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Random matrix theory and classical statistical mechanics: Vertex models

H. Meyer* and J.-C. Angle`s d’Auriac†

Centre de Recherches sur les Tre`s Basses Tempe´ratures, Boıˆte Postale 166, 38042 Grenoble, France

J.-M. Maillard‡

Laboratoire de Physique The´orique et Hautes Energies, Tour 16, 4 place Jussieu, 75252 Paris Cedex, France
~Received 17 September 1996!

A connection between integrability properties and general statistical properties of the spectra of symmetric
transfer matrices of the asymmetric eight-vertex model is studied using random matrix theory~eigenvalue
spacing distribution and spectral rigidity!. For Yang-Baxter integrable cases, including free-fermion solutions,
we found a Poissonian behavior, whereas level repulsion close to the Wigner distribution is found for nonin-
tegrable models. For the asymmetric eight-vertex model, however, the level repulsion can also disappear, and
the Poisson distribution be recovered on~non Yang-Baxter integrable! algebraic varieties, the so-called disor-
der varieties. We also present an infinite set of algebraic varieties which are stable under the action of an
infinite discrete symmetry group of the parameter space. These varieties are possible loci for free parafermions.
Using our numerical criterion, we tested the generic calculability of the model on these algebraic varieties.
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I. INTRODUCTION

Since the early work of Wigner@1# random matrix theory
~RMT! has been applied with success in many domains
physics@2#. Initially developed to serve for nuclear physic
RMT proves itself to provide an adequate description to a
situation implying chaos. It has been found that the spe
of many quantum systems is very close to one of four arc
typal situations described by four statistical ensembles.
the few integrable models this is the ensemble of diago
random matrices, while for nonintegrable systems this can
the Gaussian orthogonal ensemble~GOE!, the Gaussian uni-
tary ensemble, or the Gaussian symplectic ensemble,
pending on the symmetries of the model under considerat

In the last years several quantum spin Hamiltonians h
been investigated from this point of view. It has been fou
@3,4# that one-dimensional~1D! systems for which the Beth
ansatz applies have a level spacing distribution close
Poissonian ~exponential! distribution, P(s)5exp(2s),
whereas if the Bethe ansatz does not apply, the level spa
distribution is described by the Wigner surmise for the GO

P~s!5
p

2
sexp~2ps2/4!. ~1!

Similar results have been found for 2D quantum spin s
tems@5–7#. Other statistical properties have also been a
lyzed, showing that the description of the spectrum of
quantum spin system by a statistical ensemble is valid
only for the level spacings but also for quantities involvi
more than two eigenvalues.

*Electronic address: hmeyer@thp.uni-duisburg.de
†Electronic address: dauriac@crtbt.polycnrs-gre.fr
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In a recent paper@8#, we proposed the extension of ran
dom matrix theory analysis to models of classical statisti
mechanics~vertex and spin models!, studying the transfer
matrix of the eight-vertex model as an example. The und
lying idea is that, if there actually exists a close relati
between integrability and the Poissonian character of the
tribution, it could be better understood in a framework whi
makes Yang-Baxter integrability and its key structures~com-
mutation of transfer matrices depending on spectral par
eters! crystal clear: one wants to switch from a quantu
Hamiltonian framework to a transfer matrix framework. W
now present the complete results of our study of trans
matrices, and a detailed description of the numerical meth
This work is split into two papers: the first one describes
numerical methods and the results on the eight-vertex mo
the second one treats the case of discrete spin models
the example of the Ising model in two and three dimensio
and the standard Potts model with three states.

We will analyze a possible connection between statist
properties of the entire spectrum of the model’s transfer m
trix and the Yang-Baxter integrability.A priori, such a con-
nection is not sure to exist, since only the few eigenvalu
with the largest modulus have a physical signification, wh
we are looking for properties of the entire spectrum. Ho
ever, our numerical results show a connection which we w
discuss. We will also give an extension of the so-called ‘‘d
order variety’’ to the asymmetric eight-vertex model, whe
the partition function can be summed up without Yan
Baxter integrability. We then present an infinite discre
symmetry group of the model, and an infinite set of algebr
varieties stable under this group. Finally, we test all the
varieties from the point of view of RMT analysis.

This paper is organized as follows: in Sec. II we recall t
machinery of RMT, and we give some details about the
merical methods we use. Section III is devoted to the eig
vertex model. We list the cases where the partition funct
can be summed up, and give some interesting analytica
5380 © 1997 The American Physical Society
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55 5381RANDOM MATRIX THEORY AND CLASSICAL . . .
sults concerning the disorder variety and the automor
group of the asymmetric eight-vertex model. The numeri
results of the analysis of the spectrum of transfer matrices
presented in Sec. IV. Section V concludes with a discuss

II. NUMERICAL METHODS OF RMT

A. Unfolding of the spectrum

In RMT analysis one considers the spectrum of the~quan-
tum! Hamiltonian, or of the transfer matrix, as a collection
numbers, and one looks for some possibly universal stat
cal properties of this collection of numbers. Obviously, t
raw spectrum will not have any universal properties. F
example, Fig. 1 schematically shows three densities of eig
values: for a 2d Hubbard model, for an eight-vertex mode
and for the Gaussian orthogonal ensemble. They have cle
nothing in common. To find universal properties, one has
perform a kind of renormalization of the spectrum, this is t
so-called unfolding operation. This amounts to making
local density of eigenvalues equal to unity everywhere in
spectrum. In other words, one has to subtract the regular
from the integrated density of states, and consider only
fluctuations. This can be achieved by different means; h
ever, there is no rigorous prescription, and the best crite
is the insensitivity of the final result to the method employ
or to the parameters~for ‘‘reasonable’’ variation!.

Throughout this paper, we callEi the raw eigenvalues an
e i the corresponding unfolded eigenvalues. Thus the requ
ment is that the local density of thee i ’s is 1. We need to
compute an averaged integrated density of statesr̄(E) from
the actual integrated density of states,

FIG. 1. Schematic examples for the density of eigenvalues
the 2d Hubbard, GOE random matrices, and transfer matrices of
eight-vertex model.
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r~E!5
1

NE2`

E

(
i

d~e2Ei !de, ~2!

and then we takee i5Nr̄(Ei). To compute r̄(E) from
r(E), we performed a running average: we choose some
integer 2r11 of the order of 9–25, and then replace ea
eigenvalueEi by a local average:

Ei85
1

2r11 (
j5 i2r

i1r

Ej , ~3!

and r̄(E) is approximated by the linear interpolation b
tween the points of coordinates (Ei8 ,i ). We compared the
results with other methods: one can replace eachd peak in
r(E) by a Gaussian with a properly chosen mean squ
deviation. Another method is to discard the low frequen
components in a Fourier transform ofr(E). A detailed ex-
planation and tests of these methods of unfolding are gi
in Ref. @9#. Note also that for very peculiar spectra it
necessary to break these into parts and to unfold each
separately. Also, the extremal eigenvalues are discar
since they induce finite size effects. It comes out that of
three methods, the running average unfolding is the b
suited in the context of transfer matrices, and it is also
fastest.

