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Understanding the relationship which integrable (solvable) models, all of which possess
very special symmetry properties, have with the generic non-integrable models that are used
to describe real experiments, which do not have the symmetry properties, is one of the
most fundamental open questions in both statistical mechanics and quantum field theory.
The importance of the two-dimensional Ising model in a magnetic field is that it is the
simplest system where this relationship may be concretely studied. We here review the
advances made in this study, and concentrate on the magnetic susceptibility which has
revealed an unexpected natural boundary phenomenon. When this is combined with the
Fermionic representations of conformal characters, it is suggested that the scaling theory,
which smoothly connects the lattice with the correlation length scale, may be incomplete for
H �= 0.

Subject Index: 010, 040

§1. Introduction

It may be rightly said that the two-dimensional-Ising model for H = 0 is one of
the most important systems studied in theoretical physics. It is the first statistical
mechanical system which can be exactly solved which exhibits a phase transition.
From the exact results for the free energy,1) spontaneous magnetization,2),3) and
correlation functions4)−8) a point of view has been developed, which embraces the
concepts of scaling, universality and conformal field theory, that extends the exact
results of the Ising model to more general situations. These concepts are widely
used to analyze both experiments and models of critical phenomena. Furthermore
the correlation functions provide very concrete realizations of the concepts of mass
and wave function renormalization used to define Euclidean quantum field theories.

However, starting with the work of Nickel9),10) on the magnetic susceptibility
new properties of the Ising model have been uncovered11)−27) which go beyond what
has been seen in the computations of the free energy, spontaneous magnetization
and correlation functions. These new features need to be explored to see if there is
relevant physics which is not incorporated in our current view of critical phenomena.
In this article we will review these new phenomena and the relation they have with
scaling theory and Euclidean quantum field theory.

In §2 we define what will be meant by an Ising model. In §3 we review the
known exact results for H = 0. In addition to the well known results for the free
energy1) and the magnetization2),3) we will put particular emphasis on the mag-
netic susceptibility which has an expansion analogous6),9),10) to a Feynman diagram
expansion. These Ising model integrals share with Feynman diagram integrals the
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property that the integrands are algebraic functions. It was shown, long ago, by
Kashiwara and Kawai,28) that these Feynman integrals are holonomic (i.e. they sat-
isfy overdetermined systems of partial differential equations). However, the infinite
sum of diagrams will not have this property.∗) These problems of power series expan-
sions, where the infinite sum has different analytic properties than the coefficients of
any finite power of the expansion parameter, are seen in the magnetic susceptibility
of the Ising model.29) When expanded about T = Tc, this expansion of the suscep-
tibility is not convergent but is only asymptotic.11),26) This feature also occurs in
Quantum Electrodynamics30) and Quantum Chromodynamics.31)

In §4 we extend our considerations to H �= 0, where much less is known and
there is much to be learned. We will present perturbative studies, for H near zero,
of the two-point function,32) and the two-particle scattering amplitude.33) We will
also present integrable perturbations of conformal field theory34)−36) about T =
Tc, H �= 0, about the Lee-Yang edge,37),38) and the relation to Rogers-Ramanujan
identities.39)−43) We will finally discuss scaling theory,11),26),44),45) and the study of
the general non-integrable perturbation of 46).

We conclude, in §5, with an answer to the question of “Why is the Ising model
important?”

§2. What is the Ising model?

We begin by defining what we mean by the two-dimensional Ising model in a
magnetic field.

The simplest, and most well known, case is for nearest neighbor interactions on
a square lattice defined by the classical interaction energy

EI(H) = −
Lv∑

j=−Lv

Lh∑
k=−Lh

{Ev · σj,k σj+1,k + Eh · σj,k σj,k+1 + H · σj,k}, (1)

where σj,k = ±1 specify the “spin” at row j and column k of a square lattice.
This definition can be extended to nearest neighbor interactions on other lattices
by a straightforward expansion of the notation. We will impose either periodic, or
cylindrical, boundary conditions.

For this interaction energy we are interested in computing the partition function

ZLv,Lh(T, H) =
∑
σ=±

exp(−EI(H)/kBT ), (2)

where kB is the Boltzmann constant and the sum is over all values of the spins σj,k.
From the partition function (2) one gets the free energy F (T, H) in the thermo-

dynamic limit

−F (T, H)/kBT = lim
Lv,Lh→∞

1
LvLh

lnZLv,Lh(T, H), (3)

∗) It was first remarked by Enting and Guttmann,29) on the anisotropic lattice, that the suscep-

tibility of the square Ising model is not D-finite.29) The isotropic susceptibility is also non-holonomic

(but this is not a consequence of the previous anisotropic result).
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the magnetization

M(T, H) = − ∂

∂H
F (T, H) = 〈σ0,0〉, (4)

the magnetic susceptibility

χ(T, H) =
∂M(T, H)

∂H
=

1
kBT

∞∑
M=−∞

∞∑
N=−∞

{〈σ0,0σM,N 〉 −M2(T, H)}, (5)

and the internal energy

u = kBT 2 ∂

∂T
F (T, H)/kBT, (6)

where we have used the definition of the thermal average of an operator O

〈O〉 = lim
Lv,Lh→∞

Z−1
Lv,Lh(T, H) ·

∑
σ=±

O exp(−EI(H)/kBT ). (7)

We note, in particular, that the magnetic susceptibility, at H = 0, is written, in
terms of the two-point function, as

kBT · χ(T, 0) =
∞∑

M=−∞

∞∑
N=−∞

{〈σ0,0σM,N 〉 −M2}, (8)

where
M = lim

H→0+
M(T, H), (9)

is the spontaneous magnetization. For the nearest neighbor interaction (1), the
internal energy (6) reads:

u = −Ev · 〈σ0,0σ1,0〉 − Eh · 〈σ0,0σ0,1〉 − H · 〈σ0,0〉. (10)

The interaction energy of nearest neighbor Ising model (1) may be generalized
to interactions farther than nearest neighbors with interaction energy:

EG = −
Lv∑

j=−Lv

Lh∑
k=−Lh

Lv∑
j′=−Lv

Lh∑
k′=−Lh

E(|j − j′|, |k − k′|) · σj,kσj′,k′

−H ·
Lv∑

j=−Lv

Lh∑
k=−Lh

σj,k. (11)

This reduces to (1) when E(1, 0) = Ev/2, E(0, 1) = Eh/2 and all other E(j, k) = 0.
The free energy, magnetization and susceptibility are all computed by replacing EI

in (2) by EG. The internal energy (10) generalizes to

u = −
Lv∑

j=−Lv

Lh∑
k=−Lh

E(|j|, |k|) · 〈σ0,0σj,k〉 − H · 〈σ0,0〉. (12)
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§3. What do we know for H = 0?

We have obtained more exact results for the nearest neighbor Ising model at
H = 0 than for any other system in statistical mechanics.

3.1. Free energy

The free energy of the nearest neighbor Ising model with H = 0 was computed
by Onsager1) in 1944

−F/kBT = ln 2

+
1

8π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 ln

[
cosh

2Eh

kBT
cosh

2Ev

kBT
− sinh

2Eh

kBT
cos θ1 − sinh

2Ev

kBT
cos θ2

]
.

(13)

This free energy has a singularity at T = Tc determined by

sinh 2Ev/kBTc · sinh 2Eh/kBTc = 1. (14)

This temperature Tc is referred to as the critical temperature. The free energy may
be expanded, about T = Tc, as

−F/kBT = (T − Tc)2 · ln |T − Tc| · F1(T − Tc) + F2(T − Tc), (15)

where F1, and F2, are analytic at T = Tc (i.e. they both have convergent power
series expansions).

