PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Random matrix theory and classical statistical mechanics: Vertex models
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A connection between integrability properties and general statistical properties of the spectra of symmetric
transfer matrices of the asymmetric eight-vertex model is studied using random matrix th@mvalue
spacing distribution and spectral rigidityror Yang-Baxter integrable cases, including free-fermion solutions,
we found a Poissonian behavior, whereas level repulsion close to the Wigner distribution is found for nonin-
tegrable models. For the asymmetric eight-vertex model, however, the level repulsion can also disappear, and
the Poisson distribution be recovered @on Yang-Baxter integrablalgebraic varieties, the so-called disor-
der varieties. We also present an infinite set of algebraic varieties which are stable under the action of an
infinite discrete symmetry group of the parameter space. These varieties are possible loci for free parafermions.
Using our numerical criterion, we tested the generic calculability of the model on these algebraic varieties.
[S1063-651X97)14305-1

PACS numbsdss): 05.50+(q, 05.20-y, 05.45:+b

I. INTRODUCTION In a recent papel8], we proposed the extension of ran-
dom matrix theory analysis to models of classical statistical
Since the early work of Wigndr] random matrix theory mechanics(vertex and spin modelsstudying the transfer
(RMT) has been applied with success in many domains ofnatrix of the eight-vertex model as an example. The under-
physics[2]. Initially developed to serve for nuclear physics, lying idea is that, if there actually exists a close relation
RMT proves itself to provide an adequate description to anjhetween integrability and the Poissonian character of the dis-
situation implying chaos. It has been found that the spectrgipution, it could be better understood in a framework which
of many quantum systems is very close to one of four archemakes Yang-Baxter integrability and its key structufesm-
typal situations described by four statistical ensembles. F%utation of transfer matrices depending on Spectra| param-
the few integrable models this is the ensemble of diagonagtery crystal clear: one wants to switch from a quantum
random matrices, while for nonintegrable systems this can bgjamiltonian framework to a transfer matrix framework. We
the Gaussian orthogonal ensemtBOE), the Gaussian uni- now present the complete results of our study of transfer
tary ensemble, or the Gaussian symplectic ensemble, denatrices, and a detailed description of the numerical method.
pending on the symmetries of the model under considerationphis work is split into two papers: the first one describes the
In the last years several quantum spin Hamiltonians hav@umerical methods and the results on the eight-vertex model,
been investigated from this point of view. It has been foundihe second one treats the case of discrete spin models with
[3,4] that one-dimensiondllD) systems for which the Bethe the example of the Ising model in two and three dimensions
ansatz applies have a level spacing distribution close to gnd the standard Potts model with three states.
Poissonian (exponential distribution, P(s)=exp(-9), We will analyze a possible connection between statistical
whereas if the Bethe ansatz does not apply, the level spacingtoperties of the entire spectrum of the model’s transfer ma-
distribution is described by the Wigner surmise for the GOEtnX and the Yang_Baxter |ntegrab|||t)A‘ priori, such a con-
nection is not sure to exist, since only the few eigenvalues
- with the largest modulus have a physical signification, while
P(s)= 5 Sexp(— ws?l4). (1)  we are looking for properties of the entire spectrum. How-
ever, our numerical results show a connection which we will
discuss. We will also give an extension of the so-called “dis-
Similar results have been found for 2D quantum spin syserder variety” to the asymmetric eight-vertex model, where
tems[5—7]. Other statistical properties have also been anathe partition function can be summed up without Yang-
lyzed, showing that the description of the spectrum of theBaxter integrability. We then present an infinite discrete
gquantum spin system by a statistical ensemble is valid nasymmetry group of the model, and an infinite set of algebraic
only for the level spacings but also for quantities involving varieties stable under this group. Finally, we test all these
more than two eigenvalues. varieties from the point of view of RMT analysis.
This paper is organized as follows: in Sec. Il we recall the
machinery of RMT, and we give some details about the nu-

*Electronic address: hmeyer@thp.uni-duisburg.de merical methods we use. Section lll is devoted to the eight-
"Electronic address: dauriac@crtbt.polycnrs-gre.fr vertex model. We list the cases where the partition function
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and p(E) is approximated by the linear interpolation be-
tween the points of coordinate€{(,i). We compared the
results with other methods: one can replace eégieak in
Eight-Vertex p(E) by a Gaussian with a properly chosen mean square
deviation. Another method is to discard the low frequency
components in a Fourier transform p{E). A detailed ex-
planation and tests of these methods of unfolding are given
) in Ref. [9]. Note also that for very peculiar spectra it is
Eigenvalues necessary to break these into parts and to unfold each part

FIG. 1. Schematic examples for the density of eigenvalues forseparately. Also, the extremal eigenvalues are discarded,
the 2d Hubbard, GOE random matrices, and transfer matrices of th since they induce finite size effects. It comes out that of the

eight-vertex model. ?hr_ee r_nethods, the running average unfolding i_s the best
suited in the context of transfer matrices, and it is also the

fastest.

sults concerning the disorder variety and the automorphy

group of the asymmetric eight-vertex model. The numerical

results of the analysis of the spectrum of transfer matrices are B. Symmetries

presented in Sec. IV. Section V concludes with a discussion. gqp quantum Hamiltonians, it is well known that it is

necessary to sort the eigenvalues with respect to their quan-

tum numbers, and to compare only eigenvalues of states be-
Il. NUMERICAL METHODS OF RMT longing to the same quantum numbers. This is due to the fact
that eigenstates with different symmetries are essentially un-
correlated. The same holds for transfer matrices. In general, a

In RMT analysis one considers the spectrum of(dngan-  transfer matrixT of a classical statistical mechanics lattice
tum) Hamiltonian, or of the transfer matrix, as a collection of model (vertex model depends on several parametéBslt-
numbers, and one looks for some possibly universal statistzmann weightsv;). Due to the lattice symmetries, or to other
cal properties of this collection of humbers. Obviously, thesymmetries(permutation of colors and so gnthere exist
raw spectrum will not have any universal properties. Forsome operator§ acting on the same space as the transfer
example, Fig. 1 schematically shows three densities of eigermatrix and which aréndependent of the parametersom-
values: for a 2 Hubbard model, for an eight-vertex model, muting with T:[T({w;}),S]=0. It is then possible to find
and for the Gaussian orthogonal ensemble. They have clearfubspaces of which are also independent of the parameters.
nothing in common. To find universal properties, one has td’rojection on these invariant subspaces amounts to block
perform a kind of renormalization of the spectrum, this is thediagonalizing,T, and to splitting the unique spectrum ®f
so-called unfolding operation. This amounts to making theinto the many spectra of each block. The construction of the
local density of eigenvalues equal to unity everywhere in theprojectors is done with the help of the character table of
spectrum. In other words, one has to subtract the regular pairreducible representations of the symmetry group. Details
from the integrated density of states, and consider only thean be found if9,10].
fluctuations. This can be achieved by different means; how- As we will discuss in the next sections, we always re-
ever, there is no rigorous prescription, and the best criteriostricted ourselves to symmetric transfer matrices. Conse-
is the insensitivity of the final result to the method employedquently the blocks are also symmetric, and there are only
or to the parameterdor “reasonable” variation. real eigenvalues. The diagonalization is performed using
Throughout this paper, we cdl; the raw eigenvalues and standard methods of linear algel@ontained in the linear