B. Symmetries

For quantum Hamiltonians, it is well known that it i
necessary to sort the eigenvalues with respect to their q
tum numbers, and to compare only eigenvalues of states
longing to the same quantum numbers. This is due to the
that eigenstates with different symmetries are essentially
correlated. The same holds for transfer matrices. In gener
transfer matrixT of a classical statistical mechanics lattic
model ~vertex model! depends on several parameters~Bolt-
zmann weightswi). Due to the lattice symmetries, or to oth
symmetries~permutation of colors and so on!, there exist
some operatorsS acting on the same space as the trans
matrix and which areindependent of the parameters, com-
muting with T:@T($wi%),S#50. It is then possible to find
subspaces ofT which are also independent of the paramete
Projection on these invariant subspaces amounts to b
diagonalizing,T, and to splitting the unique spectrum ofT
into the many spectra of each block. The construction of
projectors is done with the help of the character table
irreducible representations of the symmetry group. Det
can be found in@9,10#.

As we will discuss in the next sections, we always r
stricted ourselves to symmetric transfer matrices. Con
quently the blocks are also symmetric, and there are o
real eigenvalues. The diagonalization is performed us
standard methods of linear algebra@contained in the linear
algebra package~LAPACK! library#. The construction of the
transfer matrix and the determination of its symmetries
pend on the model, and are detailed in Sec. III B for t
eight-vertex model.
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C. Quantities characterizing the spectrum

Once the spectrum has been obtained and unfolded,
ous statistical properties of the spectrum are investiga
The simplest one is the distributionP(s) of the spacings
s5e i112e i between two consecutive unfolded eigenvalu
This distribution will be compared to an exponential and
the Wigner law~1!. Usually, a simple visual inspection i
sufficient to recognize the presence of level repulsion,
main property for nonintegrable models. However, to qu
tify the ‘‘degree’’ of level repulsion, it is convenient to use
parameterized distribution which interpolates between
Poisson law, the Wigner law. From the many possible dis
butions we have chosen the Brody distribution@2#

Pb~s!5c1s
bexp~2c2s

b11!, ~4a!

with

c25FGS b12

b11D G
11b

andc15~11b!c2 . ~4b!

For b50, this is a simple exponential for the Poisson e
semble, and forb51, one recovers the Wigner surmise f
the GOE. This distribution turns out to be convenient, sin
its indefinite integral can be expressed with elementary fu
tions. It has been widely used in the literature, except w
special distributions were expected, as at the metal insul
transition@11#. Minimizing the quantity

f~b!5E
0

`

„Pb~s!2P~s!…2ds ~5!

yields a value ofb characterizing the degree of level repu
sion of the distributionP(s). We have always foundf(b) to
be small. When20.1,b,0.1, the distribution is close to
Poisson law, while for 0.5,b,1.2 the distribution is close
to the Wigner surmise.

If a distribution is found to be close to the Wigner surmi
~or the Poisson law!, this does not mean that the GOE~or the
diagonal matrices ensemble! correctly describes the spec
trum. Therefore it is of interest to compute functions invo
ing higher order correlations, as, for example, the spec
rigidity @2#

D3~E!5K 1Emina,b
E

a2E/2

a1E/2

„N~e!2ae2b…2deL
a

, ~6!

where^ &a denotes an average over the whole spectrum. T
quantity measures the deviation from equal spacing. Fo
totally rigid spectrum, as that of the harmonic oscillator, o
hasD3

osc(E)5 1
12, for an integrable~Poissonian! system one

has D3
Poi(E)5E/15, and for the Gaussian orthogonal e

semble one has D3
GOE(E)5(1/p2)@ ln(E)20.0687#

1O(E21). It has been found that the spectral rigidity
quantum spin systems followsD3

Poi(E) in the integrable case
and D3

GOE(E) in the nonintegrable case. However, in bo
cases, even thoughP(s) is in good agreement with RMT
deviations from RMT occur forD3(E) at some system
ri-
d.
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dependent pointE* . This stems from the fact that the rigidit
D3(E) probes correlations beyond nearest neighbors, in c
trast toP(s).

III. ASYMMETRIC EIGHT-VERTEX MODEL
ON A SQUARE LATTICE

A. Generalities

We will focus in this section on the asymmetric eigh
vertex model on a square lattice. We use the standard n
tions of Ref.@12#. The eight-vertex condition specifies th
only vertices are allowed which have an even number
arrows pointing to the center of the vertex. Figure 2 sho
the eight vertices with their corresponding Boltzma
weight. The partition function per site depends on these e
homogeneous variables~or equivalently seven independe
values!:

Z~a,a8,b,b8,c,c8,d,d8!. ~7!

It is customary to arrange the eight~homogeneous! Boltz-
mann weights in a 434 R-matrix:

R5S a 0 0 d

0 b c 0

0 c8 b8 0

d8 0 0 a8

D . ~8!

The entryRi j is the Boltzmann weight of the vertex define
by the four digits of the binary representation of the tw
indices i and j . The row index corresponds to the east a
south edges, and the column index corresponds to the
and north edges:

Ri j5Rma
nb 5w~m,aub,n!,

When the Boltzmann weights are unchanged by negating
four edge values, the model is said to besymmetric; other-
wise it is asymmetric. This should not be confused with th
symmetry of the transfer matrix. Let us now discuss a g
eral symmetry property of the model. A combinatorial arg
ment @12# shows that for any lattice without dangling end
the two parametersc and c8 can be taken to be equal, an
that, for most regular lattices~including the periodic square
lattice considered in this work!, d andd8 can also be taken to
be equal~gauge transformation@13#!. Specifically, one has

Z~a,a8,b,b8,c,c8,d,d8!

5Z~a,a8,b,b8,Acc8,Acc8,Add8,Add8!. ~9!

FIG. 2. The Boltzmann weights of the eight vertices.
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55 5383RANDOM MATRIX THEORY AND CLASSICAL . . .
We will therefore always takec5c8 and d5d8 in the nu-
merical calculations. In the following, whenc8 and d8 are
not mentioned, it is implicitly meant thatc85c andd85d.
Let us finally recall that the asymmetric eight-vertex mod
is equivalent to an Ising spin model on a square lattice,
cluding next nearest neighbor interactions on the diago
and four-spin interactions around a plaquette~IRF model!
@12,14#. However, this equivalence is not exact on a fin
lattice, since theL3M plaquettes do not form a basis~to
have a cycle basis, one must take anyL3M21 plaquettes
plus one horizontal and one vertical cycle!.