3.2. Spontaneous magnetization

The spontaneous magnetization was first announced by Onsager2) in 1949, and
a proof was given by Yang3) in 1952

M = (1 − k2)1/8, (16)

where
k = (sinh 2Ev/kBT · sinh 2Eh/kBT )−1, (17)

for T < Tc, and is zero for T > Tc. The history of the Onsager result is given in a
most interesting paper of Baxter.47)

3.3. Correlation functions

All correlation functions of the nearest neighbor Ising model at H = 0 may be
expressed as determinants. These are particularly simple for the row correlation
〈σ0,0σ0,N 〉, and the diagonal correlations 〈σ0,0σN,N 〉, which are given by

DN =

a0 a−1 · · · a−N+1

a1 a0 · · · a−N+2
...

...
...

aN−1 aN−2 · · · a0

(18)
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with

an =
1
2π

∫ 2π

0
dθ · e−inθ ·

[
(1 − α1e

iθ)(1 − α2e
−iθ)

(1 − α1e−iθ)(1 − α2eiθ)

]1/2

, (19)

where for 〈σ0,0σN,N 〉

α1 = 0, α2 = (sinh 2Ev/kBT sinh 2Eh/kBT )−1, (20)

and for 〈σ0,0σ0,N 〉

α1 = e−2Ev/kBT · tanhEh/kBT, α2 = e−2Ev/kBT · cothEh/kBT. (21)

From this determinental representation (18) of 〈σ0,0σ0,N 〉, and 〈σ0,0σN,N 〉, it is
easy to obtain the behavior of the correlation function as T → Tc. The integrals an

all have logarithmic singularities at T = Tc. and we find11),48) for both the row and
the diagonal correlations that DN has an expansion of the form

DN =
N∑

p=0

∞∑
n=0

d(p,n)(ln |T − Tc|)p · |T − Tc|p2+n, (22)

where for each p the sum over n converges (and thus defines an analytic function).
The correlations 〈σ0,0σM,N 〉 have a similar expansion in terms of powers of ln |T −Tc|
multiplied by functions which are analytic at T = Tc.

When T = Tc the determinant for the diagonal correlation reduces to a Cauchy
determinant. It is explicitly evaluated as5)

〈σ0,0σN,N 〉 =
( 2

π

)N ·
N−1∏
j=1

(
1 − 1

4j2

)l−N

. (23)

From this, we find as N → ∞ that

〈σ0,0σN,N 〉 =
Ac

N1/4
·
(

1 − 1
64N2

+ O(N−4)
)

, (24)

with
Ac = 21/12 · exp[3ζ ′(−1)] ∼ 0.6450 · · · , (25)

where ζ ′(z) is the derivative of the zeta function.
However, for T �= Tc, the representation (18) is not an efficient way to study the

limit M, N → ∞.

3.4. Form factor expansions

To study the correlation functions 〈σ0,0σM,N 〉 when M, N → ∞, the determi-
nants are re-expressed in an “exponential form”6) for T < Tc as

〈σ0,0σM,N 〉 = M2 · exp
∞∑

n=1

F
(n)
− (T ; M, N), (26)
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and, for T > Tc

〈σ0,0σM,N 〉 = M2
+ ·

∞∑
j=1

G(2j−1)(T ; M, N) · exp
∞∑

n=1

F
(2n)
+ (T ; M, N), (27)

where
M+ = [1 − (sinh 2Ev/kBT · sinh 2Eh/kBT )2]1/8, (28)

is referred to as the disorder parameter and is the value of the spontaneous magne-
tization on the dual lattice where Ev and Eh are replaced by E∗h and E∗v defined
as

sinh 2E∗v/kBT = 1/ sinh 2Ev/kBT, sinh 2E∗h/kBT = 1/ sinh 2Eh/kBT. (29)

The functions F
(n)
± (T ; M, N) and G(n)(T ; M, N) are n-dimensional integrals. These

exponentials can be expanded, and terms combined6),9),10) into what is referred to
as the form factor expansion. For T < Tc this expansion is

〈σ0,0σM,N 〉 = (1 − t)1/4 ·
{

1 +
∞∑

n=1

f
(2n)
M,N (T )

}
, (30)

with f
(2n)
M,N (T ) a 2n-dimensional integral and:

t = (sinh 2Ev/kBT · sinh 2Eh/kBT )−2. (31)

For T > Tc the form factor expansion reads

〈σ0,0σM,N 〉 = (1 − t)1/4 ·
∞∑

n=0

f
(2n+1)
M,N (T ), (32)

where f
(2n+1)
M,N (T ) is a 2n + 1-dimensional integral, and

t = (sinh 2Ev/kBT · sinh 2Eh/kBT )2. (33)

For the diagonal correlations 〈σ0,0σN,N 〉 a simpler alternative form of f
(n)
N,N (t) is given

in 17), and proven in 18).
The behavior of 〈σ0,0σM,N 〉 is easily obtained, from this form factor expansion

when T �= Tc, because f
(n)
M,N (T ) has an exponential decay

f
(n)
M,N (T ) ∼ e−κ(T ;M/N)·n·R, (34)

where R2 = M2 + N2, where κ(T ; M/N) depends on the ratio M/N , and vanishes,
when T → Tc, as:

κ(T ; M/N) ∼ |T − Tc|. (35)

This exponential decay defines a second length scale which, when T → Tc, is infinitely
large compared to the lattice length scale which defines the interaction energy (1). It
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is worth noting that the form (34) implies that the angular dependence of the decay
of the correlation functions is the same for T > Tc and T < Tc.

However, as T → Tc, each term of the form factor expansion vanishes because
(1 − t)1/4 vanishes, and each f

(n)
M,N (T ) is finite at T = Tc. The singularities of

the f
(n)
M,N (T ) are all at T = Tc. These functions satisfy Fuchsian linear differential

equations,17) and have logarithmic singularities at T = Tc where the highest power
of ln |T − Tc| is n. It therefore requires a detailed infinite summation of powers of
logarithms to reproduce the behavior (22) for fixed M, N as T → Tc. In fact, this
type of demonstration has never been carried out.

3.5. Differential equations for 〈σ0,0σN,N 〉
The correlation functions 〈σ0,0σM,N 〉 are holonomic (D-finite): they satisfy a set

of partial linear differential equations in the variables sinhEv,h/kBT . This is exactly
the holonomic property of Feynman integrals, shown by Kashiwara and Kawai.28)

For the diagonal case the more specialized result holds that 〈σ0,0σN,N 〉 satisfies a
linear Fuchsian equation. The order of this linear differential equation is N + 1,
which is the minimum order needed to accommodate the singular terms at T =
Tc, lnp |T − Tc| with 0 ≤ p ≤ N of (22), which were directly obtained from the
determinental representation (18). A few examples are given in 16).

However the diagonal correlation 〈σ0,0σN,N 〉 has the much more remarkable prop-
erty, discovered by Jimbo and Miwa8) in 1980, that it satisfies a second order non-
linear differential equation(

t · (t − 1) · d2σ

dt2

)2

= N2 ·
(
(t − 1) · dσ

dt
− σ

)2 − 4
dσ

dt
·

(
(t − 1)

dσ

dt
− σ − 1

4

)
·
(
t
dσ

dt
− σ

)
. (36)

For T > Tc the diagonal correlation is related to σ by

σ(t) = t · (t − 1) · d

dt
log〈σ0,0σN,N 〉 − 1

4
(37)

with the boundary condition at t = 0

〈σ0,0σN,N 〉 = tN/2 · (1/2)N

N !
+ O(t1+N/2), (38)

and, for T < Tc, it is related to σ by

σ(t) = t · (t − 1) · d

dt
log〈σ0,0σN,N 〉 − t

4
, (39)

with the boundary condition

〈σ0,0σN,N 〉 = (1 − t)1/4 ·
{

1 − tN+1

2N + 1

(
(1/2)N+1

(N + 1)!

