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Birational transformations have been shown to provide powerful tools for analyzing the Yang-
Baxter equations, and, beyond, to perform exact calculations on lattice models of statistical mechan-
ics. In particular the so-called “baxterization problem” can be solved very simply using birational
transformations. Beyond, the birational transformations can be studied “per se” in a lattice statis-
tical mechanics framework or in a discrete dynamical system framework. Considering a family of
such birational transformations of two variables, depending on two parameters we conjecture here
a simple rational expression with integer coefficients for the exact expression of the dynamical zeta
function. This yields an algebraic value for the exponential of the topological entropy. Furthermore
the generating function for the Arnold complexity is also conjectured to be a rational expression
with integer coefficients with the same singularities as for the dynamical zeta function. This leads,
at least in this example, to an equality between the Arnold complexity and the (exponential of
the) topological entropy. We also give a semi-numerical method to effectively compute the Arnold
complexity. We also show that rational generating functions and associated algebraic complexities
occur in a much larger framework, namely the iterations of the product of several rational transfor-
mations depending on many continuous parameters. Beyond the narrow framework of Yang-Baxter
integrable models, these generating function calculations give a way to “classify” non-integrable
lattice statistical models and beyond, discrete dynamical systems, providing precise quantitative
instruments partitioning between integrable, weakly chaotic and very chaotic systems.
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I. INTRODUCTION

Birational transformations [1-5] naturally pop out as non trivial non-linear symmetries of lattice models of statistical
mechanics [6-9] and solid state physics. For example (birational) transformations of the R-matrix of the sixteen-
vertex model [10] exist which are non trivial integrable symmetries of the parameter space of the model. These
transformations find their origin in the so-called inversion relation [11] and in the lattice symmetries. They form a
(generically infinite discrete) group generated by the composition of such transformations. A worth noticing property
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of integrability has been found for some of these transformations, opening the question whether this integrability
property is related to an underlying statistical mechanics model or not. To answer this question a wide class of
birational mapping has been introduced moving the point of view from statistical mechanics to discrete dynamical
system.

These mappings are generated by two kinds of transformations on gx ¢ matrices: the inversion of the ¢ x ¢ matrix and
a permutation of the entries of the matrix. Permutations of two entries [7T-9], as well as permutations corresponding
to discrete symmetries of lattice models of statistical mechanics [1-6] were first analysed. Several integrable mappings
associated with permutations of ¢ X ¢ matrices, for arbitrary g, have been found [7-9].

These birational symmetries approach provides very powerful tools to solve Yang-Baxter equations or their higher
dimensional generalizations® (tetrahedron equations ...). They actually provide a fantastic short-cut for these highly
overdetermined set equations giving immediately the uniformization of the Yang-Baxter equations whatever it is,
whatever complicated it may be [16] (elliptic curves, abelian surfaces, higher dimensional abelian varieties). This
approach provides the solution of the so-called Bazterization problem?®. It is also important to underline that these
tools can be used beyond the “narrow” framework of Yang-Baxter integrability.

A. Birational automorphisms of Yang-Baxter equations

Let us first consider the quite general vertex model where one direction, denoted direction (1), is singled out.
Pictorially this can be interpreted as follows :

(1)

where ¢ and k (corresponding to direction (1)) can take ¢ values while J and L take m values. One can define a
“partial” transposition on direction (1) denoted ¢;. The action of ¢; on the R-matrix is given by [6] :

(tLR)i, = RIf (2)

The R-matrix is a (¢m) x (gm) matrix which can be seen as ¢ blocks which are m x m matrices :

ALY AL2] A[L3] - Allg)
A1) A2,2] A[2.3] - Al2.q]
where A[1,1], A[1,2], ..., A[g,q] are m x m matrices. With these notations the partial transposition ¢; amounts to

permuting all the block matrices Ala, 5] and A[S, a]. We use the same notations as in [7-9], that is, we introduce the

o~

following transformations, the matrix inverse I and the homogeneous matrix inverse I :
I: R— R, or : I: R —s det(R)-R™ (4)