B. Row-to-row transfer matrix

Our aim is to study the full spectrum of the transfer m
trix. More specifically, we investigate the properties of t
row-to-row transfer matrix which corresponds to building
a periodicL3M rectangular lattice by adding rows of leng
L. The transfer matrixTL is a 2L32L matrix, and the parti-
tion function becomes

Z~a,a8,b,b8,c,d!5Tr@TL~a,a8,b,b8,c,d!#M. ~10!

However, there are many other possibilities to build up
lattice, each corresponding to another form of transfer m
trix: it just has to lead to the same partition function. Oth
widely used examples are diagonal~-to-diagonal! and corner
transfer matrices@12#.

The index of the row-to-row transfer matrix enumera
the 2L possible configurations of one row ofL vertical
bonds. We choose a binary coding

a5 (
i50

L21

a i2
i[ua0 , . . . ,aL21&, ~11!

with a iP$0,1%, 0 corresponding to arrows pointing up or
the right and 1 for the other directions. One entryTa,b thus
describes the contribution to the partition function of tw
neighboring rows having the configurationsa andb:

Ta,b5(
$m%

)
i50

L21

w~m i ,a i ub i ,m i11!. ~12!

With our binary notation, the eight-vertex condition mea
thatw(m i ,a i ub i ,m i11)50 if the summ i1a i1b i1m i11 is
odd. Therefore, sum~12! reduces to exactly two terms: onc
m0 is chosen~two possibilities!, m1 is uniquely defined,
sincea0 andb0 are fixed, and so on. For periodic bounda
conditions, the entryTa,b is zero if the sum of allb i and
a i is odd. This property naturally splits the transfer mat
into two blocks: entries between row configurations with
even number of up arrows and entries between config
tions with an odd number of up arrows.

1. Symmetries of the transfer matrix

Let us now discuss various symmetry properties of
transfer matrix.

~i! When one exchanges the rowsa and b, vertices of
typesa,a8,b, andb8 will remain unchanged, while vertice
of type c and d will exchange into one another. Thus fo
c5d the transfer matrixTL(a,a8,b,b8,c,d) is symmetric. In
l
-
ls

-

e
-
r

s

s

a-

e

general the symmetry of the row-to-row transfer matrix
satisfied forc5d8 andd5c8. In terms of the equivalent IRF
Ising model, conditionc5d means that the two diagona
interactionsJ andJ8 ~confer to Ref.@12#! are the same: the
Ising model is isotropic, and therefore its row-to-row trans
matrix is symmetric too. This coincidence is remarkab
since the equivalence between the asymmetric eight-ve
model and the Ising model is not exact on a finite lattice,
already mentioned.

~ii ! We now consider the effect of permutations of latti
sites preserving the neighboring relations. Denote byS a
translation operator defined by

Sua0 ,a1 , . . . ,aL21&5ua1 , . . . ,aL21 ,a0&. ~13!

Then we have

^aS21uTL~a,a8,b,b8,c,d!uSb&

5^auTL~a,a8,b,b8,c,d!ub&, ~14!

and, therefore,

@TL~a,a8,b,b8,c,d!,S#50. ~15!

For the reflection operatorR defined by

Rua0 ,a1 , . . . ,aL21&5uaL21 , . . . ,a1 ,a0&, ~16!

we have

^aR21uTL~a,a8,b,b8,c,d!uRb&

5^auTL~a,a8,b,b8,d,c!ub&. ~17!

Thus R commutes withT only for the symmetric case
c5d:

@TL~a,a8,b,b8,c,c!,R#50. ~18!

Combination of the translationsS and the reflectionR leads
to the dihedral groupDL . These are all the general lattic
symmetries in the square lattice case. The one-dimensi
nature of the groupDL reflects the dimensionality of the
rows added to the lattice by a multiplication byT. This is
general: the symmetries of the transfer matrices
d-dimensional lattice models are the symmetries
(d21)-dimensional space. The translational invariance
the last space direction has already been exploited with
use of the transfer matrix itself, leading to Eq.~10!.

~iii ! Lastly, we look at symmetries due to operations
the dynamic variables themselves. There is,a priori, no con-
tinuous symmetry in this model, in contrast with the Heise
berg quantum chain which has a continuous SU~2! spin sym-
metry. But one can define an operatorC returning all arrows:

Cua0 ,a1 , . . . ,aL21&5u12a0 ,12a1 , . . . ,12aL21&.
~19!

This leads to an exchange of primed and unprimed Bo
mann weights:

^aC21uTL~a,a8,b,b8,c,d!uCb&

5^auTL~a8,a,b8,b,c,d!ub&, ~20!
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Thus for the symmetric eight-vertex model~Baxter model!
the symmetry operatorC commutes with the transfer matrix

@TL~a,a,b,b,c,d!,C#50. ~21!

2. Projectors

Once the symmetries have been identified, it is simple
construct the projectors of one row of each irreducible r
resentation of the groupDL ~details can be found in@9,10#!.
WhenL is even, there are four representations of dimens
1 andL/221 representations of dimension 2~i.e., in all there
are L/213 projectors!. WhenL is odd, there are two one
dimensional representations and (L21)/2 representations o
dimension 2, in all (L21)/212 projectors. For the symmet
ric model witha5a8 andb5b8, there is an extraZ2 sym-
metry which doubles the number of projectors.

Using the projectors block diagonalizes the transfer m
trix, leaving a collection of small matrices to diagonali
instead of the large one. For example, forL516, the total
row-to-row transfer matrix has the linear size 2L565536,
and the projected blocks have linear sizes between 906
2065 ~see also Tables I and II!.

As already mentioned, the block projection not only sav
computing time for the diagonalization, but is necessary
sort the eigenvalues with respect to the symmetry of the
responding eigenstates. In summary, whenc5d, the row-to-
row transfer matrix is symmetric, leading to a real spectru
Its symmetries have been identified. This is a fortunate s
ation, since restrictionc5d neither prevents nor enforce
Yang-Baxter integrability, as will be explained in Sec. III C

C. Integrability of the eight-vertex model

We now summarize the cases where the partition func
of the eight-vertex model can be analyzed and possibly c
puted. These are the symmetric eight-vertex model,
asymmetric six-vertex model, the free-fermion variety, a
some ‘‘disorder solutions.’’

TABLE I. The dimensionsaR and degeneraciesl R of the invari-
ant subspaces forL514. R is an arbitrary label of the represent
tions of the dihedral group, and exp(ik) andl are the eigenvalues o
the corresponding translation and reflection operators~* means that
the corresponding representation is not stable under the actio
the reflection operator!. The two numbersaR

evenandaR
odd correspond

to the blocks between configurations with an even or odd numbe
up arrows~see text!.