)2

+ O(tN+2)
}
, (40)

where (a)N = a(a + 1) · · · (a + N − 1) is Pochhammer’s symbol (N ≥ 1, (a)0 = 1).
These boundary conditions are obtained from the leading terms of the form factor
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expansions as t → 0. Equation (36) is an alternative form of the Painlevé VI
equation,49) called the σ-form of Painlevé VI.

No nonlinear isomonodromic (Garnier50),51)) systems of partial differential equa-
tions have been derived for the general correlation function 〈σ0,0σM,N 〉, even though
they almost certainly exist. Such isomonodromic systems would yield, by differential
algebra elimination, in the isotropic case, higher nonlinear order differential equa-
tions with the Painlevé property. Some exact results for 〈σ0,0σN,N−1〉 are actually
given by Witte in 52).

However 〈σ0,0σM,N 〉 does satisfy quadratic difference equations53),54)

sinh 2Eh/kBT · {C(M, N)2 − C(M, N − 1) C(M.N + 1)}
+sinh 2E∗v/kBT · {C∗(M, N)2 − C∗(M − 1, N) C∗(M + 1, N)} = 0, (41)
sinh 2Ev/kBT · {C(M, N)2 − C(M − 1) C(M + 1, N)}
+sinh 2E∗h/kBT · {C∗(M, N)2 − C∗(M, N − 1) C∗(M, N + 1)} = 0, (42)

where
C(M, N) = 〈σ0,0σM,N 〉, (43)

and where C∗(M, N) are the correlations on the dual lattice (29). At T = Tc, where
sinh 2E∗.i/kBT = sinh 2Ei/kBT for i = v, h, and C∗(M, N) = C(M, N), these
equations reduce to the discrete imaginary time Hirota equation.55)

3.6. Susceptibility

By using the form factor expansions (30) and (32) in (5), we obtain the expansion
for the susceptibility as the infinite sum of n “particle” contributions

kBT · χ+(T ) = (1 − t)1/4 · t−1/4 ·
∞∑

j=0

χ(2j+1)(T ), for T > Tc, (44)

kBT · χ−(T ) = (1 − t)1/4 ·
∞∑

j=1

χ(2j)(T ), for T < Tc, (45)

where explicit forms of the χ(j)(T ), as j − 1-dimensional integrals for the general
anisotropic lattice, are given in 11). These series are convergent for T �= Tc.

We may also consider what we call the “diagonal susceptibility”, defined as:

kbT · χd(t) =
∞∑

N=−∞
{〈σ0,0σN,N 〉 −M2}. (46)

By use of the form of the diagonal form factor expansion of 17)–18) we obtain as
analogues of (45) and (44)

kBT · χd+(T ) = (1 − t)1/4 · t−1/4 ·
∞∑

j=0

χ
(2j+1)
d (t), for T > Tc, (47)

kBT · χd−(T ) = (1 − t)1/4 ·
∞∑

j=1

χ
(2j)
d (t), for T < Tc, (48)
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where the χ
(n)
d (t) are given in 59). These series are also convergent for T �= Tc.

The series expansions (44) and (45) are, what we referred to in the introduction
as, the analogue of a “Feynman diagram expansion”.

The integrals for χ(n)(T ), and χ
(n)
d (T ), have been extensively studied.12)−25) It

is quite instructive to contrast them with the form factor integrals f
(n)
M,N (T ) from

whence they came.
When T → Tc each χ(n)(T ) diverges as |T − Tc|−2 with a coefficient which

depends on n and rapidly decreases as n increases. Thus, in terms of the variable

τ =
1
2
· (sinh−1 2E/kBT − sinh 2E/kBT ), (49)

we have, for the isotropic lattice6),56),11) as τ → 0

kBT · χ±(τ) −→
√

2 · C± · |τ |−7/4. (50)

The constants C− and C+ are different, and are given as infinite series

C− =
∞∑

n=1

C(2n), C+ =
∞∑

n=0

C(2n+1), (51)

where the C(n) are C(n) = 2−n πn−1 Dn, with57)

Dn =
4
n!

∫ ∞

0
· · ·

∫ ∞

0

du1

u1
· · · dun

un
·

∏
i<j

(
ui−uj

ui+uj

)2

(
∑n

j=1(uj + 1/uj))2
. (52)

These integrals have been studied for n = 1, · · · , 6. The first terms in (51) have
been analytically evaluated:6)

C(1) = 1, C(2) =
1

12π
. (53)

The next leading term was analytically evaluated by Tracy58) as

C(3) =
1

2π2
·
(

π2

3
+ 2 − 3

√
3Cl2(π/3)

)
= 8.1446 · · · × 10−4, (54)

where

Cl2(θ) =
∞∑

n=1

sinnθ

n2
, (55)

is Clausen’s function. The next term reads:

C(4) =
1

16π3
·
(

4π2

9
− 1

6
− 7

2
ζ(3)

)
= 2.5448 · · · × 10−5. (56)

Accurate numerical evaluations have been made57) for C(5) and C(6):

C(5) =
1

25π4
× 0.0024846057 · · · = 7.9709118 · · · × 10−7, (57)

C(6) =
1

26π5
× 0.0004891422 · · · = 2.497501 · · · × 10−8. (58)
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A curious feature of these results is that the ratio C+/C− is found to be closely
approximated by 12π, and the succeeding terms decrease by approximately three
orders of magnitude. The study of the constants C− and C+ has been continued
by high precision numerical computations,11) and the most recent evaluation,26) in
2011, is to 104 places.

For the diagonal susceptibility each χ
(n)
d (t) diverges as (1− t)−1. One finds27),59)

kBT · χd+(T ) −→ (1 − x2)1/4

1 − x
·

∞∑
n=0

C
(2n+1)
d+ , (59)

where C
(1)
d+ = 1, and

C
(3)
d+ =

1
3

− 5π

9Γ 2(5/6)Γ 2(2/3)
− 8π

Γ 2(1/6)Γ 2(1/3)
= 0.016329 · · · (60)

and

kBT · χd− −→ (1 − t)−3/4 ·
∞∑

n=1

C
(2n)
d− , (61)

where C
(2)
d− = 1

4 , and

C
(4)
d− =

1
8
·
(

1 − 1
3π2

[64 − 16 I]
)

, (62)

with:
I = −2.2128121 · · · . (63)

In contrast to the form factors f
(n)
M,N (T ), whose only singular point is T = Tc

where Tc is real, the χ(n)(T )’s have many further singularities. The first set of these
singularities was found, by Nickel,9),10) to be, for the isotropic case Ev = Eh = E,
located at

1 + s2 + s · (cos(2πj/n) + cos(2πl/n) = 0, (64)

where
s = sinh 2E/kBT (65)

with ([x] is the integer part of x) 0 ≤ j, l ≤ [n/2], j = l = 0 excluded (for n
even j + l = n/2 is also excluded). Equivalently (64) reads sinh 2E/kBTj,l = sj,l

