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Abstract 

The phase transition occurring in the three-state Potts model on the triangular lattice with two- and three-spin interactions 
is studied using Monte Carlo simulations and exact calculations. A tricritical point is found to exist on the self-dual trajectory, 
and extensive simulations lead to a conjectured location of this point. 

- 

1. Introduction 

It is now well known that the standard q-state fer- 
romagnetic Potts model in two dimensions exhibits a 

first-order transition for q > 4 and a continuous tran- 
sition for q 6 4 [ 1,2]. When the interaction is anti- 

ferromagnetic, however, the existence of a transition, 
if any, and the nature of the transition are less clear. 
This uncertainty is generally related to the existence 

of a nonzero residual entropy [ 31. For this reason, the 
q = 3 antiferromagnetic model on the triangular lat- 

tice is of special interest, since it possesses a sixfold 

degenerate ground state and a zero residual entropy, 
implying that there is a transition. From a universal- 

ity consideration one expects the transition to be the 

same as that of the standard six-state model, namely, 
one of first order. This first-order transition has indeed 
been confirmed by series analysis [4]. Thus, depend- 
ing on the nature of interactions, the transition in the 
q = 3 triangular model can change from continuous to 
first order. It is therefore of pertinent interest to inquire 
what happens in models with competing interactions. 
In this paper we take up this question. As it turns out, 

we arrive at some unexpected answers which show 
that the naive universality argument is no longer valid. 

We consider the isotropic version ( Ji = Jz = 53) 
of the three-state Potts model on the triangular lattice 

described by the Hamiltonian 

-.fpKr(S,S’) cY&(S’,S”), (1) 
A 

where the first sum is over nearest neighbors consist- 
ing of spins s, s’ = 1,2,3, and the second sum over 
all up-pointing triangles of spins S, s’ and s”. Here, 
-Ji, i = 1,2,3, are the two-site interactions (in the 

three respective axis directions), and -.I the three-site 
interaction in alternate (say, the up-pointing) triangu- 
lar faces of the lattice. The interactions are competing 
if J and Ji are of opposite signs. The lattice is shown 
in Fig. 1. 

When J = 0, the Hamiltonian ( 1) reduces to that of 
the standard model for which the transition is known 
to be continuous when J, > 0 [ 51 and of first order 
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Fig. 1. The triangular Potts lattice. Black circles indicate spins 

and shaded triangles indicate three-site interactions. 

when JI =J2=53<0[4].TheJ$Omodelwasfirst 

studied by Baxter et al. [5] and later by Wu and Lin 
[ 61. It is found that the partition function possesses a 

duality relation with the self-dual trajectory 

Xi X2X3X = XI +X2+X3+1, (2) 

where x = exp( J/kT) , Xi = exp( Ji/kT) . In the J = 0 
and J1 = 52 = 53 > 0 model, the trajectory (2) yields 

the exact critical point [ 71 

J,/kT, = ln[2cos(n/9)] = 0.6309... . (3) 

For J = 0, JI = JZ = J3 < 0, the critical point is 

known from series analysis [4] to occur at 

J, /kT, = - 1.59. (4) 

The model ( 1) has also been analyzed by Wu and 

Zia ] 81, who conjectured on the basis of a uniqueness 
assumption that the self-dual trajectory (2) is an actual 

critical frontier. The nature of the transition along (2), 
however, has not been analyzed. 

Here, we study transitions in the isotropic version 
of the model ( 1) by means of extensive Monte Carlo 
simulations on finite lattices of up to 3888 sites in con- 
junction with exact calculations for a small lattice. As 

a result, we determine the phase diagram, the nature 
of transitions, as well as the critical frontiers in both 
the ferromagnetic and the antiferromagnetic regimes. 
We verify that the transition in the antiferromagnetic 

regime is of first order; we also verify the conjecture 
that the self-dual trajectory is a critical frontier. How- 

ever, we find that the nature of transition along this 
latter frontier changes from continuous to first order at 
a tricritical point, even though the frontier lies in the 
ferromagnetic regime. This finding is surprising, as a 
naive universality would imply a continuous transi- 

tion throughout. On the basis of simulation results, we 
conjecture the exact location of this tricritical point. 

2. The critical frontier and the phase diagram 

We first present in this section our main findings. 

Details of analyses are described in subsequent sec- 

tions. 
From a ground state energy consideration [ 8 I, the 

parameter space of the isotropic model is divided into 
ferromagnetic (J + 3J1 > 0, J + 2J1 > O), antifer- 
romagnetic (J + 3 Ji < 0, J1 < 0), and paramagnetic 

(J+J, < 0, J1 > 0) regimes. The self-dual trajectory 

(2), which now reads 

xx; =3x, + 1, 

lies entirely in the ferromagnetic regime. 

