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Abstract
We obtain in exact arithmetic the order 24 linear differential operator L24 and
the right-hand side E(5) of the inhomogeneous equation L24(�

(5)) = E(5),
where �(5) = χ̃ (5) − χ̃ (3)/2 + χ̃ (1)/120 is a linear combination of n-particle
contributions to the susceptibility of the square lattice Ising model. In Bostan
et al (2009 J. Phys. A: Math. Theor. 42 275209), the operator L24 (modulo a
prime) was shown to factorize into L

(left)
12 ·L(right)

12 ; here we prove that no further
factorization of the order 12 operator L

(left)
12 is possible. We use the exact ODE

to obtain the behaviour of χ̃ (5) at the ferromagnetic critical point and to obtain
a limited number of analytic continuations of χ̃ (5) beyond the principal disc
defined by its high temperature series. Contrary to a speculation in Boukraa
et al (2008 J. Phys. A: Math. Theor. 41 455202), we find that χ̃ (5) is singular
at w = 1/2 on an infinite number of branches.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

The story of the zero-field susceptibility χ of the two-dimensional Ising model is a landmark
saga of mathematical physics. A recent review of the highlights can be found in [1]. While
a closed form expression for the susceptibility still eludes us, we possess an enormous
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amount of exact or extremely precise numerical information. This largely derives from
two complementary approaches. One approach involves studying the series expansion of the
susceptibility. Since the work of Orrick et al [2] we have had available a polynomial time
algorithm, now of complexity O(N4) for a series of length N terms. From the point of view
of an algebraic combinatorialist, this comprises a solution, and many questions about the
asymptotics, and about the scaling functions, have been answered by the analysis of the very
long series we now have available—currently more than two thousand terms in length.

The difficulty in proceeding further with this approach is that we have no idea what
the underlying closed-form solution looks like, except that it is known, or more precisely
universally believed, to be non-holonomic. The alternative approach is to express the
susceptibility as a form-factor expansion. This approach was initiated more than 30 years
ago by Wu et al [3]. In this representation, the susceptibility is written as

kBT χ = 1

s
(1 − s4)1/4

∑
n�0

χ̃ (2n+1) (1)

for T > Tc, where s = sinh (J/kBT ). For T < Tc a similar expression with even superscripts
prevails. The advantage of the form-factor approach is that each term in the sum is holonomic.
This means that, with sufficient computational resources, and sufficient ingenuity, each term
can be found. To date, the first six terms have been found, in the sense that their defining
ODE has been obtained, either totally or modulo a prime. We also have precise integral
representations for the form-factor terms, and a Landau analysis of the integrands can provide
information as to the distribution of singularities in the complex plane. Indeed, it was just
such a study by Nickel [4, 5] that gave convincing evidence of a natural boundary in the total
susceptibility, thus supporting an earlier but weaker argument of Guttmann and Enting [6] that
the total susceptibility was non-holonomic.

While an exact solution for the Ising model susceptibility may be impossible and is
certainly beyond reach at present, one might hope to obtain a complete picture of the
singularities of the susceptibility. Indeed, this more limited goal has been the main motivation
of the recent studies of the individual form-factor terms. For this the ODE and Landau
analysis approaches are complementary; the Landau analysis provides necessary but not
sufficient conditions [7] while the ODE, even if only in modulo a prime representation, can
show which Landau singularities are to be excluded. The most detailed study in this regard is
that of the five particle contribution χ̃ (5) to the susceptibility initiated by Boukraa et al [8] and
followed by Bostan et al [9]. The present paper is an attempt to address a number of issues
left unresolved in these papers.

A brief summary of the parts of [8, 9] relevant here is as follows. In Boukraa et al [8]
series in w modulo a prime to 10 000 terms were given and shown to be adequate to find the
order 33 Fuchsian differential equation6, modulo a prime, L33(χ̃

(5)) = 0. Subsequently in
Bostan et al [9], the complexity of this ODE was shown to be reducible to an inhomogeneous
equation

L24(�
(5)) = E(5), (2)

where �(5) is the linear combination of 5-, 3- and 1-particle contributions:

�(5) = χ̃ (5) − χ̃ (3)/2 + χ̃ (1)/120. (3)

6 The notation used here is that in [8], variables w and s are useful for high-temperature expansions with
w = s/2/(1 + s2). The high-temperature χ(2n+1) and χ̃ (2n+1) are related by s · χ(2n+1) = (1 − s4)1/4 · χ̃ (2n+1)

so that χ̃ (2n+1) has the ‘simpler’ divergence ∝1/(1 − 4w) ∝ 1/(1 − s)2 at the ferromagnetic critical point.
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The right-hand side of (2) which satisfies L5(E
(5)) = 0 is of the form

E(5) = w · [(1 − 16w2)3 · P4,0 · K4 + (1 − 16w2)2 · P3,1 · K3E

+ (1 − 16w2) · P2,2 · K2 · E2 + P1,3 · K · E3

+ P0,4 · E4]/(1 + 4w)6/(1 − 16w2)κ , (4)

where K = K(4w) and E = E(4w) are complete elliptic integrals and the Pi,j = Pi,j (w) are
polynomials. The degree of the polynomials and the denominator power κ in (4) depend on
the representation of L24 in (2). In the case that L24 is minimum order 24, L24 is of degree 888,
while the Pi,j are then of degree (at most) 904 with κ = 8. In [9] results were only reported
for a non-minimum order representation modulo a prime. Furthermore it was shown that L24

could be factored into L
(left)
12 L

(right)
12 with L

(right)
12 being reducible into several smaller factors, all

but one known in exact arithmetic. The question of whether L
(left)
12 could be factored was left

unresolved.
The results reported in [8, 9] are an impressive example of what can be obtained by

calculation modulo a prime. However there are limitations. Knowing L24 and E(5) modulo
a prime enables one to deduce only possible local singularities of χ̃ (5) and not its global
behaviour. For example, one cannot determine the amplitudes of the singularities in χ̃ (5) at the
ferromagnetic point at s = 1. The leading and first correction term amplitudes were estimated
in [8] but this was based on an analysis of the 2000 term exact integer series that had been
obtained from multiple modulo prime series by the Chinese remainder theorem.

In the present paper we determine the minimum order L24 and E(5) in exact arithmetic.
The results can be found on the website [10]. We have also constructed the minimum order
exact L29 defined by L29(�

(5)) = 0 from these results. We have not actually needed this
operator but provide it nevertheless for those who might find it of interest and in addition
we also report in [10] the exact integer coefficients of χ̃ (5) to 8000 terms that we generated
directly7 from (2). The global information provided by (2) enables us to prove that L

(left)
12

defined by L24 = L
(left)
12 L

(right)
12 cannot be factored. We confirm the 500 digit amplitude of the

leading ferromagnetic singularity of χ̃ (5) reported by Bailey et al [11] and also some |s| = 1
circle singularity amplitudes derived by Nickel [4, 5].

An important question left unresolved in [8] was whether the singularity of the ODE for
χ̃ (5) at the zero of the head polynomial at w = 1/2 was in fact a singularity of χ̃ (5) on some
branch of the function. Appendix D in [8] provided an example for which not all the zeros
of the head polynomial of the ODE8 satisfied by an integral were Landau singularities of
the integral. However, the integral for χ̃ (5) was deemed too complicated in [8] to perform a
complete Landau singularity analysis leaving only the conclusion that w = 1/2 was very likely
not a Landau singularity of χ̃ (5). Here we perform some analytic continuation of χ̃ (5) beyond
the principal disc |s| � 1 and onto other branches. Our exploration, while not exhaustive,
is complete enough to show χ̃ (5) has the singular behaviour (1 − 2w)7/2 with non-vanishing
amplitude on an infinite number of branches. We have not made any progress in identifying
the Landau integrand singularities that give rise to this behaviour.

In section 2 we describe briefly how we can combine results reported in [9] with multiple
modulo prime �(5) series of length at most 4000 terms to obtain the exact L24 and E(5) in (2).
This allows us to determine the series expansion of χ̃ (5) at the ferromagnetic point by numerical
matching of solutions. The results are reported in appendix B. Section 3 is the outline of
the proof that L

(left)
12 defined by L24 = L

(left)
12 · L

(right)
12 cannot be factored. Finally in section 4

7 For the required χ̃ (3) see appendix B and references therein.
8 We explicitly exclude zeros associated with apparent singularities.
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we describe the analytic continuation of �(5) we have performed to obtain information on the
behaviour of χ̃ (5) at w = 1/2.