= 1/2· (cos(2πj/n)+cos(2πl/n)) ±i/2· [(4−(cos(2πj/n) +cos(2πl/n))2]1/2. These
Nickel’s singularities are clearly on the unit circle |s| = 1, or |k| = 1. Do note that
this is no longer the case for the anisotropic model. In the anisotropic case Nickel’s
singularities for the anisotropic χ(n)’s become (see (3.22) of 11)):

cosh2 2Ev/kBT · cosh2 2Eh/kBT

− (sinh 2Ev/kBT · cos(2πj/n) + sinh 2Eh/kBT · cos(2πl/n)) = 0, (66)

with j, l = 1, 2, · · · n. These (complex) algebraic curves (66), in the two complex
variables sinh 2Eh/kBT , sinh 2Ev/kBT , are actually singular loci∗) for the D-finite

∗) This result on the anisotropic Ising model has been obtained from a Landau singularity

analysis, generalizing19), 20) (S. Boukraa, S. Hassani and J-M. Maillard, unpublished results).
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Table I. The Nickel singularities (64) for the isotropic case Ev = Eh of χ(n) for n = 3, 4, 5, 6.

n w

3 −1/2, 1

4 ±1/2

5 −1, −1±√
5

4
, 3±√

5
2

6 ±1, ± 1/3

system of PDE’s satisfied by the anisotropic χ(n)’s. These algebraic curves accu-
mulates with increasing values of n, in the same way Nickel’s singularities (64)
accumulate on the unit circle |s| = 1, in a certain (real) submanifold S of the two
complex variables sinh 2Eh/kBT , sinh 2Ev/kBT (four real variables). However, this
“singularity manifold” S is not a codimension-one (real) submanifold (like the unit
circle |s| = 1 in the s-complex plane), but actually a codimension zero submani-
fold, as can also be seen on various analyses of complex temperature zeros (see for
instance 60)). Note that this “singularity manifold” becomes very “slim” near the
(critical) algebraic curve k = sinh 2Eh/kBT · sinh 2Ev/kBT = 1 (see for instance
Figs. 1, 2 and 3 near the real axis in 60)).

Returning to the isotropic model, we introduce the variable

w =
1

2 · (sinh 2E/kBT + (sinh 2E/kBT )−1)
, (67)

the singularities (64) for n = 3, 4, 5, 6 are given in Table I, where we note, when
w is real, that sinh 2E/kBT is real for −1/4 ≤ w ≤ 1/4, and is complex with
| sinh 2E/kBT | = 1 for |w| > 1/4. Following 10) we define ε, the deviation from the
singular temperatures T

(n)
j,l determined by (64), as s−1 = (1−ε) · s−1

j,l , for T < Tc,
and s = (1 − ε) · sj,l, for T > Tc. Then, for T < Tc, the singularity in χ(2n)(T ),
at Tj,l, reads

A
(2n)
j,l · ε2n2−3/2, (68)

and, for T > Tc, the singularity in χ(2n+1)(T ) reads

A
(2n+1)
j,l · ε2n(n+1)−1 · ln ε

π
. (69)

The amplitude A
(N)
j,l is given by10)

A
(N)
j,l =

(Ni sin θj,l)(N
2−3)/2

(sin2 φ(j) cos φ(l) + sin2 φ(l) cosφ(j))(N2−1)/2

×
∏N−1

m=1(m!/2m)
π(N−3)/2)

√
N Γ ((N2 − 1)/2)

, (70)

with
φ(m) = 2πm/N, 2 cos θj,l = cos φ(j) + cos φ(l). (71)
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The Fuchsian linear differential equations12)−25) which the (isotropic) χ(n)(T )
satisfy, have singularities which accumulate on the unit circle, but, also, inside, and
outside, this unit circle | sinh 2E/kBT | = 1. However, the series expansions of these
integrals χ(n)(T ) are actually analytic inside the unit circle (| sinh 2E/kBT | < 1).
The singularities of a linear ODE and the singularities of a particular series-solution
of an ODE do not coincide.

The singularities of the Fuchsian ODE may be obtained, from the integrand
of the integrals, by the same “Landau” analysis19) used to obtain singularities of
Feynman diagrams.

For the isotropic χ(3), in addition to the unit circle singularities (64), there are
additional singularities at

w =
−3 ± i

√
7

8
, where s, s−1 =

−1 ± i
√

7
2

, (72)

and they actually correspond to complex multiplication of elliptic curves, Heegner
numbers, and complex fixed points of the Landen transformation.20)

The singularities of χ(n)(w) are to be contrasted with the diagonal susceptibility
χ

(n)
d (t) which only have19) singularities on the unit circle |t| = 1.

For T < Tc the singularities of χ
(2n)
d (t) are at t0 = e2πij/n, and are of the form:

A
(2n)
d;j · ε2n2−1 · ln ε. (73)

For T > Tc the singularities in χ
(2n+1)
d (t) are at t0 = e2πj/(n+1/2), and are of the

form
A

(2n+1)
d;j · ε(n+1)2−1/2, (74)

where the amplitudes A
(N)
d;j have yet to be determined.

The linear differential operator for χ(3) rightdivides the one for χ(5) (in a direct
sum structure21)). Consequently, all the singularities of the linear differential oper-
ator for χ(3) are also singularities of the operator for χ(5). It was, however, seen,21)

by means of a Fast Fourier Transform analysis of the series expansion of the integral
for χ(5), as a power series in t, that some singularities∗) of χ(3) are not present in
χ(5).

3.7. Natural boundary for the isotropic model

It is striking that the number of singularities (64) in χ(n)(T ) increases with n,
and becomes dense in the limit n → ∞. This feature led Nickel9) to the conclusion
that, unless cancellations occur, there will be a unit circle natural boundary in the
susceptibility χ(T ) in the complex s plane. The fact that Ref. 21) demonstrates that
some singularities of the χ(3) series are not singularities of the χ(5) series, supports
the no cancellation assumption. The existence of a natural boundary, in the complex
temperature plane, is not contemplated in the scaling theory of critical phenomena.

∗) Nickel’s singularities at w = −1/2, and w = 1, which are in the χ(3) series are not in the χ(5)

series as the FFT analysis of section 7 of 21) shows.
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The literature on natural boundary is quite narrow,61) as well as the methods and
tools to study the neighborhood of a natural boundary. Curious situations may
occur, like, for instance, the “radial porosity” one encounters with Borel’s examples
of monogenic functions (see §10.5 page 21 of 62)).

There is much that is, as yet, not understood about the properties of this Ising
natural boundary. In the vicinity of any point on |s| = 1, such that s �= ±1, the
local spacing of the singularities, in χ(n), is of the order n−2. However, for s = ±1
the local spacing is only n−1, and the dependence of the amplitude (70), for large
N , is different in these two cases.

An initial analysis was made in 11), for s → 1, based on keeping only the
singularities closest to τ = 0. This analysis yielded an essential singularity of the
form e−C/τ2

where C is a constant. However, there is more to a natural boundary
than just an essential singularity, and further analysis will be required to fully assess
the properties following from the singularities in χ(n). In particular we note that,
in general, the limiting value at a point on a natural boundary depends on the
direction of the approach, and, as suggested in 11), an asymptotic expansion about
|s| = 1, s �= ±1, may not exist. The existence of a unit circle natural boundary in
the isotropic square Ising model, seriously questions most of the scaling arguments
taken for granted on this model. For example it is desirable to explore the relation
between the equality γ+ = γ− for the susceptibility exponent γ, above and below
Tc, and the unit circle natural boundary which disconnects∗) the inside and the
outside of the unit circle, |k| < 1 and |k| > 1.