(5) 

We show in Fig. 2 the critical frontiers determined 

from simulations in the (Jl/kT, J/kT) plane. Points 
A, B, C, D, F, G, I, J are data points of the critical 

point from simulations performed on a 972-site lat- 

tice, points P and Q are given respectively by (4) and 
(3), and other data points are from simulations on 

3888-site and 507-site lattices. The frontiers are found 

to consist of two branches. One branch, shown by the 
broken curve connecting points C, B, . . . . P , is in the 

antiferromagnetic regime where we find all transitions 
of first order. The other branch, which is in the ferro- 

magnetic regime, is the self-dual trajectory (5) shown 
in Fig. 2. It is seen that all data points lie practically 

on this trajectory, thus confirming the Wu-Zia con- 
jecture that the trajectory is indeed a critical frontier. 

Furthermore, we find along this frontier transitions of 
first order for Jl < 0 and continuous for JI > 0. Our 
best data provide the bound 

-0.2 < J, /kT < 0.2 (6) 

for the location of the tricritical point ’ , the point at 
which the nature of transition changes. This leads us 
to conjecture that point T in Fig. 2, namely, the point 
with coordinates 

JI = 0, J/kT = ln4, (7) 

’ After the completion of our work, we have been informed by 

B. Nienhuis 191 that a method corresponding to an approximate 

calculation of the central charge along (5) also indicates the 

existence and the locus of a tricritical point in this model. 
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Fig. 2. The critical frontiers in the (JILT, Jl/kT) space. Thin lines denote trajectories of first order transitions and fat line denotes the 

trajectory of continuous transitions. The line in the ferromagnetic regime is the self-dual trajectory (5). Points P and Q are given by (4) 

and (3). and T is the conjectured tricritical point given by (7). 

Table 1 
Simulation results of a 972-site lattice 

Point 
A B C D E F G 1 J 

J/Ml 2.70 2.80 2.90 3.05 3.10 3.20 3.30 2.00 I .oo 
IJlllkT 2.42 2.67 3.43 3.23 2.47 1.89 1.59 1.83 1.63 

JfkT 6.52 7.47 9.93 9.84 7.65 6.04 5.24 3.67 1.63 

WIJII 0.414 0.375 0.292 0.310 0.405 0.530 0.630 0.545 0.615 

is the actual tricritical point. 

It is of interest to consider the phase diagram, and 
the phase diagram for JI < 0 is shown in Fig. 3. Here, 

points labelled by letters are the same as those in Fig. 
2. In addition, the solid lines represent the “phase di- 
agram” obtained from the maxima of the specific heat 
computed from an exactly enumerated partition func- 
tion for a lattice of 27 sites [ lo]. Also shown in a 
broken curve is the self-dual trajectory (5) represent- 
ing the phase boundary in the ferromagnetic regime. 
The dotted line connecting points A, B, C, H indi- 
cates the approximate location of the phase boundary 
in the antiferromagnetic regime. We remark that while 
D, E, F, G are self-dual points under the duality trans- 

formation [ 5,6], the duals of A, B, C, I, J, P on the 
antiferromagnetic branch lie in an unphysical regime. 

3. Monte Carlo simulations 

Our simulations are performed on finite lattices of 
3888, 972, and 507 sites, or of size 3L2 for L = 
36, 18, 13, with a twisted periodic boundary condition 
as described in Ref. [ lo]. Simulations are performed 
for the internal energy E and the specific heat CV 
for fixed values of IJ/J, I. The results are then plot- 
ted against the temperature T. We identify the critical 
point as the temperature where Cv peaks, and the na- 



H. Meyer et al. /Physics Letters A 201 (1995) 252-256 255 

2.6 2.7 28 29 3 3.1 3.2 3.3 3.4 
J 

Fig. 3. The phase diagram for Jt < 0. with J in units of lJt/ 

and T in units of IJtl/k. Data points are those determined from 
simulations as tabulated in Table 1. Solid lines represent the loci of 

maxima of the specific heat computed from an exact enumeration 

of the partition function for a 27-site lattice, broken and dotted 

lines are the phase boundaries. 
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Fig. 4. The internal energy E as a function of the temperature, 
with E in units of IJt[ and 7’ in units of IJtl/k. Plot H is for 

