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Abstract 

We describe birational representations of discrete groups generated by involutions, 
having their origin in the theory of exactly solvable vertex-models in lattice statistical 
mechanics. These involutions correspond respectively to two kinds of transformations 
on q x q matrices: the inversion of the q x q matrix and an (involutive) permutation 
of the entries of the matrix. We concentrate on the case where these permutations are 
elementary transpositions of two entries. In this case the birational transformations 
fall into six different classes. For each class we analyze the factorization properties of 
the iteration of these transformations. These factorization properties enable to define 
some canonical homogeneous polynomials associated with these factorization properties. 
Some mappings yield a polynomial growth of the complexity of the iterations. For three 
classes the successive iterates, for q = 4, actually lie on elliptic curves. This analysis 
also provides examples of integrable mappings in arbitrary dimension, even infinite. 
Moreover, for two classes, the homogeneous polynomials are shown to satisfy non 
trivial non-linear recurrences. The relations between factorizations of the iterations, the 
existence of recurrences on one or several variables, as well as the integrability of the 
mappings are analyzed. 

1. Introduction 

In previous papers, we have analyzed birational representations of discrete 
groups generated by involutions, having their origin in the theory of exactly 
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solvable models in lattice statistical mechanics [l-6]. 

163 

The group of birational transformations first studied in [7-lo] is generated 
by the so-called inversion relations [ 11,121 which amount to combine two very 
simple algebraic transformations: the matrix inversion and permutations 1 of 
the entries of a matrix [ 11. In such a general framework, the dimension of the 
lattice and the lattice itself, only occur through the number of inversion rela- 
tions and the permutations of the entries introduced to generate the birational 
transformations [ 4,5,13 1. 

This justifies considering the following problem: to generalize to q x q 
matrices and analyze birational transformations generated by the matrix inverse 
and a permutation of the entries of the matrix, and finally find the permutations 
of the matrix for which the corresponding birational transformations yield 
integrable mappings 2. This analysis is interesting for itself for the theory of 
mappings of several variables and the theory of discrete dynamical systems, 
disregarding the relation with integrable lattice models. Such an analysis is 
performed in a series of parallel publications [ 14-161. 

In [ 141, a particular transposition of the entries was analyzed. For this very 
transposition, it has been shown that the iteration of the associated birational 
transformations present some remarkable factorization properties. Actually the 
entries of the successive q x q matrices corresponding to the iteration of our 
transformation, as well as the determinants of these matrices, do factorize 
into homogeneous polynomials of all the entries of the initial q x q matrix. 
These factorization properties explain [ 171 why the “complexity” of these 
iterations (degree of the successive iterates), instead of having the exponential 
growth one expects at first sight, actually has a polynomial growth [ 18,191. 
It has also been shown that the homogeneous polynomial factors occurring 
in these factorizations do satisfy remarkable non-linear recurrences and that 
these recurrences were actually integrable recurrences yielding algebraic elliptic 
curves [ 141. 

We will concentrate here on simple heuristic examples of permutations: in 
fact all the transpositions of two entries of a q x q matrix. In [ 161 it has been 
shown that the analysis of the birational transformations corresponding to all 
the transpositions of two entries, actually reduces to the study of six classes of 
such mappings. 

The transposition analyzed in [ 141 corresponds to the first class with re- 
spect to this classification. We will revisit here the analysis performed in [ 141 
(occurrence of factorizations, recurrences, . . . ) for the five remaining classes. 
The mappings associated with three of these live classes are not integrable, 

t In the framework of vertex lattice models. For spin models, the groups of birational transfor- 
mations are also generated by similar simple involutions but slightly different [ 1,2,10]. 
2 There are many definitions of the key word “integrability” in the literature (integrability ci 
fa Liouvifle, integrability in the sense of commuting discrete flows...). Here a mapping is called 
integrable if the successive iteration points belong to algebraic elliptic (or rational) curves. 
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even for q = 4 [ 161. This will clarify the relations between all these struc- 
tures and the integrability. In particular, it will help to understand to what 
extend factorizations yield integrability. In fact, it will be shown that the oc- 
currence of factorizations is a quite general phenomenon: it does occur even 
outside the framework of integrability. The existence of factorization of our 
transformations yields a growth of the complexity of the iterations, even when 
exponential, smaller than the generic (q - l)n growth. On the other hand, 
integrable mappings only occur with a polynomial growth of the complexity of 
the iteration. The relation between integrability and polynomial growth has 
already been discussed by several authors [ l&20,2 1 ] with some emphasis on 
the Cremona transformations [ 191. Let us note that the framework of the 
analysis performed here is slightly different, in particular we deal with bira- 
tional transformations acting in projective spaces of arbitrary dimension (odd 
or even: no simplectic structure is needed). As far as recurrences are concerned, 
it is tempting, at first sight, to see a close connection between the occurrence 
of recurrences and the integrability of the birational transformations, since this 
integrability yields curves. The detailed analysis of the five remaining classes 
rules out such naive connections, and will make clear the actual relations be- 
tween these various structures. As a byproduct it will provide, with the integrable 
subcase of one of these classes (class IV), an example of integrable mapping in 
arbitrary dimension, even infinite. 

2. Notations 

Let us consider the following q x q matrix: 

R$+ ;; ;; ;; \) (2.1) 

Let us introduce the following transformations, the matrix inverse r, the 
homogeneous matrix inverse I: 

I^:R,-R,’ (2.2) 

I: R, --f R;’ .det(R,) (2.3) 

The homogeneous inverse I is a polynomial transformation on each of the 
entries rnii which associates to each mij its corresponding cofactor. 

In the following, t will denote an arbitrary transposition of two entries of 
the q x q IIXitriX, and tij_k[ will denote the transposition exchanging mij and 

mkb 
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The two transformations t and I^ are involutions whereas the homogeneous 
inverse verities 

Z2 = (det(R4))qV2 . Id, where Zd denotes the identity transformation. 
We also introduce the (generically infinite order) transformations K = t . Z 

and k = t. I? 

K is a (homogeneous) polynomial transformation on the entries mij, while 
transformation Z? is clearly a rational transformation on the entries mjj. In 
fact R is a birutional transformation since its inverse transformation is I. t. 

3. Recalls 

3.1. Six equivalence classes 

Let us first recall that, as far as the analysis of transformation K is concerned, 
all the transpositions can actually be reduced to six different classes [ 161 of 
transpositions 3. One can thus study a single mapping in each class and directly 
deduce the results concerning all the other transformations of the same class. 
A first step to prove it amounts to giving an equivalence relation on these 
120 transpositions, which does not modify the structure of the corresponding 
transformations [ 161. This equivalence up to relabelling conjugations, does 
not modify the properties of the mappings and yields seven equivalence classes 
(with the notation [ mij - mkl] denoting the transposition exchanging the two 
entries mij and mk/ of matrix (2.1)): 

- Class Cl corresponds to all the 6 transpositions of the form [mij - mji] 
- Class Cl corresponds to all the 6 transpositions of the form [mii - mjj] 
- Class C3 corresponds to all the 12 transpositions of the form [ mij - w&l] 

- Class C4 corresponds to all the 24 transpositions of the form [mij - mjk] 
or [mji - mkj] 

- Class C5 corresponds to all the 24 transpositions of the form [ mij - mik] 

or [mji - mki] 

-Class C6 corresponds to all the 24 transpositions of the form [mii - mjk] 
- Class C7 corresponds to all the 24 transpositions of the form [ mii - mij ] 

or [mii - mji] 

where the various indices i, j, k and 1 are all different. 
Moreover, one can actually show [ 161 that classes Ci and C2 yield the same 

behavior as far as the iterations of their associated birational mappings are 
concerned: the transformations K2 respectively associated to classes C1 and C2 
are conjugated. Therefore classes C1 and C2 can be brought together in the same 
class, we will denote class I, as far as the analysis of the birational transforma- 

3 At first sight, one has to study as many mappings as there are transpositions t, of two elements 
among the sixteen entries of the matrix, that is (f6) = 120. 
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tion is concerned. The live other classes (CJ, . . . , CT ) will be relabelled classes 
(II,. . .) VI) in the same order. 

It is important to note that this classification in six classes holds for q x q 
matrices, fir any value of q 2 4. For q = 3 one remarks that class II no longer 
exists and similarly, for q = 2, classes III, IV, V do not exist anymore. 

Let us also remark that any transposition of two entries mi,j, and mi,j, of a 
q x q matrix can be associated with a transposition exchanging m,(i,),(j,) and 
ma(i2)a(j2), where fl(il),o(jl),a(iz) and a(j,) run into {1,2,3,4}. One can 
thus restrict the transposition to one in the 4 x 4 block-matrix corresponding 
to the first four rows and columns. 

3.2. Class I 

Let us recall the factorization properties and the recurrences obtained for 
transposition t12-2i [ 141 which represents one transposition among a set of 
transpositions which has been denoted class I in the exhaustive classification 
given in the previous section. Let us also recall that this transformation cor- 
responds, for q = 4, to integrable mappings and yields a foliation of CP,, in 
algebraic elliptic curves given as intersections of quadrics [ 161. 

Let us first consider the successive matrices obtained by iteration of the 
homogeneous transformation K, associated with tt2_21, on generic q x q matrix 
R, and their determinants: 

MO = R,, MI = K(Mo), fi = det(Mo) 

The determinant of matrix Ml remarkably factorizes enabling to introduce 
a homogeneous polynomial f2: 

det(Mt 1 
A = fQ-3 (3.1) 

1 

Moreover, fiq-” also factorizes in all the entries of matrix K (MI ), leading 
to introduce a “reduced” matrix M2: 

M _ K(Ml) 
2- 

&-” 

Again, det (M2 ) factorizes enabling to define a new polynomial f3: 

(3.2) 

(3.3) 

Calculating K (M2 ), one can see that ft . f:-4 factorizes in all the entries of 
this matrix K (M2), leading to a new matrix: 

h43 = 
Ku421 

fi’ . fp-” 
(3.4) 
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Again, its determinant factorizes fi”-’ 9 fz3 . fpw3, yielding the homogeneous 
polynomial f4: 

_fi= 
det Of3 ) 

fig-1 . f23. fp-’ 
(3.5) 

Calculating K (M3), one sees that ff-2 . f: . fpe4 factorizes in all the entries 
of this matrix K (Ms ), leading to introduce a new matrix: 

itI4 = 
KM31 

g-2. ft. fp-4 
(3.6) 

The factorization properties are now stabilized and they reproduce similarly 
at any order n. Generally, for n 2 1 and q 2 4, one has the factorizations: 

M K(M,+z) 
n+3 = 

fF2 f,2+1 f:;; 

f 
det(M,+2) 

n-I3 = 
fn4-l f,3+1 f:;; 

giving the following relation independent of q: 

K(Mn+2) 
det(M,+2) = jd1+::2h+3 

(3.7) 

(3.8) 

(3.9) 

Note that K(Mn+2)/det(M,+2) is nothing but g(Mn+2). 
This defines the (left) action of the homogeneous transformation K on 

matrices M,, and on the set of polynomials fn. These polynomials are closely 
related to determinants of these matrices, and are actually the (generically) 
“optimal” factorizations corresponding to the iterations of the (left) action of 
K [14]. 

One can also introduce a right-action of K on the matrices M,,: the entries 
mij of MO are replaced by the corresponding entries of K (MO), i.e. (K (Mo))ij 
(and similarly for any algebraic expression of these entries such as the fn’s for 
instance). Amazingly, the right-action of K on the fn’s and the matrices M,,‘s 
yields a remarkable factorization of fi (and only fi ): 

(fn)K = f,+l .fi” (3.10) 

and 

(M~)K = M,+I .fi” (3.11) 

In ordeGo relate the right and left action of K, one can also introduce the 
matrices M,, which corresponds to n-times the left (or right) action of K on 
MO: 
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Gn = Kn(Mo) = (Mo>K” (3.12) 

One has the following relations: 

Ml = K(Mo), &i2 = K (ii& ) = p@) . M2, . . . 

= f,W jn-4 ( . j-k-1)“-5 
2 

Q?--IY-6.. .f,‘_“,” . fn_3)(q-2)3 

. f;.yq--3) . fn4_74 . M, (3.13) 

Denoting CY., the degree of the determinant of matrix M, and /In the degree 
of the polynomial fn, one immediately gets from Eqs. (3.7), (3.8), (3.10) and 
(3.11) the following linear relations (with integer coeffkients): 

Qn+2= (4-l)PrZ+3P n+l + (4 - 3) Pn+2 + Pn+3, 

(q- 1) a’,+2 = an+3 + q(q - 2) Pn + 2q Pn+l + q(q - 4) Pn+2, 

(q- 1) Pn = Pn+1+ 4Pn, 

(4 - 1) % = an+1 + 4* vn (3.14) 

Let us introduce a! (x), p(x), p (x) and u (x) the generating functions of 
the a,‘~, &,‘s, P,,‘s and v,,‘s: 

a(x) = Fan .x”, P(x) = -&L.xn, 
n=O n=l 

P(X) = cpn .x”, v(x) = C&.X” (3.15) 
n=l n=l 

From the right-action of K (see factorizations (3.10) and (3.11) ) one also 
gets linear relations on the a,,‘~, Pn’s, oh’s and vn’s: 

(4-1)&I = Pn+1+4pn, (4-l)an = wz+l+q2G (3.16) 

as well as the corresponding linear relations on the generating functions: 

((q-1)x-l).P(x) = qxY(x)-qx, 

((q-1)x-l).cX(x) = $XV(X)-q (3.17) 

The explicit expressions of these generating functions read respectively: 

(Y(x) = 
q (1 + (q - 3)x + 3x2 + (4 - 1)x3) 

(1 +x)(1 -x)3 ’ 
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P(x) = 
(1 + CC;; -x)3’ 

(q-3) +2x2-x3) 

P(x) = (1 +x)(1 -x)3 ’ 

V(X) = 
x ((4 - 4) + 2x + (4 -2)x2) 

(1 +x)(1 -x)3 

giving on the a,‘~, P,,‘s, ,u,,‘s and u,,‘s: 

(3.18) 

an = 4 ( 4n2 T+$- yq + (-l)“), 

/In = i(2n (n + 2) + l- t-1)“) 

in =Pn_ (n+ lHn+2) 
2 ’ 

vn = y-(1 +n+n’) (3.19) 

On the explicit expressions (3.19) of these degrees and exponents, one 
sees that the iteration of the homogeneous transformation K yields, as a conse- 
quenceoffactorizations (3.7), (3.11), . . . a polynomial growth of the complexity 
of the calculations: the degree of all the homogeneous expressions appearing 
in the iterations (the entries of successive matrices M,, their determinants, 
. ..) grows like n2. On the generating functions a(x), p(x), p(x) and V(X) 
(relations (3.18)) this corresponds to the fact that one only has x = *l 
singularities. 