3.8. Series expansions

There is a second way of studying the susceptibility which is distinct from (and
in a way complementary to) the use of the form factor expansion. By use of either (in
principle) the determinant representation or (in practice) by the more sophisticated
approach of using the nonlinear difference equations (41), (42) with the explicit
result for 〈σ0,0σN,N 〉 of (23), and for 〈σ0,0σN,N−1〉 of 52), very long expansions about
T = 0, and T = ∞, can be obtained. For the isotropic lattice Ev = Eh = E this has
been done in 11) and 26), and series expansions with many hundreds of terms have
been obtained, not only on the square, but also on the triangular and honeycomb
lattices.

These long expansions have been analyzed in 11) and 26). This analysis leads
to the following expansion of the susceptibility as T → Tc which generalizes the
leading diverging term given in (50)

kBT · χ± = C± · |τ |−7/4 · F±(τ) + B(τ), (75)

where

F±(τ) = 1 +
∞∑

n=1

fn± · τn, (76)

∗) As far as analysis of several complex variables63) is concerned, the situation is even worse for

the anisotropic Ising model, because of the codimension zero manifold S of §3.6.
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and

B(τ) =
∞∑

q=0

[
√

q]∑
p=0

b(p,q) · (ln τ2)p · τ q, (77)

with τ taken to be real, and where the b(p,q)’s are the same for T < Tc and T > Tc,
and are functions depending on the lattice. Unlike the expansions (44) and (45),
which converge we will see below that (77) is expected to only be asymptotic. The
function F±(τ) is referred to, in 11) and 26), as a “scaling function”.

It is greatly instructive to compare the result (75) of 11) and 26) with the
behavior of the expansions (44) and (45), derived from the form factor expansion.

The term B(τ) is of the same form as the logarithmic terms (22) already seen
in the determinental form of the correlations. Such terms are present term by term
in (5), and are referred to, in 11), as “short distance” contributions. However,
in the expansion (44) and (45), the χ(n)(T ) have singularities, at T → Tc, with
powers of ln |T − Tc|. Thus, term by term in (44) and (45), the coefficient (1− t)1/4

is not cancelled out. Consequently there must be an infinite number of detailed
cancellations to obtain the B(τ) of (77) from (44) and (45).

The most interesting question concerns the convergence of the infinite series in
(76) and (77). This cannot, of course, be answered by a finite series, no matter how
long and, in fact, the numerical results for F±(τ), and b(p,q) in 26), do not show
divergent behavior with the number of terms which have been computed. However,
the dense set of singularities in the χ(n)(T ), found by Nickel9),10) in analyzing the
form factor integrals, must have a significant influence on this expansion. The in-
fluence of Nickel’s singularities has been analyzed in 11) with the conclusion that
there must be asymptotic behavior in, at least, some of the series in (76) and (77).
It is argued in 11), from the results of (6.12), that the coefficients b(p,0) form an
asymptotic sequence for sufficiently large p. The behavior of b(p,q), for p fixed and
q → ∞, and fn± as n → ∞, remains to be carried out. The further effects caused
by the Landau singularities19) also remain to be studied.

3.9. The scaling (field theory) limit at H = 0

One of the most important properties of the Ising model at H = 0, as T → Tc,
is that it defines a Euclidean quantum field theory and gives a very concrete example
of the concepts of mass and wave function renormalization.

We concretely illustrate this for the two point correlation 〈σ0,0σM,N 〉. For mass
renormalization we define

r = κ(T ; M/N) · R, (78)

where R2 = M2 + N2, and where κ(T ; M/N) is the inverse correlation length intro-
duced in §3.4. We define what we call the scaling limit, for T real, as

T −→ Tc, R −→ ∞, (79)

with r fixed, and we recall from (35) that κ vanishes as T → Tc

κ(T ; M/N) ∼ Aκ · (1 − t). (80)
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For wave function renormalization we divide the correlation function by the
factor (1 − t)1/4 which vanishes at T = Tc. When T < Tc this factor is the square
of the spontaneous magnetization. The interpretation is that the spins, which on
that lattice have the values σ = ±1, are regarded as having a “natural size” of M
in the scaling limit. Similarly, for T > Tc, the value of the disorder parameter M+

is interpreted as the natural size for σ.
We then define for T → Tc±

G±(r) = lim
scaling

(1 − t)−1/4 · 〈σ0,0σM,N 〉. (81)

By use of the form factor expansion we see that this limit exists. In the isotropic case
this function is rotationally invariant. In the anisotropic case it becomes rotationally
invariant if one uses the length variable r (fixed)

[(
sinh 2Eh/kBTc

sinh 2Ev/kBTc

)1/2

· M2 +
(

sinh 2Ev/kBTc

sinh 2Eh/kBTc

)1/2

· N2

]1/2

(1 − t) = r. (82)

This function G±(r) is expressed in terms of a Painlevé equation of the third
kind

d2η

dθ2
=

1
η

(
dη

dθ

)2

− 1
θ

dη

dθ
+ η3 − η−1, (83)

as

G±(r) =
1 ∓ η(r/2)
2 η(r/2)1/2

· exp
1
4

∫ ∞

r/2
dθ · θ · (1 − η2)2 − (η′)2

η2
. (84)

The second order equation (83) admits a one parameter family of solutions which
decay exponentially, when θ → ∞, as

η(θ) ∼ 1 − 2λ

π
· K0(2θ), (85)

where K0(2θ) is the modified Bessel function. The specific value λ = 1 corresponds
to the Ising model. The result was first announced in 56) and 64). Two different
proofs were originally given. The first, in 6), is based on Myers’ work,65) on the
scattering of electromagnetic radiation from a strip, and the second7) is based on a
direct manipulation of the exponential representation in the scaling limit.

An alternative derivation of the scaled two-point function was subsequently ob-
tained8) by directly taking the scaling limit of the Painlevé VI equation (36). This
scaling leads to representation in terms of a Painlevé V function. The equivalence
of this representation with the original Painlevé III form was shown in 66).

The scaling limit as defined by (78) and (79), which is used to define the scaled
Green’s function (81), is defined from the massive regime where the correlation on
the lattice decays exponentially. It remains to connect this regime with the algebraic
decay of the lattice correlations, at T = Tc, given by (24). We do this by extending
the strict limiting definition (81) with the less precise statement that

〈σ0,0σM,N 〉 ∼ (1 − t)1/4 · G±(κR), (86)
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and examine (86) as T → Tc, i.e. t → 1 and κ → ∞. Thus, we see that if, as r → 0,
we have

G±(r) −→ AG/r1/4, (87)

then (86) reduces to

〈σ0,0σM,N 〉 −→ AG ·
(

Aκ

R

)1/4

. (88)

The exponent 1/4 in (87) is shown in 7) to follow, from the local behavior of the
Painlevé III equation at θ → 0, if the exponentially decaying boundary condition
(85), at infinity, holds with λ = 1.

The constant AG does not follow from a local property of the Painlevé function,
and the limit of G±(r), as r → 0, will agree with 〈σ0,0σM,N 〉, as R → ∞, if in
addition to the functional form (87), it can be shown that

AG · A1/4
κ = Ac, (89)

with Ac given by (25). This crucial identity was first proven by Tracy67) in 1991, by
use of the scaling limit of the exponential forms of the correlation (26) and (27). It
is perhaps worth pointing out that a derivation of the constant AG of (87) has never
been directly obtained from the Painlevé III forms (83) and (84).