€; the corresponding unfolded eigenvalues. Thus the requirealgebra packagd APACK) library]. The construction of the
ment is that the local density of thg's is 1. We need to transfer matrix and the determination of its symmetries de-
compute an averaged integrated density of sta(€& from  pend on the model, and are detailed in Sec. llIB for the
the actual integrated density of states, eight-vertex model.

A. Unfolding of the spectrum
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C. Quantities characterizing the spectrum T T T T T T Y f
Once the spectrum has been obtained and unfolded, vari- i ' ! i ' i i !
ous statistical properties of the spectrum are investigated. a a b Y ¢ ¢ d d
The simplest one is the distributioR(s) of the spacings
s=¢;,1— € between two consecutive unfolded eigenvalues. FIG. 2. The Boltzmann weights of the eight vertices.

This distribution will be compared to an exponential and to

the Wigner law(1). Usually, a simple visual inspection is dependent poirE*. This stems from the fact that the rigidity
sufficient to recognize the presence of level repulsion, thé\;(E) probes correlations beyond nearest neighbors, in con-
main property for nonintegrable models. However, to quanirast toP(s).

tify the “degree” of level repulsion, it is convenient to use a

parameterized distribution which interpolates between the IIl. ASYMMETRIC EIGHT-VERTEX MODEL

Poisson law, the Wigner law. From the many possible distri- ON A SQUARE LATTICE

butions we have chosen the Brody distribut|@j N
A. Generalities

— +1
P(s)=cis%exp(—c,87 ™Y, (48 We will focus in this section on the asymmetric eight-

vertex model on a square lattice. We use the standard nota-

with tions of Ref.[12]. The eight-vertex condition specifies that

only vertices are allowed which have an even number of

arrows pointing to the center of the vertex. Figure 2 shows
andc,=(1+pg)c,. (4D  the eight vertices with their corresponding Boltzmann
weight. The partition function per site depends on these eight
homogeneous variablger equivalently seven independent
values:

B+2\]'*#

=\ g1

For B=0, this is a simple exponential for the Poisson en-
semble, and foB=1, one recovers the Wigner surmise for
the GOE. This distribution turns out to be convenient, since Z(a,a’,b,b’,c,c’,d,d’). 7
its indefinite integral can be expressed with elementary func-

tions. It has been widely used in the literature, except wheitt is customary to arrange the eigtitomogeneoysBoltz-
special distributions were expected, as at the metal insulatgnann weights in a 44 R-matrix:

transition[11]. Minimizing the quantity

a 0 0 d

(" B 5 0O b ¢ O
#B)= | (Py(9-P)7as © O ®

d 0 0 a

yields a value of8 characterizing the degree of level repul-

sion of the distributiorP(s). We have always foung(5) to  The entryR;; is the Boltzmann weight of the vertex defined

be small. When-0.1<8<0.1, the distribution is close to a by the four digits of the binary representation of the two

Poisson law, while for 0.5 8<<1.2 the distribution is close indicesi andj. The row index corresponds to the east and

to the Wigner surmise. south edges, and the column index corresponds to the west
If a distribution is found to be close to the Wigner surmiseand north edges:

(or the Poisson layy this does not mean that the GQ& the

diagonal matrices ensembleorrectly describes the spec- Rij=R;ﬂ=W(u,a|B,V),

trum. Therefore it is of interest to compute functions involv-

ing higher order correlations, as, for example, the spectral

rigidity [2] “ ‘f’ y
o'

1 a+E/2
A3(E)= Eminj (N(e)—ae—b)%de) , (6)
ab Ja~El2 o When the Boltzmann weights are unchanged by negating all
four edge values, the model is said to sEmmetric other-
where( ), denotes an average over the whole spectrum. Thi#ise it is asymmetric This should not be confused with the
quantity measures the deviation from equal spacing. For &ymmetry of the transfer matrix. Let us now discuss a gen-
totally rigid spectrum, as that of the harmonic oscillator, oneeral symmetry property of the model. A combinatorial argu-
has ASS{E)= 3, for an integrable(Poissoniah system one ment[12] shows that for any lattice without dangling ends,
has AZ%(E)=E/15, and for the Gaussian orthogonal en-the two parameters andc’ can be taken to be equal, and
semble one has ASONE)=(1/x?)[In(E)—0.0687 that, for most regular lattice@ncluding the periodic square
+O(E™Y). It has been f03und that the spectral rigidity of lattice considered in this woykd andd’ can also be taken to

quantum spin systems foIIovsA;';‘“(E) in the integrable case, be equal(gauge transformatiofiL3]). Specifically, one has
and AS°KE) in the nonintegrable case. However, in both Z(a,a',b,b’.c.c’,d.d")

cases, even thougR(s) is in good agreement with RMT, AR

deviations from RMT occur forA;(E) at some system- =Z(a,a’,b,b’,\/w, \/W \/W\/W) (9)
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We will therefore always take=c’ andd=d’ in the nu- general the symmetry of the row-to-row transfer matrix is
merical calculations. In the following, whet! andd’ are  satisfied foc=d’ andd=c’. In terms of the equivalent IRF
not mentioned, it is implicitly meant that' =c andd’ =d. Ising model, conditionc=d means that the two diagonal
Let us finally recall that the asymmetric eight-vertex modelinteractions] andJ’ (confer to Ref[12]) are the same: the
is equivalent to an Ising spin model on a square lattice, inising model is isotropic, and therefore its row-to-row transfer
cluding next nearest neighbor interactions on the diagonalmatrix is symmetric too. This coincidence is remarkable,
and four-spin interactions around a plaquetfeF mode) since the equivalence between the asymmetric eight-vertex
[12,14). However, this equivalence is not exact on a finitemodel and the Ising model is not exact on a finite lattice, as
lattice, since theL XM plaquettes do not form a basi®  already mentioned.
have a cycle basis, one must take dny M — 1 plaquettes (i) We now consider the effect of permutations of lattice
plus one horizontal and one vertical cycle sites preserving the neighboring relations. DenoteShg
translation operator defined by