2. The ODE for Φ(5) in exact arithmetic

We are looking for the unique minimum order L24 and associated E(5) satisfying (2) for a
given �(5). This is to be done modulo a prime for enough primes9 that the exact integer L24

and E(5) can be reconstructed by the Chinese remainder theorem. To generate the required
�(5) in (3) directly from the defining χ̃ (n) integrals is impractical as the minimum-order L24

is of degree 888 implying 25 × 889 = 22 225 unknown coefficients in L24. Added to this are
the five polynomials of degree 904 in E(5), i.e. another 5 × 905 = 4525 terms. Finding all
coefficients is a straightforward linear algebra problem but requires that we have each �(5)

modulo prime series to about 26 800 terms10.
The operator L defined by L(φ) = 0 for a given φ is not unique if one does not require L

to be of minimum order. The advantage of seeking a non-minimal order L is that the number
of unknown coefficients to be found can drop dramatically. For example, only about 6200
terms are needed to obtain the non-minimal L29 of order 51 and degree 118 used in [9]. The
analogous effect occurs for the inhomogeneous equation (2) and we find that �(5) series of
length only about 5300 terms are needed when L24 is chosen of order 42 and degree 103 leading
to polynomials of degree 155 in E(5) in (4) with now κ = 26. Note, however, as observed
in [8], that the integer coefficients in non-minimal order operators can be outrageously large
and we expect that Chinese remainder reconstruction of the non-minimal order L24 would be
nearly hopeless. Instead, the utility of a modulo prime non-minimal L24 lies in its use as a
recursion device to extend directly generated (short) �(5) series to series of sufficient length,
i.e. 26 800 terms, so that the minimum-order L24 and associated E(5) can be found. Such
extension requires completely negligible computer resources.

A useful variant of the above approach is to use the non-minimal L24 found as described
above to generate a long series for a solution S24 satisfying L24(S24) = 0. This series need
only be about 22 300 terms, long enough to enable reconstruction of the minimum order L24.
Finding the coefficients in E(5) from L24(�

(5)) is then a separate and simpler problem.
A further reduction in the length of the �(5) series to be directly generated can be obtained

if one knows a factorization of L24 with the right division operator in exact arithmetic.
This situation can be realized given the four modulo prime series reported in [9]. We have
L24 = L

(left)
12 ·L(right)

12 . Knowing L
(right)
12 in exact arithmetic allows one to obtain any non-minimal

order representation of L
(right)
12 modulo any prime11 and then � = L

(right)
12 (�(5)) modulo a prime

from the directly generated �(5). If we choose our representation of the known L
(right)
12 as order

18 and degree 42, and the unknown L
(left)
12 as order 32 and degree 89, then the polynomials

in E(5) = L
(left)
12 (�) are of degree 199. This gives 33 × 90 + 5 × 200 = 3970 unknown

coefficients in E(5) and L
(left)
12 to be determined implying that 4000 terms of the directly

generated χ(5) series is more than adequate. Since the series generation of χ(5) described in
[8] is an O(N4 · ln(N)) process, this represents a 3-fold reduction in computer time from that
needed using an unfactored L24 or a 6-fold reduction relative to the unfactored L29 approach.

9 We have found that about 90 primes p < 215 are sufficient.
10 An alternative to (2) is L29(�

(5)) = 0 but this requires �(5) series to 30 × 1238 = 37 140 terms. The change of
our ODE problem from homogeneous to inhomogeneous form is a substantial reduction in complexity.
11 This is most easily done by using the minimum order L

(right)
12 to generate a series solution S12 which satisfies

L
(right)
12 (S12) = 0 but does not satisfy Ln(S12) = 0 for any n < 12. The non-minimal order L

(right)
12 is then found

from the series using, for example, the matrix code described in section 3 of [8].
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We have generated the χ̃ (5) series to a minimum O(w4000) for 90 primes p < 215 and
from these generated L24 modulo a prime as described above. To obtain the exact L24 is then
a problem of rational reconstruction but it is relatively easy from just a few terms to guess
a normalization factor12 that converts the problem to integer reconstruction by the Chinese
remainder theorem. The integer coefficients in L24 are observed to typically have very large
powers of 2 as factors which one can determine by a process of trial division by 2k . If k

is chosen too small, Chinese remainder reconstruction with a fixed number of primes might
fail because the unknown coefficient is too large while if k is chosen too large there is failure
because the coefficient is no longer an integer. With 84 primes we find an intermediate k range
that yields a consistent integer reconstruction for every coefficient in L24. With 90 primes
we have a large number of consistency checks that leave no doubt that our reconstruction is
exact. We have also confirmed that the apparent singularity constraint equations (A.8) in [8]
are satisfied by our reconstructed L24 in all cases, that is, 19 849 satisfied conditions on 22 202
non-vanishing coefficients in L24.

In view of the ‘massive’ calculations required to find L24 in exact arithmetic it is natural to
ask for some further mathematical and numerical checks of the correctness of the operators L24

and L
(left)
12 . First of all we have checked directly that L(right)

12 does indeed right divide L24 in exact
arithmetic. Secondly, we have confirmed that the exponents of the operators L24 and L

(left)
12

are rational numbers and in agreement with our previous massive numerical calculations [8].
Thirdly, the minimal order operator L29 corresponds to an integral of an algebraic integrand,
and it is therefore, as mathematicians say, a Period (‘Derived From Geometry’ [12]): L29

is thus, necessarily, globally nilpotent. This is a stronger constraint than being a Fuchsian
operator (with integer coefficients) having only rational exponents. Since L24 is a factor of L29

it must also be globally nilpotent, and likewise the left factor L
(left)
12 must be globally nilpotent.

We have verified that L24, L
(left)
12 and L

(right)
12

13 are consistent with globally nilpotent operators.
This is a very strong indication that our exact expressions for L24 and L

(left)
12 are correct. To

check global nilpotence numerically requires one to calculate the p-curvature and check that
it is zero for almost all primes. In practice one can obviously only do this for the first few
primes. The primes used for L12 were those smaller than 30 while primes less than 10 were
used for L24.

2.1. Computational details

As shown in [8] the calculation of a series for χ̃ (5) is a problem with computational complexity
O(N4 ln N). In [8] we initially calculated χ̃ (5) to 10 000 terms which required some 17 000
CPU hours on an SGI Altrix cluster with 1.6 GHz Itanium2 processors. From this single series
we could already exactly identify a simple right divisor of L29, and using this factor we were
able to find a solution modulo a second prime using a series of ‘just’ 5600 terms. Expanding
the series to order 5600 took around 1560 CPU hours on the Altrix cluster. The series modulo
these two primes then sufficed to find a larger right divisor of L29 in exact arithmetic, and
using this factor we found that only 4800 terms would be required to find solutions for any
subsequent primes.

Shortly after these developments a new system was installed by the National
Computational Infrastructure (NCI) whose National Facility provides the national peak
computing facility for Australian researchers. This new system is an SGI XE cluster using

12 This becomes the value of the head polynomial at w = 0 and is 212 · 313 · 57 · 76 · 114 · 23 · 29 · 7225 564 279 =
4235 287 273 136 998 077 435 560 752 320 000 000.
13 However, this operator is automatically globally nilpotent courtesy of its direct sum construction.
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Figure 1. Estimates rn = ln(cn)/ ln(30 000) for the number of primes required to reconstruct the
coefficients cn.

quad-core 3.0 GHz Intel Harpertown CPUs. Our code runs almost twice as fast on this facility
compared to the Altrix cluster. We then used this system to calculate the series for χ̃ (5) to order
4800 (this took about 450 CPU hours) for a third prime, which again allowed us to find an
even larger right divisor of L29 in exact arithmetic. This larger operator reduced the required
number of terms to 4600 and we then calculated a series for a fourth prime to this order using
some 380 CPU hours. These calculations gave us results for four different primes and allowed
us to reconstruct the factor L

(right)
12 in exact arithmetic as begun in [9] and completed here in

appendix A.
It was only after this that we realized that the inhomogeneous equation (2) could be used,

as detailed above, to obtain simultaneous solutions for L24 and E(5) using as few as 4000
terms. We then calculated a series for χ̃ (5) to order 4000 for a further 86 primes with each
prime requiring about 215 CPU hours.

The above timings make it clear that the reconstruction of L24 and E(5) is a computationally
expensive project. The main computational effort is the direct calculation of the series
χ̃ (5) modulo the required number of primes. It is therefore of some practical interest to
estimate the number of primes required for the exact reconstruction based only on some
partial reconstruction. We focus here on the coefficients of the head-polynomial of L24 and
denote by cn the nth coefficient (n = 0, . . . , 888) after stripping it of any factor of 2 as
mentioned above. Then rn = ln(cn)/ ln(30 000) is a rough measure of the number of primes
needed to reconstruct cn. From our previous reconstruction of L

(right)
12 we noticed that the

corresponding rn are given roughly by a quadratic function of n. Thus one can estimate the
number of primes needed to reconstruct the full L24 from a partial reconstruction since rn for
n near 0 or 888 can be obtained using many fewer primes. In figure 1 the lower ‘curve’ is the
actual data from the coefficients of the head-polynomial of L24, while the upper solid curves
are quadratic fits to the data based on the part data set, from top to bottom, rn � 30, 40, 50 and
60. The pertinent point being that after doing the calculation for some 30 primes we estimated
that the reconstruction was likely to succeed with no more than 100 primes and was therefore
achievable in practice.

