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Résumé. 2014 Nous étudions les propriétés du diagramme de phase correspondant au moment de réplique d’ordre fini
du verre de spin de type Ising. Nous utilisons pour cela des résultats concernant le modèle d’Ashkin Teller à n
couleurs. Nous remarquons que le moment de réplique d’ordre deux en dimension deux possède des exposants
critiques variant continuement et que le point tricritique de ce modèle se trouve sur la ligne de Nishimori. Nous
calculons la largeur de la distribution de probabilité de la fonction de partition sur des lignes particulières du
diagramme de phase. Nous exhibons en dimension quelconque une relation exacte reliant les moments de réplique
d’ordre n et n + 1. Les propriétés de symétrie du diagramme des phases qui en résultent sont analysées. Ceci permet
de vérifier l’excellent accord de certaines prédictions du « modèle des énergies aléatoires généralisé » avec ces
résultats exacts.

Abstract. 2014 Some properties of the phase diagrams of the finite replica momenta for an Ising spin-glass are studied,
using exact results on n-colour Ashkin-Teller models. In the two-dimensional case the second replica momentum
exhibits continuously varying critical exponents and the tricritical point is found to lie on the Nishimori’s line. We
obtain the width of the probability distribution of the partition function on particular lines of the phase diagram. We
point out an exact relation between the n and ( n + 1) th replica momenta, valid for arbitrary dimensions, which
implies a symmetry property of the phase diagram. This allows to verify the nice agreement of some predictions of the
« generalized random energy model » with these exact results.
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1. Introduction.

The finite replica problem has been considered by
several authors in the development of spin-glass theory,
with different motivations. A first one was to initiate a

phenomenological theory of the spin-glass transi-
tion [1], based on a Landau-type study of the effective
n-replica Hamiltonian for finite n, in order to shed light
on phase diagrams and singularities in the n - 0 limit.
In the infinite dimensional case - corresponding to the
mean field theory - a detailed study of the finite n
replica Hamiltonian was performed by Sherrington [2].

Let us note that, apart from their interest in the spin-
glass context, the models corresponding to the effective
n-replica Hamiltonians, sometimes called « n-colour
Ashkin-Teller models », are interesting on their own,
due to the richness of their phase diagrams [3]. Indeed,

they possess more than one order parameter and
exhibit a multicritical point.
More recently, it has been realized that finite n

studies are crucial in the understanding of the whole
probability distributions T (In Z ) of a spin glass,
whose generating function is given by the replica
momenta. Consequences of this remark in the infinite
dimensional case were investigated by Derrida and
Toulouse [4].
The aim of this paper is to address the finite

dimensional case. Of course, one cannot expect a

detailed quantitative analysis to be possible. However,
one can take advantage of some available exact results
on Ashkin-Teller (AT) models, and of some general
symmetry properties, in order to gain some ,physical
insights, based on analytical calculations. A special
emphasis will be made on the n = 2 case in two
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dimensions. The physical outcome of this study is a

quantitative evaluation of the region of the phase
diagram where the annealed approximation is no

longer valid due to the broadening of the distribution of
the partition function. This is based in particular on an
exact expression for the variance of this distribution
along different lines of the phase diagram. These exact
results are compared with the case of infinite dimen-
sional models. We also point out a symmetry property
of the replica momenta of a spin-glass in arbitrary
dimension. This property can be confronted with a
prediction of the generalized random energy model
(GREM) [5]. It also supports the idea that Nishimori’s
line [6] plays an important role in the phase diagram of
a spin-glass, as suggested in [6, 7].

2. Two replicas in two dimensions.

2.1 PHASE DIAGRAM. - Let us consider the two-
dimensional Ising spin-glass on the square lattice, of
Hamiltonian:

where the random couplings Iij only couple nearest
neighbour sites and are distributed according to the
distribution P (Iij ) . The second replica momentum is
seen to be simply related to a symmetric Ashkin-Teller
model, of Hamiltonian:

through the relation:

where N denotes the number of sites and K2 and K4 are

coupling constants given by :

In all these expressions, the brackets ( ) denote the
average with respect to the distribution P.
Though the Ashkin-Teller model is not integrable in

its whole parameter space, a description of its phase
diagram is available through exact results valid only on
some particular lines (or points). It can be exactly
solved on its self-dual line (SD) [8] whose equation
reads :

or, equivalently :

