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We have performed a Random Matrix Theory (RMT) analysis of the quantum four
state chiral Potts chain for different sizes of the quantum chain up to eight sites, and
for different unfolding methods. Our analysis shows that one generically has a Gaussian
Orthogonal Ensemble statistics for the unfolded spectrum instead of the GUE statistics
one could expect. Furthermore a change from the generic GOE distribution to a Pois-
son distribution occurs when the hamiltonian becomes integrable. Therefore, the RMT
analysis can be seen as a detector of “higher genus integrability”.

Introduction : the quantum chiral Potts chain

Since the pioneering work of Wigner! and Dyson,? Random Matrix Theory (RMT)
has been applied successfully in various domains of physics. One motivation is to
describe, in a united universal framework, various phenomena implying chaos® or at
least complexity. An extreme case is the emergence of integrability which manifests
. itself in the drastic change of the generic wignerian energy level spacing distribution
into poissonian distribution. The first examples of this connection emerged when
one considered simple harmonic oscillators or free fermions models. This reduction
to Poisson distribution reflects nothing but the independence of the eigenvalues. At
this point it is natural to ask whether this link between Poisson reduction and Yang—
Baxter integrability still holds when the solutions of the Yang—Baxter equations are
no longer parametrized in terms of abelian varieties. The perfect example to address
this question is the chiral Potts model for which Au-Yang et-al have found a higher
genus Yang-Baxter solution.? The Hamiltonian of the quantum chiral Potts chain
first introduced by Howes, Kadanoff and den Nijs® and also by von Gehlen and
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matrices and the level spacing distribution is close to a Poissonian (exponential)
distribution, P(s) = exp(—s). For non-integrable systems it can be the Gaussian
Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), or the Gaus-
sian Symplectic Ensemble (GSE), depending on the symmetries of the model under
consideration. If the hamiltonian is time reversal invariant!® the level spacing dis-
tribution is either described by the Gaussian Orthogonal Ensemble (GOE), or by
the Gaussian Symplectic Ensemble (GSE):
Fis

Pgog(s) = 5 sexp(—ms?/4),  Pagg(s) = B®s*exp(—Bs?) (4)

where B = (%)2% ~ 2.263. Note that GOE can also occurs in a slightly more
general framework (“false” time-reversal violation, A-adapted basis'?). When one
does not have any time-reversal symmetry (or “false time-reversal symmetry”) the

Gaussian Unitary Ensemble distribution should appear :

32
Pgug(s) = ﬁsg exp(—4s2 /) (5)
To quantify the “degree” of level repulsion, it may be convenient to use a para-
metrized distribution which interpolates between the Poisson law and the GOE
Wigner law. Among the many possible distributions we have chosen the Brody

distribution:

148
Ps(s) = (1+f) ez e exp(—CQS'G‘H), with ¢p = [1_' (g——I ?)J (6)

1.1. Representation theory

In the presence of symmetries, one should distinguish eigenstates according to their
quantum numbers. This is an essential requirement of the method. For instance both
lattice shift and shift of colour commute with the hamiltonian H. They generate a
symmetry group S = Zp ® Z4 which does not depend on the parameters a;, @; of
the hamiltonian H. Since the group § = Z1 ® Z, is abelian one may diagonalize
simultaneously all the elements of the group S as well as the hamiltonian H on the
S-invariant spaces. This amounts to block-diagonalizing H and to split the spectrum
of H into the many spectra of each block. The construction of the projectors is done
with the help of the character table of irreducible representations of the symmetry
group. Details can be found in Ref. 10 and Ref. 14.

In this work we concentrate on the four-state case (N = 4) of the quantum
hamiltonian (1). For generic r and n in parametrization Eq. (3), the total sym-
metry group is Z; ® Z4. Since the characters of Z; ® Z; are complex, one has
to use complex numbers even though the final results are real, which increases the
programming difficulties. We always restricted ourselves to hermitian hamiltonians.
Consequently the blocks are also hermitian and there are only real eigenvalues. The
diagonalization is performed using standard methods of linear algebra (contained
in the LAPACK library).
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various blocks (representations) is not significantly different. We also compared four
different unfolding procedures, again getting similar results. We display the results
on the largest size L = 8 for the best unfolding procedure, namely the gaussian
unfolding,

Figure 1 shows the level spacing distribution P(s), for the representation (0,0)
and for 7 = 0.5, n = 2.1, and ¢t = 1.5, which corresponds to oy = o = 1.225 +
1 0.707, ap =t = 1.5, @1y = @3 = 2.337 +1 1.833 and @3 = 2.1.

This figure shows the energy level spacing distribution and the corresponding
brody fit (6) for the (least square) best value found to be Byrody = 0.99. On the
same figure the GOE level spacing distribution is also displayed, both curves are
almost indistinguishable. The GUE or GSE level spacing distribution are clearly
ruled out, as well, of course, as the Poisson distribution. Very similar results are
obtained for all the distributions corresponding to the other representations and
other values away from the integrability value ag = ¢ = 1.

Let us now consider the (higher genus) integrable case which corresponds, with
our parametrization, to ag =t = 1.

L=8, R=(0,0) n=2.1, r=0.5, t=1, p=0.04

1 T T T T T T T
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Fig. 2. Level spacing distribution on the integrability variety.

Figure 2 displays the level spacing distribution, compared to a Poisson distri-
bution (and also to the GOE level spacing distribution), for the integrable case
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to the GOE value Byrogy = 1 for every value of the parameter t, except at point
¢t = 1, where the Poisson value Byro4y = 0 should occur.
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