6
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With L24 and E(5) known in exact arithmetic, it is easy to use (2) to calculate the exact series
for �(5) to high order. Specifically our reconstruction means that we know the coefficients
ai,j of the polynomials in the operator L24 and the coefficients of the polynomials Pi,j of (4)
exactly. The latter allows us to easily calculate the coefficients en of E(5) by using the (simple)
recursive formulae for the elliptic integrals E and K. From (2) we have explicitly, by equating
the coefficients of xn, that (recall that L24 is expressed in terms of the differential operator x d

dx
)

M∑
i=0

D∑
j=0

ai,j (n − j)icn−j = Acn + B = en, (5)

where A and B are integers (depending on n). The coefficients cn of �(5) can thus be calculated
recursively and from (3) we can calculate the coefficients of χ̃ (5) (with the coefficients of χ̃ (3)

calculated using the ODE from [13]). We have calculated the coefficients of χ̃ (5) up to order
8000 and they can be found in [10].

Finally we decided to calculate the minimal order operator L29 explicitly; it is given
implicitly by (2). This can be done in a variety of ways. The most obvious way is to use (5) to
extend the series for �(5) to high enough order (30 × 1238 = 37 140, since the minimal order
L29 has degree 1237) and then use the matrix code of [8] to calculate the ODE corresponding
to L29 modulo a sufficient number of primes to reconstruct L29. However, computationally it
is easier to first calculate modulo a prime the minimal operator L5 annihilating E(5) and then
form the product L5 ·L24 modulo a prime. The minimal order operator for L5 has degree 4489
so 6 × 4490 = 26 490 terms of E(5) are required. Obviously, since the minimal order L24

has degree 888, the product L5 · L24 has degree 5377 meaning that there is a common factor
of degree 4140, which we must discard in order to calculate the degree 1237 polynomials of
L29. The minimal order L5 was calculated (for each prime) using the matrix code of [8]. The
product L5 · L24 was then calculated modulo a prime using Maple and the common factor can
then be divided out modulo a prime. The bottle neck in this calculation is the use of the matrix
code of [8] which has computational complexity O(N3). It was for this reason that we chose
the ‘indirect’ route of going through L5 to get L29.

3. Proof that L(left)
12 does not factorize

The factorization of L29 defined by L29(�
(5)) = 0 described in [9] relied mostly on the testing

of series S(w) generated by L29(S) = 0 modulo a prime around w = 0. If a particular series is
annihilated by an Ln for order n < 29 then Ln right divides L29. Depending on the singularity
exponents, a series solution14 S(w) = wq · (1 + α1w + α2w

2 + · · ·) with fixed q might be
uniquely determined by L29(S) = 0 or might contain one or more arbitrary rational coefficients
αi . In the latter case, the series may be a generator for a right division operator only for a
particular choice of constants αi and the problem then is how these particular values might be
found. If there is only one arbitrary coefficient α in the series S(w), an exhaustive search is
possible in a modulo prime, p, calculation because one need then only test p separate series
with α an integer satisfying 0 � α < p. If there is more than one arbitrary αi in the series
S(w), such brute force ‘guessing’ is no longer practical due to computational time constraints.
It is this that prevented the authors of [9] from deciding whether L

(left)
12 is factorizable. Let us

also note that we were not able to perform a straight formal calculation factorization of L
(left)
12

14 If the solution contains powers of ln(w), the S(w) here is to be interpreted as the coefficient of the highest power
of ln(w).

7
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using its expression in exact arithmetic and our attempted calculations failed on a computer
with 48 Gb of memory15.

As pointed out in [9] there is nothing special about the singular point w = 0. And indeed,
a series solution about a singular point ws �= 0 might also lead to a right division operator.
For example, the unique singular series

x−7/4 · (1 + 387x/80 + 72 103x2/23 040 + 2054 561x3/1597 440 + O(x4)) (6)

with x = w − 1/4 is annihilated by an order 3 operator. With x = w − 1/2, the unique
singular series

x7/2 · (1 − 41x/6 + 26 557x2/792 − 8692 015x3/61 776 + O(x4)) (7)

yields an order 6 right division operator L6. By proceeding through a sequence of such
solutions, one can eliminate much if not all of the p-fold searching described in [9] to achieve
the factorization L29 = L5 ·L24 = L5 ·L(left)

12 ·L(right)
12 and the additional factorization of L

(right)
12 .

The points chosen for series expansion need not be restricted to the rational head
polynomial roots as in equations (6) and (7) above. The factor 1 + 3w + 4w2, which
appeared already in the head polynomial of the L7 that annihilated χ̃ (3), has ‘accidental’
modulo prime factorizations for roughly half the primes close to 215. For example, with prime
p = 32 719, one has 1 + 3w + 4w2 = 4(w − 8973)(w − 31 925) modulo p. We can write
x = w − wp with wp either 8973 or 31 925 and obtain solutions about x = 0 satisfying
L24(S(x) · ln2(x) + R(x) · ln(x) + Q(x)) = 0 modulo p, where R and Q are regular at x = 0
and the series S(x) = x + O(x2) is unique. Testing shows that S(x) is annihilated (modulo p)
by an order 3 operator L3(x). As we show in general in appendix C, one can obtain from L3(x)

a right division (modulo p) operator L3(w) and then from multiple modulo prime calculations,
an exact right division L3(w) by the Chinese remainder theorem. This reconstructed L3(w)16

has the factor 1 + 3w + 4w2 in its head polynomial in spite of the fact that wp is clearly not
one of the roots (−3 ± i

√
7)/8 modulo p of 1 + 3w + 4w2.

Testing at points other than w = 0 also enables one to exclude certain series solutions as
generators of right division operators. For example, the case 3 polynomial17 1−7w+5w2−4w3

which is a factor of the head polynomial of L24 has the modulo prime, p0 = 32 749,
factorization 32 745 · (w2 + 11 821w + 10 836)(w − 3635). Define x = w − 3635. Then
the singular solution modulo p0 about x = 0 is S(x) ln(x) + R(x) with

S(x) = x5 + 13 877x6 + 9339x7 + 25 021x8 + 21 884x9 + O(x10) (8)

unique and R(x) regular at x = 0. Testing the series (8) shows there is no Ln(S) = 0 modulo
p0 for any n < 24. Thus there is no operator of order less than 24 that has x = w − 3635 as
a factor (modulo p0) of the head polynomial and more generally, 1 − 7w + 5w2 − 4w3 as a
factor. This also implies that any solution S that is singular at some root of 1−7w+5w2 −4w3

and satisfying L
(left)
12 (S) = 0 cannot also be a solution of an operator of order less than 12 that

right divides L
(left)
12 . The same conclusion is reached for the remaining case 3 and both case 4

polynomials for χ̃ (5) from appendix C in [8].
If we only knew L24 or L

(left)
12 modulo prime for a few primes, the above information about

singular solutions associated with case 3 and 4 polynomials would not be particularly useful
for finding or excluding factorization. However, with the exact L24 available, one has global

15 More precisely the Maple 13 command DFactor(*, onestep) was not able to yield a conclusive answer for such
complicated large order operators. Seeking for a left division of L

(left)
12 we had similar inconclusive Maple calculations

on adj(L(left)
12 ), the adjoint operator of L

(left)
12 .

16 It is equivalent to the product Z2 · N1 which was shown on general grounds in [9] to right divide L29.
17 We follow the notation of appendix C in [8].
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information and can match series solutions about w = 0 to solutions about other singular
points of L24. In particular, if one can show that every series solution S(w) about w = 0
satisfying18 L

(left)
12 (S) = 0 is singular at some root of the case 3 or 4 polynomials, then one

has proved that L
(left)
12 does not factorize. Our demonstration that this is the case uses the

singular point ws = 0.158 53 . . . which is a root of 1 − 7w + 5w2 − 4w3. This is a particularly
convenient point as it is the closest root of the head polynomial of L24 to both w = 0 and
w = 1/4.

We begin the demonstration by studying the two linearly independent solutions of the
form Si = Ai(w) · ln3(w) plus terms with lower powers of ln(w). The two series,

A1 = 9w + 261w3 + 1845w4 + 7046w5 + 42 771w6 + 145 980w7 + 785 528w8 + 2536 628w9

+ 12 800 309w10 + 38 627 228w11 + 187 738 058w12 + · · · + α1,n · wn + · · · ,
(9)

A2 = 27w2 + 102w3 + 270w4 + 2164w5 + 5532w6 + 43 722w7 + 132 130w8 + 922 108w9

+ 3158 590w10 + 19 690 882w11 + 72 977 164w12 + · · · + α2,n · wn + · · · ,
(10)

satisfy L24(Ai) = 0 but not L
(right)
12 (Ai) = 0 and a ratio test shows they have radii of

convergence |w| = ws = 0.158 53 . . .. Thus both A1 and A2 are singular at w = ws and
cannot be generators of an Ln, n < 24, that right divides L24. Whether a linear combination
of A1 and A2 leads to a right division operator is now determined as follows.