B. Row-to-row transfer matrix
S|a0,a1,...,a,_,1>=|al,...,a,_,l,a0>. (13)
Our aim is to study the full spectrum of the transfer ma-
trix. More specifically, we investigate the properties of theThen we have
row-to-row transfer matrix which corresponds to building up
a periodicL X M rectangular lattice Py adding rows of length (aS7H T (a,a’,b,b",c,d)[SB)
hér}'?fngﬁgsfgregﬁrégL is a 2% 2" matrix, and the parti =(a|T (a,a’,b,b",c,d)|B), (14)

Z(a,a’,b,b’,c,d) =TT (aa’ b’ ,cd)M. (10 2N therefore

However, there are many other possibilities to build up the [T.(a,a",b,b’c,d),S]=0. (19
lattice, each corresponding to another form of transfer magor the reflection operatd® defined by
trix: it just has to lead to the same partition function. Other
widely used examples are diagordab-diagonal and corner Rlag,a1,...,a_1)=|a _1,...,a1,a0), (16
transfer matrice$12].

The index of the row-to-row transfer matrix enumerateswe have
the 2= possible configurations of one row df vertical

-1 ’ ’

bonds. We choose a binary coding (aR™HT (a,a’,b,b",c,d)|RB)

L1 =(a|T (a,a’,b,b’,d,c)|B). 17

_ i
a_izo i2'=|ao, ... @ -1), 1D Thus R commutes withT only for the symmetric case
c=d:

with a;€{0,1}, 0 corresponding to arrows pointing up or to ) )
the right and 1 for the other directions. One erifiy ; thus [T.(a,a’,b,b",c,c),R]=0. (18

describes the contribution to the partition function of two

neighboring rows having the configurationsand 3: Combination of the translatiors and the reflectioR leads

to the dihedral grou®, . These are all the general lattice

L-1 symmetries in the square lattice case. The one-dimensional
TQ’B:{E} HO Wi, | Bi Mmis1)- (12 nature of the groud, reflects the dimensionality of the
pp 1=

rows added to the lattice by a multiplication By This is
With bi . he eigh diti general: the symmetries of the transfer matrices of
Ith our binary notation, the eight-vertex condition meansy_gimensional lattice models are the symmetries of

thatw(u ,ail By ,pi+ 1) =0 if the sump;+a;+ B+ pi 1 i (d—1)-dimensional space. The translational invariance in

Odd: Therefore, surfl2) r.(a(.m.(:es to e>'<act|y. two term;: ONCe the last space direction has already been exploited with the
Mo is chosen(two possibilities, u, is uniquely defined, s of the transfer matrix itself, leading to E40).

sinceag and B, are fixed, and so on. For periodic boundary "~ i) | astly, we look at symmetries due to operations on

conditions, the entrfT, 4 is zero if the sum of allg; and *  yhe gynamic variables themselves. Theraigriori, no con-

«; is odd. This property naturally splits the transfer matrixin 645 symmetry in this model, in contrast with the Heisen-

into two blocks: entries between row configurations with aNperg quantum chain which has a continuougB\dpin sym-

even nymber of up arrows and entries between Conflgurar'netry. But one can define an operafreturning all arrows:
tions with an odd number of up arrows.

. . Clag,aq, .. .,a _1)=|1—ag,l=ay, ..., 1=a ).
1. Symmetries of the transfer matrix (19
Let us now discuss various symmetry properties of th
transfer matrix.
(i) When one exchanges the rowssand B, vertices of
typesa,a’,b, andb’ will remain unchanged, while vertices (aC™ YT (a,a’,b,b’,c,d)|CB)
of type ¢ and d will exchange into one another. Thus for
c=d the transfer matri{' (a,a’,b,b’,c,d) is symmetric. In =(a|T (a’,a,b’,b,c,d)|B), (20

eI'his leads to an exchange of primed and unprimed Boltz-
mann weights:
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TABLE I. The dimensiongg and degeneracidg of the invari- TABLE Il. The parameters of the invariant subspaces as in the
ant subspaces fdr=14. R is an arbitrary label of the representa- preceding table foL. = 16.
tions of the dihedral group, and exp(and\ are the eigenvalues of

the corresponding translation and reflection operatomseans that R k A Ir ag’e" ag
the corresponding representation is not stable under the action of
the reflection operatprThe two numbera&®"andaZ™ correspond 0 1 1 1162 1088
to the blocks between configurations with an even or odd number ot ™ -1 1 1033 1088
up arrows(see text 2 0 -1 1 906 960
3 T 1 1 1033 960
R k A I ag’e" a%™ 4 72 * 2 2065 2048
5 14 * 2 2062 2048
0 0 1 1 362 325 r
6 37l4 * 2 2062 2048
1 T -1 1 288 325
7 /8 * 2 2032 2048
2 0 -1 1 234 261
8 77/8 * 2 2032 2048
3 T 1 1 288 261
9 57/8 * 2 2032 2048
4 2wl ’ 2 °94 °85 10 37/8 * 2 2032 2048
5 47 * 2 594 585 il
6 6m/7 * 2 594 585
7 w7 * 2 576 585 1. Symmetric eight-vertex model
8 3nl7 * 2 576 585 . . . . .
9 5:/7 . ’ 576 585 First, in the absence of an “electrical field,” i.e., when

a=a’',b=b’,c=c’, andd=d’, the transfer matrix can be
diagonalized using the Bethe ansatz or the Yang-Baxter
equationg12]. This case is called the symmetric eight-vertex
model, also called the Baxter modéP]. One finds that two
row-to-row transfer matrice¥, (a,b,c,d) and T (a,b,c,d)
commute if

Thus for the symmetric eight-vertex mod@axter model
the symmetry operatd® commutes with the transfer matrix:

[T.(a,a,b,b,c,d),C]=0. (21

A(a,b,c,d)=A(a,b.c,d), (229

2. Projectors

Once the symmetries have been identified, it is simple to I'(a,b,c,d)=I'(a,b,c,d), (22b)
construct the projectors of one row of each irreducible rep-
resentation of the group, (details can be found if9,10)).  with
WhenL is even, there are four representations of dimension

1 andL/2—1 representations of dimensior(iz., in all there I'(ab.c.d)= ab—cd (234

are L/2+ 3 projector$. WhenL is odd, there are two one- abtcd’

dimensional representations arld<1)/2 representations of

dimension 2, in all (—1)/2+ 2 projectors. For the symmet- a2+ b2—c2—¢2

ric model witha=a’' andb=Db’, there is an extr&, sym- A(a,b,c,d)= m. (23b)

metry which doubles the number of projectors.