§4. The Ising model for H �= 0

The properties of the Ising model at H = 0, presented in the previous section,
are all found by exact computations which start with the definition (1) of the nearest
neighbor Ising model and are mathematically rigorous. However when we extend our
considerations to H �= 0, this is not the case, and, with only a few exceptions, the
results require some arguments which, while often extremely plausible, in fact include
assumptions which remain to be proven. Nevertheless the work of the last 50 years
has produced remarkable results which give a compelling scenario of the behaviour
of the Ising model for H �= 0. In this section we will here discuss the following major
contributions:

1. Perturbation for small H for the two-point function32) and two-body
scattering for T > Tc ,33)

2. Conformal field theory,34)

3. Integrable perturbations of conformal field theory,35),36)

4. The connection of integrable perturbations with Rogers-Ramanujan
identities,39)−43)

5. Scaling theory with irrelevant operators and nonlinear scaling
fields,11),26),44),45)

6. Non-integrable perturbations of conformal field theory.46)

4.1. Perturbation for H ∼ 0

For T < Tc the two point function has been studied perturbatively32) for small
H. It was found that if in the limit H → 0 and T → Tc− from the low temperature
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side with the scaled magnetic field h fixed

h = lim
scaling

H

|T − Tc|15/8
, (90)

then the connected part of the two-point function, for h ∼ 0 and large r, is

Gc(r; h) ∼ π1/2 · r−1/2 · e−2r ·
∑

j

aj(h) · e−rκj(h) (91)

with
κj(h) = h2/3 · λj and aj(h) = h · a, (92)

where a is a constant, and the λj ’s are solutions of

J1/3(λ
3/2/3) + J−1/3(λ

2/3/3) = 0, (93)

where Jn(z) is the Bessel function of order n.
This perturbation is, in fact, a “singular” perturbation which is subject to some

interpretation. In particular one is not able to distinguish between r−1/2 e−κ r and
K0(κ r), where K0(z) is the modified Bessel function. If we make this replacement in
(91), then the Fourier transform consists of a set of poles, and this result can be inter-
preted as an example of confinement of two “domain wall excitations” which interact
by means of an infinitely weak linear confining potential, to produce a spectrum of
“mesons”. For T > Tc the only effect on the leading behavior of the two-point func-
tion, for h ∼ 0, is to shift the correlations length by a term proportional to h2. From
these computations a scenario is conjectured in 32) that, as we go from T < Tc to
T > Tc in a path in the (H, T ) plane in the scaling limit, the Fourier transform of
the two-point function will contain poles. These poles can be interpreted as quasi
particles and the number of these poles will go, in a smooth fashion, from one at
T > Tc, H = 0, to the infinite number of poles for T < Tc and h → 0 given by (91).

Much more recently33) the two-body scattering has been studied in the same
small h limit for T > Tc. One of the very significant results of this study is that, at
large energies, the scattering is predominantly inelastic.

4.2. Conformal field theory

Conformal field theory is an entirely new approach to critical phenomena in-
vented by Belavin, Polyakov and Zamolodchikov34) in 1984. In this approach there
is no lattice such as (1) and the theory is defined directly in the continuum. In
particular, these continuum theories make no contact with the short distance terms,
and the natural boundary, which were discussed in §3.

It is not our purpose here to present a survey of conformal field theory, which
is well presented in the original paper34) and, subsequently, in many places.68),69)

Instead, we will restrict our attention to a discussion of two integrable perturbations
relevant to the Ising model, the M(3, 4) and the M(2, 5) minimal models.

The minimal model M(3, 4) describes the critical point of the Ising model at
T = Tc and H = 0. It has two relevant operators for the energy and magnetization.
The conformal dimension of energy is 1/2, which means the two-point function for
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energy is r−2, and for magnetization is 1/16, which means that the two-point spin-
spin correlation is r−1/4. These results agree with the exact results at T = Tc of the
Ising model (1).

There is, however, a second conformal field theory which is relevant to the Ising
model, namely the M(2, 5) model which is related to the Lee-Yang edge.

In 1952 Lee and Yang70) proved what is one of the few results exactly known for
the Ising model in a magnetic field, namely that, for real interaction energies, the
zeros of the partition function of an isotropic Ising model on a finite lattice, all lie
on the circle |z| = 1, where

z = e−2H/kBT . (94)
For T > Tc these zeros are all bounded away from z = 1, and they pinch the real
z-axis when T → Tc. For T < Tc they fill up the unit circle |z| = 1. For T > Tc the
endpoint of the arc of zeros is called the Lee-Yang edge.

The confining of partition function zeros to an arc in the complex z plane for
real temperatures is to be contrasted with the zeros of the partition function in the
complex plane u = e−4E/kBT for real H, where computer studies,71),72) on systems
of size∗) up to 16× 16, show that the zeroes for H = 0 are located on curves only for
very special boundary conditions,73) and for H �= 0 there are regions of the complex
u-plane where, even for these special boundary conditions, the zeros do not lie on
curves.

The identification of the Lee-Yang edge as a critical point, with a continuum
field theory interpretation, was first made by Fisher,74) and the identification of this
field theory with the M(2, 5) minimal model was first made by Cardy.37) There is
only one relevant operator and the dimension is −1/5, which means that the two-
point function of this operator is 〈φ0φr〉 is r4/5. Because there is only one relevant
operator, both the energy operator σj,kσj,k+1 and the spin operator σj,k must have
the same two-point function as the operator φ of the M(2, 5) model.

The value of the magnetic field H = i HLY , at the Lee-Yang edge, vanishes at
T → Tc from above, as:

HLY = CLY · (T − Tc)15/8. (95)

Cardy has determined37) that the density of zeros ρ(Im(H)) diverges, when Im(H) →
HLY , as:

ρ(Im(H)) ∼ (Im(H) − HLY )−1/6. (96)

4.3. Integrable perturbations of conformal field theory

A perturbation of a conformal field theory is called integrable if it preserves
an infinite number of the constants of the motion of the conformal field theory
which is being perturbed. This concept was introduced by Zamolodchikov35),36) at
a conference in 1988, where he discovered that the perturbations of the M(3, 4)
model, by both the energy and separately by the spin operator, have an infinite
number of conservation laws. The M(2, 5) model was shown38) to have an integrable
perturbation by the operator φ in 1990.

∗) We have also performed, with I. Jensen, calculations of zeros of partition function of the

square Ising model in a magnetic field up to size 20 × 30.
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4.3.1. The case of M(3, 4)
The perturbation of the minimal model M(3, 4) by the energy operator ε =

σj,kσj,k+1 is, in fact, nothing more than saying that the original Ising model with
nearest neighbor interactions (1) is integrable, which is manifestly true and com-
pletely not surprising. However, the discovery in 35) and 36), that the perturbation
by the spin operator σj,k, which corresponds to the Ising model, at T = Tc in a
non zero magnetic field, is integrable came as a big surprise, because the lattice
interaction (1), at the critical temperature with H �= 0, is not integrable. For-
tunately, this mystery was resolved in 1992 when an integrable lattice model was
found75) which does have the critical behaviour of the magnetization of H1/15, found
in 35) and 36), for the perturbed conformal field theory. This is the behavior of the
Ising magnetization obtained, decades ago, by simple scaling arguments for critical
exponents.

The truly remarkable property of both, the perturbed conformal field theory and
the lattice realization, is that they have an excitation spectrum with eight quasi-
particles, and that the masses of these particles are proportional to the components
of the Perron-Frobenius eigenvector of the Cartan matrix of the E8 Lie algebra.35),36)

This is completely in accordance with the scenario proposed from the perturbative
computation of 32).