This SD line delimits the boundary between the fer-

romagnetic «( Ui)’ ( Ti)’ (Ui Ti) ::F 0) and para-

magnetic «( Ui) = (Ti) = (Ui Ti) = 0) phases, until
a tricritical point is met for K2 = K4 = Kc given by :

sinh

that is

A third mixed phase «( Ui) = (Ti) = 0,
(Ui Ti) o 0) then appears, whose boundaries are not
known analytically, except for the two points
I1(K2 = 0, sinh ( 2 K4 ) =1), and IZ(K4 = oo , 1
K2 = Kc/2), corresponding to Ising limits of the model.
It is also known [9] that the separation between these
boundaries and the (SD) line is very slow (with an
essential singularity), in the vicinity of the tricritical

point.
These pieces of information have been used in

figure 1 to obtain the phase diagram of the second

Fig. 1. - Phase diagram of the second replica momentum

( Z2) for a two-dimensional Ising spin-glass with a binary
distribution (8) in the (p, T) plane. (T) and (T’) are

tricritical points. (SD), (SD’) are the self dual lines. (N) is
the Nishimori’s line. M denotes the mixed phase (whose
boundaries are not known analytically, except for the points
h, Ii, 12).
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replica momentum (Z2) of a 2D spin-glass, with a

binary distribution for the couplings :

This diagram is given as an example, but let us

emphasize that our discussion is valid for any distribu-
tion P (Jij) -
2.2 NISHIMORI’S LINE. - The possible values of the
order parameters (u i ), (T i ) and Ol’i Ti) denoted

generally by mt and Qt/3 (a, (3 = 1, 2) in the spin-glass
context, delimit three phases. It is remarkable that the
corresponding tricritical point (T) lies precisely at the
intersection of the SD line with the Nishimori’s line of
the spin-glass. Indeed, the equation of this line [6] in
parameter space, reads :

which, in turn, is equivalent to K2 = K4. Thus, on

Nishimori’s line, the AT model (2) describing (Z2)
reduces to the four-state scalar Potts model, and the

symmetry is enhanced from Z2 x Z2 to Z4. This is not
without reminding the idea of Nishimori’s line as a line
of enhanced (super)-symmetry developed by the au-
thors in reference [10].

This line plays a particular part in the critical

behaviour of the spin-glass, since it can be shown [6]

that the specific heat remains finite and the internal
energy has no singularity on the line, despite its
intersection with the ferromagnetic/paramagnetic
boundary of the spin-glass, where the singularity
In ( In ( T - Tc ) ) is believed to hold [11J. It has been
suggested [6, 7] that this apparent paradox could be
solved by an intersection at a point of coexistence of
three phases (this is indeed what happens in the SK
model [12] ; it is also strongly suggested by numerical
simulations of the 3D case). Whether the mixed phase
of ( Z2) survives in 2D when n - 0 to give rise to a
spin-glass phase at To 0 is an open question, but
generally answered negatively [13]. However, the lo-

cation of the tricritical point of (Z2) on Nishimori’s
line could provide a clue in favour of the suggestion of
reference [7] in which Maynard and Rammal’s proposal
of a « Random Antiphase » [14] was extended in a very
narrow ( T, p ) domain to reach Nishimori’s line at a
tricritical point. The fact that, in the study of (Z2), the
critical lines split apart with an essential singularity
could be in relation to a very narrow phase (and thus
difficult to observe) close to the tricritical point.

2.3 THE WIDTH OF THE PROBABILITY DISTRIBUTION
OF Z. - Let us now turn to more quantitative
considerations. One can convert the exact expression of
the free energy of the AT model [8] on its self-dual line,
into an expression of (Z2) on the line (6). One gets
two different expressions, corresponding to the two
regimes above and below the tricritical point ( T) at

T = T, defined by (7) :

where N is the number of sites, and u is given by
2 cos ( &#x3E; /2 ) = 1 + (exp ( - 2 (3Iij)) for T&#x3E; Tc
(cos is to be replaced by cosh for T  Tc). Apart from
the self-dual line, it is trivial to calculate (Z2) when the
distribution P (Jij ) becomes invariant under