Near x = 0 where x = ws − w, the Ai must be of the form Ai = Bi · f (x) · ln(x) + gi(x)

where f (x) and the gi(x) are all regular at x = 0. The series A(w) ∝ B2A1(w) − B1A2(w)

will be regular at w = ws and if the amplitude ratio B1/B2 is rational, then A(w) might be a
candidate generator for a right division operator. In principle, the amplitudes Bi could be found
by matching series solutions about x = 0 to those about w = 0 but since we only need the
B1/B2 ratio, a simpler procedure that utilizes only the coefficients in (9) and (10) is possible.
We note that of the remaining singularities of Ai, the nearest to w = 0 are at |w| = 1/4. This
implies that B1/B2 = α1,n/α2,n, a ratio of coefficients from (9) and (10), to an accuracy of
order (4ws)

n ≈ 0.634n. Thus, the problem reduces to searching for a (small) rational B1/B2

from a sequence that converges exponentially. This can be done by expressing α1,n/α2,n as a
continued fraction. We observe that, for n greater than some fixed n0, a particular term in the
continued fraction grows exponentially which is a clear indication that in the limit n → ∞
the continued fraction terminates and is the (small) rational B1/B2 = −637/228. Our result
for the linear combination series is then

A(w) = 2052w + 17 199w2 + 124 482w3 + 592 650w4 + 2984 956w5 + O(w6) (11)

which is confirmed to have a radius of convergence |w| = 1/4. However, testing the series
(11) shows it is not annihilated by any Ln, n < 24, and thus we have eliminated the only
possible linear combination candidate series for a right division operator.

While direct testing is an easy way to exclude A(w) in (11), such direct testing is
impractical19 as a general method for excluding the many possible series that arise in the
remaining part of our proof. Instead we supplement direct testing by a method that relies on
the global information provided by the exact L24. As an illustration of this method, consider

18 Equivalently every solution of L24 that is not a solution of L
(right)
12 .

19 This was the problem encountered in [9].
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again A(w). If one matches (11) to series about w = 1/4 one finds that A(w) contains, as the
leading logarithmic function, As · ln2(y) where 2y = 1 − 4w and

As = 1 − 21 469 y/640 − 1489 293y2/81 920 + 229 328 363y3/10 485 760 + O(y4). (12)

A ratio test on the coefficients in (12) shows that As has a radius of convergence |y| = 1/2−2ws

and thus is singular at w = ws . This in turn implies that there are branches of the
function A(w) on which it is singular20 at w = ws . By forming the linear combination
A(w) ∝ B2A1(w) − B1A2(w), we only succeeded in forcing an ‘accidental’ cancellation of
the singularity at w = ws on the principal branch of the function. The singularity remains on
at least some other branches and thus A is excluded as a generator of a right division operator
for exactly the same reason as A1 and A2.

The above argument has excluded, as generators of right division operators, 8 of 12
linearly independent solutions satisfying L

(left)
12 (S) = 0. These we take to be C1 ∝ L

(right)
12 (A)

with A from (11) and C2 ∝ L
(right)
12 (A2) with A2 from (10) plus the six series with leading

ln(w) dependence Ci · lnp(w), p = 1, 2 and 3. Explicitly,

C1(w) = w6 − 444w7/11 + 275 773 109w8/129 360 + 19 252 320 091w9/194 040

− 964 738 631 897w10/388 080 − 2082 457 681 309w11/27 720

+ 17 517 580 633 073 581w12/17 075 520 + O(w13), (13)

C2(w) = w6 + 403 206w7/1661 − 13 446 782 071w8/19 533 360

− 2413 114 741 889w9/29 300 040 − 4359 267 083 039w10/1065 456

− 875 856 906 689 449w11/4185 720

+ 23 619 065 101 886 078 533w12/2578 403 520 + O(w13). (14)

Because L
(right)
12 does not have the factor w − ws in its head polynomial, the C(w) functions

carry the same w = ws singularities as the A(w) from which they have been generated.
Thus even though the series C1(w) has the radius of convergence |w| = 1/4, the analytically
continued function C1(w) is still singular at w = ws on some other branches. The series
C2(w) has the radius of convergence |w| = ws and is already singular at w = ws on the
principal branch.

It was shown in [9] that the remaining four solutions satisfying L
(left)
12 (S) = 0 are of the

form Ci(w) · ln(w) + Di(w) and Ci(w), i = 3, 4, with the Ci and Di regular at w = 0. These
two Ci , together with the two in (13) and (14), are linearly independent and can all be generated
from the coefficient of ln(w) in L

(right)
12 (S24) where S24 contains four arbitrary constants and is

of the form S24 = F(w) · ln2(w) + G(w) · ln(w) + H(w) with F,G and H all regular at w = 0.
We demand that F satisfies21 L

(right)
12 (F ) = 0. This guarantees that C(w) · ln(w) is the leading

logarithm in L
(right)
12 (S24) and simplifies the subsequent analysis. Only F and G are relevant

for determining C and a possible choice is

F = β1 · (3177w − 174 840w4 − 817 828w5 − 5829 558w6

− 25 983 762w7 − 142 882 882w8 − 620 769 318w9 − 3086 072 424w10

20 These singularities can be reached, for example, by following a path along the real axis from w = 0 to w just less
than 1/4, circling w = 1/4 any number N of times, and then moving back to w = ws along the real axis. Since
As multiplies the leading (unique) logarithmic singularity at w = 1/4, there cannot be cancellation of the w = ws

singularity of As on all branches distinguished by N .
21 For the explicit F in (15), it happens that dF/dβ1 is annihilated by an L11 and dF/dβ2 by an L9. This reduction
from L12 plays no role in our subsequent arguments.
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− 13 199 839 762w11 − 62 214 586 728w12 + O(w13))

+ β2 · (3177w3 + 13 803w4 + 74 932w5 + 287 997w6

+ 1265 280w7 + 4296 418w8 + 17 162 736w9 + 48 945 231w10

+ 173 557 768w11 + 284 486 847w12 + O(w13)) (15)

and

G = β1 · (1604 883 673w8/210 + 2823 208 099w9/105

+ 47 115 755 881w10/140 + 782 148 892 459w11/630 + O(w13))

−β2 · (366 106 439w8/1050 + 1576 821 038w9/525

+ 9206 778 909w10/350 + 1049 578 781 449w11/6300 + O(w13))

+ β3 · (35w6 + 1223w8 + 1852w9 + 36 064w10 + 96 388w11 + O(w13))

+ β4 · (105w7 + 304w8 + 3536w9 + 10 192w10 + 79 089w11 + O(w13)), (16)

where the βi are arbitrary constants. We will now show that no choice of these constants can
yield a C = C(β1, β2, β3, β4), defined by

L
(right)
12 (F · ln2(w) + G · ln(w) + H) = C · ln(w) + D, (17)

that is a generator for a right division operator of L
(left)
12 . The argument is essentially that

given above for the exclusion of C1 and C2 in (13) and (14). In fact the demonstration has
already been partially completed since, in terms of C(β1, β2, β3, β4), C1 ∝ C(0, 0, 3, 4)

and C2 ∝ C(0, 0, 453, 1744). Since F in (15) satisfies L
(right)
12 (F ) = 0 it is not singular at

w = ws = 0.158 53 . . ., neither is L
(right)
12 (F · ln2(w)). Thus it suffices to investigate G and

if every G is singular at w = ws then so is C defined by (17) and we have proved that L
(left)
12

does not factorize.
A ratio test on the series coefficients in (16) shows the generic G has a radius of

convergence |w| = ws and thus is singular at w = ws . But by the same analysis that
led from the series (9) and (10) to the linear combination (11), we can construct three
G = G(β1, β2, β3, β4) each of whose radius of convergence is |w| = 1/4. These are

G(105, 0, 0,−1182 781), G(0, 525, 0,−1443 727), G(0, 0, 3, 4). (18)

To the remaining linearly independent G = G(0, 0, 0, 1), one can add any combination of the
three in (18) but this will not change its radius of convergence from |w| = ws and remove the
singularity at w = ws . In this sense, G(0, 0, 0, 1) is equivalent to G(0, 0, 453, 1744) which
corresponds to C2 via (17) and is excluded as a generator of any right division operator.

To determine the behaviour of the three G functions in (18) in the vicinity of y = 0 where
2y = 1 − 4w we match the series22 2F · ln(w) + G in w about w = 0 to solutions S satisfying
L24(S) = 0 about y = 0. Since L

(right)
12 (F ) = 0 one can show that F (and F · ln(w)) can

contain only the first power of ln(y) near y = 0. Any ln2(y) or ln3(y) we find in the matching
S can only come from G in the combination solution 2F · ln(w) + G. Our matching shows
that the leading logarithmic dependences of the three G′s in (18) are respectively

(−3420 025/8192/π2)As ln3(y), (−2473 625/16 384/π2)As ln3(y),

(−125/16 384/π2)As ln2(y), (19)

where As is given by (12). A linear combination of the first two G′s in (18) can
be constructed to eliminate the leading As ln3(y) shown in (19) and we find that the

22 It follows from L24(F · ln2(w) + G · ln(w) + H) = 0 by analytic continuation around the w = 0 singularity that
also L24(2F · ln(w) + G) = 0.
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resultant G(494 725,−6840 050, 0, 13 236 968 029) has As · ln2(y) as the leading logarithmic
singularity. Clearly this remaining singularity can now be eliminated by forming a
linear combination with the last G in23 (18). In summary, we have generated the three
G(β1, β2, β3, β4) combinations

G(494 725,−6840 050, 15 276 842 775, 33 606 091 729),

G(0, 525, 0,−1443 727), G(0, 0, 3, 4) (20)

which are irreducible in the sense that no further superposition can eliminate the As · ln3(y) and
As · ln2(y) singularities of the last two G′s while the first G is unique in that it contains neither
As ·ln3(y) nor As ·ln2(y). The last G in (20) has already been identified as being associated with
C1. We associate the middle G in (20) with C3 ∝ C(0, 525, 0,−1443 727) which cannot be a
generator of a right division operator of L