. Using _the projectors block dlagonah;es the tr_ansfer Ma\ote that these necessary conditions are valichforlattice
trix, leaving a collection of small matrices to diagonalize

. sizeL. One also obtains theameconditions for the column-
instead of the large one. For example, for 16, the total . )
. ) . to-column transfer matrices of this model. Thus the commu-
row-to-row transfer matrix has the linear siz&=265536, . . o .
) . . tgtion relations lead to a foliation of the parameter space in
and the projected blocks have linear sizes between 906 andiitic curves given by the intersection of two quadrics. E
2065(see also Tables | and)ll P 9 y q » =4

As already mentioned, the block projection not only saves(23); that is, to an elliptic parametrizatiofin the so-called

computing time for the diagonalization, but is necessary toormmpal regime{12)
sort the eigenvalues with respect to the symmetry of the cor-

. . a=psn(n—v), 24
responding eigenstates. In summary, wherd, the row-to- psn(zn—v) (243
row transfer matrix is symmetric, leading to a real spectrum.

lts symmetries have been identified. This is a fortunate situ- b=psn(7+v), (24b

ation, since restrictiort=d neither prevents nor enforces

Yang-Baxter integrability, as will be explained in Sec. Il C. c=psn(27n), (249
d=—pksn2n)sn(n—v)sn(n+v), (240

C. Integrability of the eight-vertex model

We now summarize the cases where the partition functionvheresn denotes the Jacobian elliptic function, akdheir
of the eight-vertex model can be analyzed and possibly commodulus.
puted. These are the symmetric eight-vertex model, the It is also well known that the transfer matrix
asymmetric six-vertex model, the free-fermion variety, andT(a,b,c,d) commutes with the Hamiltonian of the aniso-
some “‘disorder solutions.” tropic Heisenberg chaifi5],
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< x ) model. In Appendix A we give the correspondence between
H= —Ei Jeotol tdyolal  +30faf 1, (259 the vertex model and the spin model. The partition function
per site of the model can be expressed in term of elliptic

if functions E which are not(due to the complexity of the
parametrization of the Yang-Baxter equatiprséraightfor-
1:T'(a,b,c,d):A(a,b,c,d)=J,:Jy:J,. (26)  wardly related to the two sets of surfaces parametrizing the
Yang-Baxter equations or even to the canonical elliptic pa-
This means that, given the three coupling constdpts,,  rameterization of the generi@on free-fermioh asymmetric
and J, of a Heisenberg Hamiltonian, there exist infinitely eight-vertex modefsee Eqs(35) in the following; see also
many quadrupletsa,b,c,d) of parameters, such that [25]]. The elliptic modulus of these elliptic functioris is
given in Appendix A as a function of the checkerboard Ising
[T(a,b,c,d), H(Jx,Jy,I2)]=0. (27 variables, as well as in the homogeneous Boltzmann weights

: . (a,a’, b, b’, ¢, c’, d, andd’) for the free-fermion asym-
Indeed, the three constarltg,J,, andJ, uniquely determine metric eight-vertex model.

7 andk in the elliptic parametrizatio24), and the spectral Finally, we remark that the restrictiar=d is compatible

parameten can take any value, thus defining a continuous,yith condition (28) and, in contrast with the asymmetric six-

one-parameter family. Not only and commute for arbi-  \ertex model, the asymmetric free-fermion model provides a
trary values of the parameter but 71 is also related to the  ca5e where the row-to-row transfer matrix of the model is
logarithmic derivative ofT at v= 7. In this work, we exam- symmetric.

ine only regions with the extra conditian=d to ensure that
T is symmetric, and thus that the spectrum is symmetric. 4. Disorder solutions
Using the symmetries of the eight-vertex model, one finds
that the model §,b,c,d), with c=d mapped into its princi-
pal regime, gives a modeh(b,c,d) with a=b. In terms of
the elliptic parametrization, this meanssn(zn—v)

If the parameters, a’, b, b’, ¢, andd are chosen such
that theR matrix (8) has an eigenvector which is a pure
tensorial product,

=sn(n+v) or v=0. (1 1 1 1
In summary, in the continuous one-parameter family of R )@( ):)\< )@( ) (29
commuting transfer matriceB(v) corresponding to a given P q P q
value ofA andT’, there are two special values of the spectrali,an, the vector
parametew: v= 7 is related to the Heisenberg Hamiltonian
H(1,I',A), and forv=0 the transfer matriX (v) is symmet- 1 1 1 1
ric (up to a gauge transformatipn 0 ® q ® -® 0 ® q (30

2. Six-vertex model (2L factors is an eigenvector of the diagonato-diagonal

The six-vertex model is a special case of the eight-vertexransfer matrixT, , usually simply called the diagonal trans-
model: one disallows the last two vertex configurations offer matrix. The corresponding eigenvalueAis= A%, with
Fig. 2, this meang=d’ =0. Both the symmetric and asym-
metric six-vertex models have been analyzed using the Bethe o aa’'—bb’+cc’—dd’
ansatz or also the Yang-Baxter equatiphd,16,17. We did - (a+a’)—(b+b’)
not examine this situation any further, since conditenad

having a real spectrufsee Sec. llIB{i)] leads to a trivial However, the eigenvalua may, or may not, be the eigen-
case. value of largest modulus. This corresponds to the existence

of so-called disorder solutio®0], for which some dimen-
3. Free-fermion condition sional reduction of the model occurdl]. Condition(29) is
e§imple to express; it reads

(31)

Another case where the asymmetric eight-vertex mod
can be solved is the case whe_rfa the Boltzmann weights verifya2, g24 c24 D2+ 2AB— 2AD— 2BC—2CD
the so-calledree-fermioncondition
=(A+B—C-D)(a+b)(a’+b’)—(A—D)(b*+b’?)
aa’'+bb'=cc’'+dd’. (28
—(B—C)(a®+a’?), (32)
For condition(28), the model reduces to a quantum problem , ) , , ]
of free fermions, and the partition function can thus be comWhereA=aa’, B=bb’, C=cc’, andD=dd’. Note that in
puted[18,19. the symmetric casea=a’, b=b’, c=c¢’, andd=d’, Eq.
The free-fermion asymmetric eight-vertex model is Yang-(32) factorizes as
Baxter integrable; however, the parametrization of the Yang-  _ B _ o o
Baxter equations is more involved compared to the situation (a=b+d-c)(a-b+d+c)(a-b-d-c)(a-b-d+c)

described in Sec. IlIC1: the row-to-row and column-to- =0, (33
column commutations correspond to two different foliations
of the parameter space in algebraic surfaces. which is the product of terms giving two disorder varieties