Another important consequence of these factorizations is to introduce the 
(optimal) homogeneous polynomials fn. Remarkably, these polynomials do 

verify, independently of q, a whole hierarchy of non-linear recurrences [ 141 
such as: 

fnfZ+3 - f,+4f,+ 1 fn-lf;+2 - f,+3A12 

fn-1fn+3fn+4 - fnfn+l_tTl+5 = &2_&+2fn+3 - fn-lMI+4 
(3.20) 

or for instance, among many other recurrences: 

f,+lf,+,f,+S - f,+2f,2,3&+6 fn+2&,2+5fn+6 - f,,3f,+4& 

f,+2fn+3fn+7 - fnfn+4f,2,5 = f;+3f”+4fn+8 - fn+lfn+5f,+6 (3*21) 

These recurrences are of course compatible with the linear recurrences on 
the fin’s (Eqs. (3.14) ) and also with the right-action of K on the fn’s (see 

factorization (3.10)). Moreover these recurrences do have a three parameter 

symmetry group. Introducing the variables g, which are the product of two 
consecutive polynomials fn, g,, = fn . f,+ 1 , one can simply verify that all 
these recurrences are actually invariant under the three-parameter symmetry 
group: 
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gn + a n= . b” . c . g, (3.22) 

It is therefore tempting to introduce new variables taking these symmetries 
into account (more precisely, variables invariant under this three-parameter 
group ) : 

f,2_, fn+2 

xn = fn2+, fn-2 
(3.23) 

In fact, these variables can directly be obtained from the inhomogeneous 
transformation k (see Section 5) and read: 

x,, = det Kn(R,).k”+’ 
( ( 4) 

R ) (3.24) 

The equivalence of these two definitions for x,,, (3.23) and (3.24), has already 
been explained in [ 141 and will not be recalled here. 

With these new variables, recurrence (3.20) becomes: 

x,+2 - 1 x,+1 -1 
= 

x,+1 x,+2 J&z+3 - 1 Xn&+1 &I+2 - 1 
. xn X,+2 (3.25) 

Similarly to the fn’s, one has a whole hierarchy of recurrences on the xn’s. 
The analysis of this hierarchy of compatible non-linear recurrences has been 
performed in [ 141 and will not be detailed here. 

It is important to note that these recurrences can be extended to any relative 

integer n. Even more, these recurrences are invariant under the “time-reversal” 

transformation: 

1 
Xn + - 

x-n 
(3.26) 

This is a consequence of the fact that the transformations one considers, are 
birational (hence reversible) transformations. 

All these factorizations and recurrences have been proved in [ 141, even for 

arbitrary q . 
Moreover, it has been shown that these recurrences yield algebraic ellip- 

tic curves [ 161. This can be shown relating them to biquadratic relations, 
introducing the (homogeneous) variables qn: 

fn fn+3 

qn = fn+l fn+2 
(3.27) 

Eq. (3.25) becomes the biquadratic relation: 

(P-4n-4n+1)(4n4n+1 +A) = ,u 

where A, p and p are constants of integrations 4. 

(3.28) 

4 Many examples of integrable mappings related to biquadratic elliptic curves have recently been 
obtained by several authors [22-251. 
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Let us also recall the finite order conditions for recurrence (3.25). Recalling 
the biquadratic relation (3.28) and in particular the three parameters 1, p and 
p, recurrence (3.25) can be seen to yield finite order orbits, which can be 
written as algebraic conditions bearing alternatively on the &‘s, or the qn’s, or 
even on the three parameters A, p and p. These algebraic conditions are given 
in [ 141 for order four, five, six and seven. Let us, for instance, just recall here 
the conditions of order six respectively in the variables qn, xn or A, p and p: 

2 2 2 
-XnXn+l &I+2 - %I &I+1 x,+2 + X,X,+2%+1 - 1 +x,+2 +&x,+2 = 0 

(3.29) 

or 

A3+p2A2-3pAp+2p2 = 0 (3.30) 

or 

-4n c&l+2 &l+3 - 4n 4;+3 + 4n+l4,2+3 - 4; 4n+2 + 4; qn+3 

+4n 4n+l qn+3 = 0 (3.31) 

The relations between these various properties and structures (factoriza- 
tion properties, existence of recurrences, integrability, . ..) have been sketched 
in [ 141. The fact that products of a fixed number of fn’s occur in relation 
(3.20) is related to the fact that products of a fixed number of fn’s also occur 
in the factorizations (3.7), (3.8). The polynomial growth of these iterations 
is, at first sight, in good agreement with a framework of products of fixed 
number of polynomials 5. To some extend the integrability of the mappings, 
or more precisely the occurrence of (algebraic) elliptic curves, for arbitrary q, 
yield such polynomial growth of the iterations (see [ 17,261). 

Transformation K can be seen as a homogeneous transformation bearing on 
q2 entries of the q x q matrix. For small values of q (q = 3, q = 4, q = 5, . ..). 
one can actually look at the images of the iteration of K and see that these 
orbits yield curves [ 16 1. For q = 4 it is possible to show that these curves are 
elliptic curves given as the intersections offourteen quadrics in @PI5 [ 161. These 
quadrics can be obtained as “Plucker-like” well-suited sums and differences of 
2 x 2 minors of the 4 x 4 matrix [ 161, in a very similar way as it occurs in the 
sixteen vertex model [ 61. These elliptic curves have been seen to be closely 
related to biquadratic relations [ 161 which is not surprising recalling [22-251. 
This situation can probably be generalized to q x q matrices, the elliptic curve 
in @P,z__~ being now the intersection of q2 - 2 algebraic expressions of higher 
degree [ 161 6 . The relation between these elliptic curves and the elliptic curves 

5 However it will be shown in forthcoming publications that polynomial growth may occur even 
with more involved factorizations [ 151. 
6 Our proof of this statement for arbitrary q is not complete at the present moment. 
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associated with the recurrence on the fj’s or xn’s (see (3.20) and (3.25)) has 
been analyzed in detail in [ 141. 

Let us finally mention that, for a given initial matrix MO, the successive 
iterates of A40 under transformation K* move in a five-dimensional af$ne 
projective space: 

K2”(Mo) =a~.Mo+a;l.P+a,".M2+a3".M4+aqn.M6+a;.Mg 

(3.32) 

K2”+1(MO) = b;dfl + bf. P+b2n.M~+b;.Ms+bqn.M7+bgn.Mg 

(3.33) 

where matrix P is a fixed matrix, independent of the initial matrix MO, of 
entries Pi,j = 6i,l .Sj,, - 8i,2 .Sj,l. Considering the points in @P,z_, associated to 
the successive q x q matrices corresponding to the iteration of MO under trans- 
formation K (instead of K*), one thus gets sets of points which belong to two 
five dimensional afline subspace of cPq~_l, which depend on the initial matrix 
MO. Fig. 1 gives one orbit corresponding to the iteration of transformation g 
for a 5 x 5 matrices, that is in a 24-dimensional space. One has apparently a 
foliation of this 24-dimensional space in terms of elliptic curves. 

4. The results for the five other classes 

The analysis performed in Section 3.2 of the iteration of transformation K 
for the transposition t12-21 representing class I can similarly be performed for 
the five other classes. 

4.1. Classes II 

For q = 4, the analysis of the iteration of the homogeneous transformation 
K for the transpositions of class II yield exactly the same fuctorizations (and 
therefore the same generating functions (Y (x ), p (x ), ,u (x ) and v (x ) ) as for 
class I. However, the homogeneous polynomials fn (see Eqs. (3.7) and (3.8)) 
do not sati@ any simple recurrence like (3.20). In fact, it will be shown 
in Section 5.2 that there actually exist recurrences on a finite set of variables 
which enable, after elimination, to get algebraic relations between two variables 
(namely xn and another one). One does not have simple recurrences like (3.25 ) 

but still a quite (involved) algebraic relation on these variables. The orbits of 
K yield, for q = 4, algebraic elliptic curves which can be seen as intersections 
of fourteen “Plucker-like quadrics” in @PI, [ 161. 
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Fig. 1. Projection of the iteration of P, for class I, in a 24-dimensional space associated to 5 x 5 
matrices. 

For class II, the factorizations corresponding to the iterations of transforma- 
tion K detailed in Section 3.2 (see Eqs. (3.1), (3.2), (3.3), (3.4), (3.51, . ..) 
for class I , are drastically different, when q > 5, already after two iterations: 

I 

fi = detb%) fi = det(Ml)/fP-3 

Ml = KWO) { M2 = KM1 )/fiq-4 

A = detOf2)/(fi2 .&q-3) _LI = det(W)/(f~-2 .h2 .hqp3) 

M3 = KW2)/(_6 q4) M4 = K(M3)/(fi4-3+Yf;l-4) 

.fi= 
det (M4 ) 

&3. f;-2 . f32. j---3’ 
MS = KWf4) 

f,‘.jpf3.&-4’ 

M6 = K(Ms) 
fp-" . f22 . f;l-J . f4 . fp-4' 
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“fi= 
dettM6) 

fi’ . fp-’ . f33. fy . f52 . j”p’ 

M7 = 
K(M6) 

fi . fp-” . f32. j-p. fs . f64-4 

yielding the following factorizations for arbitrary IZ: 

det(M,) = .A+]. (f,“-3 . fn2_1 . hc;2 . f,3_3) 

.(~~~.fn2_5.f~~~.j;;i_,)...fid. 

where 8, depends on the truncation, and 

K(M,) = M,+l. (f,“-4~_Ll .f,“--;“.f:‘3) 

(4.1) 

(4.2) 

.(f~~.fn-5.fn4_3.f,2_,)...fii (4.3) 

where & = q - 4 for n = 1 (mod 4), i, = 1 for yt = 2 (mod 4), in = q - 3 
for n = 3 (mod 4) and c,, = 2 for n = 0 (mod 4). 

For factorization (4.3), one has periodically (with period four) the sequence 
[ (q-4) ( 1) (q-3) (2) ] for the exponents of the fn’s of the “string-like” factor in 
the right-hand side of (4.3), while for factorization (4.2), one has periodically 
(again with period four) the sequence [ (q-3) (2) (q-2) (3) ] for the exponents 
of the fn’s of the “string-like” factor in the right-hand side of relation (4.2). 

One notes that the following factorization independent of q occurs, which is 
actually different from relation (3.9 ) : 

KU&,) 
det tMn 1 

(4.4) 

These factorizations (4.2) and (4.4) yield linear recurrences on the a,‘~ and 

P n’s: 

ffn = ljn+l + (4 - 3)Pn + 2P,-1+ (4 - 2)Bn-2 + 3Pn-3+ (4 - 3)Pn-4 

+ 2pn-5 + (4 - 2 m-6 + 3Pn-7 + ’ ’ ’ + w 1 (4.5) 

and 

4 (Pl + /j2 + ... + Bn+l) = an + an+1 (4.6) 

From relation (4.5 ), one gets on the generating functions Q (X ) and fi (X ): 

X cu(x) = B(x). (1 + 
(q - 3) x + 2 x2 + (4 - 2) x3 + 3 x4 

1 -x4 > 
(4.7) 

and from relation (4.6): 

4 P(x) ~ = (1 +x).(Y(x) -q 
(1 -xl 

(4.8) 

The generating functions (Y (x) and j3 (x ) read: 
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a(x) = 
q(1+2x4+Xq-3X+2X2+X3q-223) 

(1 -x)(1 +x)(1 -2X-2X3) ’ 

p(x) _ qx (1 +x2> 
1-2x-2x3 

(4.9) 

Again (see Eqs. (3.10) . ..) the right action of K on the fn’s and on matrices 
M,,‘s factorizes fi and only fi: 

(fn)K = fn+1 .hfl” and (JG)K = MI+1 .fi” (4.10) 

One deduces again, from factorizations (4. lo), the linear recurrences (3.16) 
and relations (3.17) on the generating functions. The generating functions 
p (x) and v (x) read respectively: 

P(X) = 
x ((4 - 3) -x + (4 - 3) x2) 

1-2x-2x3 ’ 

v(x) = 
x (q-4+x+ (q-3)x2+2x3) 

(l-x)(1+x)(1-2x-2x3) 
(4.11) 

From Eqs. (4.9) and (4.11), it is clear that one has an exponential growth 
of exponents a,,, p,,, p,, and u,. They grow like An where J = 2.359304086 . . . 
is the largest root of 2 + 2 z2 - z3. 

Let us underline that, for a given initial matrix MO, the successive iterates of 
Ma under transformation K2 move, in a three-dimensional a&e matrix space: 

K’“(Mo) = a,“.Mo + a;l.P + a;.M2 + a;.M4 (4.12) 

K2”+‘(M,,) = b,“.MI + bf.P + b;-M3 + b;.Ms (4.13) 

where matrix P is a fixed matrix representing the transposition of class II one 
considers (here ml,2 - m3,4), independent of the initial matrix MO, of entries 
Pi,j = Si,l ’ Jj,J - di,3 ’ 6j,4. 

Figs. 2a and 2b show (the projection of) two orbits corresponding to the 
iteration of a transformation of class II for 5 x 5 matrices. For class II, though 
one often gets curves (similar to Fig. 1 ), one sees, with Fig. 2b for instance, 
that some orbits may lie on higher dimensional varieties 7. 

Moreover, a careful look at Fig. 2b, shows the occurrence of a “small island” 
in a quite uniform density of points. This situation is reminiscent of the 
one encountered with the Henon-Heiles mappings or the “almost” integrable 
mappings [ 16,271. 

The drastically different behavior, one encounters, for q = 4 and for q > 4, 
shows that the q-generalization of transformation K (we introduce in Sec- 
tion 3.2) is certainly non-trivial. 

’ This gives a strong indication that, when one gets curves, these curves are not algebraic. 
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.I 
I/I 

(b) 

Fig. 2. (a) Projection of the iteration of K^, for class II, in a 24-dimensional space associated to 5 x 5 

matrices. (b) Another orbit corresponding to the iteration of g, for class II, in a 24-dimensional 
space. 

4.2. Class III 

Remarkably, the analysis of the iteration of the homogeneous transformation 
K for the transpositions of class III yield exactly the same factorizations for 
arbitrary q (and therefore the same generating functions Q (x ), j3 (x ), p (x ) and 
v (x ) ) as for class I (see Section 3.2 ) . However, the homogeneous polynomials 
fn (see Eqs. (3.7) and (3.8)) do not satisfy any simple recurrence like (3.20). 
In fact, it will be shown in Section 5.2 that there actually exist recurrences 
on a finite set of variables which enable, after elimination, to get algebraic 
relations between two variables (namely xn and another one), and finally on 
a single variable. The elimination happens to be less involved than for class II. 
Nevertheless one does not have simple recurrences like (3.25) but still a quite 
(involved) algebraic relation on these variables. 