(left)
12 for exactly the same reason as C1. We associate

the first G in (20) with C4 ∝ C(494 725,−6840 050, 15 276 842 775, 33 606 091 729) and
test C4 directly. We find there is no operator satisfying Ln(C4) = 0 with n < 12 and this
completes our proof that L

(left)
12 does not factorize. The explicit new Ci supplementing those in

(13) and (14) are

C3(w) = w6 + 281 575 923w7/34 167 793 + 48 755 202 697 119w8/8371 109 285

+ 788 146 152 364 265w9/5022 665 571

− 48 321 460 210 711 729w10/33 484 437 140

− 1046 678 480 403 963 299w11/4783 491 020

− 4705 373 665 277 858 926 411w12/3683 288 085 400 + O(w13), (21)

C4(w) = w6 − 124 536w7/649 + 2840 488 261w8/508 816 + 39 013 193 251w9/254 408

− 24 532 098 411 899w10/9540 300 − 6082 145 734 733w11/68 145

− 179 169 570 633 725 593w12/314 829 900 + O(w13). (22)

3.1. More on the structure of the differential operator L
(left)
12

Once the differential operator L
(left)
12 has been proved to be irreducible, one may wonder

whether this high-order differential operator can nevertheless be built from factors of lower
order. A high-order differential operator can be irreducible and still result from ‘operations’
involving differential operators of lower order since it may be a symmetric power of a lower
order differential operator or a symmetric product of two (or more) lower order differential
operators.

The symmetric nth power of a differential operator Lq is the differential operator whose
corresponding ODE annihilates a generic linear combination of the q solutions of Lq to the
power n. The symmetric nth power of a differential operator Lq of order q has order (q+n−1)!

(q−1)!n! .
The symmetric product of the differential operators Lq1 and Lq2 of orders q1 and q2,

respectively, is the differential operator whose ODE annihilates the product of a generic linear
combination of the q1 solutions of Lq1 and a generic linear combination of the q2 solutions of
Lq2 . This symmetric product is of order24 q1 · q2.

23 The surprise, at least for us, is that all of the necessary combinations can be formed with rational amplitudes.
24 The order q = q1 ·q2 is for the generic case. In general the order of the symmetric product is q1+q2−1 � q � q1 ·q2.
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We use the notation [wp] to indicate a series that starts as wp (const + · · ·). In [9] it was
shown that the formal solutions of L

(left)
12 at w = 0 follow this scheme. There are two sets of

four solutions (k = 6, 7):

[wk] ln(w)3 + [w5] ln(w)2 + [w] ln(w) + [w],

[wk] ln(w)2 + [w5] ln(w) + [w],

[wk] ln(w) + [w], and [wk] (23)

and two sets of two solutions (k = 8, 9)

[wk] ln(w) + [w] and [wk], (24)

[wk] ln(w) + [w] and [wk]. (25)

We denote by BLn a set of solutions such as (23) containing n+ 1 solutions with a logarithmic
solution of maximal degree n. For the scheme above, we thus have two BL3 blocks and two
BL1 blocks, and in each block there is also a non-logarithmic solution.

We first consider the possibility that L
(left)
12 is a symmetric power of an operator of lower

order. It is straightforward to see that the only possibility is that L
(left)
12 could be a symmetric

11th power of a differential operator of order 2 with one BL1 block. This possibility is ruled
out, since there is no BL11 block in the solutions of L

(left)
12 .

Next, for the possibility that L
(left)
12 is a symmetric product of differential operators of

lower order, we consider only the cases where the product has the maximal order. There are
three cases to consider. The symmetric product of differential operators of orders 2 and 6
(configuration denoted 2 ·6), 3 and 4 (configuration 3 ·4), or 2, 2 and 3 (configuration 2 ·2 ·3).

The symmetric product of two differential operators L1 and L2 containing the blocks BLn1

and BLn2, respectively, should contain in its solutions the block BLn with n = n1 + n2. Since
the differential operator L

(left)
12 contains two BL3 blocks, the case 2 · 2 · 3 is ruled out.

Let us detail the compatibility of the case 3 · 4 at w = 0. With two BL3 blocks in L
(left)
12

the only possibility is that the order 3 differential must have one BL2 block:

S1 ln(w)2 + S11 ln(w) + S10,

S1 ln(w) + S20, (26)

S1

and the order 4 differential operator must have two BL1 blocks:

T1 ln(w) + T10,

T1, (27)

V1 ln(w) + V10,

V1. (28)

It is a simple calculation to form the product of a combination from the set BL2 with a
combination of the solutions from the two sets BL1. One obtains

S1 · T1 ln(w)3 + (S1 · T10 + S11 · T1) ln(w)2 + (S10 · T1 + S11 · T10) ln(w) + S10 · T10,
(29)

S1 · T1 ln(w)2 + S11 · T1 ln(w) + S10 · T1,

S1 · T1 ln(w) + S20 · T1, (30)

S1 · T1 (31)

13
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and a similar set of four solutions with V’s instead of T’s. These eight solutions correspond to
the two BL3 occurring for L

(left)
12 at w = 0. One also obtains

S1 · T1 ln(w)2 + (S1 · T10 + T1 · S20) ln(w) + S20 · T10, (32)

S1 · T1 ln(w) + S1 · T10 (33)

and two other solutions where V’s replace T’s. Subtracting (32) from (29) and (33) from (30),
one obtains

(S1 · T10 + T1 · S20 − T1 · S11) ln(w) + (S20 · T10 − S10 · T1), (34)

S1 · T10 − T1 · S20. (35)

Note that in a set of solutions such as BL2 above, the series S11 depends on S20 and S1 and can
be expressed as

S11 = αS1 + 2S20. (36)

The coefficient 2 is generic for any order 3 ODE and α is a constant that depends on the ODE
at hand. Inserting this S11 in (34), we can arrange to have the non-logarithmic series the same
as the series in front of the log. This is then one of the BL1 blocks occurring in L

(left)
12 . The

second BL1 block is obtained by considering (34) with V’s instead of T’s.
We have thus shown that under the hypothesis that L

(left)
12 is a symmetric product of two

factors, the scheme of solutions at w = 0 is compatible with the configuration 3 · 4. Similar
calculations show that the configuration 2 · 6 is also compatible and in this case the order 2
operator has a BL1 block and the order 6 operator has two BL2 blocks.

Next we must check for each configuration (3 · 4 and 2 · 6) whether or not the symmetric
product is compatible with the scheme of solutions for L

(left)
12 at those other singularities

containing enough logarithmic solutions. We recall that the scheme at w = ∞ is the same as
the scheme at w = 0. The scheme of solutions of L

(left)
12 at the singularity w = 1/4 is one BL3

and four BL1 blocks. One sees immediately that the configuration 3 · 4 is ruled out. For any
set of solutions that we attach to the order 3 and order 4 differential operators, we end up with
either more than one BL3 or at least one BL2. The configuration 2 · 6 is acceptable, since
in this case there can be one BL1 block in the order 2 operator and one BL2 plus three BL0
blocks in the order 6 operator. It remains to be seen whether or not the configuration 2 · 6 is
compatible with the scheme of solutions at the point w = −1/4, which is two BL2, one BL1
and four BL0 blocks. Our checks show that the configuration 2 · 6 is ruled out.

In conclusion we have shown that the differential operator L
(left)
12 is not a symmetric n′th

power of a lower order operator nor is it a symmetric product of two (or more) operators
of orders q1 and q2 under the hypothesis that the order of the symmetric product reaches its
maximum value q1 · q2 = 12. It should be noted that our considerations regarding symmetric
powers/products (unlike the question about the factorization of L

(left)
12 ) do not require knowledge

about L
(left)
12 in exact arithmetic. The block structure of the solutions can be obtained from the

operator modulo a prime.

4. Analytic continuation of Φ(5) and its behaviour at w = 1/2

Our analytic continuation of �(5) is limited to paths that follow the real w axis on the intervals
[0, 1/4], then [1/4, (3−√

5)/2] and finally [(3−√
5)/2), 1/2]. We allow any number of half-

integer turns about the ferromagnetic point w = 1/4, that is, rotation by any angle θ = nπ

14
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with n odd. This is followed by any rotation θ = m π , m odd, around w = (3 − √
5)/2. This

point is one of the s-plane circle singularities discussed by Nickel [4, 5]. The point w = 1/2
also maps onto the |s| = 1 circle but it is not a singularity of χ̃ (5) when it is approached on any
path that does not leave the principal disc |s| � 1. In terms of our n,m paths in the w-plane,
the combinations n = m = ±1 are such principal disc constrained paths. Every other n,m

combination is a path that reaches w = 1/2 on another branch.
Our starting point for the analytic continuation is the �(5) series expansion about w = 1/4

in appendix B. On the physical interval 0 � w < 1/4, 2y = 1 − 4w is positive real and the
half-integer turns about w = 1/4 that bring one to w > 1/4 simply requires the replacements

y −→ −y, ln(y/4) −→ ln(|y|/4) − inπ, (37)

in (B.3) with n understood to be odd. The new (B.3) series generated with the replacements
(37) is now to be matched to series in z where z = 3 −√

5 − 2w = 5/2 −√
5 − y. Although

direct matching is possible, considerable improvement in the utility of the y series results by
first making an Euler transformation by the replacement y → y/(1 − y). This has the effect
of bringing the w = (3 − √

5)/2 ≈ 0.382 singular point closer to w = 1/4 while moving
ws ≈ 0.1585 further away.