It is also known that the asymmetric eight-vertex free-and two critical varieties of the Baxter model. It is known
fermion model can be mapped onto a checkerboard Isinthat the symmetric model has four disorder variet@se of
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them,a+b+c+d=0, is not in the physical domain of the 0O 0 d a 0 0 c
parameter spag¢@nd four critical varietief12]. The missing 0 b 0 0b d 0
varieties can be obtained by replaciRgby R? in Eq. (29). t -

In our numerical calculations we have always found for the o c b o 0 d b O
asymmetric eight-vertex model that is either the eigen- 0 0 a c 0 0 a

value of largest modulus or the eigenvalue of lowest modu-

lus. Finally, note that conditio(82) doesnotcorrespond to &  combining| andt, yields an infinite discrete group of
solution of the Yang-Baxter equations. This can be undersymmetries of the parameter spd@8]. This group is iso-
stood, since disorder conditions [iK82) are not invariant  mgrphic to the infinite dinedral groufup to a semidirect
under the action of the infinite discrete symmetry grdup product with 2,). An infinite-order generator of the non-
presented in Sec. Il D, whereas the solutions of the Yangivial part of this group is for instancgl. In the parameter
Baxter equations are actually invariant under the action ofpace of the model this generator yields an infinite set of
this group[22,23, points located on elliptic curves. The analysis of the orbits of

~ On the other hand, similarly to the Yang-Baxter equa-the groupl for the asymmetric eight-vertex model yielts
tions, the “disorder solutions” can be seen to correspond tGjnite set of elliptic curves given by

families of commuting diagonal transfer matricés on a

subspace/ of the 2--dimensional space on which_acts, (aa’'+bb’'—cc’'—dd")? aa’bb’
_ aa'bb’ =const, cc'dd’
[T.(a,a’,b,b’,c,d),T (a,a’,b,b’,c,d)]|y=0, (34 (35)

=const

where subscrip/ means that the commutation is only valid and
on the subspacé/. Actually, this subspace is the one-
dimensional subspace corresponding to ve¢36y. The no- a b c
tion of transfer matrices commuting only on a subspsce 77~ const, iy =const,
can clearly have precious consequences on the calculation of
the eigenvectors and eigenvalues, and hopefully of the partin the limit of the symmetric eight-vertex model one recov-
tion function per site. One sees that the Yang-Baxter integraers the well-known elliptic curve3) of the Baxter model
bility and the disorder solution “calculability” are two lim- given by the intersection of two quadrics. Recalling param-
iting cases wheré/ respectively corresponds to the entire etrization(24), one sees thd!, the infinite-order generator
space wherd | acts and to a single vector, namely, E80).  of I', is actually represented as a shift lpyof the spectral
parameteryv— v+ 7.

The groupl” is generically infinite; however, if some con-
) _ditions on the parameters hold, it degenerates into a finite

When the Boltzmann weights of the model do not verify group. These conditions define algebraic varieties for which
any of the conditions of Sec. Ill C, the partition function of {he model has a high degree of symmetry. The location of
the model has not yet been calculated. However, some angyylticritical points seems to correspond to enhanced symme-
lytical results can be stated. Algebraic varieties of the paramyies namely, to the algebraic varieties where the symmetry
eter space can be presented, which have very special symroupI™ degenerates into a finite grof@4]. Such conditions
m.etry propertles: The intersection of these algebra|c varietie§f commensuration of the shif with one of the two periods
with critical manifolds of the model are candidates for mul- of the elliptic functions occurred many times in the literature
ticritical points [24]. We have tested the properties of the uf theoretical physicéTutte-Behara numbers, rational values
spectrum of the transfer matrices on these loci of the phasgs the central charge and of critical exponef26]). Further-
space. _ S more, from the conformal field theory literature, one can

_ There actually exists an infinite discrete group of symme,5ye a prejudice toward free-fermion parastatistics on these

tries of the parameter space of the asymmetric e|ght_—_verteé|gebraiC varieties of enhanced symmef87]. It is thus
model(and, beyond, of the 16-vertex mod@b]). The criti-  npatyral to concentrate on these. We have therefore deter-
cal manifolds of the model have to be compatible with thismined aninfinite number of these algebraic varieties, which
group of symmetries, and this is also true for any exact propgre remarkablycodimension-1varieties of the parameter
erty of the model: for instance, if the model is Yang-Baxtergpace. Their explicit expressions quickly become very large
integrable, the Yang-Baxta equatio®éBE) are compatible i, terms of the homogeneous parameters of the asymmetric
with this infinite symmetry group22]. However, itis crucial  gight-vertex model; however, their expressions are remark-
to recall that this symmetry group is not restricted to theably simple in terms of some algebraic invariants generaliz-

Yang-Baxter integrability. It is a symmetry group of the ing those of the Baxter model, namely,
model beyondthe integrable framework, and provides, for

instance, a canonical elliptic foliation of the parameter space _ Y T

of the model(see the concept of quasi-integrabilitg5]). Ji=aa’bb’ + Jec'dd, (363
The group is generated by simple transformations of the ho-
mogeneous parameters of the model: the matrix inversion
and some representative geometrical symmetries, as, for ex- ) , . ,
ample, the geometrical symmetry of the square lattice, which 3 _aa’+bb’—cc’—dd (360
amounts to a simple exchange ®andd: z 2 '

d
=const, 7 =const.

D. Some exact results on the asymmetric eight-vertex model

J,=+aa’'bb’—cc'dd’, (36h)
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Note that, in the symmetric subcase, one recovers @6s.  size up to 65538 65536. Tables | and Il give the dimensions
In terms of these well-suited homogeneous variables, it i®f the different invariant subspaces for=14 and 16. Note
possible to extend the “shift doubling”f—27) and “shift  that the size of the blocks to diagonalize increases exponen-
tripling” ( »—37) transformations of the Baxter model to tially with the linear sizeL. The behavior in the various
the asymmetric eight-vertex model. For the shift doublingsubspaces is not significantly different. Nevertheless the sta-
transformation, one obtains tistics is better for larger blocks, since the influence of the
boundary of the spectrum and finite size effects are smaller.