Jij ---&#x3E; Iij (this corresponds to the line p = 1/2 for the
binary distribution (8) used in Fig. 1). This is an Ising-
like limit ( K2 = 0) of the AT model, and we get, in
this case :

where ZIsing denotes the Onsager partition function

taken for the coupling KIsing = ln(exp ( 2 PJij ) ) /2.
Here again, we get a transition at (3 I 2 such that

exp ( 2 p j 12 lij ) ) = 1 + qi, corresponding to the

point I2 of figure 1. The exact expressions (9) and (10)
are used in figure 2a, b to plot, as a function of

temperature, the « width per site » of the distribution
of the partition function :

along the (SD) line and the line p = 1/2, for the binary
distribution (8). In both cases, two different regimes
occur : a stays very small in all the high temperature
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Fig. 2. - The « width per site » (Eq. (12)) of the distribution
of the partition function as a function of the temperature
a) along the self dual line. b) Along the p = 1/2 line.

c) Sketch of the behaviour of as a function of the temperature
in the infinite dimensional case.

phase, and increases exponentially fast when entering
the mixed phase of (Z2).

This is very similar to what happens in infinite
dimensional models, such as SK [4, 12] and random
energy model (REM) [15]. In these models, the phase
diagram of a given replica momentum has a similar
structure to that of the diagram of figure 1. For

symmetric couplings (Jo = 0 in the SK model), the

paramagnetic/mixed phase transition for ( zn) takes

place at a critical temperature Tc (n) , above which

(zn) = (Z)n in the thermodynamic limit. Below

Tc (n) , 0-n - = ( (zn) /  z )n) I/N -1 starts increas-
ing as exp ( a/T2). This behaviour is sketched in

figure 2c. As expected, for the finite dimensional case,
a does not strictly vanish in the high temperature
phase. However, its smallness indicates slight deviations
from the annealed behaviour in all the paramagnetic
phase of (Z2). In this phase, the spin-glass free energy
is certainly well approximated by :
2 In (Z) - 1/2 In (Z2). This expression, which can

be shown to be the first correction to the annealed

approximation at high temperature, is also the expected
one for a strictly log-normal distribution of the partition
function.
The mechanism responsible for the exponential

growth of the width of the distribution function of Z
can be easily clarified, making reference to the simpli-
fied model of random independent energies
(REM) [15]. There, the correlations between energies
being neglected, this growth can be entirely related to
the non-zero probability for two energy levels to

coincide. Indeed, one has, in the thermodynamic limit :

where the last term comes for overlapping energies.
This reflects the highly degenerate character of the
landscape of energy valleys at low temperature. This
picture, while modified by correlations, remains quali-
tatively valid in the finite-dimensional case. A non-zero
value for the order parameter Qal3 ( 1  a, (3 , n )
associated with  zn) reveals the weight of pairs of
overlapping levels among n energy levels of the spin-
glass. (Indeed, Q a 10 appears with a factor n ( n - 1 ) /2
in a symmetric mean field approach). The phase
diagram of figure 1 and the plot of a in figure 2 thus
give information on the energy landscape of the 2D
spin-glass as a function of T and p.

It is interesting to notice that the width a exhibits
continuously varying critical exponents as a function of
the concentration p of impurities. Indeed [8], the

exponent « of the associated AT model is given by
a = (2 - 4 JL / 7T ) / ( 3 - 4 JL / 7T) and thus changes
from a = 0 at p = 0 to a = 2/3 at p = pT where put
corresponds to the tricritical point.

2.4 GENERALIZED BINARY DISTRIBUTIONS: LOW

TEMPERATURE BEHAVIOUR OF THE REPLICA

MOMENTA. - We conclude this section by making
some remarks concerning the quantity best-suited for a
replica method treatment. This remark can be conve-
niently illustrated on the example of a distribution over
random couplings of the form :

where a is an arbitrary parameter. The limits a = - 1
and a = 0 correspond to the spin-glass problem (8) and
to the bond-diluted problem, respectively.

It is easy to see that the phase diagram associated
with a given finite replica momentum (zn) has rather
pathological properties at low temperature, except for
the spin-glass case a = - 1. Indeed, a ferromagnetic
(resp. antiferromagnetic) phase exists at T = 0, inde-
pendently of the value of the concentration p, for

a &#x3E; -1 (resp. a  - 1). This behaviour has certainly
no relevance for the quenched problem. The shape of
such a pathological phase diagram is illustrated in the
case of (Z2) in figure 3a for a = - 1/2.
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Fig. 3a. - Phase diagram of the second replica momentum

 Z2 &#x3E; for a two-dimensional Ising spin-glass with a binary
distribution (14) in the ( p, T ) plane for a = - 1/2.