The homogeneous inverse I is a homogeneous polynomial transformation on each of the entries of R-matrix, which
associates, with each entry, its corresponding cofactor. The two transformations ¢; and I are involutions and I? =
(det(R))?2™~2 . Td where Zd denotes the identity transformation. We also introduce the (generically infinite order)
transformations :

K=t 1 and K=t -1 (5)

Transformation K is clearly a birational transformation on the entries of the R-matrix, since its inverse transformation,
which is I - t1, is obviously a rational transformation. K is a homogeneous polynomial transformation on the entries

'They are birational automorphisms of the Yang-Baxter equations or of the tetrahedron equations [3,4].
2Far beyond the simple linear, or rational, interpolations of knot, or graph, theory.



of the R-matrix. This general framework enables to take into account the analysis of N-site monodromy matrices [16]
(take m = ¢") of two-dimensional models, as well as the analysis of d-dimensional ¢%-state vertexr models (take

m = ¢%1). Let us just give here a pictorial representation of the two sites (N = 2) monodromy matrix of a
two-dimensional model and of a three-dimensional vertex model : n
Il Iy
i k
J1 J2 ) m (6)

For a three-dimensional cubic vertex model, the “partial” transposition ¢; associated with one of the three directions
of the cubic lattice reads [4,5] :

(BR)GL: = Rk (7)
Such a situation corresponds to m = ¢2. Let us restrict to ¢ = 2. The analysis of the factorizations [14,16] associated

with the iterations of transformation K = ¢;-I, acting on an initial R-matrix M, corresponding to a general 64-state
three-dimensional model (generic 8 x 8 matrix), gives the following factorizations :

det (M- K (M det (M.
M1 = K(Mo), f1 = det(Mo), f2 = #, M2 = ( 3 1), f3 = %, A (8)

f1 f1 f1 “J2

and, for arbitrary n, the following “string-like” factorizations :
3.5 6
K(Mp) = Myt fr - fror - (fn72'fn73"'f1) (9)
4 7 8

det(My) = furr £2-fL 1 (Fama- fuos - fua-oF1) (10)

where the f,’s are homogeneous polynomial expressions of the entries of My. Such factorization schemes occur
for a large set of birational transformations corresponding to lattice statistical mechanics and even beyond this
framework [14,16]. For all these various birational transformations [7-9,14,16] the factorization relations take the
following general® form at the n-th step of the iterations :

det(My) = faur - fO0 - 020 00, - f00  f05 - f (11)
K(Mp) = Mgy 10y fl - fl sy - (12)
det(My) - Muyr = (F05, - fEr - f02 - fE2, - fl4 - f") - K (M) (13)

the exponents 1,,’s, ¢,’s and p,,’s being positive integers. We will denote «,, the degree of the determinant of matrix
M,,, and 3, the degree of polynomial f, and a(z), 5(x), n(x), ¢(x) and p(x), the generating functions of the degrees
an’s, Brn’s, and of the exponents n,,’s, p,’s and ¢,’s in the factorization schemes :

n=0 n=0 n=0 n=0 n=0

From factorizations (9), (10), one easily gets the generating functions a(z) and SB(z):

8(1+ z)? 8z
_ = 7 14
This shows that (11) and (12) correspond to a polynomial growth of the degrees a,, and f3,. These results can be
compared with the ones associated with the analysis of the symmetries of the sizteen vertez model [6] for which one
gets the simple factorization scheme [6] :

3Tt should be noticed that slightly more involved, but still stable, factorization scheme may occur where the exponents 7,’s
and ¢’s depend on the parity of n, or, more generally, on n mod. p : in that case on has p sets of exponents 7,’s and ¢,’s in
order to describe these factorization schemes [28,29]. Some examples are given in Appendix A.