R k l l R aR
even aR

odd

0 0 1 1 362 325
1 p 21 1 288 325
2 0 21 1 234 261
3 p 1 1 288 261
4 2p/7 * 2 594 585
5 4p/7 * 2 594 585
6 6p/7 * 2 594 585
7 p/7 * 2 576 585
8 3p/7 * 2 576 585
9 5p/7 * 2 576 585
o
-

n

-

nd

s
o
r-

.
-

n
-
e
d

1. Symmetric eight-vertex model

First, in the absence of an ‘‘electrical field,’’ i.e., whe
a5a8,b5b8,c5c8, andd5d8, the transfer matrix can be
diagonalized using the Bethe ansatz or the Yang-Ba
equations@12#. This case is called the symmetric eight-vert
model, also called the Baxter model@12#. One finds that two
row-to-row transfer matricesTL(a,b,c,d) andTL(ā,b̄,c̄,d̄)
commute if

D~a,b,c,d!5D~ ā,b̄,c̄,d̄!, ~22a!

G~a,b,c,d!5G~ ā,b̄,c̄,d̄!, ~22b!

with

G~a,b,c,d!5
ab2cd

ab1cd
, ~23a!

D~a,b,c,d!5
a21b22c22d2

2~ab1cd!
. ~23b!

Note that these necessary conditions are valid forany lattice
sizeL. One also obtains thesameconditions for the column-
to-column transfer matrices of this model. Thus the comm
tation relations lead to a foliation of the parameter space
elliptic curves given by the intersection of two quadrics, E
~23!; that is, to an elliptic parametrization~in the so-called
principal regime@12#!

a5rsn~h2n!, ~24a!

b5rsn~h1n!, ~24b!

c5rsn~2h!, ~24c!

d52rksn~2h!sn~h2n!sn~h1n!, ~24d!

wheresn denotes the Jacobian elliptic function, andk their
modulus.

It is also well known that the transfer matri
T(a,b,c,d) commutes with the Hamiltonian of the aniso
tropic Heisenberg chain@15#,

of

of

TABLE II. The parameters of the invariant subspaces as in
preceding table forL516.

R k l l R aR
even aR

odd

0 0 1 1 1162 1088
1 p 21 1 1033 1088
2 0 21 1 906 960
3 p 1 1 1033 960
4 p/2 * 2 2065 2048
5 p/4 * 2 2062 2048
6 3p/4 * 2 2062 2048
7 p/8 * 2 2032 2048
8 7p/8 * 2 2032 2048
9 5p/8 * 2 2032 2048
10 3p/8 * 2 2032 2048
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H52(
i
Jxs i

xs i11
x 1Jys i

ys i11
y 1Jzs i

zs i11
z , ~25!

if

1:G~a,b,c,d!:D~a,b,c,d!5Jx :Jy :Jz . ~26!

This means that, given the three coupling constantsJx ,Jy ,
and Jz of a Heisenberg Hamiltonian, there exist infinite
many quadruplets (a,b,c,d) of parameters, such that

@T~a,b,c,d!,H~Jx ,Jy ,Jz!#50. ~27!

Indeed, the three constantsJx ,Jy , andJz uniquely determine
h andk in the elliptic parametrization~24!, and the spectra
parametern can take any value, thus defining a continuo
one-parameter family. Not onlyT andH commute for arbi-
trary values of the parametern, butH is also related to the
logarithmic derivative ofT at n5h. In this work, we exam-
ine only regions with the extra conditionc5d to ensure that
T is symmetric, and thus that the spectrum is symmet
Using the symmetries of the eight-vertex model, one fin
that the model (a,b,c,d), with c5d mapped into its princi-
pal regime, gives a model (ā,b̄,c̄,d̄) with ā5b̄. In terms of
the elliptic parametrization, this meanssn(h2n)
5sn(h1n) or n50.

In summary, in the continuous one-parameter family
commuting transfer matricesT(n) corresponding to a given
value ofD andG, there are two special values of the spect
parametern: n5h is related to the Heisenberg Hamiltonia
H(1,G,D), and forn50 the transfer matrixT(n) is symmet-
ric ~up to a gauge transformation!.

2. Six-vertex model

The six-vertex model is a special case of the eight-ver
model: one disallows the last two vertex configurations
Fig. 2, this meansd5d850. Both the symmetric and asym
metric six-vertex models have been analyzed using the B
ansatz or also the Yang-Baxter equations@12,16,17#. We did
not examine this situation any further, since conditionc5d
having a real spectrum@see Sec. III B1~i!# leads to a trivial
case.

3. Free-fermion condition

Another case where the asymmetric eight-vertex mo
can be solved is the case where the Boltzmann weights ve
the so-calledfree-fermioncondition

aa81bb85cc81dd8. ~28!

For condition~28!, the model reduces to a quantum proble
of free fermions, and the partition function can thus be co
puted@18,19#.

The free-fermion asymmetric eight-vertex model is Yan
Baxter integrable; however, the parametrization of the Ya
Baxter equations is more involved compared to the situa
described in Sec. IIIC1: the row-to-row and column-t
column commutations correspond to two different foliatio
of the parameter space in algebraic surfaces.

It is also known that the asymmetric eight-vertex fre
fermion model can be mapped onto a checkerboard Is
s

.
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model. In Appendix A we give the correspondence betwe
the vertex model and the spin model. The partition funct
per site of the model can be expressed in term of ellip
functions E which are not~due to the complexity of the
parametrization of the Yang-Baxter equations! straightfor-
wardly related to the two sets of surfaces parametrizing
Yang-Baxter equations or even to the canonical elliptic
rameterization of the generic~non free-fermion! asymmetric
eight-vertex model@see Eqs.~35! in the following; see also
@25##. The elliptic modulus of these elliptic functionsE is
given in Appendix A as a function of the checkerboard Isi
variables, as well as in the homogeneous Boltzmann weig
(a, a8, b, b8, c, c8, d, andd8) for the free-fermion asym-
metric eight-vertex model.

Finally, we remark that the restrictionc5d is compatible
with condition~28! and, in contrast with the asymmetric six
vertex model, the asymmetric free-fermion model provide
case where the row-to-row transfer matrix of the model
symmetric.

4. Disorder solutions

If the parametersa, a8, b, b8, c, andd are chosen such
that theR matrix ~8! has an eigenvector which is a pu
tensorial product,

RS 1pD ^ S 1qD 5lS 1pD ^ S 1qD , ~29!

then the vector

S 1pD ^ S 1qD ^ •••^ S 1pD ^ S 1qD ~30!

(2L factors! is an eigenvector of the diagonal~-to-diagonal!
transfer matrixT̃L , usually simply called the diagonal trans
fer matrix. The corresponding eigenvalue isL5l2L, with

l5
aa82bb81cc82dd8

~a1a8!2~b1b8!
. ~31!