Again, the orbits of K yield, for q = 4, algebraic elliptic curves which can be 
seen as intersections of fourteen “Plucker-like quadrics” in @Pi 5 [ 16 1. 

As for class I, the successive iterates of a given initial matrix MO, under 
transformation K2, move in a five-dimensional affine projective space: 

K2”(Mo) =a,“.& + a:.P + a;“.M2 + a;.M4 

+ai.M6 + ay.M8 (4.14) 
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Fig. 3. (a) Iteration of g, for class III, for 5 x 5 matrices. (b) Another orbit corresponding to the 

iteration of K, for class III, for 5 x 5 matrices. 

Pn+l (i&J) = b,” -Ml + b;.P + b;df3 + bidIs 

+b4”GW7 + b,“d& (4.15) 

where matrix P is a fixed matrix representing the transposition of class III one 
considers. 

Figs. 3a and 3b show (the projection of) two orbits corresponding to the 
iteration of a transformation of class III for 5 x 5 matrices. 

Very often the iteration of a transformation of class III for 5 x 5 matrices 
yields curves similar to Fig. 1. Fig. 3b however looks like a set of curves lying on 
a surface. This seems to rule out, for class III, a foliation of the 24-dimensional 
parameter space in curves, but it does not rule out the fact that these orbits 
could be algebraic surfaces or “nice” higher dimensional algebraic varieties, 
like abelian varieties (which is suggested by the polynomial growth). 

The occurrence of integrable recurrences, independent of q, on the fn’s 
associated with algebraic elliptic curves probably explains the better regularity 
of mappings of class I, compared to mappings of class III. 

4.3. Class IV 

The factorizations corresponding to the iterations of transformation K de- 
tailed in Section 3.2 (see Eqs. (3.1), (3.2), (3.3), (3.4), (3.5), . ..) for class I 
(and also, for classes II and III), now read for class IV: 
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fi = det(&) 

M = KWO) { 

fi = det (Ml )/fiqp2 

M2 = mw)lf,q-3 

A = detOf2)/(fi .Aqe2) _fi = detOf3)/(fiq-’ .f2.sjlp2) 

M3 = K042)lfi4-3 M4 = KW3)/(fiq-2 .fp-‘, 

_fi= 
det (& ) 

f,‘.f24-‘.jj.jy-2’ M5 = 

KW4) 

fi . f;l-2 . &-3’ 

jy-3 . A . fp-2 . jy-3’ 

Ku461 

f;l-3. jY3. jy-2. fQ1-3 

(4.16) 

yielding the following factorizations for arbitrary n: 

det(M,) = _&+I. Ke2.fn-~ .f,“-1’ .fi_3) 

.(~~~.fn-5.f,4_1.f,2_7)...fiSn 

where S, depends on the truncation, and 

(4.17) 

K(K) =M,+1.(f,y-~.~~~~..fn--3). Cf,~43~f,,T62~.Ld 

.c~~~~.~~~~‘,.fn-ll)...firn (4.18) 

where [,, = q - 3 for n = 1 (mod 4), C,, = 0 for II = 2 (mod 4), c,, = q - 2 
for n = 3 (mod 4) and cn = 1 for n = 0 (mod 4). 

For factorization (4,18), one has periodically (with period four) the sequence 
[ (q - 3) (0) (q - 2) ( 1) ] for the exponents of the fn’s of the “string-like” 
factor in the right-hand side of (4.18)) while for factorization (4.17)) one has 
periodically (again with period four) the sequence [ (q - 2) ( 1) (q - 1) (2) ] for 
the exponents of the fn’s of the “string-like” factor in the right-hand side of 
(4.17). 

One notes that the following factorization independent of q occurs, which is 
different from relation (3.9), but actually identifies with relation (4.4): 

K(Mn) M n+l 

det(Jh) = h.h ... fnfn+l 
(4.19) 

These factorizations (4.17) and (4.19) yield linear recurrences on the an’s 
and /L’s: 
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a, = /%I+, + (4 - 2) Bn + Bn-I + (4 - 1) Bn-2 + 2 Pn-3+ (4 - 2) Pn-4 

+p,-5 + (4 - 1) /3n-6 + 2 Pn-7 + ’ ” + 6, pl (4.20) 

and 

4 (81 + P2 + ... + Bn+l) = an + an+1 (4.21) 

From relation (4.20), one gets on the generating functions a(x) and /3(x): 

x a(x) = B(x). (1 + (q-2)x+x2+ (q-1)x3+2x4 
1 -x4 > 

(4.22) 

and from relation (4.21) one recovers relation (4.8): 

4 B(x) ~ = (l+x).a(x)-q 
(1 -X) 

The generating functions (Y (x ) and p (x ) read: 

C%(x) = 
q (1 + X4 + xq - 2x + X2 + x3q - x3) 

(1 -x)(1 +x)(1 -x-x3) 
) p(x) _ qx (1 + x2) 

l-X-X3 

(4.24) 

Again (see Eqs. (3.10), (4.10) . ..) the right action of K on the fn’s and on 
matrices M,,‘s factorizes fi and only fi: 

(fn)K = Al+1 .fiP” and (Ml)K = Ml+1 .fi” (4.25) 

One deduces again, from factorizations (4.25), the linear recurrences (3.16) 
and the relations (3.17) on the generating functions. The generating functions 
p (x) and v (x ) read respectively: 

x (q-2)(1 +x2)-x 
P(X) = ( > 

l-x-x3 ' 

x q-3+(q-2)x2+x3 
Y(X) = ( > 

(l-x)(1 +x)(1-x-x3) 
(4.26) 

From Eqs. (4.24) and (4.26), it is clear that one has an exponential growth 
of exponents a,,, /I,,, p,, and u,. They grow like I” where L = 1.465571226 . . . 
is the largest root of z3 - z2 - 1. One remarks that some homogeneous poly- 
nomials, similar to the numerators, or denominators appearing in recurrences 
like (3.20), do satisfy some additional factorization properties: 

vi-hh), tfs-_L?.fi), t.fi-hh), (h-h.h), ui-hf7) 

chh-hh)~ uih-_Mi)~ thh-“kf5h), thfs-h_&h),‘~~ 

(hf6fiOh4 - hfsh2fl3 ), . ’ + (4.27) 
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The polynomials fn for class IV not only satisfy this additional factorization 
but actually satisfy, for arbitrary q, exact relations where the new polynomials 
(4.27) play a key role: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =o, 
h_h(-h5+fi2fl4) (-.hfifi2+f2hfiOhI) 

+fi f5 fs (f2 f6 fl0 fl4 - f4 f8 f13 fl2) (-f13 + fl0 fl2) = 0 

In fact, the fn’s do not satisfy simple recurrences like (3.20), but “pseudo- 

recurrences ‘: where products from fl to fn occur. One of these “pseudo- 
recurrences” can be written as follows: 

(fn+2 - fn-lfn+l) . fn-6 _&-lo fn-14 “’ 

(fn - fn-3fn-1) h-4 fn-8 fn-12 ’ ’ ’ 

fn (fn-1 fn-5 fn-9 .‘.I - (fn+l L-3 fn-7 ...I 

= fn-2 (fn-3 fn-7 fn-11 . ..) - Cfn-1 fn-5 fn-9 ...) 
(4.28) 

The polynomials occurring in the numerator and the denominator of the 
“pseudo-recurrence” (4.28) suggests the following recurrence on the Pn’s: 

P n+3- Pn_Pn+2 = 0 (4.29) 

This recurrence would have suggested, since the beginning, a 1 - x - x3 = 0 
singularity (see relations (4.24) and (4.26)). 

Though, one does not have recurrences on the fn’s but pseudo-recurrences 
such as (4.28), the previous variables xn (see (3.24)), which can always be 
defined, remarkably satisfy very simple recurrences (see the demonstration in 
Section 5.2). As for class I, the recurrences on the xn’s are independent of q: 

this independence will be understood in Section 5.2. One of these recurrences 
reads: 

&I+3 - 1 &+I -1 
= 

X,+2 Xn+4 - 1 Xn Xn+2 - 1 
. Xn &+3 

Studying the iteration of g in the q2 - l-dimensional space CP+,, one 
can show that these orbits actually belong to remarkable two dimensional 
subvarieties (given by intersection of quadrics in CPis [ 16]), namely planes 

(see Section 5.2.3 in the following and see also [ 161). Inside these planes, 
which depend on the initial point in the q2 - l-dimensional space (that is 
the initial matrix), the orbits look like curves for many of the trajectories 
(see [16]). 

(4.30) 
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The factorizations corresponding to the iterations of transformation K read 
for class V: 

{ 

fi = det(Mc) 

Ml = Kwfo) { 

f2 = det(Mi)/fPW3 

M2 = KM, >/fp-” 

A = detW2)/(fi .&q-3) f4 = det(M3)/(fiq-’ .h.&q-3) 

M3 = K(M2>l(f,4-4, M4 = K(M3,/(f;-2 f3”-4) 

The factorizations are now stabilized, yielding for arbitrary IZ: 

deWG+d = f,“-’ A+1 ~f,“,-,‘~fn+3 (4.31) 

K(Mn+2) = f,“-* . fn4;24. M,+3 (4.32) 

One notes that again, as well as fir classes I and III (see Eq. (3.9) ), the 
following factorizations, independent of q, occur: 

KWn+2) 
detUG+2) = fnsn+Y?2fn+3 

(4.33) 

Factorizations (4.31) and (4.32) yield linear recurrences on the an’s and 

P n’s: 

an+2 = (4-l)P,+P n+l + (4 - 3) Pn+2 + Pn+3 (4.34) 

(4 - 1) a,+2 = %I+3 + 4 (4 - 2) Pn + 4 (4 - 4) A+2 

The two generating functions (Y (X ) and /I (x ) read: 

(4.35) 

a(x) = 
q (l+ (q-3)x+x2+ (q-1)x3) 

(1 +x)(1-3x+x2-x3) ’ 

P(x) = 
(1 +x)(l_43xx+x2-x3) 

(4.36) 

Remarkably, similarly to what happened for classes I, II, III and IV , the 
right-action of K on the _&‘s, or the M,‘s, factorizes fi and only fi: the 
factorizations (3. lo), (3.11), the linear relations (3.16) on the exponents CQ, 
Pn, ,u,, and v,, as well as the linear relations (3.17) on the generating functions, 
are still valid fur class V. The two generating functions p (x ) and v (x ) read: 

x ((q-3)-2x-x3) 
P(x) = (1 +x)(1-3x+x2-x3) 



182 S. Boukraa et al. I Physica A 209 (1994) 162-222 

x (q-4+ (q-2)x2) 
y(x) = (1 +x)(1 -3x +x2-x3) 

(4.37) 

One notes that the roots of the denominator of a(x), p(x), /L(X) and v(x) 
are not on the unit circle. Thus one has an exponential growth of the complexity 
of the calculation since the degree of all the polynomials one deals with (that 
is the exponents (Y,,, P,,, ,u,, and v,) grow exponentially with n, like An with 
;z = 2.769292354 . . . * . For instance, expanding j3 (x ), one gets: 

/3(x) = qx + 2qx* + 6qx3 + 16qx4 + 45qx5 + 124qx6 + 344qx7 

+952qx8 + 2637qx9 + ... 

On this example, one sees that it is possible to have factorizations involving 
products of a fixed number of polynomials fn and, in the same time, an 
exponential growth of the calculations of the iterations. 

Again, one can study the iteration of g seen as a birational transformation 
in CP+, . These orbits look like curves in some domain of @P,z_, [ 161. For 
q = 4, these orbits can be seen to lie on a subvariety which is the intersection 
of twelve Plucker-like quadrics in @Pls and, more generally, at most, q* - 4 
algebraic expressions for q x q matrices [ 161. 

4.5. Class VI 

For class VI, the factorizations corresponding 
geneous transformation K read as follows: 

fi = det(%) f2 = det(M )/fi4-z 

Ml = KM01 M2 = K(M )/fiq-3 

to the iterations of the homo- 

h = detbW/(h .f2”-*) 

M3 = WW/(fP-3) 

$I = det(M3)/(Sp-* .fi .fp-‘) 

M4 = K(&)/(.h h)q-3 

.fi= 
det (M4 1 

fi.jpj-&y’ 
M = K(M4) 

5 (f2_hP3’ 

KWS) 
M6 = (fif3fsy-3 **I 

yielding the following “string-like” factorizations for arbitrary n: 

8 This value of 1 is the largest root of P(z) = -1 + z - 3 z2 + z3 (let us note the change 
x --t l/z). 
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Kmfn) = MI,l. (fn ’ fn-2 ’ h-4 ’ fn-6 ’ ’ Lf& )q-3 (4.38) 

where &, = 1 for n odd and &, = 2 for y1 even. 

det(K) = _&+I. jp * fn-1 . &y . h-3 . LT-2 *. . jp (4.39) 

where [,, = 1 for n even and [,, = q - 2 for n odd 9. 
Eqs. (4.38) and (4.39) yield the following simple “string-like” relation 

independent of q, which amazingly happens to be the same relation as for 
class IV (see Eq. (4.19) ) and the same relation as for class II for q 2 5 (see 
factorization (4.4) ): 

KU&,) A4 n+l 

deW4d = h 4 - fn4i+l 
(4.40) 

In fact, one notices the occurrence of “string-like” factorization relations (like 
(4.39) or (4.40) ), instead of factorizations with a fixed number of polynomials 
( see relations (3.10), (3.11), or (3.8)), for the two classes IV and VI, for 
which the transposition permutes entries belonging to the same column or to 
the same row, but also for class II (for q 2 5)) the transposition of which 
involving two rows and two columns. 

