

q > (14) 
9 

Fig. 2. A typical graph G on L showing m(G) = 9 components. Shaded triangles represent solid 
triangles mentioned in the text. 

*3 This series, which contains 27022 terms, can be obtained by sending a ftp request to 

anonymous@crtbt.polycnrs-gre.fr 
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Fig. 3. A graph G on L with the associated graph 9 on 2. The lattice 2 is denoted by the heavy 

and broken lines with solid (open) circles denoting occupied (unoccupied) sites. 

where the summation is taken over all strong graphs 9 on 3, m(3) is the 

number of sites, c(3) the number of independent circuits in the usual sense of 

graph theory, and d(3) the number of down-pointing elementary triangles, in 

93. Since the summation in (14) runs over 2”(*) terms instead of cl”@’ in (lo), 

the expression (14) is easier to use in practice, and offers an efficient way of 

generating high temperature expansions. Also not that in general _Y contains 

fewer lattice points than L. This will be used in the numerical results presented 

in the last section of this paper. 

4. A reciprocal symmetry 

The duality relation (7) indicates that the partition function is invariant in 

the thermodynamic limit under the change of w-+ l/w. It is instructive to 

explicitly show that the high-temperature series (14) indeed possesses this 

symmetry, and to see how does the condition of thermodynamic limit enter 

into play. We present in the following a rigorous analysis of these facts. 

Let 9 be an arbitrary strong graph on 9 with weight W(%; w) as in (14). Let 

3’ be the “complement” of 93 obtained from 9 by interchanging the occupied 

and open sites, and rotating 180” to make it up-side-down. Let W(Z, w) = 

~~(~)q~(~)-~(~~-“‘(~) as defined in (14) be the weight of the graph in which all 

sites of 3 are occupied. Expanding about this configuration we can write 

Z(q, w) = W(Z, w) c W’(%‘; w) ) 

3’ 
(15) 

where W’(%‘, w) can be viewed as a correction to W(_Y, w) due to the deletion 

of the lattice sites in 3. We then have the following theorem relating W’(%‘, w) 

and W(??, w): 

Theorem. For strong graphs 3 which do not extend to the boundary (in the 

sense that they are surrounded by unoccupied sites), we have the identity 
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W’(9’; w) = W(+?; l/w) # (16) 

Now, graphs extending to the boundary contribute to some “boundary effect” 
which can be neglected in the thermodynamic limit. Omitting such terms in 
(14) and (15) and using ui = 0 and (16), one establishes the reciprocal 
symmetry 

qq, w) - .qq, l/w) * (17) 

It follows that, if w is a root of the partition function in the thermodynamic 
limit, then l/w is also a root. This reciprocal symmetry, which is certainly 
consistent if all zeroes are on the circle jwj = 1, also implies a w + l/w 
invariance of the series in the limit of N+w. 

We now prove the theorem. First of all, we note that the weight W(%; w) in 
(14) can be written as a product of the weights of clusters (of connected sites). 
Now, the weight W’(%‘; w) in (15), when viewed as a correction associated to 
W(Z, w), can also be written as a product of those of the clusters. It then 
suffices to consider a single cluster and the corresponding correction. 

For a single cluster represented by a graph g which does not extend to the 
boundary and for which a typical example is shown in fig. 4, the expression of 
W(g, w) as defined in (14) is 

wcg w) = Wm(g) c(g)-d(g)-m(g) 
2 4 W-4) 

To find the corresponding correction factor for g’, the complement of g, we 
need to compare g’ with the configuration in which all sites are occupied. Let 
t(g) be the number of elementary triangles in g excluding those bordered by 
(solid) lines. These triangles are those shaded in fig. 4. A simple inductive 
proof establishes that, if g is completely surrounded by unoccupied sites, we 
have 

m=wg)+2-2c(g), (19) 

and half of these triangles are up (and down) pointing. Then, the total number 
of elementary triangles removed from a totally occupied configuration in order 
to create g’ is 

%Y’) = t(g) + u(g) + d(g) > (20) 

where u(g) and d(g) are, respectively, the up-pointing and down-pointing 
elementary triangles in g bordered by (solid) lines. It is now clear that in the 
process of creating g’, the number of circuits is reduced by T(g’) - 1, since one 
circuit remains after the removal, and the number of down-pointing elementary 
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Fig. 4. A typical cluster of m(g) = 16 occupied sites with f(g) = 52 elementary triangles (those 

shaded), c(g)=7, d(g)=u(g’)=2, and u(g)=d(g’)=4. 

triangles reduced by u(g) + t(g)/2. Here, we have used the fact that, due to 

the 180” rotation of g in deducing g’, up-pointing elementary triangles in g 

become down-pointing in g’. Consulting (18), the needed correction factor can 

now be readily written down as 

w’(g’; w) = W-4?) x q-Lm’)-ll x quw+w2 x qm(g) 

= W-m(s)qc(g)-d(R)-m(s) = wtg; 11~) . Q.E.D. (21) 

As a consequence, the ratio of the two coefficients of wk and w~(~‘-~ is 

independent of k and is equal to qC(3Y)-m(3’-d(Se). For finite lattices for which 

some clusters extend to the boundary, this independence holds only for k far 

from m(3) /2. 

5. A conjecture on the zero distribution 

On the basis of the reciprocal symmetry established in section 4, we now 

propose a conjecture on the distribution of zeroes for the pure three-site 

interaction model. A numerical check of the conjecture will be presented in the 

next section. 