To generate �(5) series in z we must first analytically continue the elliptic integrals in (4).
The replacements required for w > 1/4, with the same n as in (37), are

K(4w) −→ u[K(u) + inK(u′)],
(38)

E(4w) − K(4w) −→ [E(u) − K(u) − inE(u′)]/u,

where u = 1/(4w) and u′ = √
1 − u2. The new elliptic integrals (38) are easily developed

as series in z from their defining differential equations set up as recursion relations. The
remaining step of finding a particular integral of (2) together with all homogeneous series
solutions is also straightforward. The ODE numerical recursion in z is not as unstable as the
recursion in y noted in appendix B. Here one loses only about a factor 10 in relative accuracy
for each two orders in z.

The matched series in z is of the form A(z) · ln(z) + B(z) where A and B are regular at
z = 0. Since χ̃ (1) and χ̃ (3) are not singular at this point, we can identify the singularity in �(5)

with that in χ̃ (5). We find that the leading singular term is25

[(1 + 10n2 + 5n4)/16] · [(25/693)(5 −
√

5)(2 +
√

5)11/(222π2)] · z11 ln(z). (39)

The n = 1 singularity, when mapped to s-plane variables, agrees with the sum contribution
χ̃

(5)
0,1 + χ̃

(5)
0,−1 from equation (14) in [4]. The new result in (39) is the branch-dependent

multiplicity (1 + 10n2 + 5n4)/16.
To most clearly identify a possible w = 1/2 singularity in the A(z) and B(z) series,

we make another Euler transformation with the replacement z → z/(1 + 6z/5). This moves
the known singularity at w = 1/4 to the new z = 5(

√
5 − 1)/16 ≈ 0.386 and the potential

singularity at w = 1/2 to the new z = −5(16 − 5
√

5)/131 ≈ −0.184. There is another
potential singularity at a complex root of the case 4 polynomial 1−w−3w2 +4w3. This maps
to the new |z| ≈ 0.387. Since the singularity of interest is about factor 2.1 closer than the
next nearest, any singularity at w = 1/2 will be observable in an N term Euler transformed z

series with corrections of order (2.1)−N . This factor (2.1)−N is also the bound we can put on
any w = 1/2 singularity amplitude if a ratio test of coefficients does not indicate a singularity
at z ≈ −0.184. We find the absence of such a singularity for the A(z) series which we have
generated to length N = 1100. Because the A(z) series multiplies ln(z), this also indicates

25 This is based on floating point results to about 300 digit accuracy.
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that any possible singularity at w = 1/2 will have an amplitude independent of the index m

specifying the logarithmic branch of the z = 0 (w = (3 − √
5)/2) singularity.

We find that for n = ±1, the B(z) series is also not singular at z ≈ −0.184. For other
n values, a singularity is clearly indicated and by a coefficient ratio analysis of different n

series completely analogous to what was done for the A1 and A2 series in (9) and (10), we
find that the singularities at w = 1/2 have amplitudes proportional to the branch-dependent
multiplicity factor (n2 − 1)2. A more detailed analysis involving explicit fitting of the B(z)

series coefficients yields the singularity amplitude which we have confirmed by direct matching
of the χ̃ (5) series in z to ODE solution series about w = 1/2. The result for the singular part
of χ̃ (5) at w = 1/2 is

χ̃ (5)
sing = [(n2 − 1)2(2

√
6)/(315π)] · (1 − 2w)7/2

× [1 + 41(1 − 2w)/12 + 26 557(1 − 2w)2/3168 + · · ·], (40)

where the amplitude has been verified to our numerical accuracy of about 250 digits. We have
not identified a Landau singularity associated with (40). Finding this Landau singularity in
the χ̃ (5) integrand remains as the major unsolved challenge of this paper.

5. Conclusion

We have completed the quest begun in [8] for the exact integer arithmetic ODE satisfied by
χ̃ (5). While most explicit results are far too extensive to be published here, a selection can
be found on the web site [10]. These include L24 and E(5) defined in (2)–(4), the explicit
factorization L24 = L

(left)
12 · L

(right)
12 , the operator L29 and the exact integer high temperature

series for χ̃ (5) to 8000 terms generated from (2)–(4). Also included are numerical coefficients
to 800 digits for the χ̃ (5) series at the ferromagnetic point to supplement (B.4).

We have used the exact ODE to resolve at least one issue that was left undecided in [9].
In particular, we have shown in section 3 that the operator L

(left)
12 cannot be factored. The

techniques we have described, both for factorization and proving the converse, are not all well
known and we expect they will find application in other problems. In addition we have shown
that L

(left)
12 is not a symmetric n′th power of a lower order operator nor is it a symmetric product

of two (or more) operators if the order of the symmetric product reaches its maximum value.
An issue raised in [8] has only been partially resolved. No obvious candidate for a

Landau singularity in the integral representation of χ̃ (5) at w = 1/2 could be found and
because a Landau integrand singularity is a necessary condition26 [7] for an integral to be
singular, it was conjectured that χ̃ (5), necessarily defined by analytic continuation from its
series representation, would not be singular at w = 1/227. We have now, in section 4, shown
that χ̃ (5) is singular at w = 1/2 and so clearly have identified all the singularities of χ̃ (5) by
an analysis of the ODE it satisfies. The w = 1/2 singularity in χ̃ (5) proves the existence of
an associated Landau integrand singularity, but we have made no progress in identifying this
Landau singularity. And so our goal of unifying the Landau integrand analysis with the ODE
approach to the behaviour of the general χ̃ (n) continues to elude us.
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Appendix A. The exact arithmetic L
(right)
12 = L1 · L11

It was reported in [9] that L
(right)
12 = L1 · L11 with a solution S12 that satisfies L11(S12) = P ,

L1(P ) = 0 where P is a polynomial. The order 11 linear differential operator L11 has a
direct-sum decomposition

L11 = (Z2 · N1) ⊕ V2 ⊕ (
F3 · F2 · Ls

1

)
, (A.1)

where Z2 is a second-order operator also occurring in the factorization of the linear differential
operator associated with χ̃ (3), V2 is a second-order operator equivalent to the second-order
operator associated with χ̃ (2) and F3 and F2 are known in exact arithmetic [9]. The exact L11

was obtained in [9] from (A.1) and is given28 in [10]. Our goal here is to determine the exact
L

(right)
12 or equivalently the exact solution S12 which gives the polynomial P = L11(S12) and

then L1.
One possible form for this solution is

S12 = ln(w) · S9 − 2w3 − 6w4 − 136w5/3 − 3161w6/24 − 3073w7/4 − 245 147w8/120

− 334 031w9/30 − 872 442w10/35 − 19 192 553w11/140 + O(w13), (A.2)

where

S9 = w2 + 4w3 + 30w4 + 120w5 + 690w6 + 2760w7 + 14 280w8 + 57 120w9 + 279 090w10

+ 1116 360w11 + 5261 244w12 + O(w13) (A.3)

is annihilated by the order 9 operator V2 ⊕ N1 ⊕ (
F3 · F2 · Ls

1

)
. The rational coefficients in

(A.2) are sufficiently small that the four modulo prime solutions of (2) reported in [9] will
yield S12 exactly to O(w19). This in turn means that P = L11(S12) modulo any prime is given
exactly to O(w19). We now observe that the degree of P depends on the L11 representation
and is 18 when either the minimum degree or minimum degree plus one representation of L11

is used. This implies that, with this degree restriction on L11 and without any further input
from �(5), the equation P18 = L11(S12) determines P18 modulo any prime exactly. The
same equation can then be used in the recursion mode to extend the known S12 modulo a
prime series of O(w19) to any desired length. Clearly these steps can be repeated for as many
primes as necessary to get the S12 coefficients in exact arithmetic by rational reconstruction.
Then, once S12 has been extended to O(w137), one can switch back to the minimum-order
representation of L11 to get P136 = L11(S12), followed by L1 and the minimum-order L

(right)
12

in exact arithmetic. Note that we make no attempt to reconstruct P18 in exact arithmetic. This
polynomial is of no particular use and since it is generated from a non-minimal order L11 we
expect its coefficients to be equally outrageously large.

The polynomial P136 is proportional to

5544w5 + 197 765w6 + 419 883 469w7/70 − 24 564 638 026w8/35 + · · ·
− 2171 · 134 196 985w135/363 − 2173 · 80 400 525w136/847 (A.4)

and the operator L1 that annihilates it is obviously proportional to P136
d

dw
− dP136

dw
. The

straightforward operator multiplication L1 ·L11 yields an L
(right)
12 and this can be normalized to

28 Note that L11 in [10] is given in the monic form. Here L11 is understood to be normalized to a sum of products of
polynomials times powers of w · d/dw.
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the monic or non-monic form as desired. Note that P136/w
5 becomes the apparent singularity

part of the head polynomial of L
(right)
12 . The corresponding apparent polynomial Papp of L11

divides out of the product L1 · L11 as a common factor; this serves as a useful check of our
algebra. The minimum-order L

(right)
12 we have obtained can be found in [10].