Eqs. (4.39) and (4.40) also yield the following linear recurrences on the 
CY,‘s and Bn’s: 

an = Pn+l + (4 - 2, Pn + Pn-I 

+(4-2)Pn-2+Pn-3+ (4-2)Pn-4+...+CnP1 (4.41) 

and 

4 (81 + P2 + .*. + Pn+l) = an + QIn+l 

Introducing the “odd” and “even” generating 

and Bodd (X ), seven (X ): 

C&,&(X) = a] x + a3 x3 + a5 x5 + “., 

aeven (X 1 = a() + a2 x2 + a4 x4 + . . . 

and similarly: 

Dodd(X) = plx + /33x3+ pSx’+ “‘9 

Beven(x) = PO + P2X2+ /34X4+ “’ 

(4.42) 

functions a,dd (X), C&e, (X) 

One deduces from (4.41) the following relations on the partial generating 

functions aeven (Xl and aodd (Xl, Beven(x) and Bodd(x): 

9 Note that one has no factorization for q = 3 for K (Mn ). 
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aeven = & ’ ((4 - 2) Peven(X) + p0d:(x) )) 

%fd(X) = & . ( (4 - 2) Poddb) + peue;(x) 1) 

yielding on the generating functions ~1 (x ) = aeven (x ) + aodd (x ) and p (X ) = 

Seven (X ) + Dodd (x ) : 

1 
a(x) = -. 

1 -x2 ( (q-2) P(x) + L!$L)) 

One also recovers (4.8) or (4.23) from relation (4.42): 

4 P(x) 
~ = (l+x).a(x)-q 
(1 -x) 

Then, the generating functions (Y (x ) and p(x) read: 

a(x) = ;1y-&-jyj’ P(x) = ““1 (12-xx) 

(4.45) 

(4.46) 

(4.47) 

Similarly to what happened for all the other classes, the right-action of K 
on the fn’s, or the M,,‘s, factorizes fi and only fi: the factorizations (3. lo), 
(3.11), the linear relations on the exponents a,, Pn, p,, and vn (3.16) as well 
as the linear relations on the generating functions (3.17) are still valid fur class 
VI. In particular one still has the two functional relations: 

((cl- 1)x- l).P(x) = qxpL(x) -4x, 

((q-1)X-l).Q(X) = q2xv(x)-q (4.48) 

yielding the following expressions for y (x ) and v (x ): 

,u(X) = 
(q-2- (4- 11x1 x (4 - 3) x 

1-2x ’ v(x) = (1+x)(1-2x) 
(4.49) 

Since z = l/x = 2 is the only root of all these generating functions which 
is not on the unit circle an, Pn, @ n and vn clearly grow exponentially like 2”. 
For instance /J (x ) reads: 

P(x) = qx 1 + 2 2”x”+l (4.50) 
n=O 

Let us also note, for example, that p,,+ 1 = 2 ,uUn (for n 2 2 ). The fact 
that “string-like” factorizations occur is, at first sight, not compatible with 
the existence of simple recurrences on the fn’s like (3.20) where products 
of a fixed number of _&‘s occur. Actually, we have not been able to find 
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any simple recurrences on the fn’s lo One should however note the following . 

point: expressions, similar to the numerators or denominators appearing in 
recurrences like (3.20), do satisfi some nice additional factorization properties, 
which enable to introduce new polynomials fn’), fn(*), fnC3), fnt4): 

fd” = (f4 -f,‘), Jj(i) = (fs -_G2)lfi, fB” = (f6 -fs2)l(fifi), 

f?(l) = (A -&2)l(fi2f2f3)? fs(l) = (fs -f7*)l(fi2f2*.U)? 

f5(*’ = (fs - f,f,‘), &(*) = (f6 -“&6*)lfi> 

Jr(*) = (f7-fsfs2)l(fif2)> fgC2) = (fs-f7fs2)l(fi2f2f3), 

.P3’ = (fs -f4’)/fi, 

;w 

h(3) = (f7 -fp)l(fifi), 

= (fs -fQ’,lcfi*M3)~ 

ffC4) = (f7-f4lw-l, .** (4.51) 

Moreover, there does exist other additional factorizations. For example the 
following polynomials do factorize but their factors are not the polynomials fn, 
and not even the new polynomials (4.5 1): 

h(5) = (fif4 - _A*fi )> f,(5) = 0% - f4*fif2), 

f/5) = (f4f6 - .&*fiJS ), 

fq(@ = (Xl -AU), f5@) = (ss -fiU&), 

f’@ = (s6 - fifif3_6fs) ” ’ 6 9 (4.52) 

However, though the situation seems very similar to the one encountered for 
class IV (see Eqs. (4.27) ), we have not been able to find pseudo recurrences 
like (4.28), neither recurrences on the x,‘s. These factorizations (4.51) and 
(4.52) suggest the following linear recurrences on the /?,,‘s only valid for n 2 2: 

P n+1-2Pn = 0, Pn+*-Pn+1-2Pn = 0 (4.53) 

B n+l = P1+P*+.-.+Pn (4.54) 

For n = 1 one has /3i = & 
From relation (4.54), one gets: 

/3(X) = * + qx 

= q which is not in agreement with (4.53). 

(4.55) 

which is satisfied by the exact expression of /3(x), namely Eq. (4.47). 

loOne may also think, at first sight, that such unpleasant “string-like” factorizations rule out 
any possible polynomial growth and automatically yield exponential growth: in fact this is not 
true [15]. 
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Many more compatibilities between linear recurrences on the exponents 
and factorizations (4.38), (4.39), (4.40) or “additional” factorizations (4.51) 
and (4.52) can be verified. In particular, despite the fact that the iteration 
corresponding to class VI seems to be involved, it is nevertheless possible to 
associate to these iterations recurrences bearing on a fixed number of variables 
including the variable x,, (see Section 5.2 in the following). 

Again, one can study the iteration of d seen as a birational transformation in 
@P,z_, . For q = 4 these orbits look like curves in some domain of CPis [ 161. 
In fact, these orbits can be seen to belong to a three-dimensional subvariety 
which is the intersection of only twelve Pliicker-like quadrics in @Pls and more 
generally the intersection of, at most, q2 - 4 algebraic expressions in @P,z_, 
for q x q matrices [16]. 

5. Demonstration 

Let us prove here all the results given previously, in particular the factoriza- 
tion results and the existence of recurrences on a fixed number of variables and 
sometimes, on a single variable. 

Let t denote the transposition exchanging mi,j, and mi,j,. Let P be a fixed 
matrix associated to t, for which all entries are equal to zero, except the two 
entries which are permuted by t: 

Pi,j, = 1, Pi2jz = -1 (5.1) 

do will denote the difference between the two entries miZj2 and mi,j,: 

A0 = milj* - mi,j, (5.2) 

dl denotes the difference between the two entries g (R4)iZj2 and g (R4) i,jl, 
and generally A, denotes the difference between the two entries En (R,)i,j, and 
gn (Rq)i,j,. With these notations transposition t reads on a generic matrix R,: 

t(R,) = R, + Ao.P (5.3) 

Replacing in (5.3) matrix R, by matrix I^(R,), the inhomogeneous trans- 
formation R, can also be seen as a “deformation” of the matricial inverse 
T: 

k(R4) = I^(R,) -Al .P (5.4) 

Noticing that: 

Ao(%W) = -do&R,)) = -Al (5.5) 
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Let us introduce matrix U = R, . z (R4), which is, by construction, close from 
the identity matrix. We will first assume that j, # j2 (and of course it # i2 
I1 ). 

U = Id,-AIR,-P = 

-1 0 *** 0 -Al mli, 0 ...... 0 A, mli, 0 ...... 0 

0 1 ... 0 -Al m2i, 0 ...... 0 Almzi, 0 ...... 0 
. . ..... : ........ 

0 .: . 0’ ; -Alm(j,_l,i, 0 

...... : 

...... 0 Almcj,-l)i, 0 ...... 0 

0 ...... 0 1 -Almi,i, 0 ...... 0 Almj,i, 0 ...... 0 

0 ...... 0 -Almcj,+l)i, 1 0 ... 0 Alm(j,+I)i, 0 ...... 0 

0 ...... 0 -Alm(i,+2)i, 0 1 ... 0 Alm(j,+2)iz 0 ...... 0 

: : ..... ...... ... .: : ...... : 

0 ...... 0 -Alm(j,_l)i, 0 0 ... 1 Alm(j,_l)i, 0 ...... 0 

0 ...... 0 -Almj2i, 0 ...... 0 1 + Almj,i, 0 ...... 0 

0 ...... 0 -Al m(j,+I)i, 0 ...... 0 Al m(jz+1)i2 1 0 ... 0 

0 ...... 0 -Al m(j2+2)i, 0 ...... 0 Al m(j2+2)i2 0 1 ... 0 

: ...... : : :* ... ...... : ... .: 

0 ...... 0 -Al m4i, 0 ...... 0 Al m4i2 0 0 ... 1 

(5.6) 

This expression of U gives, at once, the determinant: 

det(U) = ~0 = (1 -Al mjli,) (1 + Al mjziz) + Afmj,i, mj,i, 

= 1 + (mjg, - mj,i, ) Al + (mjli2 mjzi, - mj,i, mj,i,) AT 

= 1 + ToAl + NoA; (5.7) 

where NO = (mj,i, mj,i, - mj,i, mj,i, ) (that is the 2 x 2 minor corresponding 
to rows jt and j2 and columns il and i2 of matrix R4) and 7i, = mjziz - mj,il 
(TO corresponds to the difference of the two entries exchanged by t for the 
transposed matrix). One is now able to easily calculate the second step of the 
iteration: 

k2(Rq) = t&&R,))) = t(I^(U).R,) (5.8) 

where f(U) also differs from the identity matrix by the two columns jt and 
j2. Each entry of these columns is the ratio by x0 of a polynomial quadratic 
in Al. Let us calculate explicitly I^( U) as a polynomial in Al. From relation 
(5.6) one directly gets: 

‘I If il = iz one can choose another element of the same class, which satisfies j, = j,. 
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f(U) = 2 A,"(Rq.P)" (5.9) 
n=O 

Matrix (Rq . P) being of a quite simple form, it is easy to calculate its minimal 
polynomial which reads: 

X . (x2 + Tax + NoI (5.10) 

One can thus obtain the expression of the matrices (Rq . P)" in terms of (Rq . 
P)*, of (Rq . P) and of the identity matrix. After straightforward calculations 
one gets: 

I^(U) = zd + “(’ ;oToA1) . (Rq .P) + $ (Rq.P)2 (5.11) 

Let us now revisit these equations when ji = j2 = j (or equivalently 
ii = i2), that is for classes IV and VI. In this j, = j2 = j case, U reads: 

-1 0 ... 0 Al (mli2 - mli,) 0 ... ... 0 

0 1 ‘*.O Al (nz2j2 - rr~~~,) 0 ... '.. 0 
..\ . \ 
. :. . . . . . . . . 
(j .: . 0 1 . 

: : 

Al (WZ(j_l)i2 -m(j-l)i,) 0 ... ... 0 
u= O...... O 1 + Al (mji2-mji,) 0 ... '.. 0 

0 . . . . . . 0 AI (m(j+l)i2 -m(j+l)i,) 1 0 ..' 0 

0 . . . . . . 0 AI (m(j+2)iz - m(j+z)i,) 0 1 '** 0 

: . . . . . . : :' *. : 

-0 . . . . . . 0 Al (mqil - mqi,) 0 ;..:; 

This expression of U gives at once the determinant: 

det(U) = xo = 1 + Al (mji2 - mji,) 

= I + ToAl (5.12) 

where TO = rniiz - mji, (To still correspond to the difference of the two entries 
exchanged by t for the transposed matrix). Eq. (5.11) becomes: 

I^(~) = jyd + $(&‘P) (5.13) 

Relation (5.8) is still valid and enables to calculate the second step of the 
iteration. 

Let us now give a proof of the factorization properties for the various classes 
defined in Sections 3.2 and 4. 
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5.1. Demonstration of the factorizations 

The demonstration of the factorizations has been done for class I in [ 141: 
we will here just recall (and generalize to all the other classes) the main steps. 

Factorization properties are obviously associated with the homogeneous ma- 
trices K” ( R4) (instead of matrices Kn (R, ), which do not have polynomial 
entries) : 

K(R,) = det(R,) .g(Rq) 

K being a homogeneous transformation of degree q - 1, one obtains: 

K2(Rs) = x0 det(R,)q-2 .K2(Rq) (5.14) 

Let us first study classes I, II, III and V for which ji # j2 and il # i2. 
Eqs. (5.8) and (5.11) give the form for xcK2(Rq). One remarks that its 
entries are polynomials in the entries of the matrix R, and quadratic in di. 
The definition of di straightforwardly shows that its denominator is det (Rq ). 
Thus matrix K2 (R, ) reads: 

d2(Rq) = M2 
x0 .dettRq)2 

(5.15) 

where M2 is a matrix with polynomial entries. Eq. (5.14) thus proves the first 

step of the factorization: 

K2(Rq) = det(Rq)q-4.M2 (5.16) 

A similar demonstration can be performed on det (K (R, ) ) and yields: 

det(K(R,)) = x~.det(R,)~-~ (5.17) 

The expression of xc, namely (5.7), is also quadratic in dl. One thus has the 
following factorization: 

det(K(R,)) = det(Rq)q-3 .A (5.18) 

As far as classes IV and VI are concerned, fir which j, = j2 or il = i2, x0, as 
well as the entries of matrix xog2(Rq), given by Eqs. (5.8) and (5.13), are 
polynomials in the entries of the matrix R, and linear in di . Matrix K2 (Rq ) 
reads: 

g2(Rq) = M2 
x0 . det(R,) 

(5.19) 

where A& has polynomial entries. Eq. (5.14) thus proves the first step of the 
factorization: 
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K2(Rq) = det(R,)qe3 . Al2 (5.20) 

From relation (5.17) one also gets: 

det(K(R,)) = det(Rq)qP2 .fi (5.21) 

Notice that factorization (5.16) is only valid for q > 3, and (5.18) for q > 2, 
while (5.20) is valid for q > 2, and (5.21) for q > 1. 

Considering successively the explicit expressions of Kn (Rq ) and of their 
determinants, one notices that there are further factorizations (see for instance 
Eq. (3.8) 1, that could be obtained the same way. However these further 
factorizations depend on the class one considers. We will thus just assume 
these factorizations (however the first steps of the factorizations have been 
strictly obtained by formal computer calculations and their general form has 
been proved recursively in [ 141). Their generic form reads: 

fn(K) =fi’“” .fn+l 

det(M,) =fj21..f;-‘n-‘.f;Jn-2...f~~l.fnZll.fn+, 

( > Mn K 
=fiv” .Mn,l 

K(M,) = M,+i . jy” . f?-’ . f3u,-2.. . f,“_T, . f,“l 

with the following relations between the different exponents: 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

vn+l =(q-l)hz+~n+l- (UlPn + UZPn-1 + ... + &PI) (5.26) 

i&l+1 = %+I + 4vn - (GIPI + un-lP2 + ... + PnV) (5.27) 

Moreover, it can be shown that (5.25), the factorization relation on K (Mn ), 
necessarily yields relation (5.23), the factorization of the determinant (and 
also the inequalities w,, 2 1 + un when u,, # 0). The left factorizations, (5.23) 
and (5.25), and the right factorizations, (5.22) and (5.24), are equivalent 
when assuming (5.26) and (5.27). The proof is given in [ 141. 