However, the eigenvalueL may, or may not, be the eigen
value of largest modulus. This corresponds to the existe
of so-called disorder solutions@20#, for which some dimen-
sional reduction of the model occurs@21#. Condition~29! is
simple to express; it reads

A21B21C21D212AB22AD22BC22CD

5~A1B2C2D !~a1b!~a81b8!2~A2D !~b21b82!

2~B2C!~a21a82!, ~32!

whereA5aa8, B5bb8, C5cc8, andD5dd8. Note that in
the symmetric casea5a8, b5b8, c5c8, and d5d8, Eq.
~32! factorizes as

~a2b1d2c!~a2b1d1c!~a2b2d2c!~a2b2d1c!

50, ~33!

which is the product of terms giving two disorder varieti
and two critical varieties of the Baxter model. It is know
that the symmetric model has four disorder varieties~one of
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them,a1b1c1d50, is not in the physical domain of th
parameter space! and four critical varieties@12#. The missing
varieties can be obtained by replacingR by R2 in Eq. ~29!.
In our numerical calculations we have always found for
asymmetric eight-vertex model thatL is either the eigen-
value of largest modulus or the eigenvalue of lowest mo
lus. Finally, note that condition~32! doesnot correspond to a
solution of the Yang-Baxter equations. This can be und
stood, since disorder conditions like~32! are not invariant
under the action of the infinite discrete symmetry groupG
presented in Sec. III D, whereas the solutions of the Ya
Baxter equations are actually invariant under the action
this group@22,23#.

On the other hand, similarly to the Yang-Baxter equ
tions, the ‘‘disorder solutions’’ can be seen to correspond
families of commuting diagonal transfer matricesT̃L on a
subspaceV of the 22L-dimensional space on whichT̃L acts,

@ T̃L~a,a8,b,b8,c,d!,T̃L~ ā,ā8,b̄,b̄8,c̄,d̄!#uV50, ~34!

where subscriptV means that the commutation is only val
on the subspaceV. Actually, this subspace is the one
dimensional subspace corresponding to vector~30!. The no-
tion of transfer matrices commuting only on a subspaceV
can clearly have precious consequences on the calculatio
the eigenvectors and eigenvalues, and hopefully of the p
tion function per site. One sees that the Yang-Baxter integ
bility and the disorder solution ‘‘calculability’’ are two lim-
iting cases whereV respectively corresponds to the enti
space whereT̃L acts and to a single vector, namely, Eq.~30!.

D. Some exact results on the asymmetric eight-vertex model

When the Boltzmann weights of the model do not ver
any of the conditions of Sec. III C, the partition function
the model has not yet been calculated. However, some
lytical results can be stated. Algebraic varieties of the para
eter space can be presented, which have very special
metry properties. The intersection of these algebraic varie
with critical manifolds of the model are candidates for m
ticritical points @24#. We have tested the properties of th
spectrum of the transfer matrices on these loci of the ph
space.

There actually exists an infinite discrete group of symm
tries of the parameter space of the asymmetric eight-ve
model~and, beyond, of the 16-vertex model@25#!. The criti-
cal manifolds of the model have to be compatible with t
group of symmetries, and this is also true for any exact pr
erty of the model: for instance, if the model is Yang-Bax
integrable, the Yang-Baxta equations~YBE! are compatible
with this infinite symmetry group@22#. However, it is crucial
to recall that this symmetry group is not restricted to t
Yang-Baxter integrability. It is a symmetry group of th
model beyondthe integrable framework, and provides, f
instance, a canonical elliptic foliation of the parameter sp
of the model~see the concept of quasi-integrability@25#!.
The group is generated by simple transformations of the
mogeneous parameters of the model: the matrix invers
and some representative geometrical symmetries, as, fo
ample, the geometrical symmetry of the square lattice, wh
amounts to a simple exchange ofc andd:
e
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t1S a 0 0 d

0 b c 0

0 c b8 0

d 0 0 a8

D 5S a 0 0 c

0 b d 0

0 d b8 0

c 0 0 a8

D .
Combining I and t1 yields an infinite discrete groupG of
symmetries of the parameter space@23#. This group is iso-
morphic to the infinite dihedral group~up to a semidirect
product withZ2). An infinite-order generator of the non
trivial part of this group is for instancet1I . In the parameter
space of the model this generator yields an infinite set
points located on elliptic curves. The analysis of the orbits
the groupG for the asymmetric eight-vertex model yields~a
finite set of! elliptic curves given by

~aa81bb82cc82dd8!2

aa8bb8
5const,

aa8bb8

cc8dd8
5const

~35!

and

a

a8
5const,

b

b8
5const,

c

c8
5const,

d

d8
5const.

In the limit of the symmetric eight-vertex model one reco
ers the well-known elliptic curves~23! of the Baxter model
given by the intersection of two quadrics. Recalling para
etrization~24!, one sees thatt1I , the infinite-order generato
of G, is actually represented as a shift byh of the spectral
parameter:n→n1h.

The groupG is generically infinite; however, if some con
ditions on the parameters hold, it degenerates into a fi
group. These conditions define algebraic varieties for wh
the model has a high degree of symmetry. The location
multicritical points seems to correspond to enhanced sym
tries, namely, to the algebraic varieties where the symm
groupG degenerates into a finite group@24#. Such conditions
of commensuration of the shifth with one of the two periods
of the elliptic functions occurred many times in the literatu
of theoretical physics~Tutte-Behara numbers, rational value
of the central charge and of critical exponents@26#!. Further-
more, from the conformal field theory literature, one c
have a prejudice toward free-fermion parastatistics on th
algebraic varieties of enhanced symmetry@27#. It is thus
natural to concentrate on these. We have therefore de
mined aninfinite number of these algebraic varieties, whic
are remarkablycodimension-1varieties of the paramete
space. Their explicit expressions quickly become very la
in terms of the homogeneous parameters of the asymm
eight-vertex model; however, their expressions are rema
ably simple in terms of some algebraic invariants genera
ing those of the Baxter model, namely,

Jx5Aaa8bb81Acc8dd8, ~36a!

Jy5Aaa8bb82Acc8dd8, ~36b!

Jz5
aa81bb82cc82dd8

2
. ~36c!
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55 5387RANDOM MATRIX THEORY AND CLASSICAL . . .
Note that, in the symmetric subcase, one recovers Eqs.~26!.
In terms of these well-suited homogeneous variables, i
possible to extend the ‘‘shift doubling’’ (h→2h) and ‘‘shift
tripling’’ ( h→3h) transformations of the Baxter model t
the asymmetric eight-vertex model. For the shift doubli
transformation, one obtains

Jx85Jz
2Jy

22Jx
2Jy

22Jz
2Jx

2 , ~37a!

Jy85Jz
2Jx

22Jx
2Jy

22Jz
2Jy

2 , ~37b!