4.3.2. The case of M(2, 5)
The integrable perturbation of the M(2, 5) model was investigated in 38). In this

case there is only a single quasi particle excitation. A lattice realization is regime I
of the hard hexagon model.76)

Because there is only one relevant operator, the identification of this perturbation
with the Lee-Yang edge, for real T �= Tc and complex magnetic field, should be
equivalent to the corresponding edge in the complex energy (temperature) plan for
real magnetic field H �= 0. However, the complex energy partition zeros do not lie on
curves in the way the complex magnetic field zeros do. Thus, for this identification to
hold, further restrictions on these complex energy zeros must hold in the vicinity of
the edge. Consequently, the precise relation the energy edge has with the perturbed
M(2, 5) model remains an open question.

4.4. Rogers-Ramanujan identities

All conformal field theories possess a Bose-Fermi duality.41),42) The Bose form
gives characters in the Roccha-Caridi form77) by eliminating singular vectors from a
Bosonic Fock space. For the minimal models M(p, p′), these characters are

χ(p,p′)
r,s =

1
(q)∞

·
∞∑

j=−∞
(qj(pp′j+rp′−sp) − q(p′j+s)(pj+r)), (97)

where

(q)m =
m∏

k=1

(1 − qk), (98)
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for 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ p′ − 1. This is a “field” representation of the theory,
and can be thought of as being natural to characterize “short distance” (ultraviolet)
properties. An equivalent representation is given in terms of exclusion statistics
applied to a set of Fermionic quasi-particles. This gives rise to a Fermionic form of the
characters. These Fermionic forms give a particle characterization of the spectrum,
and can be thought of as the natural characterization of “long distance” (infrared)
properties. The relation between the Bose and Fermi forms is a generalization of the
famous Rogers-Ramanujan identities.78),79)

The illustration of this duality for the Ising model, at T = Tc, H = 0, as the
M(3, 4) minimal model is very instructive.

From (2.8) of 39) the Fermionic representation of character χ
(3,4)
1,2 , for the spin

operator of the minimal model M(3, 4) which characterizes the Ising conformal field
theory, is

χ
(3,4)
1,2 =

∞∑
m=0

m odd

qm(m−1)/2

(q)m
(99)

=
∞∑

m=0
even

qm(m−1)/2

(q)m
. (100)

Similar formulas hold for the identity character χ
(3,4)
1,1 , and the energy character

χ
(3,4)
2,1 . These Fermionic forms match the particle excitations seen in the form factor

expansion of the form factors for H = 0. There is one type of excitation, and the
index m represents the contribution of a m-particle state. The sum over odd (even) m
in (99) (respectively (100)), corresponds to the odd (even) number of quasi-particles
in the form factor expansion of the two-point function for T > Tc (T < Tc). The
equality of (99), and (100), represents the fact that, at T = Tc, these representations
of the spectrum for T �= Tc must give the same result. In the language of perturbed
quantum field theory this characterization of the spectrum corresponds to perturbing
the M(3, 4) minimal model by the energy operator.

There is, however, another Fermionic representation of these same characters
which was first conjectured in (2.18) of 40) (and proven in 43))

χ
(3,4)
1,1 =

∞∑
m1=0

· · ·
∞∑

m8=0

q
mC−1

E8
mt

(q)m1 · · · (q)m8

, (101)

where m = (m1, · · ·m8), and where CE8 is the Cartan matrix of the Lie algebra
E8. Similar identities hold41) for χ

(3,4)
1,1 + χ

(3,4)
1,2 and χ

(3,4)
1,1 + χ

(3,4)
1,2 + χ

(3,4)
1,4 . This

representation has eight different types of excitations, which have no restriction on
the parity of the number of allowed excitations. This is in exact correspondence with
the eight particles, found by Zamolodchikov35) by perturbing the M(3, 4) conformal
field theory by the spin operator.

For M(2, 5) the fermionic forms of the characters have only one quasi-particle,



The Importance of the Ising Model 811

and read

χ
(2,5)
1,1 =

∞∑
n=0

qn2+n

(q)n
, χ

(2,5)
1,2 =

∞∑
n=0

qn2

(q)n
, (102)

which are, in fact, the original identities of Rogers78) and Ramanujan.79)

4.5. Scaling theory

A completely different approach to the Ising model, with H �= 0, is the scaling
theory of the renormalization group which was developed before the discovery of
conformal and perturbed quantum field theory. This is presented in detail the classic
paper of Aharony and Fisher,44) and tested extensively in 11) and 26).

In 44) the conjecture is presented, for T and H real, that

F = −g2
t · ln g2

t · Ỹ + g2
t · Y±(gh/|gt|15/8) + A0(t), (103)

where the function A0(t) is analytic at τ = 0, Y±(z) refers to T above and below Tc,
and

gt =
∑
n=0

a2n(τ) · H2n, a0(0) = 0, (104)

gh =
∑
n=0

b2n+1(τ) · H2n+1, (105)

with

a2n(τ) =
∞∑

j=0

a2n,j · τ j , with a0,0 = 0,

b2n+1(τ) =
∞∑

j=0

b2n+1,j · τ j . (106)

The functions gt, gh may depend on the interaction energies E(j, k) in (11), but
the constant Ỹ , and the functions Y±(z), do not depend on the interaction energies.
The functions Y±(z) are referred to as “scaling functions”. The independence on the
constants E(j, k) is referred to as “universality”. The leading behavior as T → Tc,
and H → 0, of gh/|gt|15/8 is:

gh/|gt|15/8 ∼ b1,0H

|a0,1 τ |15/8
= h (107)

(where the last line is a definition). When H �= 0 the free energy is analytic for
all real values of T , and, therefore, the functions Y+(z) and Y−(z) must analytically
connect with each other as z → ∞. These are, in fact, parts of the same function.
This is conveniently expressed by defining a new variable

η = lim
H→0,τ→0

τ

|H|8/15
. (108)
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Instead of (103), we follow 46) in defining the “singular” part of scaling free energy,
for τ and H real, as

F =
τ2

8π
· ln τ2 + |H|16/15 · Φ(η), (109)

(where we have used the normalization conventions of 46) with the exception that
we use −τ instead of m). For H and τ both real and positive, we have

η = 1/h8/15. (110)

Thus, for real η > 0 (T > Tc), we have

Φ(η) = η2 · Y+(1/η15/8). (111)

For H > 0 and τ < 0 (T < Tc), we have

η = −1/h15/8. (112)

Thus, for real η < 0 we have:

Φ(η) = η2 · Y−(1/(−η)15/8). (113)

The function Φ(η) has, for large values of η on the real line of 46), the behavior

Φ(η) = η2 ·
∞∑

k=1

G̃k · (−η)−15k/8, η → −∞, (114)

Φ(η) = η2 ·
∞∑

k=1

Gk · η−30k/8, η → ∞, (115)

and, for small values of η:

Φ(η) = − η2

8π
ln η2 +

∞∑
k=0

Φk · ηk. (116)

For real values of η the function Φ(η) has been numerically determined80) by
Baxter’s variational approach, based on the corner transfer matrix,81),82) as enhanced
by an improved iteration scheme.83)

From the form (103) Aharony and Fisher44) derive an expression for the functions
F±(τ) of (75), which is supposed to have validity, not only in the limit H → 0, τ →
0, but also for H and τ finite. Unfortunately, the conjectured form (103) fails
for several reasons. First of all, the result of 44) has F+(τ) = F−(τ), whereas the
analyses of 11) and 26), show that F±(τ) differ, at order τ6, on the square, triangular
and hexagonal lattice. In addition, for the square lattice, the term τ4 of 44) disagrees
with 11) and 26). Furthermore the conjecture (103) does not account for the term
B(τ) of (75). Clearly a more general conjecture is required.
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A more general conjecture, than that of Aharony and Fisher, utilizes the “irrel-
evant variables” of scaling theory. We follow the notation of 11) and 26). We write
this more general conjecture, for the singular part of the free energy, as

fsing(gt, gh, {guj}) = g2
t ln |gt| · Ỹ±(gh/|gt|15/8, {guj/|gt|yj/yt})