K(Mn41) det(Mp1) K (M) M3

Myyr = —F—, nt2 = ) = T—F 15
+2 fa Josz fa det(Mp2) In+1fn+s (15)

and one has a hierarchy of integrable recursions [16] :
fofavs = fava Fig _ Foi1 fava = Fois faio (16)

Jn—1 fn+s frnta — fo frt1 fras fnfnva frnvs — Fat1 frtz frse
The generating functions a(z) and f(z) read :
41+ 32?) 4z

a(z) = w; Bx) = m (17)

Again one has a polynomial growth of the calculations, consequence of the integrability of the mapping itself [6].
From these two examples one should not infer that the birational transformations corresponding to lattice statistical
mechanics always yield polynomial growth. Vertex models studied by Stroganov or Perk and Schultz corresponding to
q # 2 provide examples of exponential growth of the complexity [16] : this is the generic situation for lattice statistical
mechanics. Exponential growth rules out the existence of solutions of the Yang-Baxter equations.

We have used the methods introduced in [7-9] on various examples of vertex models of lattice statistical mechanics.
In particular, we have analyzed the factorization properties of discrete symmetries of the parameter space of these
lattice models, represented as birational transformations. Different features have emerged from such studies, namely
the polynomial growth of the complexity of the iterations of these birational transformations [13], the existence of
recursion relations bearing on the factorized polynomials f,,. The relation between these properties, or more general
structures like the “quasi-integrability” [6], and the integrability of these lattice models of statistical mechanics, has
been studied. The analysis of the factorizations corresponding to a specific two-dimensional vertex model has shown
how the generic exponential growth of the calculations does reduce to a polynomial growth when the model becomes
Yang-Baxter integrable [16]. This gives a first example of the fact that the search for polynomial growth* of the
associated iterations provides a new way to analyse vertex models [4,5,15].

B. Birational transformations associated with general permutations of entries of ¢ X ¢ matrices

These lattice statistical mechanics birational transformations correspond to combining the inversion of a matrix
together with various permutations of the entries of the R-matrix representing geometrical symmetries of various
euclidean d-dimensional lattice. This is a motivation for considering the following problem [14,16] consisting in
analyzing the transformations K, =to I, acting on a ¢ x ¢ matrices M, for arbitrary permutation ¢ of the entries.

This is a quite large set of transformations : for 3 x 3 matrices one has 362880 such (birational) transformations
to study, and for 4 x 4 matrices, 20922789888000 transformations have to be studied. A systematic study of these
large sets of (birational) transformations is performed elsewhere [28]. Let us first concentrate, in the first part of
this paper, on a simple, but very interesting (and tutorial), example of permutation, namely the transposition of the
two entries M; o with M3 o and its associated bi-polynomial transformation K. This transformation has also been
analysed in detail in [9]. For ¢ x ¢ matrices (¢ > 3) the factorizations corresponding to the iterations of K read :

det(M K(M det( M- K(M
fi = det(My), My = K(Mo), fo Z%, M, = (q,g,l); f3=%, M; = (q,;);
1 1 1 J: 2
det (M. K (M. det(M.
fa = %; My = %; fs = — q,l( D) el (18)
b fy . a2 f F2ft fs e
and for arbitrary n :
det(Mn) = fn+1‘(fg_2'fn—1 fg:; 273)(f5:421fn—5f2:(13 2,7) ff", (19)
K(My) = M1 (fi7% fA25 - fams) - (FE23 - FA25 - famr) - S1° (20)

“In fact, the polynomial growth of the calculations [8] correspond to shift on an abelian variety C™/T.



where p, = ¢—3 for n =1 (mod 4), g, = 0 for n = 2 (mod 4), p, = q¢—2 for n =3 (mod 4) and p,, =1 forn =0
(mod 4) and §,, also depends on the truncation. The exact expressions of the generating functions «(z) and [(x)
read [9] :

q q2-x-(1—|—az2)
l+z (I-z)l+z)(1—2—2a3)

q-x-(1+x2)
1—xz—a3

alz) = B(x) = (21)

It is clear that one has an exponential growth of the degrees a,,’s, 8,’s : these coefficients grow like A" where
A ~ 1.465 - - -. This displays the “generic” factorization scheme. However, on various subvarieties (like the codimension
one subvariety a = 0 see below) the factorization scheme can be modified as a consequence of additional factorizations
occurring at each iteration step, thus yielding a smaller value for the complexity .