Conjecture. Zeroes of the partition function of the triangular q-state Potts 

model with pure three-site interactions K in alternate triangles lie, in the 

thermodynamic limit, on the unit circle 
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a line segment on the real negative axis 

W(4) s w =S -l/a(q) ) 
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(22) 

(23) 

for some function a(q) . 

The conjecture certainly holds for q = 1 for which we have 

Z=eNK, (24) 

whose N zeroes are degenerate at eK = 0. The conjecture also yields the exact 

critical point (9) for all q as the intersection, at w = +l, on the real axis. 
The conjecture also holds for q = 2 with (w(2) = 2. To see that this is the 

case, we use the identity Saab = 3( 1 + macbb), where a,, CT~ = kl, to transform the 
partition function into that of a triangular Ising model with isotropic ferromag- 
netic interactions J = K/4. In the thermodynamic limit, the free energy of the 
triangular Ising model assumes the form [13] 

+-$ 7 [ d0 d$ In cosh32J + sinh32J - B(8, $) sinh2J] , 

0 0 

where 

(25) 

B(0, 4) = case + co@ + cos(8 + 4) , (26) 

The loci of the zeroes of the partition function in the thermodynamic limit can 
be traced, and identified, as those of the argument of the logarithm#4. This 
leads to the roots of the equation 

w2[1 - B(B, 4)]w + 1 = 0 ) (27) 

where w = (e” - 1)/2. A little algebra shows that the two roots of (27) lie 
either on the unit circle ]w] = 1 or in the interval -2 s w c -l/2 [15,16]. This 
verifies the conjecture for q = 2. 

Finally, we note that the partition function in the q = 1 limit generates 
precisely the site percolation on E [17] with the occupation probability p = 1 - 

*4 For finite lattices with periodic boundary conditions, the partition function is a sum of four 

Pfaffians [14], and zeroes of the partition function will generally not be on a circle [3,10]. The zero 

distribution approaches a circle only in the thermodynamic limit. 
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e -K. The conjecture then yields the critical probability p, = l/2, in agreement 
with the known exact result [18]. 

6. Zeroes of the partition function 

To test the correctness of the conjectured circle theorem, we have carried 
out an exact calculation of the partition function and its zeroes for the pure 
three-site interaction model, for arbitrary q and finite lattices using the relation 
(14). Keeping in mind the importance of the rotational invariance [9] in this 
model we have used the twisted boundary conditions of fig. 1 but now with 27 
sites. This partition function is regarded as a polynomial in the complex 
variable W. 

For the twisted 27-site lattice, we obtain the polynomial 

Z(q, w) = q2’ + 27q26w + 351q25w2 + (2898q24 + 27q25)w3 + . . . 

+ (2898q25 + 27q26)w24 + 351q26w25 + 27q27w26 + q28w27. (28) 

Here the reciprocal symmetry (17) holds for the first and last six coefficients of 
this polynomial as shown. Coefficients of the remaining terms not shown are 
not symmetric due to the occurrence of graphs ‘percolating’ to the boundary. 
The 27 zeroes of the partition function (28) are shown in fig. 5 for q = 3, 4, 50. 

A similar polynomial in w and q has been calculated for a 36-sites lattice 
with standard periodic boundary conditions (instead of the twisted boundary 
conditions because 36 is not of the form 3 x L*). In this case, there are 236 
graphs 9 which were generated in an order such that two consecutive graphs 
differ by the addition or deletion of only one site. This ordering makes it easier 
to update the numbers of connected components, sites, bonds and down- 
pointing triangles. The CPU time needed to complete this enumeration to ten 
days on a cluster of twelve 1860 processors”5. The 36 zeroes of the partition 
function thus obtained are shown in fig. 6 for q = 3, 4, 50. 

From figs. 5 and 6, it is seen that the zeroes approach the unit circle as the 
number of lattice sites increases. This is in agreement with our conjecture that 
it holds in the thermodynamic limit. Furthermore, better agreement with the 
conjecture is also obtained for smaller q. In fact, loci of zeroes in the large q 

limit can be determined by keeping only the leading terms. For the partition 
function (28) with periodic boundary conditions, for example, this leads to 

#’ Again the complete series for both cases, namely the 27-site and 36-site lattice models, can be 
obtained by sending a ftp request to anonymous@crtbt.polycnrs-gre.fr 
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Fig. 5. Zeroes in the w plane for the pure three-site interaction model for a 27-site lattice with 

twisted periodic boundary conditions. 
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Fig. 6. Zeroes in the w plane for the pure three-site interaction model for a 36-site lattice with 
standard periodic boundary conditions. 
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qw27 + 27~~~ + 1 = 0 which yields the location of zeroes close to a circle of 
radius q-“27. This demonstrates that the distribution of zeroes approaches a 
circle in the large q limit, albeit with a smaller radius. However, our data are 
insufficient to determine the function a(q). 

7. Summary 

We have numerically evaluated the zeroes of the partition function of the 
triangular Potts model in the complex temperature plane. Based on our 
numerical evidence and a rigorous reciprocal symmetry, we conjecture that 
zeroes of the partition function of the Potts model with pure three-site 
interaction in alternate triangles lie on the circle (22) and the segment (23) on 
the negative axis. The conjecture is verified for q = 2, the Ising model, and 
shown to yield the known critical point for general q. 
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