5.2. Demonstration of the recurrences 

Let us briefly sketch the demonstration of the existence of recurrences 
independent of q (like recurrences (3.25) or (4.30) ), on afinite set of variables 
including variable x,, (Eq. (3.25) ). 

Such a demonstration has already been performed for class I in [ 141. 
Therefore one will not recall this demonstration but one will only sketch 
the demonstration for the other classes. 

5.2.1. Demonstration of the recurrences for class II 
In order to represent class II, let us take the transposition t exchanging ml2 

and m34. Definition (5.2) now reads: 
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do = L&134- [&I12 = ~23~ - ~2~2, relation (5.1) becomes: 

-010 0 . . . 
000 0 . . . 

p= 000-I . . . 
000 0 . . . 
. . . . . . . . *. 

(5.28) 

. . . . . 

and Al reads: 

Al = um,H34- [mqH12 = mqH12 - [I^&)134 

Here matrix U = R, . ff (R, ) reads: 

(5.29) 

i 0 0 1 l-LflWZ2l -dlrnl, 741 m31 0 0 1 d,rnl3 Al?7223 Al m33 0 0 0 0 0 0 . . . . . . . . . 
0 0 1 0 0 . . . u= -A, m41 + Al m43 
. 
: -A, rn5l : Alms3 1 0 . . . 

This transposition involving two columns (and two rows), the determinant 
x0 of matrix U is given by relation (5.7), as a quadratic expression of Al: 

det(U) = x0 = 1 + T,dl + Nod: 

where NO = (m4, rn23 - m43 m21) and TO = rn43 - rnzl. 
Relation (5.11) yields: 

(5.30) 

x0 A Ml 1721117143 + ml1 -Al m41 m13) 0 

0 1 +4 11143 0 

0 4 (4 17231 m43 + m31 - Al 17133 17241) x0 

0 4 m41 0 

-4 

Al 

(4 ml1 m23 - 4 m13m21 + ml3) 0 0 
-4 m23 0 0 

(4 m33 m21 - m33 - 4 m23 %I) 0 0 
1 - 4 m21 0 0 

-4 m53 x0 0 

0 x0 

. . . 

. . 

(5.31) 
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Matrix g2 (RQ) is obtained from relation (5.8). Its explicit form is quite 
involved, and will not be given here. 

We will just concentrate on a fixed finite number of variables, enabling to 
understand the evolution of To, No and de, the action of g2 preserving this 
set of variables. Namely R2 transforms the following variables as follows: 

x0 

m23 
m23 + -, 

x0 

rndl ---f w, 
x0 

m43 + 
m43 +4N0 

x0 

From (5.32) one gets the equations: 

(5.32) 

T _ To + 241 No 
2- 

x0 ’ 

N2 = 
No-AlNo(m2l-m43) +A:@ _ Not1 +AITo+A~No) No 

x02 
- 

x02 
=- 

x0 

(5.33) 

Let us introduce the two variables: 

Fo = ml1 m22 <2> + m33 m,<,2> - ml3 m,<,2’ - m31 m2,2> (5.34) 

GO = rn22 m Ff’ + m44 m;32’ - m42 m$’ - rnz4 rn$> (5.35) 

where rnG2’ denotes the entries of matrix g2 (R4 ). These two variables happen 
to be equal. As a consequence of this remarkable equality, 42 satisfies the 
following relation: 

42 + do ~ = F. = Go = Fo + Go 

Al 
2 (5.36) 

One thus has to calculate the action of g2 on many new entries m,,p 
occurring in the right-hand side of (5.34) and (5.35). Remarkably this action 
is the same on all these m,,p’s, namely: 

m,,b -+ mz,y = 
m,,p + Al pd”“’ 

x0 
(5.37) 

where the Pi”,“’ s are 2 x 2 minors, which, remarkably, also transform similarly 

under R2: 
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pbJ9 ~ 
pW) 

0 
p’“Z) _ 0 

2 
-- 

x0 

yielding: 

x2 . m$ = m2,,2a’ 9 - m,,p -!?- 
x04 

193 

(5.38) 

(5.39) 

From relation (5.39) one can get the action of k2 on (Fo + Go)/2: 

Fo + Go F2 + G2 AI +A3 E _ 43 Fo + Go 

2 + 2 = -2 ~ 
x24 ~0x24 2 

(5.40) 

where EO = ml1 rn22 + rn33 rn44 - ml3 rn42 - rnsl m24, the other &‘s being 
deduced from EO by the successive right-action of k2. 

Recalling Eqs. (5.36) one gets: 

(An+2 + An+41 + An+3 (An + An+21 _ Wn+2 Un+l + An+3)) = o 

A n+3 A;+, xn x,+2 xn+2An+1 

(5.41) 

One also needs the right-action of g2 on Eo. It can be deduced from relation 
(5.39): 

x,+2 En+4 _ (An+2 + A;+41 1pn+1 + An+31 

n+l n+3 

A n-k3 A En n+3 (An+1 + &+3)Un + An+21 

-A 
~- = o 

ntl %I x,+2 A n+l xn 4+1 

(5.42) 

Eqs. (5.41) and (5.42) enable to eliminate the E,‘s. Introducing the well-suited 
variables S,, = A,,+JA,, one gets: 

&+4&+6 (1 + ht+6) @+5 (&I+4 + 1) 

1 + &+5 + &+4 (1 + hI+5) 

6 n+5 t1 + &+3) t&+4 + 1) - 

6 n+4 

E+3hl+5 (1 + &+2) 

-&+2 &+4Xn+2 &+4 (1 + an+1 I 

6,3+3&+5 @+l (&I + 1) 

-an &+2 &+4 Xn Xi+2Xn+4 (1 f &+1 I 

a2 6 + n+3 tl+5 t1 + &+3) t1 + &+2) 

&+2 &+4-%+2 Xn+4 = O 
(5.43) 
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Finally, coming back to Eqs. (5.30) and (5.33), one can eliminate the T,,‘s 
and Nn’s, and get, with the same variables &‘s, another relation between the 
x,,‘s and the 6,‘s: 

(&+4 - 1) _ (-Gl+z- 1) (1 + &+l) (1 + At+31 

6 n+3 &+2 ) 

= 
x,+2 

x 

( 

(x72- 1) _ (&I - 1)) 
(5.44) 

n+l &I 

One can in principle eliminate x,, between (5.43) and (5.44): it yields 
“huge” calculations. In contrast the elimination of S, seems out of range. 

Let us just note that, though such a system of recurrences is quite involved, 
one can however get some finite order conditions for these recurrences of class 
II, namely the orbits of order three and four: 

- order three: 

x?l &+I x,s 

- order four: 

.2-l =O, or 1 + Al+1 + b&f+1 = 0 (5.45) 

&xn+2-1 = 0, or S,&+,+l = 0 (5.46) 

5.2.2. Demonstration of the recurrences for class III 
One will just sketch here briefly the demonstration of the recurrences for 

class III. Let us represent class III, with transposition t exchanging ml2 and 
m31. Then (5.2) reads: do = [Rq]3r - [&Ii2 = m31 - m12, and matrix P 
defined by (5.1) becomes: 

‘0 100...- 
0 ooo... 

P= -1 ooo... 
0 ooo... 
. . . . . . .:. . . . . . 

(5.47) 

di reads: 

Al = mRqH3, - [mq)112 = [I^(&)1*2- [I^(&)131 (5.48) 

Here matrix U = R, . d (R4) has a simple form similar to (5.30). The 
determinant x0 of matrix U is again given by Eq. (5.7), namely: 

c-let(U) = x0 = 1 + ~~~~ + NEAL (5.49) 

with NO = (ml1 rn23 - ml3 rn21) and TO = ml3 - mll. 
Thus one can calculate the explicit form of I^(g (R, ) ): 
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x0 .?-@(R,)) = 

ml1 m21 + Al (ml1 m22 - ml2 wl) 
m2l - Al NO m22 + 4 (ml3 m22 - ml2 m23) 

m31 + 4 (m31 ml3 - 11133 mll) W 

w3 + 4 NO . . . 

m23 . . . 

m33 + 4 (m31 m23 - m33 m21 I . . 

. . 
I 

(5.50) 

where 

20 = m32xO + Al [m22 (m31 + Al (m31 ml3 - m33 mll)) 

--ml2 b33 + Al Cm31 m23 - m33 m2l) I I 

Matrix k2 (&) is obtained permuting entries ml2 and rn31 in relation (5.50). 
This yields the following expression for AZ: 

A2 = -A0 + 4 (ml1 m22 - ml2 m21 + m33 ml1 - m31 , ml31 

x0 
(5.51) 

Let us denote PO the expression appearing in the right-hand side of AZ: 

PO = ml1 m 22 - m12m21 + m33m11 - m31 ml3 

Similarly NO, TO and PO transform, under K2, as follows: 

(5.52) 

To --f T2 = 
To + 241 No 

x0 ’ 

PO + PO P2 = --A2T2 
x0 

(5.53) 

Since these results have been calculated on a generic matrix R,, they can be 
applied successively on each matrix En (R4) and thus all the equations given 
above are actually recurrence relations. The expressions of R(R, ) and g2 (R4) 
again allow us to prove the recurrence on X~‘S and A,%. 

Introducing the well-suited variable 6,: 

& = +z (5.54) 
n 

and eliminating Nn’s, T,,‘s and P,,‘s, one gets the following relations on the X~‘S 
and 6,‘s: 

xnxn+2xn+4 + &&+2&+4&+1 -&+2x11 -&&+2&+1 
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-&I &,3Xn+2 - 2x11 an+3 X,+2 &+I + Xn &,3 + 2X, &+3 &+I 

-#+3d”+l XnXn+z + 6,2+34+l Xn + 4?+3 $+,Xn 

+4+3#+1xn - 6 a2 n+3 n+l -s;+3s;+, = 0 (5.55) 

and 

6 n+l (4l+lhI + 4z+l + 1) 

xnxH+2 = dn (c&+2 &,I + 4l+2 + 1) 
(5.56) 

In order to write down this last equation in a more handable way, let us 
introduce a new variable R,: 

R, = ’ + ‘n+;+ sd,+, (5.57) 
n 

With these new variables R,, Eq. (5.56) read: 

&I 
XnXn+z = - R 

(5.58) 
tl+l 

From this last equation one can get x,,+2 in terms of x,, as well as xn+4 
in terms of x,+2 (and therefore of x,). Let us use, in Eq. (5.55), these 
expressions of xn+2 and x,+4. Remarkably one obtains x, as a function of the 
&‘s. This expression of xn takes a very simple form when introducing some 
new variables Q,,: 

Qn = 
1 + b+l + &+141+3 + &&+I + 4141+142+3 + ~n~n+l&+2&+3 

&%I+1 

x,, reads: 

X 
Rn+3 Qn 

n = 
&+I Qn,, 

One straightforwardly obtains x,+2 shifting n by two in Eq. (5.60): 

Xn+2 = 
Rn+s Qn+2 
&+3 Qn+3 

One can now get the product x,x,+2 from (5.60) and (5.61): 

XnXn+z = 
Rn+s Qn Qn+2 

%+I Qn+l Qn+3 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

The two equations (5.58) and (5.62) yield an algebraic relation between the 
&‘s, namely between S,,, a,,+,, . . . ,dnn+6: 

Qn+l Qn+3& - Qn Qn+2Rn+5 = 0 (5.63) 

This relation can be written in terms of an invariant expression, yielding a 
first integration: 
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Qn+l Qn+3 Qn Qn+2 

R %,+2&+3 &+4&+5 = R, &+I &+2 Rn+3 Rn+4 = 
1 (5.64) 

n+l 

Similarly to what has been recalled in Section 3.2, the first finite order 
conditions for the recurrences of class III happen to be simple relations when 
written in terms of these new variables R, and Qn. These finite order conditions 
read respectively for order three, four, live, six and eight: 

R, = 0, R, = 1, Qn = 1, Qn = R,+l and Q,, = 0 (5.65) 

5.2.3. Demonstration of the recurrences for class IV 
Transposition t for class IV permutes two entries of the same column (or 

of the same row). Let us, for instance, represent class IV by transposition t 

which exchanges ml2 and m32. 
One has A0 = [Rq] 3 2 - [ R4] 12 = ~~32 - ~212, and matrix P reads: 

-0 1 0 0 . ..- 
0 0 oo... 

p= o-100... 
0 0 oo... 
. . . . . . .:. . . . . * 

dl(Rq) still denotes do(R(R,)): 

(5.66) 

Al = @(R&32 - [&Rq)l12 = [I^(Rq)112 - [I^(&)132 

Recalling relation (5.12), the determinant of matrix U reads: 

(5.67) 

det(U) = x0 = 1 + Al To (5.68) 

where To = m23 - ~221. One has the following explicit form for k2 (R, ) yielding 
42 and T2: 

11111 -AI (ml1 m23 - m21 ml31 x0 m32 -Al m22 (m31 - m33) 

m21 m22 
1 - m31 -4 tm31 m23 - m21 m33) xo ml2 - Al m22 (ml1 - ml31 

x0 m41 - 4 (m41 m23 - m21 m43) xo m42 - 4 m22 (m41 - m43) 

ml3 - Al (ml1 m23 - m21 ml31 xo ml4 - 4 m24 (ml1 - ml3) . . . 

m23 m24 . . . 