This transformation can be seen to restrict to a two-parameter family of mapping of two variables (see (22) below).
We now consider this two-parameter family of mapping of two variables, for which much can be said. In particular, we
will conjecture an ezact algebraic value for the (exponential of the) topological entropy and for the Arnold complexity®.
Furthermore, these two measures of complexity will be found to be equal for all the values of the two parameters,
generic or not (the notion of ”genericity” is explained below). Note that a fundamental distinction must be made
between the various “complexity measures” according to their invariance under certain classes of transformations.
One should distinguish, at least, two different sets of complexity measures, the ones which are invariant under the
larger classes of variables transformations, like the topological entropy or the Arnold complexity [22], and the other
measures of complexity which also have invariance properties, but under a “less large” set of transformations, and are
therefore more sensitive to the details of the mapping (they may depend on the metric like, for instance, the metric
entropy [19,20]).

C. A two parameters family of birational transformation

Let us consider K? instead of K (which is just a simple change for the complexity A into A\? ). Transformation K2
can actually be reduced [9] to a two parameters family of birational transformations kq ¢ :

kae: (Unt1, Vnt1) = (1—un+un/vn, €+ v, — v /u, + a-(l—un+un/vn)) (22)
which can also be written projectively :

Up+1 = (Untn — UpUp + untn) *Up
Upt1l = € Up - Up - by + (Un, — ) -vfbﬂ—a-(vntn—unvn%—untn) Uy,
lpt1 = Up Uy - In (23)

As far as complexity calculations are concerned, the o = 0 case is singled out [26]. In that case, it is convenient to
use a change of variables to get the very simple form k. :

Zn — €
ke : (YUnt1, Zny1) = (Zn+1_€: ynm) (24)

or on its homogeneous counterpart :

(yn+1 y An+1 tn+1) = (Zn +in—€- tn) : (zn + tn) y Yn - (Zn — € tn) y b (Zn + tn)) (25)

®To study the complexity of continuous, or discrete, dynamical systems, a large number of concepts have been introduced
[17,18]. A non exhaustive list includes the Kolmogorov-Sinai metric entropy [19,20], the Adler-Konheim-McAndrew topological
entropy [21], the Arnold complexity [22], the Lyapounov characteristic exponents, the various fractal dimensions [23,24], --- .



II. THE COMPLEXITY GROWTH

The correspondence [9] between transformations K, and k, ., more specifically between Kg and k., is given
in [29]. It is shown below that, beyond this correspondence, K| 3 and k, . share properties concerning the complexity.
Transformation K, is homogeneous and of degree (¢ — 1) in the ¢> homogeneous entries. When performing the n*®
iterate one expects a growth of the degree of each entries as (¢ — 1)™. It turns out that, at each step of the iteration,
some factorization of all the entries occurs. The common factor can be factorized out in each entry leading to a
“reduced” matrix M, which is taken as the representent of the n'! iterate point in the projective space. Due to
these factorizations the growth of the calculation is not (¢ — 1)” but rather \™ where \ is generically the largest root
of 14+ A2 — X3 =0 (i.e. 1.46557123 < g — 1 [9,13], see also (21)). We call X the complexity growth, or simply, the
complexity. This result is a consequence of a stable factorization scheme (see (19), (20)), from which two generating
functions® a(x) and B(z) can be constructed. Generating function a(z) keeps track respectively of the degrees of the
determinants of the successive “reduced” matrices and f(x) of the degrees of the successive common factors. The
actual value of \ is the inverse of the pole of S(x) (or a(x)) of smallest modulus. The algebraicity of the complexity
is, in fact, a straight consequence of the rationality of functions a(z) and B(x) with integer coefficients [13]. The
same calculations have also been performed on transformations (22) and (23). In that case factorizations also occur,
at each step, and generating functions can be calculated. These generating functions are, of course, different from the
generating functions for K? (see [13]) but they have the same poles, and consequently the same complexity growth.
One sees that, remarkably, the complexity A does not depend on the birational representation considered : K g for any
value of ¢, kq e or the homogeneous transformation (23). It will be useful to define some degree generating functions

