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We present new exact results for the checkerboard g-state Potts model with a magnetic field. An
exact expression for the partition function is given on some disorder varieties. We argue that the
partition function exhibits, even in the presence of a magnetic field, an unexpected S; symmetry.
A universal and exact expression for the magnetization discontinuity at the first-order phase-
transition point (g > 4) is proposed. This expression is shown to depend only on ¢ and to be in-

dependent of the coupling constants.
PACS numbers: 64.60.Cn, 05.50.4+q

The Potts model has been the subject of intense
research in the last few years.! Recently a large
number of new exact results have been obtained for
this model which appears as an important testing
ground in lattice statistics and for the theory of critical
phenomena. For instance, one should mention the re-
cent results for the critical exponents of the two-
dimensional Potts model, deduced from the conformal
covariance assumption,? where a whole family of ex-
ponents was obtained in a compact elegant form (the
Kac determinant formula). The same model has also
been considered from the exact integrability point of
view.> As an extension of this point of view, some ex-
act results have been obtained. For instance, an inver-
sion relation has been found and the critical partition
function has been calculated. The critical variety and
the critical partition function were recovered from the
infinite discrete automorphy group exhibited for this
model.*

In this Letter, we present a new kind of exact results
relative to the checkerboard g-state Potts model with a
magnetic field, which is sufficiently general to reduce
in some appropriate limits to more known cases. Our
purpose is (i) to give the exact expression for the par-
tition function on a new disorder variety; (ii) to
present various arguments coming from exact results
and different expansions, pointing out the existence of
an unexpected S, symmetry; and (iii) to give an exact
expression for the magnetization discontinuity (g
> 4). One should note the remarkable simplicity of
the results, shedding a new light on the analytical
structure of the Potts model, in particular on its
dependence on the different coupling constants.

The Potts model Hamiltonian on a checkerboard lat-

tice with N spins is given by

—32/: EKijso’i,crj +H 280',-,0’
(ij) i

where o; is the spin variable at the site / belonging to
Z,, & denotes the Kronecker delta symbol, and K;; and
H denote the interactions and magnetic field, respec-
tively. The first sum is taken over nearest-neighbor
pairs. Four coupling constants K; (i =1-4) are in-
volved (Fig. 1). For convenience, we use the follow-
. . K, K, K, K,
ing notations: a=e ', b=e °, c=e °, d=e *,
h=e" and Z =73, exp(—BH (o)) the partition
function.

Let us first recall some of the exact results on this
model in the absence of a field. It is well known' that
Z can be calculated in more or less simple limits: (i)
q — 0 which maps into a free-fermion limit of an in-
homogeneous six-vertex model,”> (ii) ¢ =2 which is
known as the generalized square Ising model.® Fur-
thermore, the critical partition function, for all ¢, has
been deduced either from Z-invariance considerations’
or from the automorphy group.® The critical variety is
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Ky K3
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FIG. 1. Elementary cell of the checkerboard Potts model.
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given by
(g—1)(g—3)=abcd — (g —2)(a+b+c+d)— (ab+ac+ad +bc+bd+cd). )

On that critical variety, the internal energy as well as the latent heat (g > 4) has also been calculated.? Besides in
the neighborhood of the latter, there are no available exact results, for arbitrary ¢. In this respect, it was useful to
extend the notion of disorder point!®!! to general models such as the one considered here. The existence of such
a solution is relevant from both qualitative (phase diagram, correlation function behavior, etc.) and quantitative
(analytical structure of Z, constraints on various expansions, etc.) points of view. The disorder variety of the
model without field can be written as

d—1 a—1 b—1 c—1 _
(g—1)d+1 a+q—1b+g—1c+qg—1

0, 2

where the partition function takes the following simple form:

Z(abedih=1)=[(a—1)(b—1)(c—1)d/(1-d) ]2 3)
This solution reduces, as it should, to Rujan’s result in |
the triangular lattice limit'? (¢ — oo). limit (without field) for ¢ =3. A similar situation in
Coming back to the general case of nonzero magnet- the presence of a magnetic field would not be very
ic field, one now gets two conditions instead of one surprising.
[Eq. (2)]. Further details will be given elsewhere.!? The disorder and critical varieties also present
Let us just say that these two conditions are also sym- another interesting common property. A priori both
metric under the complete permutations of a, b, and c, varieties should only exhibit the symmetry of the
and that the exact expression for the partition function square; however, one first remarks that the equation
Z remains given by Eq. (3). Let us also remark that in of the critical variety [Eq. (1)] as well as the critical
the limit ¢ = oo the condition which gives the magnetic partition function® both exhibit the S, symmetry; the
field in terms of the coupling constants, internal energy and the latent heat also show that sym-
a—1 b—1 1+(g—1)d me?ry.. Then both the .expressions of. t.he disor(.ier
= , 4) varieties and the expressions of the partition function

a+q—1b+g—1 1—d

identifies with Eq. (2) (in the ¢ = oo limit for 4 =1),
and that the other condition is a relation between a, b,
and d (independent of the field) which is nothing else
but the criticality condition for the triangular Potts
model in the absence of a magnetic field,

abd — (a +b+d)= (g —2). (5)

The rational expression for Z on these disorder
varieties implies in particular the absence of any
analytical singularity on these varieties.