11133 - Al (m31 m23 - m21 m33) xo m34 - 4 m24 (m31 - m33) . . . 

m43 - Al (m41 m23 - m2l m43) xo m44 - 4 m24 (m41 - m43) . . 
1 

(5.69) 
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42 = Al m22 (m33 - m31 + ml1 - m13) + m32 _ m12 

x0 

= 4 m22 (m33 - m31 + ml1 - ml31 _ A 

x0 
0, 

T, = $ (5.70) 

Similarly, one can write how various quantities such as (rnzl - m23) , m22, 
(ml1 - rn13) and (m33 - m31) transform under z*: 

m22 
m22 

+-9 
x0 

m33 - m31 + 
m33 - m31 

x0 ’ 

w3 - ml1 + 
ml3 - ml1 (5.71) 

x0 

These various quantities can easily be eliminated, yielding: 

(44 + 42) x2 = (42 + do) 

43 xoA1 

and 

x2 = 1 + 43 bo - 1) 

Al xo 

Let us now introduce a new variable S,,: 

6, = !!jG 
n 

Eqs. (5.72) and (5.73) respectively read: 

6 &l (&I+2 - 1) 
n+l = 

xn - 1 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

an+2 + 1 1 + &I 

6 
(5.76) 

n+l = &&l+z& 

Eliminating the variable 6, in relations (5.75) and (5.76), one recovers 
recurrence (4.30) bearing on a single variable xn: 

J&+3 - 1 x,+1 - 1 
= 

x,+2 &I+4 - 1 %I x,+2 - 1 
. &I &I+3 (5.77) 

Eliminating the variable x,, in Eqs. (5.75) and (5.76), one aho gets a 

recurrence bearing on another single variable: 

(&I + 1) (&+I + 1) (&I+3 + 1) (&+4 + 1)&+2 

= 6 n+3 (8, &+2 + 2 &l + 1) (&+4 &I+2 + 2&+2 + 1) (5.78) 
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One can now study finite order orbits. They read respectively for order four 

and order six: 
_ orbit of order four: 

&&+2-l = 0 (5.79) 

and 

1 + &I + J&l+1 - &&I+1 = 0 

that is: 

(5.80) 

&&+l + srl - &,l + 1 = 0 (5.81) 

_ orbit of order six: 

&+1&+4-&h+3 = 0, or xflxn+2-h+l =O (5.82) 

5.2.4. Demonstration of the recurrences for class V 
Let us represent class V, by transposition t exchanging ml 1 and mz3. Then 

(5.2) reads 

A0 = [&I23 - [&Ill 

-10 0 o..: 
0 0 -1 0 . . . 

p= 00 0 o... 

00 0 o... 
. . . . . 
. - * * *. _.. . . 

Moreover dr reads: 

= rn23 - mll, and P given by (5.1) becomes: 

(5.83) 

dl = [g(&)]23 - &&)I1 1 = [I^(&)11 1 - [I^(&)123 (5.84) 

This transposition perturbing two columns (and two rows), x0 is a quadratic 
expression in terms of Al and reads: 

det(U) = xc = 1 + ToAl + Nod: (5.85) 

with NO = (m31 ml2 - ml1 m32) and TO = m32 - m11. 
Relation (5.11) yields: 
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X~.T(U, = 

1 

AI m32 + 1 0 
Al (A1m~m32 + m21 -Alm~mz~) xo 

4 ml 0 
-Al (Al m3l m42 -Al m41 m32 - m41) 0 

-A~mlz 0 
Al (Almz2mll-m22-A1m2lml2) 0 . . . 

1 - 4 ml1 0 . . 

: I 

Al (Alm42mll -m4z--A~m41mn) xo . . . 
(5.86) 

. . . . 

Matrix g2 (I&) is obtained from relation (5.8). Its explicit form is quite 
involved, and will not be given here. 

We will just concentrate on a fixed number of variables, enabling to under- 
stand the evolution of To, No and de, the action of k2 preserving this set of 
variables: 

ml1 + 
ml1 -4No _A 

2, 
x0 

ml2 + T, 

m31 
m31 --+ -9 

x0 

m32 + m32 
<*> = m32 + Al NO 

x0 

(5.87) 

From (5.87) one gets the following equations: 

T 

2 
= To+241No 

+ A2 (5.88) 
x0 

Finally, coming back to Eqs. (5.85) and (5X3), one can eliminate the Tn’s 
and get the following equation: 

1 -x,+2 1 - xn -_ A N, 0 
A n+3 xn &+I 

+ An+2 - &+3Nn+2 - J+-- = (5.89) 
Xn 

On the other hand NO transforms as follows: 

N 
2 

= NoU+AlTo+A:No) No 

4 
+ A2 rn3<22> = xo + hm$' (5.90) 

From (5.87) and relation (5.90) one can eliminate the m$f>‘s 

N n+4 1 1 

A A ni3 n+4 
A + A 

n+3 ni4 n+2 n+3 
A x,-:2 

and get: 
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+ Nl = 
xn x,+2 An+3 An+2 

0 

Moreover An+2 satisfies the following relation: 

xnAn+z + An 

A 
- Nn - Pn - Qn + A,+1 R, = 0 

n+l 

where: 

(5.91) 

(5.92) 

(5.93) PO = det(M,), Qa = det(&), Ro = det(M3) 

with: 

ml1 ml2 ml3 

[ 1 ~21 m22 m23 (5.94) 

m31 m32 m33 

Q n+2 -- f; + An;;Rn = 0 (5.95) 

R Rn An+zNn 
n+2 -- + 

Xn Xn 
+ An+zPn+z = 0 (5.96) 

P Pn An+1 Rn 
n-+2 -- + 

&I &I 
+ 2 - Nn+2 = 0 (5.97) 

One directly gets from relations (5.95) and (5.97) a covariant expression, 
enabling to easily eliminate one variable: 

Q,,+2 + Nn+2 - Pn+2 = Qn +xT -‘n (5.98) 

The elimination of the variables P,, Q,, and R, in this set of recurrences 
((5.92), (5.95) and (5.96), (5.97)) can be performed and yield a third 
equation between the x~‘s, An’s and N,‘s (the two other equations being 
(5.89) and (5.9 1) ). The elimination of the N,‘s yield two equations, relating 
the x,‘s and the An’s, of the form: 

A + B, ‘XII + Cn .XnXn+2 + Dn .XnXn+2Xn+4 

+En ‘xnxn+Zxn+4xn+6 = 0 (5.99) 

and 

Fn + Gn .Xn + Hn ‘XnXn+2 + In ‘XnXn+ZXn+4 + Jn .XnXn+~Xn+4Xn+6 

+Kn 'xnxn+Zxn+4xn+6xn+8 = 0 (5.100) 

where the A,, B,,... , K,, are polynomials in terms of the A,‘s. One can, in 
principle, eliminate the x,‘s to get an algebraic relation between the An’s only. 
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The coefficients of these last two equations are too involved expressions to 
enable to perform such an elimination. 

Let us just note that, though such a system of recurrences (5.99) and (5.100) 

is quite involved, one can however get some finite order conditions for these 
recurrences of class V, namely the orbits of order four: 

A n+~ An+2 + &+I An + &+2&+3 + An+3An + An+lAn+dnAn+2 = 0, 

or x,+2xn - l=O (5.101) 

5.2.5. Demonstration of the recurrences for class VI 
Let us now consider a transposition of class VI. It permutes two entries in 

the same column, or row. Let us take for example a transposition perturbing 
only one row: t denotes the transposition exchanging the entries ml1 and ml2 
of matrix R,. A0 now reads: A0 = [R4]2 I- [I&] 11 = ~221 -mll, and P denotes 
the following matrix: 

-1 -1 0 0 . ..- 
0 0 oo... 

p= 0 0 oo... 

0 0 oo... 
(5.102) 

. . . . . . .:. . . . . . 

For this transposition TO = ~~12 - ml 1, and since t perturbes a row (and 
not a column as in the previous demonstration) matrix U will denote: U = 
i (R, ) . R, which reads (instead of U = R, . k (R, ) ): 

U = zd, - Al (P . Rq) 

The action of I^ on U reads: 

(5.103) 

r(u) = zd, + A’ ’ (K4 “1 
x0 

(5.104) 

and Eq. (5.8) becomes: 

k2(R,) = t(I^(g(R,))) = t(R,.F(U)) (5.105) 

From relations (5.103), (5.104) and (5.105) one gets the explicit form of 

z2 (R, ), namely: 

w (m13-dlQo) . . . 

(m22 - 4 PO) (m23 - 4 Qo) . . 

rn32xo + AI rn31 (ml2 - m22) m33xo + 4~1 (ml3 - m23) . . . 
. . .I 

(5.106) 
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where PO and Qc read: 

PO = mtt m22 - ml2 m2b 

From definition (5.12), x0, 

x0 = I+ AlTO 

One thus gets the following 

Qo = ml1 m23 - ml3 m21 

the determinant of matrix 

action of k2 on a finite 

203 

(5.107) 

U, reads : 

(5.108) 

set of homogeneous 

variables: 

ml1 4 
ml2 - 4 PO 

x0 

ml2 + !!f!L, 
x0 

m21 
m21 -+ -y 

x0 

m22 + 
m22 - 4 PO 

x0 

Relation (5.109) yields: 

A2 = 
-Ao + Al PO 

x0 

Relation (5.108 ) yields 
P(&) ): 

(5.109) 

(5.110) 

with a shift of two (that is replacing matrix R, by 

x2 = 1 +A3 
m21 - ml2 + At PO 

x0 

=l+A3 
m21 - ml1 + ml1 - ml2 + At PO 

x0 

=l+A243+ 
A3 ho - 1) 

xo Al 
(5.111) 

Similarly Eq. (5.107) gives after a shift of two: 

1 
P2=-. 

4 ( 
(ml1 + AO - Al PO) (m22 - 4 PO) - (ml2 - Ao) rn21 ) 

=- ’ . (pot1 -4 (ml1 -m21)) + Cm21 + m22-AlPo) (A0 -4Pd) 
4 

=- _$ * (f’oxo - A2x0 (m21 + m22 - 4 PO)) 

=- i. . (PO - 42 (m21 + m22 - Al PO)) (5.112) 

One immediately gets from Eq. (5.109): 
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m21 + m22 + 
m21 + m22 - AI PO 

x0 

and from Eq. (5.112): 

P4=$(P2-A4((m21+m;;-AlPo)-A3P2)) 

=$(P2(1+$)+ $$$4(42+&2)) 

Eq. (5.110) can be written as follows: 

p 
0 

= xod2+do 

Al 

(5.113) 

(5.114) 

(5.115) 

Relation (5.115 ) shifted by two, or four, respectively gives P2 and P4 in terms 
of x,‘s and An’s. In fact the An’s only appear through their products An An+ 1, 

we will denote p,, in the following. Replacing PO, P2 and P4 in relation (5.114) 
one gets for arbitrary 12: 

&z+4Pn+5 + Pn+4 - Pi+4 
( 

1 + 
Pn+2 

Pn+3 x,+2 >( 
P ii2 + PLJ3 + 9 

+Pz+4Pn+2 (XnPn+l +Pn) o 
2 

= 
Pn+3Pn+lXnXn+2 

(5.116) 

Besides, relation (5.111) can also be written in terms of the pn’s and reads: 

l - Xn+2 l-Xn 1 = ~- 
Pn+2 xnPn+l 

(5.117) 

The elimination of the xn’s in Eqs. (5.116) and (5.117) can be performed 
but it yields a “huge” algebraic relation between the pn’s. In principle one 
should also be able to get another algebraic relation between the xn’s, but the 
calculations are too large. 

Let us note that these algebraic relations between the pn’s, or xn’s, are not 
(at first sight !) recurrences, however for particular conditions on the initial 

p,,‘s or xn’s one can actually get a (quite involved) recurrence on the xn’s. 
Let us now write the finite order orbits in terms of the variables pn’s or xn’s 

for order three and four respectively: 
- order three: 

Pn+ZPnPn+l + Pn+ZPn+l + Pn+2Pn + PnPn+l = 0 (5.118) 

and 

2Xn Xn+l Xn+2 - Xn Xn+2 - Xn+I X,+2 + 1 -XnXn+l = 0 

or XnXn+lXn+2- 1 = 0 (5.119) 
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- order four: 

Pn+3Pn+ZPnPn+l + Pn+3&1+2&1 + Pn+3PnPn+l 

+Pn+3Pn+2Pn+l + Pn+2PnPn+l = o (5.120) 

or 

&I &+I &+2 &+3 - 1 = 0 (5.121) 

We have given in this last section examples of conditions corresponding to 
finite orbits for the iteration of K, for various classes, even when no simple 
recurrence on a single variable exists. These expressions and these calculations 
very much depend on the specific birational transformations one considers. In 
fact it can be shown that finite order conditions can be obtained in a quite 
general framework not associated to transpositions of two entries anymore. 
In this respect the example of finite order conditions of order four, given in 
Appendix A, is quite illuminating. 

6. Class IV revisited 

Among the classes with exponential growth, class IV is singled out, as far 
as two particular properties are concerned. On one hand, the mappings of this 
class have q2 - 3 algebraic invariants. More precisely the algebraic varieties, 
the equations of which correspond to these invariants, are actually planes 
(depending of course of the initial point of CP+, ). On the other hand, simple 
recurrences, bearing on the x,‘s, emerge. These recurrences have been shown 
to have an integrable subcase [ 161. 

We will now study in detail this class. In particular, we will show how to 
associate with these mappings in CP, _ 2 ,, mappings in CP2, which are closely 
related to the recurrences in the xn’s. Finally, we will show how the integrability 
modifies the factorization properties and provides an example of integrable 
mapping for arbitrary q. 

6.1. Class IV as a mapping in two variables 

From Eqs. (5.77) and (5.78) or (5.82), one may have the “prejudice” that 
the orbits of transformation K in CP,=, (or CP+, ) should be curves [ 161. In 
fact it has been shown in [ 161 that, in some domain of the parameter space 
CPls (or CP+, ), these orbits look like curves which may explode in some 
algebraic surface. 

These algebraic surfaces are actually planes [ 161 (depending on the initial 
matrix one iterates). This can be shown as follows, coming back to the action 
of ff2 on a generic matrix R, (see Eq. (5.69)), which can be written in the 
following way: 
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g2(Rq) = $, (R4 + d, F + b, P) (6.1) 

where matrix P still denotes the constant matrix given in (5.66) and bi reading: 

b 
1 

= xod2-do 

2 
(6.2) 

and F denotes a q x q matrix, quadratic in the entries of matrix R,: 

F= 

*21*13 - *ll*23 ((*I2 + *32)(*21 - m23) + m22(m13 - ml1 + m33 - m3,))/2 
0 

*21*33 - *31*23 ((*I2 + *32)(*21 - m23) + m22tml3 - ml1 + m33 - m3,))/2 
*21*43 - *41*23 *42(*21 - *23) + *22(*43 - *4I ) 

*21*13 - *II*23 *14(*2, - *23) + m24(m13 - mll) . . 
0 0 . . . 

*21*33 - *31*23 *34(*21 - *23) + mz4(rn33 - mjl) . . 

. ..I 

*21*43 - *41*23 *44(*21 - mz3) + m24(m43 - m41) 

One will recursively show that the successive iterates of @ read: 

it2"(R,) = 
1 

XgX2...X2n_2 
.(R,+a,F+b,P) (6.3) 

F denotes the same matrix as in relation (6.1): F does depend on R,, but not 
on the order n of the iteration. In other words all the iterates of z2 lie in a 
plane which depends on the initial matrix R, (or equivalently, on any other 
“even” iterates of R4). This plane is led by two vectors, namely a fixed vector 
P and another one F, depending on the initial matrix. 