This trivialization of the phase diagram has a simple
explanation: at low temperature, the correspondence
between (Z2) and the n-colour AT model is dominated
by contributions of terms like coshn (,G jij ) ) 2N. This
is apparent for n = 2 in equation (3). This problem can
be easily cured by extracting these large contributions
from the partition function before averaging : for a

given configuration of couplings, one writes :

The replica momenta of Z do not suffer from the

previous pathologies. In the case of (Z2) one has again
a mapping on a symmetric AT model, which is detailed
in the Appendix. Note that when a = - 1, the approach
of this section and of the previous ones coincide. The
resulting phase diagram in the case of distribution (14)
with a = - 1/2 is depicted in figure 3b, together with
the bond diluted limit a = 0 where the mixed phase
disappears. Note the existence of reentrant phases in
the first case. It is important to remark that the Ising-
like critical point 11 ( T = 0 ) corresponds to

Fig. 3b. - Phase diagram of ( Z2 ) (Eq. (15)) for a two-Fig. 3b. - Phase diagram of  22 ) (Eq. (15)) for a two-
dimensional Ising spin-glass with a binary distribution (Eq.
(14)) for a = -1/2 together with the dilute bond limit a = 0.

jumps to p =11 J2 (a similar behaviour exists for I’).
This remark holds for all finite replica momenta

(zn) .
These remarks explain in particular why the annealed

lower-bounds on the free energy obtained from Z are
far more relevant than those obtained from Z. Some

developments along this line have been achieved in
reference [16].

3. A symmetry property of (zn) and of Ashkin-Teller
models in arbitrary dimension.

3.1 A RELATION BETWEEN n AND n + 1 REPLICAS. -
In this section, we point out a symmetry property of the
replica momenta for an arbitrary spin-glass (arbitrary
dimension, arbitrary lattice...), and investigate its con-

. sequences on the phase diagram. Let us consider an
Ising spin-glass, with the Hamiltonian (1) (but on an
arbitrary lattice this time) ; the random couplings are
distributed according to a given probability distribution
P (Jij). It is well known that H is invariant under a

local spin reversal Si - S; Ti, provided the couplings Ji j
are changed accordingly : Jij ---&#x3E; Iij ri Tj. This remark

naturally leads to introduce the concept of a frustrated
configuration of couplings Iij [17], as a configuration
which cannot be reduced to a purely ferromagnetic one
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(all Iij &#x3E; 0) by a « gauge » transformation ; the config-
uration Jij then admits a non trivial ground-state. It is
thus important to distinguish between configurations
which can be « gauged away », and truly disordered
configurations, giving to the spin-glass problem all its
complexity. In this respect, it is natural to extract in the
distribution P (Iij) a part which preserves the gauge
symmetry, i.e. invariant under Jq - - Jij. We assume

that P (Iij) can be written as :

where 3 f is a parameter depending on the moments of
P, and C is a constant such that 0 is normalized to one.
Using the gauge symmetry of H, one can write the n-

th replica momentum with respect to the distribution P
under the following form :

where NB is the number of bonds of the lattice.

Summing over all the possible choices for the {T i } ,
which play the part of an additional replica, one gets :

In the particular case of the binary distribution (8), this
reads (with obvious notations) :

where {3f is given by tanh {3fJ = 2 p -1.
Let us note that j3 = {3f is precisely Nishimori’s

condition. Equation (18) thus relates the n-th replica
momentum on Nishimori’s subspace to the ( n + 1 ) -th
one for a symmetric distribution of the couplings. In
particular, this relates the critical point of (zn) on the
subspace {3 = 03B2 f to the one of (zn + 1) for a symmetric
distribution.
As an illustration, let us note that, in general,

Nishimori’s subspace intersects for {3 = 03B2f the fer-

romagnetic/paramagnetic critical line of the quenched
system, i.e. of the derivative of (zn) with respect to n
at n = 0. Relation (18) thus implies that the derivative
of (zn + 1) with respect to n, at n =1, for the

symmetric distribution 0 has a transition at j8 = 03B2 f
between a paramagnetic and a mixed phase. This
remark is perhaps not academic, since it has been

. a Zn&#x3E;proposed [18] that the mixed phase of -- 
an n=i

(sometimes called « hidden Mattis phase ») could be
associated with dynamical properties (slow relaxation)
of the true ( n - 0 ) quenched problem. The existence
of such a transition at Jo = 0, PJ = 1 in the case of the
SK model, demonstrated in [19], follows directly from
the symmetry relation (18) and the location of the
tricritical point of the quenched system at Jo/J =
BJ = 1.