G(z) :

G(z) = Zdn-xn (26)

where d,, is the degree of some quantities we look at, at each iteration step (numerators or denominators of the two
components of k™, degree of the entries of the “reduced” matrices M,,’s, degree of polynomials f,’s extracted in the
factorization schemes). The complexity growth A is the inverse of the pole of smallest modulus (if G(z) is rational)
of any of these degree generating functions G(z) :

log d
logh = lim —2om (27)
m— 00 m
A. Complexity growth for a« = 0
In the @ = 0 case, which corresponds to a codimension one variety of the parameter space [26,29], additional

factorizations occur reducing further the growth of the complexity. The generating functions are modified and the
new complexity is given, for K, by equation 1 —A* —\* = 0,i.e. A ~ 1.27202---. For k., which corresponds to
K?, the equation reads :

I-A=XM =0 (28)

leading to the complexity A ~ 1.61803--- ~ (1.27202---)?. Not surprisingly, the complexity of the mappings kg,
for o = 0 (see (22)) and the one of mapping k. (see (24)), are the same: complexity A corresponds to the asymptotic
behavior of the degree of the successive quantities encountered in the iteration (see (27)). Clearly, this behavior
remains unchanged under simple changes of variables. Note that this complexity growth analysis can be performed
directly on transformation k., or on its homogeneous counterpart (25). The number of generating functions in the
two cases is not the same, but all these functions lead to the same complexity. In fact complexity A is nothing but
the Arnold complexity [22], known to be invariant under transformations corresponding to a change of variables like
the change of variables from (22), for « = 0, to (24) (or to (25)). Let us also recall that the Arnold complexity

®The generating function a(z) should not be confused with the parameter a.



counts the number of intersection between a fixed line” and its n*® iterate, which clearly goes as A". Conversely, all
these growth calculation evaluations can be seen as a “handy” way of calculating the Arnold complexity.

All these considerations allow us to design a semi-numerical method to get the value of the complexity growth A for
any value of the parameter €. The idea is to iterate, with (24) (or (22)), a generic rational initial point (yo,z0) and
to follow the magnitude of the successive numerators and denominators. During the first few steps some accidental
simplifications may occur, but, after this transient regime, the integer denominators (for instance) grow like A" where
n is the number of iterations. Typically a best fit of the logarithm of the numerator as a linear function of n, between
n = 10 and n = 20, gives the value of A within an accuracy of 0.1%. An integrable mapping yields a polynomial growth
of the calculations [13] : the value of the complexity A has to be numerically very close to 1. Fig. 1 shows the values
of the complexity as a function of the parameter €. The calculations have been performed using an infinite-precision
C-library [25].

For most of the values of € we have found A ~ 1.618, in excellent agreement with the value predicted in (28). In [26],
it has been shown that the simple rational values e = —1,0,1/3,1/2,1 yield integrable mappings. For these special
values one gets A & 1 corresponding to a polynomial growth [26]. In addition, Fig. 1 singles out two sets of values
{1/4,1/5,1/6,---,1/13} and {3/5, 2/3, 5/7}, suggesting two infinite sequences ¢ = 1/n and® ¢ = (m — 1)/(m + 3)
for n and m integers such that n > 4 and m > 7 and m odd. We call “non-generic” the values of € of one of the two
forms above (together with the integrable values), and “generic” the others. To confirm these suggestions of Fig. 1,
we go back to (the matrix) transformation K, for ¢ = 3, to get a generating function of the degrees of the f,’s
extracted at each step of iteration, namely, with the notations of [9,14,16], function B(x). From now on, we will give
below, instead of 3(z), the expression of the following complexity generating function defined, for ¢ x ¢ matrices, as :

Blz)

g = o7

(29)

In the following the calculations are often displayed for 3 x 3 matrices and G%(q, ) will simply be denoted G%(z).
Let us recall that the value of the complexity A is the inverse of the root of smallest modulus of the denominator
of this rational function. Examples of these calculations, in order to get the corresponding factorization scheme and
deduce the generating function 8(x), or G%(z), are given in Appendix A. Choosing an initial @ = 0 matrix to iterate,
we have first obtained the generating function G.(x) in the generic case’ for & = 0 (see (A4) in Appendix A) :