11292 1292 1272
D= 923y = Bedy = Ik (373 To obtain better statistics, we also averaged the results of
J§:J§J§_J§J§—J§J§v (37b) several blocks for the same linear size
J;:J)Z(Ji—\]g:j)z(_\]?\])z” (370 B. Near the symmetric eight-vertex model

Figure 3 presents the probability distribution of the eigen-

and for the shift tripling transformation, value spacings for three different sets of Boltzmann weights

‘];(’:(_ 2‘]3‘]5‘]3_3‘]3‘]?_’_ 2\]5\]?\]5_{_\]3\]3_}_ ZJS‘Jg‘]i WhiCh are listed in _Tab_le . Figure(d) COI'I'ES_pOI’l(':iS to a
point of a symmetric eight-vertex model, while FiggbB
+343H3,, (383  and 3c) are results for the asymmetric eight-vertex model.
The data points result from about 4400 eigenvalue spacings
3= (2323533 — 33335+ 3335 — 2350235+ 3333 coming from the ten even subspaces Eor 14 which are

listed in Table I. For the symmetric modé&d), using the
symmetry under reversal of all arrows, these blocks can once
v adad s e ada2a2 444 2412 224 more be split into two sub-blocks of equal size. The broken
97 = (JyJz 4233535 — 33y dy = 2353, 5+ 23335, lines show the exponential and the Wigner distribution as the
+34393,. (380 exact results for the diagonal random matrix ensenibée,
Zmxme independent eigenvaluesind the 2<2 GOE matrices. In
The simplest codimension-1 finite order varieties arefig- 3@ the data points fit very well an exponential, whereas
J3,=0,J,=0, or J,=0. One remarks thal,=0 is nothing I Figs. 3b) and 3c) they are close to the Wigner surmise.
but the free-fermion conditio(28), which is thus a condition N the latter cases we have also added the best fitting Brody

+2J23339)3,, (38b)

for I' to be finite. Another simple example is distribution with the parameteg listed in Table Ill. The
agreement with the Wigner distribution is better for cé&ge
Jyd;— 3y —3,3,=0, (39  where the asymmetry expressed by the ratfia’ is larger.

We also have calculated the spectral rigidity to test how
and the relations obtained by all permutationsxpfy, and  accurate is the description of spectra of transfer matrices in
z. Using the two polynomial transformatioit87) and (38),  terms of spectra of mathematical random matrix ensembles.
one can easily obtain amfinite numberof codimension-1 |n Fig. 4 we present the spectral rigidifys(E) for the same
algebraic varieties of finite order. The demonstration that theoints in parameter space corresponding to integrability and
codimension-1 algebraic varieties built in such a way areo nonintegrability as in Fig. 3. The two limiting cases cor-
actually finite-order conditions df will be given elsewhere. responding to the Poissonian distributed eigenvalisetid
Some low-order varieties are given in Appendix B. In Sec.line) and to GOE distributed eigenvaluésashed ling are
IV, the lower-order varieties are tested from the view pointalso shown. For the integrable point the agreement between
of statistical properties of the transfer matrix spectrum. the numerical data and the expected rigidity is very good.

For the nonintegrable case the departure of the rigidity from
IV. RESULTS OF THE RMT ANALYSIS the expected behavior appearsBExt2 in case(b) and at
E~6 in case(c) (in units of eigenvalue spacingsndicating
that the RMT analysis is only valid on short scales. Such
The phase space of the asymmetric eight-vertex modddehavior has already been seen in quantum spin systems
with the constraint=d (ensuring symmetric transfer matri- [5,7]. We stress that the numerical results concerning the
ces and thus real spectrs a four-dimensional spadéive  rigidity depend much more on the unfolding than the results
homogeneous parametesis a’, b, b’, andc). Many par- concerning the spacing distribution.
ticular algebraic varieties of this four-dimensional space Summarizing the results for the eigenvalue spacing distri-
have been presented in Sec. Ill, and will now be analyzedution and the rigidity, we found very good agreement with
from the random matrix theory point of view. We will the Poissonian ensemble for the symmetric eight-vertex
present the full distribution of eigenvalue spacings and thenodel(a), good agreement with the GOE for the asymmetric
spectral rigidity at some representative points. Then we wilimodel(c), and some intermediate behavior for the asymmet-
analyze the behavior of the eigenvalue spacing distributiomic eight-vertex modelb). The difference between the be-
along different paths in the four-dimensional parametehavior for casegb) and(c) can be explained by the larger
space. These paths will be defined, keeping some Boltzmarasymmetry in caséc): case(b) is closer to the integrable
weights constant and parameterizing the others by a singleymmetric eight-vertex model.
parametet. To study the proximity to the integrable model, we deter-
We have generated transfer matrices for various lineamined the “degree” of level repulsioB by fitting the Brody
sizes, up toL=16 vertices, leading to transfer matrices of distribution to  the  statistics along a path

A. General remarks
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TABLE lIl. The Boltzmann weights for the three cases of Figs.
3 and 4. The last column indicates the paramgtesf the Brody
distribution shown in Fig. 3.

Case a a’ b=b’ c=d B

0.8
0.8
0.8

0.02
0.64
0.85

\/5/8~0.790569
\/5/8~0.790569
\/5/8~0.790569

€)] 2 2
(b) 1.8 2.2222
(c) 1.6 2.5

metric model ata/a’=1, and increasing the system size
leads to a better coincidence with the Wigner distribution
(B=1) for the nonintegrable asymmetric mode¥a’'. So

in the limit L —< we claim to find a5 peak at the symmetric
pointa=a’=2. We also found that the size effects are really
controlled by the lengti. and not by the size of the block.
However, our finite size analysis is only qualitative. There is
an uncertainty orB of about=0.1. There are two possible
sources for this uncertainty. The first one is a simple statis-
tical effect, and could be reduced by increasing the number
of spacings. The second one is a more inherent problem due
to the empirical parameters in the unfolding procedure. This
source of errors cannot be suppressed increasing the.size
For a quantitative analysis of the finite size effects it would
be necessary to have a high accuracygaind to varyL over

a large scale, which is not possible because of the exponen-
tial growth of the block sizes with..

To test a possible extension of the critical variety
a=Db+c+d outside the symmetric regica=a’, b=b’, we
performed similar calculations along the path
(a=t, a’ =4/, b=b'=¢%, andc=2) crossing the symmet-
ric integrable variety at a critical poitit=2. The results are
the same: we did not find any kind of Poissonian behavior
whent#2. We tested one single path and not the whole
neighborhood around the Baxter critical variety. This would
be necessary if one really wanted to test a possible relation
between Poissonian behavior and criticity instead of integra-
bility (both properties often being relajed he possible re-
lation between Poissonian behavior and criticity will be dis-
cussed for spin models in the second paper. We conclude,
from all these calculations, that the analysis of the properties
of the unfolded spectrum of transfer matrices provides an
efficient way to detect integrable models, as already known
for the energy spectrum of quantum systgi®s6).