Let us note finally that a more precise meaning can
be given to the parameter 03B2f defined by (16). Actually,
it has been shown in reference [21] that the average
over the configurations of the couplings in the spin-
glass problem can be replaced by an average over the
frustrations themselves, interacting through an effective
Hamiltonian. The thermodynamical state of these frust-
ration variables is characterized by an inverse tempera-
ture which is precisely 03B2f. When 03B2  {3f, the spin
degrees of freedom dominate over the degrees of

freedom associated to frustrations, while when 03B2 &#x3E; 03B2f,
the frustration disorder becomes relevant. Nishimori’s

line, on which 03B2 = 03B2 f’ thus appears as a natural

separation between these two regimes for a spin-glass.

3.2 A COMPARISON WITH THE GREM. - An inter-

esting application of the exact result (18) is that it

provides a test of one of the consequences of the
GREM approach to the finite dimensional spin-glass
problem [5]. In this approach, one includes correlations
between energies by using as an input the first two

replica momenta of the true spin-glass. The other
replica momenta are then completely specified by the
model. In particular, this gives an estimation of

(Z3). For a Gaussian symmetric distribution of the
couplings:

one gets [21] :

(21)

which exhibits a critical point separating a mixed and
paramagnetic phase at
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The value of (Z3) 
GREM 

at this critical point is thus :

where G = 0.915965... is Catalan’s constant.
On the other hand, the symmetry property (19)

allows to obtain the exact expression of ( Z3) at

criticality, together with the corresponding critical

temperature :

One can thus see that the GREM leads to a remarkably
good approximation both for the location of the critical
point of (Z3) and for its value at criticality in two
dimensions. Including the pair correlations between

energies has lowered this critical point from the REM
result [15] 03B2jcREM = 4 ln 213 = 1.93... to less than

4 % of the exact value.

3.3 A SYMMETRY PROPERTY OF n-COLOUR ASHKIN-
TELLER MODELS. - The symmetry property (19) can
be turned into a similar relation for n-colour AT
models ; this corresponds to the case of a Gaussian
distribution :

for which 03B2 = Jo/J2. After performing the Gaussian
integration, the n-th replica momentum corresponds to
the effective Hamiltonian of an n-colour AT model:

with K2 = 03B2Jo and K4 = 03B2 2 j2 . The previous relation
between the n-th and ( n + 1 ) -th moment can be
recovered directly if one applies a gauge transformation

sia, --+ Ti Sa to the Hamiltonian H. This leads to the
following relation between partition functions :

This shows in particular that the critical point of the
Hamiltonian HAT (n) for KZ = K4 coincides with the
critical point of the Hamiltonian H AB n + 1) for K2 = 0.
This can be sketched on the phase diagrams in the

( 1/K4, K21K4 plane, for different values of n (see
Fig. 4) : the intersection of the axis K2 = K4 with the

Fig. 4. - Correspondance between the phase diagram of the
Ashkin-Teller model for n and ( n + 1 ) colours. The
tricritical point of the ( n + 1 ) Ashkin-Teller model occurs

for the same 1/K4 value as the intersection of the K2 = K4
line with the paramagnetic-ferromagnetic critical line for the n
colour Ashkin-Teller model.

paramagnetic/ferromagnetic critical line for the n-col-
our AT model arises at the same value of 1 /K4 as the
intersection of the paramagnetic/mixed critical line of
the ( n + 1 ) colour model, with the axis K2 = K4. This
symmetry property of the phase diagrams of n-colour
AT models is illustrated, in the infinite dimensional

case, by the mean-field results of Sherrington : see the
figure 2 of reference [2] on which it clearly appears. It
can also be checked for a finite dimension on the results
of reference [22] where a Monte-Carlo simulation of
the three-colour problem for D = 2 and 3 has been
performed. Using the known results on the critical

point for n = 2, K2 = K4 (four-state Potts model), one
gets critical values for K4 (when K2 = 0) in the n = 3
case which are in good agreement with the values
asymptotically deduced from the figures 2 and 3 of
reference [22].