1+z+2°
G = g (30
We also got the generating function G¢(x) for the different “non-generic” cases :
14+ 23 — g?mtl _ g2m+3 .
Gim(z) = a7 =t 5 gt , with m > 4 (31)
1 3 _ .2m—+6
G(m—l)/(m+3) (z) = torte d with m >7 m odd (32)

1— 22 — gt 4 g2mtd’
and :

_ 1+ +a+ 2t + a8 + 2!?
Gint(z) = 1— 22 — 26 + 28 — 210 { 412 | 216 _ 218 (33)
1+z- (1 +2%)+2* (1 +2* +29)

1—a2 (1 —2'2) — 26 (1 — 22 + 2% — 28 + 28 — 210 4 z12)

fore=1/2and e =1/3. Fore = 1/m (m > 4) and e = (m — 1)/(m + 3) (m > 7 and m odd), the corresponding
complexities are the inverse of the roots of smallest modulus of polynomial :

"Or the intersection of the n-th iterate of any fixed algebraic curve together with any other possibly different but fized algebraic
curve.

®Note that m — (m+3)/(m — 1) is an involution.

%It is worth noticing that these results are not specific to 3 x 3 matrices, for example relation (30) is actually valid simply
replacing G¢ (z) by G&(q, z).



1—2? -z —z?™™ = 0 (34)
in agreement!® with the values of Fig. 1. This semi-numerical method acts as an ‘integrability detector’ and, further,
provides a simple and efficient way to determine the complexity of an algebraic mapping. Applied to mappings (22),
K, = t-I,or (24), it shows that the complexity is, generically, a universal quantity, independent of the value of the
parameter €, except for the four integrable points, and for two denombrable sets of points.

a=0
17 T T T T T T

el T V V g
1.5 i
1.4 A M
1.3 A i
1.2 f 4

1.1 A n

1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
€

FIG. 1. Complexity for &« = 0. Complexity A, for ke, as a function of e.

B. Complexity growth for « # 0

These complexity growth calculations can straightforwardly be generalized to a # 0. As seen in section (IB) (see
(21)), the “generic” generating function is :

. 1+ a?
Ga(w) - 1 — ¢ — 3:3 (35)
The pole of smallest modulus of (35) gives 1.46557 - - - for the value of the complexity for the matrix transformation K.
The complexity for the transformation k2 is the square of this value: A\ = 2.14790 - -- . Fig. 2 shows, for a = 1/100,
complexity A as a function of the parameter e, obtained with the semi-numerical method previously explained. Even
with such a “small value” of a the expected drastic change of value of the complexity (namely 1.61803 — 2.14790)
is non-ambiguously seen.

!Tn this figure the e-axis has been discretized as M /720 (M integer) and the extra values 1/7, 1/11, 1/13 and 5/7 have been
added.



a=1/100
22 T T T T T

2.05 ¢ b

2 I I I I
0 0.2 0.4 0.6 0.8 1
€

FIG. 2. Complexity A, for kq,c, as a function of e taken of the form M /720 for a = 1/100.

Moreover, Fig. 2 clearly shows that, besides the value ¢ = 0 known to be integrable whatever « [26], the following
values € = 1/2, e = 1/3 and € = 3/5 are associated to a significantly smaller complexity, at least for the discretization
in € we have investigated. From these numerical results, and by analogy with a = 0, one could figure out that

all the e = 1/m are also non-generic values of e. In fact a factorization scheme analysis, like the one depicted in
Appendix A), shows that € = 1/4 or ¢ = 1/7 actually correspond to the generic (35). We got similar'’ results for
other values of a # 0. Let us just keep in mind that, besides ¢ = 0 and ¢ = —1, at least ¢ = 1/2, ¢ = 1/3 and

e = 3/5 are singled out for a # 0 in our semi-numerical analysis. The generic expression (for 3 x 3 matrices) for the
generating function G(x) , namely (35), is replaced, for the “non-generic” value € = 1/2 (with a # 0), by :