Jz85Jx
2Jy

22Jz
2Jx

22Jz
2Jy

2 , ~37c!

and for the shift tripling transformation,

Jx95~22Jz
2Jy

2Jx
423Jy

4Jz
412Jy

2Jz
4Jx

21Jy
4Jx

412Jy
4Jz

2Jx
2

1Jz
4Jx

4!Jx , ~38a!

Jy95~2Jz
2Jy

2Jx
423Jz

4Jx
41Jy

4Jx
422Jy

4Jz
2Jx

21Jy
4Jz

4

12Jy
2Jz

4Jx
2!Jy , ~38b!

Jz95~Jy
4Jz

412Jy
4Jz

2Jx
223Jy

4Jx
422Jy

2Jz
4Jx

212Jz
2Jy

2Jx
4

1Jz
4Jx

4!Jz . ~38c!

The simplest codimension-1 finite order varieties a
Jx50, Jy50, or Jz50. One remarks thatJz50 is nothing
but the free-fermion condition~28!, which is thus a condition
for G to be finite. Another simple example is

JyJz2JxJy2JxJz50, ~39!

and the relations obtained by all permutations ofx, y, and
z. Using the two polynomial transformations~37! and ~38!,
one can easily obtain aninfinite numberof codimension-1
algebraic varieties of finite order. The demonstration that
codimension-1 algebraic varieties built in such a way
actually finite-order conditions ofG will be given elsewhere.
Some low-order varieties are given in Appendix B. In S
IV, the lower-order varieties are tested from the view po
of statistical properties of the transfer matrix spectrum.

IV. RESULTS OF THE RMT ANALYSIS

A. General remarks

The phase space of the asymmetric eight-vertex mo
with the constraintc5d ~ensuring symmetric transfer matr
ces and thus real spectra! is a four-dimensional space~five
homogeneous parametersa, a8, b, b8, and c). Many par-
ticular algebraic varieties of this four-dimensional spa
have been presented in Sec. III, and will now be analy
from the random matrix theory point of view. We wi
present the full distribution of eigenvalue spacings and
spectral rigidity at some representative points. Then we
analyze the behavior of the eigenvalue spacing distribu
along different paths in the four-dimensional parame
space. These paths will be defined, keeping some Boltzm
weights constant and parameterizing the others by a si
parametert.

We have generated transfer matrices for various lin
sizes, up toL516 vertices, leading to transfer matrices
is
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size up to 65536365536. Tables I and II give the dimension
of the different invariant subspaces forL514 and 16. Note
that the size of the blocks to diagonalize increases expon
tially with the linear sizeL. The behavior in the various
subspaces is not significantly different. Nevertheless the
tistics is better for larger blocks, since the influence of t
boundary of the spectrum and finite size effects are sma
To obtain better statistics, we also averaged the result
several blocks for the same linear sizeL.

B. Near the symmetric eight-vertex model

Figure 3 presents the probability distribution of the eige
value spacings for three different sets of Boltzmann weig
which are listed in Table III. Figure 3~a! corresponds to a
point of a symmetric eight-vertex model, while Figs. 3~b!
and 3~c! are results for the asymmetric eight-vertex mod
The data points result from about 4400 eigenvalue spac
coming from the ten even subspaces forL514 which are
listed in Table I. For the symmetric model~a!, using the
symmetry under reversal of all arrows, these blocks can o
more be split into two sub-blocks of equal size. The brok
lines show the exponential and the Wigner distribution as
exact results for the diagonal random matrix ensemble~i.e.,
independent eigenvalues! and the 232 GOE matrices. In
Fig. 3~a! the data points fit very well an exponential, where
in Figs. 3~b! and 3~c! they are close to the Wigner surmis
In the latter cases we have also added the best fitting Br
distribution with the parameterb listed in Table III. The
agreement with the Wigner distribution is better for case~c!,
where the asymmetry expressed by the ratioa/a8 is larger.

We also have calculated the spectral rigidity to test h
accurate is the description of spectra of transfer matrice
terms of spectra of mathematical random matrix ensemb
In Fig. 4 we present the spectral rigidityD3(E) for the same
points in parameter space corresponding to integrability
to nonintegrability as in Fig. 3. The two limiting cases co
responding to the Poissonian distributed eigenvalues~solid
line! and to GOE distributed eigenvalues~dashed line! are
also shown. For the integrable point the agreement betw
the numerical data and the expected rigidity is very go
For the nonintegrable case the departure of the rigidity fr
the expected behavior appears atE'2 in case~b! and at
E'6 in case~c! ~in units of eigenvalue spacings!, indicating
that the RMT analysis is only valid on short scales. Su
behavior has already been seen in quantum spin sys
@5,7#. We stress that the numerical results concerning
rigidity depend much more on the unfolding than the resu
concerning the spacing distribution.

Summarizing the results for the eigenvalue spacing dis
bution and the rigidity, we found very good agreement w
the Poissonian ensemble for the symmetric eight-ver
model~a!, good agreement with the GOE for the asymmet
model~c!, and some intermediate behavior for the asymm
ric eight-vertex model~b!. The difference between the be
havior for cases~b! and ~c! can be explained by the large
asymmetry in case~c!: case~b! is closer to the integrable
symmetric eight-vertex model.

To study the proximity to the integrable model, we dete
mined the ‘‘degree’’ of level repulsionb by fitting the Brody
distribution to the statistics along a pa
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5388 55MEYER, ANGLÈS d’AURIAC, AND MAILLARD
(a5t, a854/t, b5b854/5, andc5A5/8) joining cases~a!
and~c! for different lattice sizes. The result is shown in Fi
5; the details about the number of blocks and eigenva
spacings used in the distributions are listed in Table IV.
finite size effect is seen: we always findb'0 for the sym-

FIG. 3. The distributionP(s) of eigenvalue spacings for the
three sets of Boltzmann weights enumerated in Table III. The c
tinuous lines give the exponential for a Poissonian spectrum and
Wigner distribution~1! for the GOE, the broken lines in figures~b!
and ~c! are the fitted Brody distribution with theb given in Table
III.
e

metric model ata/a851, and increasing the system siz
leads to a better coincidence with the Wigner distributi
(b51) for the nonintegrable asymmetric modelaÞa8. So
in the limit L→` we claim to find ad peak at the symmetric
pointa5a852. We also found that the size effects are rea
controlled by the lengthL and not by the size of the block
However, our finite size analysis is only qualitative. There
an uncertainty onb of about60.1. There are two possibl
sources for this uncertainty. The first one is a simple sta
tical effect, and could be reduced by increasing the num
of spacings. The second one is a more inherent problem
to the empirical parameters in the unfolding procedure. T
source of errors cannot be suppressed increasing the sizL.
For a quantitative analysis of the finite size effects it wou
be necessary to have a high accuracy ofb and to varyL over
a large scale, which is not possible because of the expo
tial growth of the block sizes withL.