C. Case of Poissonian behavior for the asymmetric
eight-vertex model

We now investigate the phase space far from the Baxter

FIG. 3. The distributionP(s) of eigenvalue spacings for the model. We define paths in the asymmetric region which

three sets of Boltzmann weights enumerated in Table Ill. The concross the varieties introduced above but which do not cross
tinuous lines give the exponential for a Poissonian spectrum and thide Baxter model. These paths and their intersection with the
Wigner distribution(1) for the GOE, the broken lines in figuréls) different varieties are summarized in Table V. Figure 6 cor-
and (c) are the fitted Brody distribution with thg given in Table  responds to patiia) (a=3%, a’'=2, b=b’=t, andc=1.3).
M. This defines a path which crosses the free-fermion variety at
the solution of Eq(28): t=t=2.38; and the disorder va-
(a=t, a' =4k, b=Db’=4/5, andc=/5/8) joining caseda) ety at the two solutions of Eq29): t=1tg**~1.044 and at
and (c) for different lattice sizes. The result is shown in Fig. t=tg '~ 1.0056(the subscript “di” stands for disordgrSee
5; the details about the number of blocks and eigenvaludable V for the intersections with the other varieties. We
spacings used in the distributions are listed in Table IV. Ahave numerically found that, at the pointtg™, eigenvalue
finite size effect is seen: we always fig=0 for the sym-  (31) is the one of largest modulus, whereas=at]" it is the
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1
D -
H
0.8 @) g
6 US—
o 06 0.6
b @
04 0.4
o2} & T 0.2
0 : : : — 0
2 4 6 E8 10 12 14 1.4 15 1.6 1i7 1.8
0.6 FIG. 5. The degree of level repulsighobtained by a fit of the
eigenvalue spacing distributioR(s) to the Brody distribution for
0.5 | (b) lattice sized =12,...,16. TheBoltzmann weights vary along the
HH{H{H{ path.(a=t, a' =4/, b=b’'=4/5, c=d= JSTS) which gives a sym-
04| {H #ﬁﬁ{ } ] m_etrlc_model fot=2. The number of spacings used for each size is
o {HHH}{HH } given in Table IV.
)
< 03y HH;HB& I—— B is close to zero. This is not surprising forty since the
02 | é;#{ -------------------- model is Yang-Baxter integrable at this point. The value
) E B(ty) is slightly negative: this is related to a “level attrac-
= tion” already noted if{8]. The downward peak is very sharp
0.1 and a good approximation of @peak that we expect for an
infinite size. Att=tg" andt=tg** the model isnot Yang-
Y 2 4 6 8 1'0 12 14 Baxter integrable. We cannot numerically resolve between
E these two points. Therefore, we now study paths where these
two disorder solutions are clearly distinct. For Fig. 8 they are
0.6 both below the free-fermion point, while for Fig. 7 the free-
fermion point is between the two disorder solution points.
0.5 (c) In both Figs. 7 and 8, we show the results for two paths
which differ only by an exchange of the two weights
0.4 a—a’. In Fig. 7 one clearly sees a peakgoslightly nega-
m {H{H{H}ﬁ H tive at the free-fermion point &t=0.8, and another one at
S ol HHHH}} { one disorder solution poirit=tg*~1.46 for both curves but
ﬁ#&iﬁ#}{ _____________________________ no peak at the second disorder solution painat"~0.55.
0.2 ek It is remarkable that only poirtt=t{** yields the eigenvalue
of largest modulus for the diagonéito-diagonal transfer
o1l matrix. Consequently, one has the partition function per site
‘ o of the model at this point. At poirtt=t{", where the parti-
0 tion function is not known, we find level repulsion. How-

2 4 6 E8 10 12 14

ever, only for pathc) is the degree of level repulsighclose
to unity, while for path(b) it saturates at a much smaller
value. Another difference between casés and (c) is a

FIG. 4. The spectral rigidityA;(E) for the three sets of Boltz-
mann weights enumerated in Table Ill. The lines give the limiting
case for a Poissonian spectrum and for the GOE.

minimum in the curve of3(t) for path(c) att~1.8 which is

TABLE IV. Numbers of representations and their dimensions

used for the distributions leading to Fig. 5.

eigenvalue of smallest modul@his is the superscript min or
max. The results shown are obtained using the representa-

tion R=0 for L=16 (see Table . After unfolding and dis- 12
carding boundary states we are left with a distribution of13
about 1100 eigenvalue spacings. One clearly sees that, most
of the time, B is of order 1, signaling that the spacing distri- 15
bution is very close to the Wigner distribution, except for 15

Dimensiona; of the blocks No.(spacings
122, 176, 174, 166, 165,165 870
190, 315, 315, 315 1000
362, 596, 596, 576 2000
612, 1092, 1094 2600
1162, 1088, 2065 4000

t=tz~1.54 and fort close to the disorder solutions, where
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TABLE V. The parametrization of the path{g)—(e) and their

intersection points with the different algebraic varietisse text 1
(@ (b) (© @ (@) 08 k(%
a 0.8 0.4 2 1.2 0.8 06 F e
a’ 1.25 2 0.4 0.8 1.2 ' v 7
b t t t t t e 4 .
b’ t 15 1.5 1.5 1.5 I YA
yid

c=d 1.3 1 1 1.3 1.3 0.2 (b) Lo
ty 1.5427 0.8 0.8 1.6133 1.6133 0
tg" 1.0057 0.5520 0.5520 0.6156 0.6156
tg™ 1.0443 1.4608 1.4608 0.2424 0.2424 0.2 i
t?o 1.3 0.6667 0.6667 1.1267 1.1267 04 06 08 1 12 14 16 1.8 2
t8 1.5991  0.8141 08141  1.7474  1.7474 t
8
tflo6 1.6000 0.8141 0.8141 1.7001 1.7001 FIG. 7. The degree of level repulsighfor paths(b) and(c) (see
tho 0.5237 0.5237 0.6337 0.6337  Taple V) [L=16 and 1000 spacings fdb) and 3000 for(c)].

_ We now summarize the results from Figs. 6—8: generally,
not seen for patttb). We do not yet have a theoretical ex- e statistical properties of the transfer matrix spectra of the
planation for these phenomena: these points are not locat ymmetric eight-vertex model are close to those of the GOE

on any of the varieties presented in this paper. We stress th@kcept for some algebraic varieties. We always have a very
an explanation cannot be found straightforwardly in thesharp peak with3—0 at the free-fermion point, often

framework of the symmetry group presented here, since B~—0.2. All other points with3—0 are found to be a

a anda’ appear only with the produeta’. It also cannot be o) ytion of the disorder variet§32) of the asymmetric eight-
found in the Yang-Baxter framework, sineeanda’ are on  \ortex model.

the same footing in the Yang-Baxter equations.