+g2
t · Y±(gh/|gt|15/8, {guj/|gt|yj/yt}), (117)

where, now, the coefficients a2n(t) and b2n+1, in the nonlinear scaling fields in (105),
are allowed to depend on a set of variables uj , and where

guj =
∑
n=0

cj
2n(t, u) · H2n, (118)

are additional “nonlinear scaling fields” associated with the irrelevant operators of
scaling theory that have dimensions yj . Further definitions of these concepts may
be found for example in 45). However, no explicit forms, or conjectures, for these
multivariable formulas have ever been given. Moreover there is no prescription given
to separate the effects of the “nonlinear scaling fields” from the irrelevant operators.
In addition the higher powers of ln τ , seen in the susceptibility, are not present in the
form (117). Consequently, while the form (117) may be regarded as “conventional”,
it is descriptive rather than computational. Indeed, in 11) and 26), even though it
is introduced, it is never used.

A further difficulty with the “scaling form” (117) is that it does not give an
explanation for the higher powers of ln |τ | which occur in B(τ) of (22). At this point
the literature is slightly ambiguous. In 11), in footnote 12, it is stated that the fact
that there is a “resonance between the identity, and the energy”, will result in higher
powers of ln τ (much as integer differences of exponents lead to powers of logarithms
in Fuchsian differential equations). However, in footnote 5 of 26), it is said that these
powers of ln |τ | have “not yet been interpreted within the context of scaling theory”.
There are clearly things left to be understood.

To see what is needed, we generalize our point of view, from the nearest neighbor
Ising model (1), to the much more general case (11), which allows for many further
neighbor interactions. This more general model is not integrable. Now the internal
energy (12) will include the spin correlations of all spins which are connected by non-
zero interaction energies. Thus, at least for small values of the non planar bonds,
it is entirely reasonable to expect that, at T → Tc, the singularity will not be a
pure logarithm, as is the case for the nearest neighbor case, but will involve many
higher powers of lnp |τ |, each of which is multiplied by some suitably high power
of τ . We might speculate, from (22), that this power will be τp2

, but there is no
further argument for this, except that it is the result found in (22). Moreover, even
in the case of the nearest neighbor interactions (1), these terms, with higher powers
of ln |τ |, should be present. By including such terms we will be able to reproduce
the “short range” term B(τ) in the susceptibility expansion (77).

But the truly serious problem in obtaining a general form of the free energy of the
Ising model in a magnetic field, as an expansion for “small H and small τ”, is that
the natural boundary, discussed in §3 for the susceptibility, forces the expansion
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(75) to be asymptotic. Therefore, even though the susceptibility is well defined
for all values of τ , the expansion (75) cannot, by itself, be taken as the definition
of the susceptibility. This is exactly the same problem which afflicts perturbation
expansions in the Feynman diagram expansion of quantum field theories, such as
Quantum Electrodynamics.30),31)

4.6. Non-integrable perturbations for H �= 0, T �= 0

The most ambitious program of studying the Ising model, for H �= 0, is to
allow both T �= Tc, and H �= 0, at the same time. This will allow the passage,
from T < Tc, H = 0 to T > Tc, H = 0, on a path in the real (H, T ) plane,
as is contemplated in the scenario of 32). However this more general two variables
perturbation does not satisfy the criteria of 35) and 36), needed for an integrable
perturbation. Furthermore, in this more general case, we cannot treat the region of
H ∼ 0, and T ∼ Tc, in isolation from the Lee-Yang edge for complex H. Thus,
we need to understand how the M(3, 4) conformal field theory flows to the M(2, 5)
theory under the influence of the nonintegrable perturbation.

To make this precise it is necessary to define a scaling limit in the complex plane.
This is very delicate because it says that we are describing the singular behaviour
of a function of two complex variables in terms of one complex variable. Such a
reduction will require very special circumstances to be valid.

Some of the consequences of the existence of this limit have for the free en-
ergy are extensively discussed in the 2003 paper of Fonseca and Zamolodchikov,46)

where a scenario is presented which incorporates several assumptions about analyt-
ical continuation in T and H, as two complex variables. We note, however, that
the question of the relation of the natural boundary in the complex T plane to the
analyticity properties in the complex H plane near the Lee-Yang edge remains to be
investigated.

§5. Why the Ising model is important

It is very natural to extend perturbed conformal field theory of the Ising model
from the integrable cases of 35) and 36), where either H = 0, T �= Tc, and T =
Tc, H �= 0, to the general case T �= Tc, H �= 0. This has been done in 46).
However, in spite of the impressive results of 80) for the free energy, which are in
correspondence with the picture of 46), there are several very interesting questions
which remain to be addressed.

Perhaps the foremost of these questions is what may be a significant difference
between integrable and non-integrable systems. We saw, in §4.4, that the characters
of the conformal field theory of the M(3, 4) minimal model have three different
representations which are in one to one agreement with the spectrum of excitations,
in the massive case, away from the critical point. We can thus think of the integrable
perturbations as being precisely tuned to these three different bases, in the same way
as degenerate perturbation theory picks out a distinguished basis.

However, in the non-integrable cases, the spectrum of excitations contains a
number of types of particles which depends on both T and H, and is not just either
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one or eight. The implication of this mismatch between the variable number of
excitations, seen in the massive model (in what can be considered the infrared part
of the spectrum), and the existence of only three particle-like representations of the
character in the conformal field theory (which can be considered as the ultraviolet
part of the spectrum), is that the smooth match, found in the Ising model at H = 0
(which was shown in §3.8 with the precise demonstration by Tracy67) of the equality
(89)), may not hold in the general non-integrable case.

The discussion of the potential disagreement of the short distance behavior of
the scaled two-point correlation function for general values of T and H of the Ising
model, with the result expected from conformal field theory, raises the suggestion
that our understanding of scaling theory may not be complete.

Scaling theory is concerned with the relation of two length scales: the scale of
the lattice length on which the theory is defined, and the correlation length which
is observed in the correlation functions. In scaling theory, as used in statistical me-
chanics, and in renormalization of quantum field theory, there is a smooth match
between these two scales. But this is drastically different from what occurs in sys-
tems, such as fluid mechanics, where a common piece of folk wisdom of perturbation
theory84) is that “divergence should be expected when the solution depends on two
independent length scales”. This would also seem to be related to the fact, found
in 11) and 26), discussed in §3.8, that the susceptibility does not have a convergent
expansion about T = Tc. It would also seem to be in agreement with the fact that
the natural boundary of the susceptibility, presented in §3.7, does not naturally fit
into conventional scaling theory. Thus it may be the case that the smooth matching
of long and short distance expansions of the Ising model, at H = 0, is caused by the
integrability of the model, and may not hold in the general non-integrable case.

For these reasons it can certainly be said that, even though the Ising model is
the best understood system in statistical mechanics, there are still many puzzling
questions to be investigated, questions which have an importance well beyond the
narrow range of just this one model. In fact, it can be argued that many of the
nagging questions concerning our understanding of quantum field theory30),31) are
related to the puzzles of the Ising model. Hopefully these questions will inspire future
research.
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