To test a possible extension of the critical varie
a5b1c1d outside the symmetric regiona5a8, b5b8, we
performed similar calculations along the pa
(a5t, a854/t, b5b85 4

5, andc5 3
5! crossing the symmet

ric integrable variety at a critical pointt52. The results are
the same: we did not find any kind of Poissonian behav
when tÞ2. We tested one single path and not the wh
neighborhood around the Baxter critical variety. This wou
be necessary if one really wanted to test a possible rela
between Poissonian behavior and criticity instead of integ
bility ~both properties often being related!. The possible re-
lation between Poissonian behavior and criticity will be d
cussed for spin models in the second paper. We concl
from all these calculations, that the analysis of the proper
of the unfolded spectrum of transfer matrices provides
efficient way to detect integrable models, as already kno
for the energy spectrum of quantum systems@3–6#.

C. Case of Poissonian behavior for the asymmetric
eight-vertex model

We now investigate the phase space far from the Ba
model. We define paths in the asymmetric region wh
cross the varieties introduced above but which do not cr
the Baxter model. These paths and their intersection with
different varieties are summarized in Table V. Figure 6 c
responds to path~a! (a5 4

5, a85 5
4, b5b85t, andc51.3).

This defines a path which crosses the free-fermion variet
the solution of Eq.~28!: t5t ff5A2.38; and the disorder va
riety at the two solutions of Eq.~29!: t5tdi

max'1.044 and at
t5tdi

min'1.0056~the subscript ‘‘di’’ stands for disorder!. See
Table V for the intersections with the other varieties. W
have numerically found that, at the pointt5tdi

max, eigenvalue
~31! is the one of largest modulus, whereas att5tdi

min it is the

TABLE III. The Boltzmann weights for the three cases of Fig
3 and 4. The last column indicates the parameterb of the Brody
distribution shown in Fig. 3.

Case a a8 b5b8 c5d b

~a! 2 2 0.8 A5/8'0.790569 0.02
~b! 1.8 2.2222 0.8 A5/8'0.790569 0.64
~c! 1.6 2.5 0.8 A5/8'0.790569 0.85

n-
he
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55 5389RANDOM MATRIX THEORY AND CLASSICAL . . .
eigenvalue of smallest modulus~this is the superscript min o
max!. The results shown are obtained using the represe
tion R50 for L516 ~see Table II!. After unfolding and dis-
carding boundary states we are left with a distribution
about 1100 eigenvalue spacings. One clearly sees that,
of the time,b is of order 1, signaling that the spacing distr
bution is very close to the Wigner distribution, except f
t5t ff'1.54 and fort close to the disorder solutions, wher

FIG. 4. The spectral rigidityD3(E) for the three sets of Boltz-
mann weights enumerated in Table III. The lines give the limiti
case for a Poissonian spectrum and for the GOE.
ta-

f
ost

b is close to zero. This is not surprising fort5t ff since the
model is Yang-Baxter integrable at this point. The val
b(t ff) is slightly negative: this is related to a ‘‘level attrac
tion’’ already noted in@8#. The downward peak is very shar
and a good approximation of ad peak that we expect for an
infinite size. At t5tdi

min and t5tdi
max the model isnot Yang-

Baxter integrable. We cannot numerically resolve betwe
these two points. Therefore, we now study paths where th
two disorder solutions are clearly distinct. For Fig. 8 they a
both below the free-fermion point, while for Fig. 7 the fre
fermion point is between the two disorder solution points

In both Figs. 7 and 8, we show the results for two pa
which differ only by an exchange of the two weigh
a↔a8. In Fig. 7 one clearly sees a peak tob slightly nega-
tive at the free-fermion point att50.8, and another one a
one disorder solution pointt5tdi

max'1.46 for both curves but
no peak at the second disorder solution pointt5tdi

min'0.55.
It is remarkable that only pointt5tdi

max yields the eigenvalue
of largest modulus for the diagonal~-to-diagonal! transfer
matrix. Consequently, one has the partition function per
of the model at this point. At pointt5tdi

min , where the parti-
tion function is not known, we find level repulsion. How
ever, only for path~c! is the degree of level repulsionb close
to unity, while for path~b! it saturates at a much smalle
value. Another difference between cases~b! and ~c! is a
minimum in the curve ofb(t) for path~c! at t'1.8 which is

TABLE IV. Numbers of representations and their dimensio
used for the distributions leading to Fig. 5.

L Dimensionaj of the blocks No.~spacings!

12 122, 176, 174, 166, 165,165 870
13 190, 315, 315, 315 1000
14 362, 596, 596, 576 2000
15 612, 1092, 1094 2600
16 1162, 1088, 2065 4000

FIG. 5. The degree of level repulsionb obtained by a fit of the
eigenvalue spacing distributionP(s) to the Brody distribution for
lattice sizesL512, . . . ,16. TheBoltzmann weights vary along the
path (a5t, a854/t, b5b854/5, c5d5A5/8) which gives a sym-
metric model fort52. The number of spacings used for each size
given in Table IV.
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5390 55MEYER, ANGLÈS d’AURIAC, AND MAILLARD
not seen for path~b!. We do not yet have a theoretical e
planation for these phenomena: these points are not loc
on any of the varieties presented in this paper. We stress
an explanation cannot be found straightforwardly in t
framework of the symmetry groupG presented here, sinc
a anda8 appear only with the productaa8. It also cannot be
found in the Yang-Baxter framework, sincea anda8 are on
the same footing in the Yang-Baxter equations.

In Fig. 8 the curves ofb for the two paths~d! and ~e!
again coincide very well at the free-fermion point
t5t ff'1.61. But the behavior is very different fort,1,
where the solutions of the disorder variety are located.
path ~d! neither of the two disorder points is seen on t
curveb(t), which is almost stationary near a value arou
0.6. This means that some eigenvalue repulsion occurs
the entire distribution is not very close to the Wigner s
mise. Conversely, for path~e! the spacing distribution is very
close to a Poissonian distribution@b(t)'0# when t is be-
tween the two disorder points. This suggests that the statu
eigenvalue spectrum on the disorder variety of the asymm
ric eight-vertex model is not simple: a more systematic stu
would help to clarify the situation.

TABLE V. The parametrization of the paths~a!–~e! and their
intersection points with the different algebraic varieties~see text!.