In order to show recursively relation (6.3), let us perform the right-action 
of k2 on Eq. (6.3). One gets: 

g2n+2(R,) = 
1 

x2 x4 . ..XZn 
. (r?2U&) + (a,)z, (F)p, + (b)p, p> 

(6.4) 

Matrix (k2) (R,) is given by Eq. (6.1). Straight calculations show that: 

V’),-, = & (6.5) 

The right hand side of (6.4) thus reads: 

k2”+2(R,) = 
1 

XrJX2...X2n 

a(& + (Al + (a,),-,) F + (bl + xo (&I,-,) P) (6.6) 
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which is of the same form as (6.3) with the following definition of a,,,~ and 
b n+l: 

G+I = AI + (an)?,, bn+l = bl + (&I~~ ‘XO (6.7) 

Defining al = di, the successive a,‘s read: 

Un = dr + 43 + -. . + d2n-1 (6.8) 

With this expression of the a,,‘~, one notices that 1 + 7ii a, is directly related 
to the xn’s: 

1 + Toa,, = ~0x2 . . . x2+2 (6.9) 

One can also give the expression of the successive bn’s: 

b 
n 

= ((1 + arO)d2n -do) 

2 
(6.10) 

In order to obtain a, + 1 and b, + 1 in terms of a,, and b,,, one can consider a 
generic matrix: 

1 

A= (1 +aTo) 
. W4 + aF + bP) 

and get g2 (A). Since it is necessarily of the form: 

it2(A) = ’ 
(1 + a/To) 

.(R,+a’F+b’P) 

one obtains a’ and b’ in terms of a and b. In fact, these calculations are quite 
heavy (see for instance Appendix B) and it is simpler to use the recurrences 
on the xII’s or more precisely the recurrences on the homogeneous variables 
9,‘s: 

X 
4n+2 

n = - 

4n 
(6.11) 

From recurrence (4.30) bearing on the xn’s, one recovers the “almost inte- 
grable” recurrence studied in Section 8 of [ 161: 

9n+6 - 9n+2 

q”+3 qn+5 (9n+3 - 4n+5) = qn+l qn+3 

9n+4 - 4n 

(qn+l - 9n+3) 

which can be partially integrated (see Eq. (8.18) in [ 161) as follows: 

92n+2 + 42n + - = 
92n+l 

P2 

(6.12) 

(6.13) 

11 
92n+3 + 92n+l + - 

92n+2 
= PI (6.14) 

Let us lirst give the correspondence between the variables of the mapping in 
CPq~_I, and the variables of the recurrences (the q,,‘s, ill and 12). 
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From relation (6.9) one directly gets the qn’s, for yt even: 

q2n = x0x2 . . . X2n-2.40 = (1 + TOGI) .40 (6.15) 

One also has qzn+l = x1 x3 . . . x2+1 .ql , and recalling the definition of the 

xn’s: 

xn = det(g’(R4)) .det(K’+‘(R,)) 

one can write the qn’s, for n odd, as: 

q2n+1 =x0x2 ..* X2n-2’ 
det(z2n(R,)) 

det (& ) 

= (1 + To&). 
det(~2n(RqH . q1 

det(R,) 

41 

(6.16) 

Moreover one has the following remarkable relation: 

det(K2n(Rq)) = (l + koa,)2. (det(R,) + anR + h,%) (6.17) 

It is not surprising, since the rank of matrix P is one, that Eq. (6.17) is linear 
in term of b,. In contrast its expression in term of a, is anything but obvious. 

The qn’s, for n odd, finally read: 

q2n+1 = 
1 Pl 

(1 + ~042) . 1 + a’ det(R,) ( 
+ b, 

p2 

det(R,) > . ” 
(6.18) 

One now has to get explicit expressions for PI and P2. 

Let us first recall Ti = TO (R (R, ) ), one remarks that one has: 

P2 

det (R4 ) 
= - Tl (6.19) 

On the other hand, one notices that recurrences (6.13) and (6.14) can also be 
written, eliminating p1 and ~2, as: 

A2 = 42n q2n+l ’ 
(X2nX2n+2 - 1) X2n+l 

1 - XZn+l 

J-1 = q2n+l Cl2n+2. 
bZn+l X2n+3 - 1) X2n+2 

1 - X2n+2 

(6.20) 

(6.21) 

In order to write these expressions only in terms of the entries of the matrix 
R,, one has to get rid of these factors qn qn + I, which correspond to an artifact 
of the homogeneity. In this respect let us remark that T,, qn = T,,+2 qn+2 : 
wg = T,, T,,,, q,, q,,+_l is thus a constant. Introducing: 

En = 
Xn-I Xn+l - 1 

(x, - 1) T,_ I T,, ’ xn 

one obtains A2 = w. E2 n+ I (and similarly A.1 = wg E2,,+2). 

(6.22) 
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Relation E,+z = E, is always satisfied, and recurrences (6.13 ) and (6.14) 
are finally equivalent to: 

A, = woEo, A2 = woE, (6.23) 

Notice that: 

E. = MO + 42) x0 

AI T; 
(6.24) 

or, else, written directly in the entries of matrix R,: 

E. = m22 lrn33 - m31 + mll - md 
(m23 - m21 I2 

(6.25) 

With these expressions, one first notices the following relation between P, and 
P2: 

PI 
det (R4 ) 

= l+- 
( 

11 7’2 Ao 

24041 + 2 det(R,) > . To (6.26) 

One also gets from relations (6.23) and (6.24): 

(do + 42) = L 

AI To 41 Tl 

Recalling xn = qn+2/qn = 1 + T,, A,, 1, one gets: 

(6.27) 

Al = q2-qo 
40’ 

A2 = q3 - q1 
41 Tl 

yielding an explicit expression for P2 = - TI . det(R,) : 

p2 qoq2(q3-41) +A1 (40-42) 

det(R,) = qo 4142 Ao 

(6.28) 

(6.29) 

Recalling the two relations between the qn’s, namely recurrences (6.13) and 
(6.14), and substituting, from (6.15) and (6.1 S), the qn’s, in terms of the 
a,‘s and b,,‘s, one gets a,, 1 and b,, 1 in terms of a, and b, (see for instance 
Appendix B). One now has a representation of transformation g2, as a mapping 
in CP2. 

Let us also note that, as a consequence of the two simple matricial relations: 

t(F) = F, t(P) = -P 

transposition t, can simply be represented as a reflection in the (a,, b,)-plane: 

t: (a,b) --+ (a,Ao-b) (6.30) 

From these two representations of t and k2 in the (a,, b, )-plane, one gets a 
representation of I^t f, which is actually an involution. 
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After a change of variables l2 : 

un = 
40 41 

41 q2 + 40 41 + A2 
. l+Toa,, 

( > 

% = -y . (1 + detTk 
4 

) an + det%qj b,,) (6.31) 

the involutive transformation I^t I^ takes the remarkably simple form (indepen- 
dent of any parameter! ): 

Ttf: (z&w) --f (u’,w’) = ( U+V-UW U+W-UW 

v ’ 24 > 
(6.32) 

and transformation t is represented as the following (two parameter) transfor- 
mation: 

t: (u,v) + (24, 1 + E - 21 + Q U) 

where E and (I: read: 

Al -A2 
E = _) 

22 

Q = _ (q2 (41 + q3) + Al) (41 (40 + 92) + 3L2) 
414222 

Note that one has the following relation: 

%I P2. q2n+1 -=_ 

%I 12 

(6.33) 

PI P2 

22 
(6.34) 

(6.35) 

Let us now recall again that there does exist an integrable subcase of these 
mappings associated to class IV. When 11 = A2 = I [ 161, the qn’s actually 
satisfy two biquadratic equations F (x, y) = 0 and F (y, x) = 0, depending on 
the parity of n, with: 

F(x,Y) = (XY -A)(x- PI)(Y - ~2) -iu (6.36) 

namely: 

P = (P1- q2n+1 ) (P2 - q2n) (q2n q2n+1 + A) 

= (P2 - q2n+2) (PI - 42n+l) (42n+l q2n+2 + A) (6.37) 

It is well known that biquadrutic equations are associated with elliptic 
curves [6] i3. 

t* We would like to thank M.P. Bellon for many parallel checks on most of the calculations detailed 
in this very section. 
t30ne should mention the work of several authors who have presented a wide class of mappings 
oftheformx,+t = f (x,,, x,_ , ) which can be seen as discretizations of a second-order ordinary 
differential equations related to elliptic functions and more precisely biquadratic relations [22- 
25,28-30]. 
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With these remarkably simple forms for the two involutions generating 
our group of birational transformations, the integrability condition for the 
birational mappings of CPz simply reads E = 0 (or equivalently Eo = El ). For 
this integrable E = 0 subcase the group generated by transformations (6.32) 
and (6.33) yields a foliation of the (u, v)-plane in terms of curves, which form 
a linear pencil of elliptic curves. This can be seen noticing that, for E = 0, an 
algebraic expression Z is actually invariant under both transformations I^t I^ 

and t: 

z = (1-u) (1-v) (V--u) 
u 

(6.38) 

One should also remark that E = 0 is not the only integrability condition for 
these birational mappings. One can actually verify straightforwardly that c = 
- 1 is also an integrability condition: it corresponds to a (rational) degeneracy 
of the mapping. Condition E = - 1 drastically simplifies transformation (6.33) 
which becomes: 

t: (u,w) --t (2.4 -w + a 2.4) (6.39) 

One immediately gets an algebraic invariant under transformations (6.32) and 
(6.33): 

(6.40) 

This E = - 1 case, which corresponds to 21 = 0, yields a simple rational 
parameterization of the iteration. 

For heuristic reasons let us consider the (Y = 0 case (which happens to 
correspond to a rational parameterization, when E = 0). From relation (6.38) 
the variable u can be simply written in terms of the variable u and the invariant 
2: 

(6.41) 

and the mappings t and ?t r^ respectively read: 

t: (Z,w) + (Z’,v’) = (Z(l-;)(l--&)’ 1-v++ (6.42) 

I^tr^: (T,w) + (T,w’) = (z, 1 - -&) (6.43) 

These very simple representations of the birational transformations of class IV 
enabled us to perform a large number of numerical calculations which confirm 
the analysis performed in [ 161. The iterations of these transformations often 
yield orbits which look like curves [ 161. The situation, as far as the visual- 
ization of a single orbit is concerned, is similar to the situation encountered 
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Fig. 4. Hundred orbits corresponding to the iteration of K ^2, for class IV, in the (Z, v)-plane. 

in the Henon-Heiles mapping [27]. Let us note however, that one does not 
consider perturbations near a fixed point anymore, but in the neighborhood of 
the whole integrability condition. 

Fig. 4 shows a set of one hundred orbits corresponding to the iteration of i2 
in the (2, ‘u )-plane. The orbits are very regular: Fig. 4 gives an illustration of the 
“almost integrability” described in [ 161 and also reminiscent of the situation 
one encounters near elliptic points in dynamical systems [ 31-341. At this 
point it is important to make the following comment: since they are generated 
by involutions, all our birational transformations are such that transformation 
g and transformation g-i are conjugated ( R = t . I^ = t . k-l . t). When 
transformation g (or more precisely ff2 ) can be reduced to a mapping on 
only two variables this means that one has some area preserving properties 
and one can recover the features of two-dimensional dynamics (elliptic versus 
hyperbolic points, Arnold’s diffusion . . . [31-34]), and this explains to a great 
extend the regularities one encounters here with class IV, even when the 
mapping is not integrable. However this conjugation properties does not seem 
sufficient to explain the regularities observed for the other (non-integrable) 
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classes for which the dynamics cannot be reduced to two-dimension any more: 
volume-(or hypervolume) preserving properties are no longer sufficient to 
explain our regularities. 

4.2. Factorizations for the Integrable subcase of Class IV 

The birational transformations for class IV do not generically correspond to 
integrable mappings [ 16 1. They have been seen to yield an exponential growth 
of the calculations. However, there exists a subvariety of @P,L, on which these 
birational transformations become integrable, yielding algebraic elliptic curves 
for arbitrary q. Recalling (6.25)) this integrability condition En+2 = E,, 1 (or 
equivalently EO = El ) can be given, from (6.23), in terms of the entries of 
the initial matrix Me = R,: 

m22tm33 - m31 + ml1 - m13) 

h23 - m21 I2 
= same expression with mi,j -+ K ( Mo)i,j 

(6.44) 

An example of a one parameter dependent 4 x 4 matrix satisfying this integra- 
bility condition is given in Appendix C. 

In this framework a question naturally pops out: how does the factorizations 
(4.16), (4.17) and (4.18) modify when one restricts to this integrability 
condition ? In particular, does the exponential growth of the calculations 
becomes a polynomial growth when restricted to this integrability condition ? 

Restricted to this integrable subcase the factorizations corresponding to the 
iterations of K for class IV are such that the first five iterations yield the same 
factorizations as for the generic (non-integrable) case: 

- 

%I = K(Go), f? = det(%,,), fi = detjF), G2 = y, 
1 1 

(6.45) 

The difference with the generic factorizations (4.16) comes with the next 
iterations: 

f6 = 
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A= (6.46) 

One remarksLhat, compared to factorizations (4.16), x factorizes one more 
time in det (MS ) and K (MS ). These additional factorizations propagate and 
yield for arbitrary n: 

(6.47) 

(6.48) 

which yield: 

K(G,A %,+I 

det(M,) = LLL2Ll LX+, 
= I?(%&> (6.49) 

The correspondence between the fn’s, associated to the generic (non-integrable) 
case (see factorizations (4.16) ), and these new factorizing polynomials asso- 

ciated to the integrable subcase (see factorizations (6.45) ), denoted fn, read: 

f6=Lfi, .f?=KfLfl, f8=f8YfCfCfi2, ‘.. 