In general two cases must be emphasized according
to the relative position of the critical and disorder vari-
ties. A nontrivial intersection set results in strong
constraints on critical amplitudes and exponents: van-
ishing of the first or trivialization of the second (e.g.,
— = positive integer). A more intricate situation
may occur in the case where multicritical points appear
in the problem: In such a case an exact cancelation of
singularities may happen. The other possible case is
simply the absence of the intersection. Even in such a
case the existence of a disorder solution implies some
constraints on various expansions (high temperature,
large g, etc.). Such is the case of the model studied

FIG. 2. Critical and disorder varieties for the triangular

here in the absence of a field where the varieties have lattice (¢ = o0), without field and for ¢ = 3. The axis vari-
no nontrivial intersection set. This situation is illus- ables are A=(a—1)/(a+qg—1), B, and D with
trated in Fig. 2 where both varieties are shown in the —1/g=< A=< +1. The upper (lower) surface represents the
K;=oo limit corresponding to the triangular lattice critical (disorder) variety.
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restricted to these varieties are symmetric, either in
the presence of or in the absence of the magnetic field,
under the permutations of a, b, and c [see Egs. (2) and
(3)]. Taking into account these different results we
conjecture the validity of that symmetry in the whole
range of parameters: a, b, ¢, d, h, and q. This conjec-
ture will be supported by different results, which we
list in what follows. Further details will be given else-
where.!*

(a) Large-q expansion: The large-g expansion of Z
has been obtained in the presence of a magnetic field,
up to order six in q‘”z. On this expression, the S,
symmetry has been shown to hold.* This result is
somewhat surprising given the complexity of the ex-
pansion in its dependence on various parameters.

(b) The resummed!® high-temperature (respective-
ly, low-temperature) expansion also shows that sym-
metry.

(c) ¢ =2 limit: The zero-field partition function as
well as the spontaneous magnetization are known.® A
straightforward calculation shows the existence of this
symmetry!? in this Ising limit.

(d) ¢ — O limit: Similarly, we have been able!® to
check the S, symmetry on Lin and Tang’s’ result for
Z.

These various exact results are clearly suppportive
of our conjecture. Some of the arguments are directly
related to the exact integrability of the model in dif-
ferent limits (T=T,, g=2, and ¢=0). In this
respect the S, symmetry may appear first as a conse-
quence of the star-triangle relation. Indeed, consider-
ing these different limits as a solvable inhomogeneous
eight-vertex model,!® it can be shown that Z is S4 in-
variant. However, the existence of that symmetry on
both the expansions (a) and (b) and the disorder solu-
tion suggest the validity of our conjecture.

The occurrence of this intriguing S, symmetry sheds
a new light on the analytical structure of the model,
particularly near criticality. In the following we limit
our discussion to the magnetization discontinuity A M
(T=T, gq>4). The exact expression of AM has
been calculated in different limits!”: square lattice
(a=c¢, b=d), triangular lattice (¢ =o0), and honey-
comb lattice (¢ =1). In these cases, AM appears as a
universal function of ¢g given by

AM =TT —x-"Y/(1+x), (6)
n=1
where, for ¢ >4, x is defined by g =x+2+x"1,
0<x<1.

One can ask if Eq. (6) holds also for the checker-
board model. This is actually the case as indicated by
the following results. Firstly, let us assume that a, b,
¢, and d are solutions of the following equations:

(1-a)(1-b)=q, (1—c)(1—d)=q. @)

These two equations are consistent with the critical
condition [Eq. (1)]. A simple generalization of
Stephen and Mittag’s'® procedure, based on the star-
triangle relation, shows that the diagonal transfer ma-
trices T (a,b) and T (c¢,d) commute when Egs. (7) are
satisfied. That family of commuting matrices share
the same eigenvector s, (associated to their largest
eigenvalue) which must therefore be a function of ¢
only (independent of a, b, ¢, and d). Hence AM,
which is related to (d;olsgo,olwo), is a function of ¢

only and thus equal to the expression of Eq. (6).
Secondly, using the large g expansion, up to order six
in g~1, we have been able! to check that A M reduces
to the expansion of Eq. (6) at small x. Note that the
simple result that we obtain comes from a somewhat
spectacular cancelation of a large number of terms in-
volving complicated expressions of parameters. This
simple expression for AM is of course in agreement
with the S, invariance of the checkerboard model.

In summary, the set of results presented in this
Letter shows that the Potts model appears to exhibit
unexpected remarkable properties. Clearly, it would
be interesting to understand the origin of the S, sym-
metry exhibited here for this particular model. Does it
come from a combinatorial theorem specific to the
Potts model, or is it a consequence of very general
ideas? It is well known that near criticality new sym-
metries can appear such as the conformal covariance
which characterizes in a very precise way the critical
behavior. The results presented here emphasize an a
priori new kind of symmetry, beyond the usual notion
of universality: A quantity like AM is shown to be in-
dependent not only of the lattice but also of all the
coupling constants. It is of great interest to see how
the hidden symmetry S, the conformal covariance,
and the integrability structure (Baxter’s invariance) are
related to each other.
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