It is clear on equation (26) that, on the line

K2 = K4, the « gauge symmetry » of the n-colour AT
model is restored. Indeed, this symmetry, which
amounts to flip the replicas in a site-dependent way :
sic, --+ zi S", is broken in general by the K2 term of the
Hamiltonian HAT (this term originates, in the spin-glass
case, from the non-invariance of P (Jij) under

Jij -+ - Jij). Relation (26) expresses precisely that, on
the line K2 = K4, H ( n ) is equivalent to H Tn + 1 ) with
K2 = 0, an Hamiltonian which is gauge-invariant. For
the spin-glass also, the gauge symmetry is restored on
Nishimori’s line /3 = 03B2f’ since (zn) p becomes equival-
ent to (zn + 1) ~’ for a symmetric ~. Moreover, one can
show [6] that the quenched mean-value of any gauge-
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invariant operator is equal on Nishimori’s line to its
annealed mean value with respect to the distribution 0.
These symmetry considerations could give some

arguments in favour of the location of the tricritical

point of the (zn)’s (or alternatively of the HAT( n) ’s) on
this particular line. Indeed, the occurrence of a tricriti-
cal point on a line of enhanced symmetry has already
been encountered in reference [23] for some generaliza-
tions of spin models. It is in fact what happens for
n = 2, D = 2 and for the quenched limit n - 0 in

D = oo (and presumably also in D = 3). Furthermore,
it is interesting to note that, while it is true that the
mean-field analysis of reference [2] shows that the

tricritical point for D = oo is not on the line K2 = K4
(except in the spin-glass limit n - 0), this line still plays
some part in the phase diagram of the model. Indeed, it
has been shown in reference [24] that an analysis of the
minima of the free energy in the infinite dimensional
n = 2 case leads to a separation between three regions
whose boundaries do intersect on the line K2 = K4. It is

only the stability analysis of these minima which leads
to modify this picture, and to separate the true tricritical
point from the line K2 = K4. As a consequence, three
exists a region of the phase diagram where a relative
and an absolute minimum coexist. The fact that the
tricritical point moves again to the line K2 = K4 in the
limit n - 0 could be in relation with the fact that the

system chooses the relative minimum of the free-

energy, a well-known feature of spin-glasses.

4. Conclusion.

In this paper, we have used some exact results for the

two-dimensional Ashkin-Teller model in order to study
the second replica momentum of a 2D spin-glass. The
calculation of (Z2) along two directions of its phase-
diagram strongly suggests that the behaviour of the
width of the probability distribution of the partition
function (and thus the nature of the correlations

between energy levels) is close to the infinite dimen-
sional case. This delimits the domain of the phase
diagram of the spin-glass where the annealed approxi-
mation is no longer relevant. The different phases of

(Z2) meet at a tricritical point which lies precisely on
Nishimori’s line. Indeed, this line is a line of enhanced
symmetry which appears to play a special part in the
understanding of the phase diagrams both for the finite
replica momenta and for the quenched system.
Moreover, some comparisons between these exact and
the predictions of the « generalized random energy
model » indicate that taking only the pair correlations

between energies into account is a very good approxi-
mation, at leat for certain thermodynamical quantities.
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Appendix

Having defined a modified partition function Z through
equation (15), the quenched free energy is given by :

(Z2) is again related to a symmetric AT model :

where K2 and k4 are given by (denoting t2,4 =

tanh ( K2,4 ) , t = tanh (03B2Jij) :

and with :

The remarkable lines and points of the phase diagram

of (Z2) are given by :
(SD) line :

4-state Potts model line :

tricritical point :

Ising-like points :

to be compared with (6), (7). These formulae are valid
for an arbitrary distribution P (Jij). When this dis-

tribution allows for the existence of Nishimori’s line, its
location in the phase diagram coincides with the 4-state
Potts model line and has the same properties as in

section 2.2 (in particular its intersection with the (SD)
line occurs at the tricritical point (T)).
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