1+ +a% —2'6

172(2) = 1 — 222 — 26 + 28 — 210 4 12 | 416 (36)
o+ 22) (147 — 2% + 2% — 26 + 28 — 210 4 212 — z1)
o (1—a2?) (1 —a2? —at =220 — a8 — 2210 — 12 _ gl4)
For the other “non-generic” value of €, ¢ = 1/3, the complexity generating function reads :
o (2) l+z+2% — 22 1+2%)-(1+2— 22+ 2 — 25 + 28 — 219) (37)
xr) = 5 = 5
1/3 1—222 — 26 + 28 + 212 (I1—22)-(1—a2 —2* — 220 — 28 — 210)
For the “non-generic” value € = 3/5, the complexity generating function reads :
3 _ .20
o) = gL . (38)
/ 1— 9222 — 26 + 28 — 210 4 212 _ z14 4 216 4 420
The denominator of (38) has a “cyclotomic polynomial” simple form :
(1—332)-(1 —2 (l4+z+28)- 1-z+2°)-01+2Y (1 +x8)) (39)

"However, when varying « and keeping e fixed, new values of the complexity A occur, A being some “stair-case” function of
a. We will not exhaustively describe the rather involved “stratified” space in the (a, €) plane, corresponding to the various
“non generic” complexities.



III. DYNAMICAL ZETA FUNCTION AND TOPOLOGICAL ENTROPY

It is well known that the fixed points of the successive powers of a mapping are extremely important in order to
understand the complexity of the phase space. A lot of work has been devoted to study these fixed points (elliptic
or saddle fixed points, attractors, basin of attraction, etc), and to analyse related concepts (stable and unstable
manifolds, homoclinic points, etc). We will here follow another point of view and study the generating function of the
number of fixed points. By analogy with the Riemann ( function, Artin and Mazur [27] introduced a powerful object
the so-called dynamical zeta function :

C@Zem<z#hWUég (40)

m=1

where #fix(k™) denotes the number!'? of fixed points of k™. The generating functions

H(t) = ) #fix(k™) -t (41)
can be deduced from the ¢ function :
d
H(t) =t (ogC(1). (42)

If the dynamical ¢ function is rational the topological entropy log(h) is simply related to its pole h :

logh = lim 08 (HxX(E™))

m—00 m

(43)

If the dynamical zeta function can be interpreted as the ratio of two characteristic polynomials of two linear operator
A and B, namely ((t) = det(1 — ¢- B)/det(1 — ¢ - A), then the number of fixed points #fix(k™) can be expressed
from Tr(A™) — Tr(B™). For more details on these Perron-Frobenius, or Ruelle-Araki transfer operators, and other
shifts on Markov’s partition in a symbolic dynamics framework, see for instance [32-35]. In this linear operators
framework, the rationality of the ( function, and therefore the algebraicity of the topological entropy, amounts to
having a finite dimensional representation of the linear operators A and B. In the case of a rational ¢ function,
h, the exponential of the topological entropy is the inverse of the pole of smallest modulus. Since the number of
fixed points remains unchanged under topological conjugaison (see Smale [36] for this notion), the ¢ function is also
a topologically invariant function, invariant under a large set of transformations, and does not depend on a specific
choice of variables. Such invariances were also noticed for the complexity growth A. It is then tempting to make a
connection between the rationality of the complexity generating function previously given, and a possible rationality
of the dynamical ¢ function. We will also compare the Arnold complexity A and h, the (exponential of the) topological
entropy.

A. Dynamical zeta function for o =0, € generic

We try here to get the expansion of the dynamical zeta function of the mapping k. (see (24)), for generic!?® values
of e. We concentrate on the value ¢ = 13/25 = 0.52. This value is close to the value 1/2 where the mapping is
integrable [26]. One can gain an idea of the number, and localization, of the (real) fixed points looking at the phase
portrait of Fig. 3.