The fact that the series S9 multiplying the logarithm in (A.2) is annihilated by an operator
of order M = 9 < 11 suggests that it might be possible to ‘push’ either V2 or Z2 to the
left of L1. And indeed we found that a U1, equivalent to L1, occurs at the left of the
L9 = V2 ⊕ N1 ⊕ (

F3 · F2 · Ls
1

)
that annihilates S9 in (A.3). Next, our aim is to see whether

U1 can be pushed further to the right. This amounts to considering the various factorizations
of L9; for instance, the factorization where the equivalent of V2 occurs at the leftmost position
and there exists a direct sum of this with U1. There is such a direct sum showing that an
equivalent to U1 occurs at the left of N1 ⊕ (

F3 · F2 · Ls
1

)
. The process continues until it is no

longer possible to find a direct sum of our equivalent to L1 and any one of the right factors.
This final factorization has a solution

S5 = ln(w) · w2 · [1 +
√

(1 − 4w)/(1 + 4w)]/(1 − 4 w)2 + 64 w5/9 + 200 w6/9 + 712 w7/3

+ 10 708 w8/15 + 253 888 w9/45 + 1771 852 w10/105 + 12 245 672w11/105

+ 331 735 612 w12/945 + O(w13), (A.5)

which can replace S12 from (A.2) as one of the 12 linearly independent solutions of L
(right)
12 .

The operator that annihilates S5 is

U5 = L̃1 · (
N1 ⊕ (

F2 · Ls
1

))
, (A.6)

where if we define U4 = N1 ⊕ (
F2 · Ls

1

)
to be given in our standard non-monic form, then

U4(S5) ∝ P19w
2/(1 − 4w) with

P19 = 9 + 36w + 18w2 − 2064w3 + 4581w4 + 59 584w5 − 143 476w6 − 898 464w7

+ 124 724w8 + 813 120w9 + 9220 240w10 + 55 704 896w11 + 65 556 224w12

− 253 883 392w13 − 406 194 176w14 + 1318 182 912w15 + 2053 013 504w16

+ 368 443 392w17 − 454 033 408w18 − 272 629 760w19. (A.7)

The operator that annihilates U4(S5) is

L̃1 = [w(1 − 4w)P19]
d

dw
−

[
(2 − 4w)P19 + w(1 − 4w)

dP19

dw

]
(A.8)

and again it is straightforward to combine this L̃1 with the other exact arithmetic operators in
(A.6) to get U5.

An incidental remark on the solution (A.5) is that this is one of the few examples of
a (partial) analytic solution of L

(right)
12 . Other simple solutions are w2/(1 − 4 w)2, w2/(1 −

4 w)/
√

1 − 16 w2 and w2 (1 + 4 w) 2F1(3/2, 3/2; 1; 16 w2), w2 (1 + 4 w) 2F1(3/2, 3/2; 3; 1−
16 w2) associated with Ls

1, N1 and V2, respectively. A more complicated case is that of Z2 for
which we refer29 the reader to [9].

In conclusion, every solution of L
(right)
12 can now be obtained as a linear combination of

solutions of operators of order M � 6.

Appendix B. χ̃(5) at the ferromagnetic point

To find �(5) in the vicinity of the point y = 0 where 2y = 1 − 4w requires that we first find
a solution to the inhomogeneous equation (2) near y = 0. To this end we develop the elliptic
29 Note a misprint in appendix C in [9], in equation (C7). The right-hand side should in fact be replaced by
82(1 − 2w)2(1 + 2w)2/(1 − w)2/(1 − 4w)2.
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integrals in (4) as series in y after which finding a particular integral by series recursion is
straightforward. What remains is then the matching of the �(5) series about w = 0 to this
particular integral plus the 24 homogeneous solution series Si satisfying L24(Si) = 0. This too
is a straightforward exercise although clearly one must pay attention to potential errors arising
both from numerical round-off and series length truncation. A useful remark in this regard is
that it is very advantageous to work with �(5) series in s rather than w = s/2/(1 + s2). This
arises because of the nonlinear relationship 1 − 4w ≈ (1 − s)2/2 at the ferromagnetic critical
point.

To understand the effect of the choice of series variable we note that in general the error
resulting from truncation of a series in x at N terms when evaluated at xm scales roughly as
(xm/xs)

N where xs is the distance to the nearest singularity from30 x = 0. As an illustration,
from the �(5) series of N = Nw terms and a matching point at wm = (1 − 2ym)/4, the series
truncation error is ≈ (4wm)N = (1 − 2 ym)N ≈ exp(−2 Nw ym) for small ym. Now suppose
the solution series Si have been evaluated to N = Ny terms. The solutions with the smallest
radius of convergence31, ys = 1/2 − 2ws ≈ 0.183, determine the truncation error which
is ≈ (ym/0.183)N ≈ exp(−Ny ln(0.183/ym)). The optimal choice of the matching point is
where the errors are roughly equal, i.e.

2 Nw · ym = Ny · ln(0.183/ym). (B.1)

With Nw = 8000 and Ny = 800, condition32 (B.1) yields ym = 0.0577 with a resulting
truncation error ≈ 10−400. This estimate of 400 digit accuracy is overly optimistic since the
�(5) matching requires the evaluation of 23 derivatives which invalidates our assumption of
functions all of unit magnitude.

Consider now what happens if the matching is done using �(5) as a series in s of
N = Ns = Nw terms. The truncation error is ≈ (sm)N ≈ (1−2

√
ym)N ≈ exp(−2 Nw

√
ym)

for small ym. The match point choice that replaces (B.1) is

2 Nw · √
ym = Ny · ln(0.183/ym), (B.2)

and with the same series lengths as above, ym = 0.015 35 with the resulting truncation
error ≈ 10−860. Again this must be overly optimistic but it does illustrate the dramatic
improvement achieved with no extra computational cost.

Our results for the behaviour of �(5) at the ferromagnetic point are as follows: we use
throughout the definition 2 y = 1−4w as above. Then, to O(y10), the 5-particle contribution
is

120 π4 · �(5) = (χ̃ (1) − 60 χ̃ (3) + 120 χ̃ (5)) · π4

= ln4(y/4) · (−5/128 − 25y/512 − 75y2/512 + 6455y3/8192

+ 42 305y4/16 384 + 49 935y5/8192 + 444 955y6/32 768

+ 64 409 075 y7/2097 152 + 306 977 235 y8/4194 304

+ 3131 527 805y9/16 777 216)

+ ln3(y/4) · (−235/192 − 1043 y/512 − 559 y2/256

+ 1007 843 y3/1032 192 + 265 627 475 y4/22 708 224

+ 21 838 013 489 y5/590 413 824 + 57 270 165 499 y6/590 413 824

+ 315 303 684 751 873 y7/1284 740 481 024

+ 31 001 275 613 111 851 y8/48 820 138 278 912

30 We assume for purposes of our qualitative discussion here that all functions are approximately of unit magnitude.
31 This ws is the same as that in the discussion leading to and following (9) and (10).
32 We have reached such values for exact rational coefficient series without too much computing effort.
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+ 336 259 319 399 213 305 y9/195 280 553 115 648)

+ ln2(y/4) · (−1225/192 + 306 283 y/15 360 − 859 553 y2/215 040

− 20 921 323 001 y3/433 520 640 − 10 704 883 015 027 y4/104 911 994 880

− 12 546 069 917 407 919 y5/70 920 508 538 880

− 1021 232 328 273 251 y6/3546 025 426 944

− 1219 521 777 522 960 411 013 y7/2623 491 451 870 248 960

− 1428 705 274 437 356 046 530 557 y8/1894 160 828 250 319 749 120

− 3094 013 953 756 589 876 579 173 y9/2525 547 771 000 426 332 160)

+ ln(y/4) ·
(∑

k=0

C1(k) · yk

)
+

∑
k=−1

C0(k) · yk (B.3)

where the constant arrays C1 and C0 are only known as floating point values. Truncated values
are