~a! ~b! ~c! ~d! ~e!

a 0.8 0.4 2 1.2 0.8
a8 1.25 2 0.4 0.8 1.2
b t t t t t
b8 t 1.5 1.5 1.5 1.5
c5d 1.3 1 1 1.3 1.3

t ff 1.5427 0.8 0.8 1.6133 1.6133
tdi
min 1.0057 0.5520 0.5520 0.6156 0.6156
tdi
max 1.0443 1.4608 1.4608 0.2424 0.2424
t fo
6 1.3 0.6667 0.6667 1.1267 1.1267
t fo
6 1.5991 0.8141 0.8141 1.7474 1.7474
t fo
8 1.6000 0.8141 0.8141 1.7001 1.7001
t fo
16 0.5237 0.5237 0.6337 0.6337

FIG. 6. The degree of level repulsionb for path ~a! ~see Table
V! (L516 and 1000 spacings!.
ted
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We now summarize the results from Figs. 6–8: genera
the statistical properties of the transfer matrix spectra of
asymmetric eight-vertex model are close to those of the G
except for some algebraic varieties. We always have a v
sharp peak withb→0 at the free-fermion point, often
b'20.2. All other points withb→0 are found to be a
solution of the disorder variety~32! of the asymmetric eight-
vertex model.

D. Special algebraic varieties

To conclude this section, we discuss the special algeb
varieties of the symmetry groupG. As explained in Sec.
IIID, it is possible to construct an infinite number of alg
braic varieties where the generator is of finite ordern:
(t1I )

n5Id, and thusG is finite order. As an example, th
solutions forn56 and 16 are given in Appendix B. We hav
actually calculated a third variety, the expression of which
too long to be given (n58). In Table V we give the values
of the parametert for which each path crosses each varie
t fo
6 , t fo

8 , andt fo
16 ~the subscript ‘‘fo’’ stands for finite order

and the superscript is the orderf ). It is easy to verify on the
different curves that no tendency to Poissonian behavior

FIG. 7. The degree of level repulsionb for paths~b! and~c! ~see
Table V! @L516 and 1000 spacings for~b! and 3000 for~c!#.

FIG. 8. The degree of level repulsionb for paths~d! and~e! ~see
Table V! (L514 and about 2000 spacings!.
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curs at these points. We therefore give a negative answe
the question of a special status ofgenericpoints of the alge-
braic finite-order varieties with respect to the statistical pr
erties of the transfer matrix spectra. However, one can
imagine that subvarieties of these finite-order varieties co
have Poissonian behavior and be candidates for free par
mions or multicritical points.

V. CONCLUSION AND DISCUSSION

We have found that the entire spectrum of the symme
row-to-row transfer matrices of the eight-vertex model
lattice statistical mechanics is sensitive to the Yang-Bax
integrability of the model. The GOE provides a satisfacto
description of the spectrum of non-Yang-Baxter integra
models: the eigenvalue spacing distribution and the spe
rigidity up to an energy scale of several spacings are
agreement with the Wigner surmise and the rigidity of t
GOE matrix spectra. This accounts for ‘‘eigenvalue rep
sion.’’ In contrast, for Yang-Baxter integrable models, t
unfolded spectrum has many features of a set of indepen
numbers: the spacing distribution is Poissonian and the ri
ity is linear over a large energy scale. This accounts
‘‘eigenvalue independence.’’ However, we have also give
non-Yang-Baxter integrable disorder solution of the asy
metric eight-vertex model. For some parts of it the spectr
is clearly Poissonian, too. This suggests that the Wigne
nature of the spectrum is not completely controlled by
Yang-Baxter integrability alone, but possibly by a more ge
eral notion of ‘‘calculability,’’ possibly based on the exis
tence of a family of transfer matrices commuting on the sa
subspace. We have also found some ‘‘eigenvalue attracti
for some Yang-Baxter integrable models, namely, for m
points of the free-fermion variety. These results could b
surprise, since we do nota priori expect properties involving
all the 2L eigenvalues when only the few eigenvalues
larger modulus have a physical significance. However,
eigenvalues of small modulus control the finite size effec
and it is well known that, for example, the critical behavi
~critical exponents! can be deduced from the finite size e
fects. The nature of the eigenvalue spacing distribution be
an effective criterion, we have also used it to test unsucc
fully various special manifolds including the vicinity of th
critical variety of the Baxter model. In a forthcoming pub
cation we will present a similar study of a spin model~rather
than vertex models!. In particular, it is interesting to analyz
the spectrum on a critical, but not Yang-Baxter integrab
algebraic variety of codimension 1, as it can be found in
q53 Potts model on a triangular lattice with three-spin
teractions@28#. However, this leads to models, the trans
matrix of which cannot be made symmetric. This will requ
to
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a particular study of complex spectra which is much mo
complicated. In particular the eigenvalue repulsion becom
two dimensional, and to investigate the eigenvalue spac
distribution one has to analyze the distances between ei
values in two dimensions.
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APPENDIX A

Hereafter we give the correspondence between the as
metric eight-vertex model on the free-fermion variety a
the checkerboard Ising model. The vertex model is speci
by eight homogeneous parameters. The gauge invariance~9!,
together with the free-fermion condition~28!, leads to only
four independent parameters. The checkerboard mode
specified by the four independent usual low-temperat
variablesxi5e2Ki:

a5
1

2S x,x2x3x41 1

x1x2x3x4
D , a85

1

2S x1x3x2x4
1
x2x4
x1x3

D ,
~A1!

b5
1

2S x1x4x2x3
1
x2x3
x1x4

D , b85
1

2S x1x2x4x3
1
x4x3
x1x2

D , ~A2!

c5
1

2S x1x2x3x4
1

x4
x1x2x3

D , c85
1

2S x1x4x3x2
1

x2
x1x4x3

D ,
~A3!

d5
1

2S x4x3x2x1
1

x1
x4x3x2

D , d85
1

2S x1x4x2x3
1

x3
x1x4x2

D .
~A4!

The moduluskcheck of the checkerboard Ising model, o
equivalently, of the asymmetric eight-vertex model, reads

kcheck
2 5

kN
kD

, ~A5!

with

kN516~x3
2x2

2x1
21x4

2!3 circular permutations,

kD5~x1
2x2

2x3
2x4

22x1
2x2

22x1
2x3

21x1
2x4

21x3
2x4

21x4
2x2

22x3
2x2

2

21!3 ~circular permutations!,

or, equivalently,
kfree
2 5

16c8d8cd

16c8d8cd28a8bab822a82b222a2b8222a2b222b82a821~a22a82!21~b22b82!2
. ~A6!
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APPENDIX B

In this appendix we give some algebraic varieties wh
the group G becomesfinite. Two varieties of order 6
@(t1I )

65Id#,

a65
cd36c2d21dc32cdbb8

a8dc6a8bb8
~B1!

and a variety of order 16@(t1I )
165Id#,

~u22v2!~u2v !1uv~u21v2!50, ~B2!
-

ys

:

ce

e

cs

-

e

with

u5
cc8dd8~aa81bb82c22d2!2

~aa8bb2cc8dd8!2
215S JxJz2JyJz

JxJy
D 221,

~B3!

v5
aa8bb8~aa81bb82c22d2!2

~aa8bb2cc8dd8!2
215S JxJz1JyJz

JxJy
D 221.

~B4!
er
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