J/l/t 1 = 3 and the other plots are for corresponding points in Figs. 
2, 3, and Table 1. 

ture of the transition from the energy plot. Results of 

the internal energy E( 7’) for .I1 < 0 are shown in Fig. 
4 with the values tabulated in Table 1. These results 
are from simulations on the 932-site lattice which is 

sufficient for the purpose of identifying the nature of 
the transition being of first order, since in this regime 

one always observes a jump discontinuity in the en- 

ergy. Furthermore, the location of the discontinuity 
coincides well with the associated specific heat max- 
imum, a fact confirming the internal consistency of 
our simulations. Also shown in Fig. 2 are data points 
from simulations on lattices of 507 and 3888 sites. 
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Fig. 5. Probability distribution of the internal energy E for 

J/1.71) = 3.30 corresponding to point G Diamonds and pluses are 

the original simulation data, squares ate the extrapolation of the 

plus-distribution to the temperature of the diamond-distribution. 

Simulations on a larger lattice help us to ascertain the 
transition is continuous. 

A typical probability distribution P(E), that of 
J/IJt( = 3.30 corresponding to point G , is shown in 
Fig. 5. The onset of the doubly-peaked distribution in 

P(E) again signifies the occurrence of a first-order 

transition. The first-order transition has also been con- 

firmed by a cumulant analysis [ 1 l] which we have 

carried out, the details of which are not given in this 
paper. Finally, we have checked the consistency of our 

simulations by using the histogram method of Refs. 

[ 1 I, 121 to extrapolate the distribution P(E) at tem- 

perature T from the P(E) of another temperature, and 

compare the results with simulations at T. As shown 
in Fig. 5, the coincidence of the two is very good. 

4. Small lattice calculations 

We have also computed numerically the specific 
heat using the exact enumeration of the partition func- 
tion for a 27-site (L = 3) lattice [ lo]. As before, we 
identify the maximum, or the first maximum in case 

there are two peaks, of the specific heat as the transi- 
tion temperature. The results are shown by the solid 

lines in Fig. 3. Considering the smallness of the lattice 

size, the critical temperature derived from the exact 
specific heat agrees fairly well with those from simu- 
lations, and this agreement becomes even better in the 
J >> 3 region not shown. 

To further check the accuracy of our simulations, 
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Fig. 6. The specific heat, in units of k, of a 27-site lattice for 

.I/ 1 JlI = 3.10 corresponding to point E . Diamonds are data points 

from simulations. The solid line is the exact calculation, the broken 

line the contribution of the ground state and the first three energy 

levels, and the dotted line the contribution of higher energy states. 

we have carried out simulations on the 27-site lattice, 

and compared the simulated specific heat with that 

from exact calculations. The example of J/) JlI = 3.10, 
point E , is shown in Fig. 6. Generally, as shown in 
Fig. 6, the two specific heats agree remarkably well 
except at low temperatures. The low temparature dis- 

crepancy can be explained by a lack of ergodicity 
of the Metropolis algorithm. Indeed, the first excited 

states of the 27-site lattice can be identified as the con- 
figurations having exactly three times more violating 
bonds than violating triangles. Using a single spin-flip 

algorithm it is easy to see that the cost in energy to 

go from the ground state to these excited states is pro- 
hibitive. This is illustrated in Fig. 6, where the bro- 
ken line shows the “partial” specific heat with only 

the ground state and the first three excited levels (561 
states) taken into account. Also shown by the dotted 
line is the “partial” specific heat with all states higher 

than the first three excited ones taken into account. It 
is seen that the major contribution comes from that of 
the higher states. The low temperature satellite peak 

is a finite size effect which disappears in the thermo- 
dynamical limit. 

5. Summary and discussions 

We have presented results of Monte Carlo simula- 
tions and exact numerical calculations for the isotropic 
triangular model ( 1) , which establish the existence of 

two critical frontiers, one in the antiferromagnetic and 

one in the ferromagnetic regime. We confirm that the 
transition in the antiferromagnetic regime is of first 

order, and that the critical frontier in the ferromag- 
netic regime coincides with the self-dual trajectory. In 

addition, our results indicate the existence of a tricrit- 

ical point on the ferromagnetic frontier. On the basis 
of simulation results, we conjecture that the tricritical 

point is located at (7). We remark that this conjecture 
is supported by an analysis of the infinite symmetry 
group associated with the triangular Potts model ( 1) . 

In this consideration [ 131, it can be shown that (7) 
belongs to a variety which is stable and along which 
the group becomes finite. Thus, (7) is a special point. 
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