From Eqs. (6.47), (6.48) and (6.49), one gets linear recurrences on the 

degrees of the polynomials det(GV) and fJ, (respectively the &‘s and En’s): 

%I,2 = 3 L-2 + Gn-1 + 3 pn + pn+r + 2 L+2+ A+3 

3G n+2 = &+3 + 4 (2/C2 + L-1 + 2 an + L+2) 

and 

&+3 + &+2 = 4 (E-2 + E-1 + Pn + Pn+, + Pn+2+ 8;1+3) 

giving the following relations on the generating functions: 

x.G(x) = ~(x)~(1+2x+x2+3x3+2x4+3x5) 

(3x-1).6(x) = 4xJ(x).(1+2x2+x3+2x4)-4 

and 

(1 +x).G(x) = 4(1 +x+x2+x3+x4+x5)J(x) + 4 

The two generating functions & (x ) and /!?( x ) read: 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

G(x) = 4(1 +x-x2+3x3) 
, P(x) = 

4x 

(1 + x)(1 -x)3 (1 +x)(1 -x)3(1 +x + x2) 

(6.56) 



S. Boukraa et al. I Physica A 209 (1994) 162-222 215 

The linear relations corresponding to the right action of K, namely factoriza- 
tions (3.10) and (3.11), are still valid when one restricts to this integrable 
case. Therefore the generating functions p (X ) and i? (x ) still verify relation 
(3.17) and p(x) and C(x) read: 

P(x) = 
x(2-x+x3+x4-x5) 

C(X) = 
x (1 --x + 2x2) 

(1 + x) (1 +x +x2) (1 -X)3’ (1 -x)3 (1 +x) 

(6.57) 

These relations clearly show that the additional factorizations occurring for 
this integrable subcase remarkably yield factorizations like (6.49), (6.48), 

or (6.47) bearing on a fixed number of polynomials fn and even more, to 
a polynomial growth of the calculations instead of the exponential growth 
previously described (see Section 4.3 ) . One should however note the occurrence 
of a third root of unity in the denominator of the generating functions B(x) 
and E(x) (and not for the generating functions G(x) and V(x)). Of course 
the occurrence of this new root of unity, different from f 1, does not rule out 
the polynomial growth. 

Finally it is important to note that , in this integrable subcase, the new 
polynomials fn defined from the factorization relations (6.47) and (6.48) 
do satisfy recurrences bearing on products of a jixed number of polynomials 
(instead of “pseudo” recurrences like (4.28) ) : 

fn+2_&+7fn+9-fn+3x+5fn+,O = x+lfn+&+8-x+2fn+4%+9 

L3”L.L -L4_L5_L ~+*_C+6.z+7-~+3fn+4.z+8 

(6.58) 

Such a recurrence is very similar to recurrences (3.20) or (3.21) and can be 
written introducing well-suited variables &‘s defined by: 

2x+5 
4n+4 = - 

fn+2 x+3 

(6.59) 

In terms of these variables &, recurrence (6.58) becomes: 

Gn+* - Gn+l &+3 - &I+* 
- - -- =, _ - I 
4n+l . qn+3 - 4n ’ qn+* qn+* ’ qn+4 - 4n+l ’ qn+3 

which can be integrated as: 

4n+2-A”Cn+l *5n+3 = P’ 

and in a second step: 

1 +A”&+1 

%I+* = 

1 + A’ ’ @n+4 

&+3 

(6.60) 

(6.61) 

(6.62) 
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(1 + ~‘.&+I)(1 + ~‘.&+2)(1 + fLTn+3) 

&I+2 

= (1 + n’.&+2)(1 + ~‘Ge+3)U + A’.G+4) = p, 

&I+3 

which finally yields a biquadratic relation: 

(6.63) 

(1 +A’.&+l)(l +~‘%+2)G%+~ +&+2-p’) = p%+G,+2 (6.64) 

Recalling the two biquadratic relations (6.37) given in Section 6.1, one notices 
that, taking into account the homogeneity of the q,,‘s, one can barter these 
two biquadratics for a single one (changing q2 n into q2 n /p2 and q2 n+I into 
q2 n+ 1 /PI 1. This last biquadratic is apparently different from (6.64): one would 
like to see the relation between these two biquadratics bearing respectively on 
the &‘s introduced here, and the qn’s introduced in Section 4.3. The relation 
between the qn’s and the &‘s reads as follows: 

4n 

z 
= 4n 4n+l 

40 41 
(6.65) 

After straightforward calculations (corresponding to introduce the product 
q,, qn+ 1 in recurrences (6.13 ) and (6.14) ) one can show in the integrable case, 
21 = 22 = 1, that the biquadratic relation (6.37) yields the biquadratic relation 
(6.64) with the following correspondence: 

I’ = ; ) pl = _A2 + Y-API P2 P 

il 
> P’=p (6.66) 

or conversely: 

n=;, P1P2= 
I’ + A’2 p’ + jL’ P’ 

1’2 > P=1’3 (6.67) 

Since variable & is a homogeneous variable, it is tempting to write recurrence 
(6.60) in terms of the ratio of two successive &,‘s. In fact this ratio happens 
to coincide exactly with the variable xn delined by (6.11): 

& = 9 (6.68) 

The variable x,, can be written either in terms of the fn’s or in terms of the 
-9 

f n s: 

fn+8_fi+4fnfn-4_fi-S”’ X+8 x+4x+3 

xn’6 = fn+7fn+6fn+Zfn-2fn-6”’ = f12+7_$,+6fn+2 
(6.69) 

The relations between the initial values of variables q,,, &, fn, fl, and of the 
variables xn’s are given in Appendix D. 
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With these new variables the integrable recurrence (6.60) reads: 

217 

%+2 - 1 xn &+2 &+I - 1 = ~. 

x,+1 %I+3 - 1 Xn+l &&+2 - 1 
(6.70) 

Let us note that, combining (6.70) with itself where n has been shifted by one, 
one recovers: 

x,+3 - 1 XII+1 -1 

x,+2 x,+4 - 1 
= XnXn+3 ’ 

Xn Xn+2 - 1 
(6.71) 

which coincides with relation (4.30). In fact one can actually show, but this 
will not be performed here, that the xn’s corresponding to class IV do satisfy 
a whole hierarchy of recurrences in the same way it has been proved for class 
I in [14]. 

Similarly to [ 141, one can consider these recurrences for themselves, without 
referring to our birational transformations acting on q x q matrices anymore. 
Again one can see that some of these recurrences are integrable recurrences 
(for instance recurrence (6.70)) and some are (generically) not integrable (for 
instance recurrence (6.7 1) ). All the analysis performed in [ 141 can be applied 
to the hierarchy emerging from (6.70)), in particular the fact that recurrences 
like (6.70)) are equivalent to another recurrence of the hierarchy, namely: 

%I+2 - 1 
= XnXn+2. 

Xn+l - 1 

Xn+l Xn+3 - Xn+2 XnXn+Z -&+l 
(6.72) 

7. Conclusion 

The analysis of the factorizations corresponding to the six previously defined 
classes of transpositions has shed some light on the relations between different 
properties and structures related to integrable mappings such as the existence of 
factorizations involving a fixed number of polynomials, the polynomial growth 
of the complexity of the iterations of these mappings seen as homogeneous 
transformations, the existence of recurrences bearing on the factorized polyno- 
mials fn’s or on other variables such as the x,‘s and the integrability of the 
mappings. 

A single factorization relation independent of q (relation (3.9)) has been 
shown to be satisfied for classes I, III and V. All these classes satisfy factoriza- 
tions where products of a fixed number of polynomials fn occur (see (4.31), 
(4.32 ) ) . The polynomial growth of the complexity of the iterations suites quite 
well with factorizations where products of a fixed number of polynomials oc- 
cur: this is actually the case for classes I and III which actually verify the same 
fuctorizations on the fn’s. In fact, surprisingly, it will be shown in [ 151 (on 
an example corresponding to the symmetries of a three dimensional vertex 
model) that a polynomial growth of the complexity can actually occur even 
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with “string-like” factorizations (like (4.40)). On the other hand, one sees 
with class V that one can have a factorization of the iteration with a fixed 
number of polynomials and, in the same time, an exponential growth of the 
complexity of the iterations. Among the two classes satisfying exactly the same 
factorizations, that is: I and III, only the first one verifies recurrences on the 
polynomials fn’s. For class I, for arbitrary q, these recurrences are integrable 
recurrences and probably are the birational mappings in CP+, . For q = 4 
the iteration of these transformations associated to classes I, II and III yield 
algebraic elliptic curves. For q 2 5 class III, yields quite regular orbits which 
often look like curves, or like a set of curves which seem to lie on higher 
dimensional varieties. However, the actual status of these higher dimensional 
varieties is not very clear (abelian varieties . . . ). Class III is thus, for q 2 5, 
an interesting class since it would provide an example of polynomial growth 
(and in fact exactly the same factorization as the “nice” class I) with orbits 
densijSling nice algebraic varieties (abelian surfaces, product of elliptic curves? ,.. 
), but not curves anymore. 

A “string-like” factorization relation independent of q (relation (4.39) ) is 
satisfied by the two classes IV, VI and also for class II but only for q 2 5. 
These three sets of factorizations with a “growing” number of polynomials (see 
relation (4.39)) correspond to an exponential growth of the complexity of the 
iterations. However, one remarks that class IV has actually a recurrence on 
the variables x,, but not of course on the variables fn’s: these variables cannot 
satisfy simple recurrences like (3.20)) but they satisfy “pseudo-recurrences” like 
(4.28). This recurrence, on the x,, 3, is not generically un integrable one [ 161. 
It however yields orbits which look like curves for some domain of the initial 
conditions [ 161. Such a recurrence is an illustration of a transition from 
integrability to weak chaos, through situations visually similar to the one 
encountered in the Henon-Heiles mapping [ 271, or to the situation encountered 
near elliptic points in the theory of (hamiltonian) dynamical systems of two 
variables [ 31-341. We hope that class II will help understanding the structures 
of elliptic points for three-dimensional mappings (see relation (4.12) ). 

Note however that we have been able to prove that the integrable subcase 
of class IV is actually valid for arbitrary q: it thus provides an example of 
integrable mapping in arbitrary dimension even infinite. 

For all these six classes, one has recurrences on a fixed number of variables 
(see (5.71)). The elimination of these variables may yield quite involved 
algebraic relations on the remaining variable xn. The recurrences associated 
to classes I and IV are the only one which are recurrences and not involved 
algebraic relations between the xn’s. Note that when a recurrence is integrable 
the corresponding birational transformations are probably also integrable: in 
fact this appears as the only “handable” way to find the integrable subcase of 
class IV . . . 

To sum up the relations between all these various structures and properties 
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are subtle: the only systematic relation being that integrability seems to imply 
the polynomial growth of the iterations. Let us however recall that one can 
have polynomial growth with orbits densifying algebraic surfaces [ 15 1. 

The analysis of the factorization of the iteration corresponding to birational 
transformations such as the one studied here can be seen as a new method to 
analyze birational mappings and therefore the symmetries of lattice models, 
in particular models in dimension greater than two. In a forthcoming publica- 
tion [ 15 ] we will consider three-dimensional (and higher dimensional) vertex 
models and show that the birational transformations associated with these 
models yield algebraic surfaces and polynomial growth. 
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Appendix A. A comment on the finite order conditions 

In the framework of finite order conditions it is worth mentioning the 
following very general result (it works with the six classes defined in Section 3.1, 
and can even be generalized to arbitrary permutations of a q x q matrix [ 15 ] ). 

For an arbitrary transposition one imposes the two conditions: 

4Wq) = 0 (A.11 

and 

4(t(Rq)) = 0 (A.21 

where t denotes a transposition of two entries. The very definition of dl yields: 

Ai = 0 +&R,) = I^(&) + I^(&&)) = R, + f?2(Rq) = t(R4) 

(A.31 

Since one assumes di (t (R, ) ) = 0, one similarly gets: 

z2(t(Rq)) = t(t(R4)) = R, (A.4) 

Hence for every matrix R, satisfying (A.l) and (A.2), transformation 2 is a 
transformation of order four, that is: 



220 S. Boukraa et al. I Physica A 209 (1994) 162-222 

K4(Rq) = R, (AS) 

Let us note that the (codimension two) variety given by the two conditions 
(A. 1) and (A.2) contains remarkably simple linear subvarieties. Let us consider 
for instance a transposition of class VI, namely t exchanging ml 1 and ~212, the 
following conditions yield (A. 5 ) : 

m32 = 0, m33 = 0, . . . . m3q = 0 (A.6) 

These considerations can be generalized for very general permutations of 
the entries. For instance, let us consider the case where the transposition t is 
replaced by a 3-cycle C. One can also find remarkably simple conditions on 
the entries of the matrix such that i is of finite order. Considering the 3-cycle 
c: 

and 

ml1 --+ ml3, ml3 + ml2, ml2 --t ml1 

the following vanishing conditions on the entries: 

m42 = 0, m43 = 0, . . ., m4q = 0 

(4.7) 

64.8) 

Restricted to conditions (A.8) transformation k is such that i2 = C, hence, 
R6 = Id, when one restricts to the (linear) subvariety (A.8). 

Appendix B 

From the parameterization of the (a,, b, )-plane (see relation (6.1) ), one 
can actually get the mapping of CP2 corresponding to i2: 

an+1 = -a, + k4 + 
k5 bn + k6 

kl an + k2 b, + k3 
b n+l = do-b, + (kgbn + ks) 

. k,+ 
( 

ks ks (k5 bn + ‘b) 

1 + Toa, + (1 + Toa,) (ha, + kzb,, + k3) > (B.1) 

where the k,‘s denote rational expressions depending only on the initial matrix 
R,. However the ku’s are not independent, they do satisfy additional relations: 

k6 = k5 (k3 To - h 1 2 

k2 To 
, k,=-, k8=- 2 + k4 To 

k5 k5 
, kg=-2 

U3.2) 

Therefore g2 is represented as a birational transformation in CP2 depending on 
six parameters. These parameters are of course functions of the q2 homogeneous 
entries of the initial matrix R,. Among the six parameters one can actually 
drop out four parameters corresponding to (independent) dilatations and 
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translations of variables a,, and b,,, yielding to only two remaining parameters 
like in Section 6.1. 

Appendix C 

Let us give an example of one parameter dependent 4 x 4 matrix satisfying 
the integrability condition (6.44): 

-85 263615064213450543 - u -78 -35 
MO 97 50 100 56 

3450543 
= 

[ 49 u- 55 62 -59 (C.1) 
45 -8 62 92 

1 
Appendix D 

Let us give the expression of the first X,‘S in terms of the first fn’s: 

f2 f3 
XI-J = -, x1 = - 

f4 fsfi f6 f2 

fi 
f2fi 3 x2 = G 9 ~3 = f4f3 , x4 = fss4 CD.11 

The expression of the first xn’s in terms of the first x read: 

The first homogeneous variables qn are given in terms of the _&‘s as: 

A 
q2=-‘40, q3 = 

.fl 

Ni .q, h -. 

f2 
, q4=-’ 

Afl qoy 
45 = f&;2 41, 

hf2 . f7.h “fib 

q6 = “fif3fl qoy q7 = hhf2fl .qlp q8 = _fi$i_hfl *qoy 

49 = h$js, .41, 410 = $.$yf, .40, 

411 = 
“fl2fs_LI 

fl 1 f9 fl f5 f3 f2 
. 40 (D.3) 
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