C1(0) = −24.579 422 776 085 005 809 807 666 918 842 356 756 722 133 677 152 81 · · ·
C1(1) = 100.332 280 261 121 980 739 844 837 578 689 642 427 444 684 311 062 63 · · ·
C1(2) = 153.629 122 250 956 902 879 376 428 137 031 917 694 796 337 994 294 41 · · ·
C1(3) = 96.268 269 775 450 223 433 437 918 344 019 644 004 451 927 310 385 706 · · ·
C1(4) = −93.060 872 246 947 119 873 271 898 278 526 467 013 597 043 512 891 78 · · ·
C1(5) = −520.060 463 620 671 142 199 879 335 336 181 510 799 435 875 021 2855 · · ·
C1(6) = −1469.482 403 857 530 493 377 284 131 808 565 295 376 128 516 174 659 · · ·
C1(7) = −3700.403 260 075 047 090 620 399 746 433 870 069 155 277 603 230 413 · · ·
C1(8) = −9303.076 094 072 409 117 026 994 688 305 643 439 126 188 417 678 639 · · ·
C1(9) = −24 403.451 159 562 421 438 882 358 591 269 422 381 164 661 467 183 68 · · ·
C0(−1) = 23.164 561 203 366 712 117 448 548 909 598 809 004 328 248 610 670 601 · · ·
C0(0) = −117.555 174 062 309 234 308 910 557 814 958 142 739 916 383 307 1621 · · ·
C0(1) = 256.411 511 499 496 232 579 281 003 142 934 611 918 878 090 562 349 18 · · ·
C0(2) = 350.915 859 067 901 015 292 198 391 166 198 006 918 129 639 776 119 99 · · ·
C0(3) = 293.478 939 167 681 863 066 232 363 606 680 739 151 434 085 014 857 41 · · ·
C0(4) = 109.389 343 633 237 837 047 699 483 772 407 094 363 666 814 669 906 51 · · ·
C0(5) = −373.928 805 577 364 161 339 869 290 516 560 018 802 311 340 499 2740 · · ·
C0(6) = −1561.022 604 360 024 268 401 667 883 538 021 798 990 658 115 951 832 · · ·
C0(7) = −4574.248 865 947 314 517 242 004 568 453 306 010 341 709 549 402 520 · · ·
C0(8) = −12595.461 191 916 745 987 116 447 669 738 840 645 746 722 234 825 38 · · ·
C0(9) = −35224.559 613 707 790 085 325 694 509 320 788 019 454 777 282 875 48 · · ·

(B.4)

while values to about 800 digits can be found in [10]. The 3-particle function, to O(y10), is

− 6 π2 · �(3) = (χ̃ (1) − 6 χ̃ (3)) · π2 =
ln2(y/4) · (3/32 − 3y/128 + 9 y2/128 + 87 y3/2048

− 39 y4/4096 − 423 y5/4096 − 555 y6/2048 − 301 647 y7/524 288

− 1185 363 y8/1048 576 − 8996 817 y9/4194 304)
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+ ln(y/4) · (23/32 + 227 y/1280 − 2047 y2/4480 − 88 949 y3/122 880

− 20 562 503 y4/18 923 520 − 810 591 833 y5/492 011 520

− 316 471 567 y6/123 002 880 − 4445 362 809 179 y7/1070 617 067 520

− 3085 016 829 083 y8/447 070 863 360

− 273 049 228 448 281 y9/23 247 684 894 720)

+ (41/96 − 21 169 y/38 400 − 225 583 y2/3763 200

+ 2621 231 y3/154 828 800 + 15 533 081 173 y4/262 279 987 200

+ 151 705 656 477 979 y5/1595 711 442 124 800

+ 30 692 556 260 057 y6/265 951 907 020 800

+ 1747 927 197 871 890 533 y7/19 676 185 889 026 867 200

− 41 073 304 786 882 831 381 y8/655 671 055 932 802 990 080

− 776 816 275 820 131 600 824 097 y9/1534 270 270 882 758 996 787 200)

+ (9 ψ(1)(1/3)/8 − 3/2 − 3 π2/4) · (1/y − 3/2 − 5y/24 − 3y2/8

− 1801 y3/3456 − 1649 y4/2304 − 187 999 y5/186 624

− 45 617 y6/31 104 − 17 592 665y7/7962 624

− 164 030 851 y8/47 775 744 − 9425 604 977y9/1719 926 784), (B.5)

where ψ(1)(x) = ψ ′(x) is the polygamma function (ψ(x) = �′(x)/�(x)). The coefficient
of 1/y in (B.5) was determined by Tracy [16] while the higher order terms are recursively
generated from the ODE satisfied [13] by �(3). Finally,

�(1) = χ̃ (1) = 1/(4y) − 1/2. (B.6)

When these results are combined and expressed in terms of τ = (1/s − s)/2, i.e.
2 y = τ 2/(1 + τ 2 +

√
1 + τ 2), one confirms the low-order result for χ(5) in equation (48)

of [8]. We also confirm the 500 digit expression for the χ(5) amplitude D5 given by Bailey
et al [11]. The explicit connection is

D5 = 52 π4/5 − 12 π2 ψ(1)(1/3) + 16 π2 + 16 C0(−1)/15 (B.7)

with C0(−1) given in (B.4).
The 5-particle contribution (B.3) to O(y10) can be extended to arbitrary order by a purely

local analysis of the ODE (2). This makes (B.3) particularly useful for those problems in which
one wants to analytically continue �(5) beyond the ferromagnetic singularity. Of the constants
in (B.4), only the 15 values C1(0...5) and C0(−1...7) depend directly on solution matching.
All higher order coefficients are fixed by recursion relations with rational coefficients. The
rationals are quite large, even in the simplest example which reads

28 235 138 014 521 201 151 215 868 809 287 621 440 · C1(6) = −n1

d1

− 37 737 948 182 868 464 640 476 571 846 064 977 272 634 973/1168 128 · C1(0)

− 2562 052 253 560 544 220 030 628 882 123 379 039 659 169/86 528 · C1(1)

+ 8187 149 177 658 628 591 337 051 452 109 148 482 747/312 · C1(2)

+ 158 617 170 239 026 490 613 752 192 866 932 708 861 763/1872 · C1(3)

−140 695 455 847 623 820 725 386 797 097 484 481 682 383/702 · C1(4)

+133 960 461 264 493 957 765 301 921 009 624 203 227 · C1(5), (B.8)

with

n1 = 15 256 931 516 199 856 571 741 494 453 893 800 774 223 260 951 365 779 571 949,

d1 = 31 365 304 106 405 068 800.
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Figure B1. The number of digits D in the denominators of the rational coefficients cN in series
yp lnq (y/4)

∑
cNyN that arise in ODE solutions around 2y = 1 − 4w = 0.

The floating point recursion in y is unstable to the extent that relative errors increase by about
factor 40 per order in the y series. If one wants, say, 1500 terms, one must start with 2400
digits more than the desired final accuracy. One must also use directly as starting values only
the coefficients C1(0...5) and C0(−1...7) from (B.4). All other coefficients are to be obtained
to the necessary higher accuracy directly from the ODE (2) locally around y = 0, now treating
the starting values C1(0...5) and C0(−1...7) as if exact.

The problem of numerical instability in series generation around rational points can
be avoided by generating all series in exact arithmetic. In that case the series coefficients
are in general rational and our observation, admittedly rather limited, is that the growth of
the denominators is at most exponential. An example of denominator growth is shown in
figure B1 for all series in y that we have generated for doing the ferromagnetic point series
matching described above. A growth rate faster than exponential would make exact arithmetic
series generation impractical so it is of some importance to know whether the observed
exponential growth is a general feature. It is reminiscent of G-series [17] but we are unaware
of any theorem that guarantees this behaviour for expansions of integrals with algebraic
integrands about singular points.

Appendix C. Right division operators for irrational singular points

We wish to determine a right division of a minimum order LN(w) from solutions identified with
the non-rational zeros of a factor h(w) of the head polynomial of LN(w). Examples of h(w)

treated in the text are 1+3w +4w2 and the case 3 and 4 polynomials from appendix C in [8]. If
such a polynomial has an ‘accidental’ modulo prime p factorization h(w) = (w−wp) hp(w),
we can still generate series solutions about x = 0 where x = w − wp. Furthermore, suppose
the solution S(x) has been tested and is found to be annihilated by a minimum order M < N

operator. If the code used for the testing is that described in section 3 of [8] the result will be
of the form

LM(x) =
M∑

n=0

fn(x) ·
(

x · d

dx

)M−n

, (C.1)
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where the head polynomial f0(x) is normalized such that f0(x = 0) = 1. Note that wp is not
the modulo p representation of a root of h(w) and both it and x have no meaning independent
of the specific modulo p factorization h(w) = (w − wp)hp(w). Consequently there does not
exist any exact ‘LM(x)’ to be reconstructed from multiple LM(x) generated using different
primes. Replacing x by w − wp in (C.1) generates an LM(w) but only when this is correctly
normalized to remove all dependence on the ‘accidental’ wp can it be used for a reconstruction
of an exact LM(w). The steps for doing this are as follows.

To begin, note that (C.1) can be expressed as a sum of polynomials times powers of d/dx.
The head polynomial in this representation is clearly xMf0(x). The modulo p factorization
of this will contain as factors xM [hp(x + wp)]K , typically with K < M . These factors can be
written as xM−K [xhp(x+wp)]K = xM−K [h(x+wp)]K = (w−wp)M−K [h(w)]K . Dependence
on the ‘accidental’ wp appears only in the factor xM−K and this can be divided out. So too
can the w = 0 normalization constant C = xKf0(x) evaluated at x = −wp. The result is the
right division (modulo p) operator which can be cast into the same form as (C.1), namely

LM(w) = LM(x)

xM−KC

∣∣∣∣
x=w−wp

modulo p

=
M∑

n=0

gn(w) ·
(

w · d

dw

)M−n

, (C.2)

where each gn(w) is a polynomial and, by construction, g0(w = 0) = 1. The exact LM(w)

can now be reconstructed from different prime-based versions of (C.2).
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