In Fig. 8 the curves of3 for the two pathsd) and (e)
again coincide very well at the free-fermion point at
t=t4~1.61. But the behavior is very different far<1, To conclude this section, we discuss the special algebraic
where the solutions of the disorder variety are located. Fovarieties of the symmetry group. As explained in Sec.
path (d) neither of the two disorder points is seen on thelllD, it is possible to construct an infinite number of alge-
curve B(t), which is almost stationary near a value aroundbraic varieties where the generator is of finite order
0.6. This means that some eigenvalue repulsion occurs, bfit:!)"=1d, and thusl’ is finite order. As an example, the
the entire distribution is not very close to the Wigner sur-solutions fom=6 and 16 are given in Appendix B. We have
mise. Conversely, for patte) the spacing distribution is very actually calculated a third variety, the expression of which is
close to a Poissonian distributigi8(t)~0] whent is be-  too long to be givenrf{=8). In Table V we give the values
tween the two disorder points. This suggests that the status of the parametet for which each path crosses each variety
eigenvalue spectrum on the disorder variety of the asymmets,, t5 , andt{? (the subscript “fo” stands for finite order,
ric eight-vertex model is not simple: a more systematic studyand the superscript is the ord@r. It is easy to verify on the
would help to clarify the situation. different curves that no tendency to Poissonian behavior oc-

D. Special algebraic varieties

b AT
MEEEARI IR (NS -

f 0.2k

0.2 .U,

0.2 02 L
06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
t t

FIG. 6. The degree of level repulsighfor path(a) (see Table FIG. 8. The degree of level repulsighfor paths(d) and(e) (see
V) (L=16 and 1000 spacings Table V) (L=14 and about 2000 spacings
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curs at these points. We therefore give a negative answer t particular study of complex spectra which is much more
the question of a special statusg#nericpoints of the alge- complicated. In particular the eigenvalue repulsion becomes
braic finite-order varieties with respect to the statistical proptwo dimensional, and to investigate the eigenvalue spacing
erties of the transfer matrix spectra. However, one can stiltlistribution one has to analyze the distances between eigen-
imagine that subvarieties of these finite-order varieties couldalues in two dimensions.

have Poissonian behavior and be candidates for free parafer-

mions or multicritical points. ACKNOWLEDGMENT
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We have found that the entire spectrum of the symmetric
row-to-row transfer matrices of the eight-vertex model of APPENDIX A

lattice statistical mechanics is sensitive to the Yang-Baxter )
integrability of the model. The GOE provides a satisfactory Hereafter we give the correspondence between the asym-
description of the spectrum of non-Yang-Baxter integrableMetric eight-vertex model on the free-fermion variety and
models: the eigenvalue spacing distribution and the spectrai€ checkerboard Ising model. The vertex model is specified
rigidity up to an energy scale of several spacings are iy eight homogeneous parameters. The gauge invari@nce
agreement with the Wigner surmise and the rigidity of thetogether with the free-fermion conditio28), leads to only
GOE matrix spectra. This accounts for “eigenvalue repu|_four _mdependent parameters. The checkerboard model is
sion.” In contrast, for Yang-Baxter integrable models, the-""pe_c'f'ed by thKe four independent usual low-temperature
unfolded spectrum has many features of a set of independeM@riablesx;=e":

numbers: the spacing distribution is Poissonian and the rigid-

V. CONCLUSION AND DISCUSSION

oo . 1 1 1/ X1X3 XoXg4

ity is linear over a large energy scale. This accounts for  a=—| x x,xzx,+ —) ,:_(_+ _)
“eigenvalue independence.” However, we have also given a 2\ X1X2X3X4 2\ XaXgq  X1X3
non-Yang-Baxter integrable disorder solution of the asym- (A1)
metric eight-vertex model. For some parts of it the spectrum

is clearly Poissonian, too. This suggests that the Wignerian b= E(%Jr %) b/zl(%jL %) (A2)
nature of the spectrum is not completely controlled by the 2\ XoXz  X1X4)' 2\ X4Xz  X1Xp)'
Yang-Baxter integrability alone, but possibly by a more gen-

eral notion of “calculability,” possibly based on the exis- _ }( X1X2X3+ X4 ) ,:1< X1X4X3 . X2 )
tence of a family of transfer matrices commuting on the same 2\ X4 X1XoX3/' 2\ Xy X1XaX3/'
subspace. We have also found some “eigenvalue attraction” (A3)
for some Yang-Baxter integrable models, namely, for most

points of the free-fermion variety. These results could be a | 1[XaX3X X1 , L[ XgXgXp X3
surprise, since we do natpriori expect properties involving 20 xg XaXaXo)' 21 xg X1XgXp) "

all the 2 eigenvalues when only the few eigenvalues of (A4)

larger modulus have a physical significance. However, the ]

eigenvalues of small modulus control the finite size effects,Ne mModuluskcnec of the checkerboard Ising model, or,
and it is well known that, for example, the critical behavior €auivalently, of the asymmetric eight-vertex model, reads
(critical exponentscan be deduced from the finite size ef- K

fects. The nature of the eigenvalue spacing distribution being k(2:heck:_N1
an effective criterion, we have also used it to test unsuccess- Kp
fully various special manifolds including the vicinity of the .

critical variety of the Baxter model. In a forthcoming publi- with
cation we will present a similar study of a spin modeither
than vertex modejsIn particular, it is interesting to analyze
the spectrum on a critical, but not Yang-Baxter integrable,
algebraic variety of codimension 1, as it can be found in the
g=3 Potts model on a triangular lattice with three-spin in- —1)X (circular permutations
teractions[28]. However, this leads to models, the transfer

matrix of which cannot be made symmetric. This will require or, equivalently,

(A5)

kn=16(x3x5x2+ x2) X circular permutations,

Kp = (X3XaX3X2— XaX5— XaX5+ X35+ X553+ X2X5 — X35

o 16¢'d’cd
free 1&:ld/cd_8a/bab/_2a12b2_2a2b/2_2a2b2_2b12a/2+(a2_a12)2+(b2_b/2)2'

(A6)
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with

In this appendix we give some algebraic varieties where

the group I' becomesfinite. Two varieties of order 6
[(ta))®=1d],

_cd3i c?d?*+dc3—cdbb’

A:= a'dcta’bb’ (B1)
and a variety of order 1p(t;1)*%=1d],
(U?=v?)(u—v)+uv(u?+0v?)=0, (B2)

_cc'dd’(aa’ +bb’ —c?—d?)?

_(JXJZ—JyJZ) 2
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