121f one of these numbers is infinite the definition breaks down. For instance for integrable mappings there are many algebraic
curves such that all their points are fixed points of k™ for some given integer n.
13Neither of the form 1/m, nor of the form (m — 1)/(m + 3).
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FIG. 3. Phase portrait of k. for « = 0 and e = 13/25. 550 orbits of length 1000 have been generated. 50 orbits start from
points randomly chosen near a fixed point of order 5 of ke = k13,25, and 500 others orbits start from randomly chosen points
outside the elliptic region. Only the points inside the frame are shown.

The elliptic fixed point (yo,20) = (.24, —.24) is well seen, as well as the five elliptic points and the five saddle
points of k>. Many points of higher degree are also seen. Transformation k. has a single fixed point for any e. This
fixed point is elliptic for € > 0 and localized at (yo, 20) = ((1 —€)/2, (¢ — 1)/2). Transformation k? has only the fixed
point inherited from k.. The new fixed points of k2 are (2 — ¢, (e—1)/2), (=1,1) and ((1—¢€)/2, e—2). Transformation
k% has four new fixed points. At this point the calculations are a bit too large to be carried out with a literal €, and
we particularize e = 13/25. For k? we have five news elliptic points and five new saddles points. The coordinates z
and y of these points are roots of the two polynomials (obtained from resultants) :

P(z) = 2% (252 — 13) (1 + 2)(4375 2% + 1550 z — 89) (1752 + 106 2 + 7) (44)
x (252 +13)2(252° +122 +1)2 (252 +6)°
Q) =y (y—1)" 25y —6)°(25y” — 12y +1)° (25y — 12)° (45)

x (7 =106y + 175y*)? (4375y* — 1550 y — 89)3

Among the various pairings one can consider, some corresponds to spurious or singular points (components of k2 are of
the form 0/0). For instance 2% (252 —13) (1+42) (252 +13)2 = 0 and y (y — 1)* (25y—12)? = 0 correspond to such
points to be discarded. After this selection, the five pairings of roots of (44) and (45), giving the five elliptic points,
are (0.530283, -0.107335), (-0.050283, -0.24), (0.372665, -0.372665), (0.107335,-0.530283), (0.24, 0.050283) and
the five pairings giving the five hyperbolic-saddle points are (0.372665, -0.075431), (0.107335, -0.107335), (0.404568,
-0.24), (0.075431, -0.372665), (0.24, -0.404568). This is clearly seen on Fig. 3 where the occurrence of five “petals”
corresponding to five elliptic points is obvious, the five hyperbolic points being located between the petals. After
discarding the spurious, or singular, points, the fixed points for k> are (y, z) points where z and —y are roots of
the same polynomial Ps(z). For arbitrary value of €, Ps(z) reads :

Psi(z) = ((36—1)-z2 +(—4e +1de —6) - 2 +63—5e2+106—4) (46)
X((Se—l)-22 +(4—6e —26) -2+ 1 —56+662)-(22 +(1-e -z +26—1)-(2z+1—e)

For transformation k¢, beyond the fixed points of k. and k2, one gets two complex saddle fixed points, i.e. trans-
formation k. has two 6-cycles. For transformation k!, one obtains one elliptic real fixed point, one saddle real fixed
point and and two complex saddle fixed points. For transformation k%, one obtains one saddle real fixed point and

four complex saddle fixed points. For transformation k?, one obtains one elliptic real fixed point, three saddle real
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fixed point and and four complex saddle fixed points. For transformation k!°, one obtains one elliptic real fixed
point, one saddle real fixed point and and three complex elliptic fixed points and six saddle complex fixed points. The
two elliptic fixed points of k1° (0.24, -0.874) and (0.874, -0.24) are seen as “ellipse” on Fig. (3). For transformation
k! | one obtains one elliptic real fixed point, five saddle real fixed point and and twelve complex saddle fixed points.
On Fig. (3) a fixed point of k!? lying on y + z = 0 is seen near y = —13/25. The polynomials, similar to (44) and
(45), as well as the specific pairing of roots, for the successive iterates kY, are available in [37].

It is worth noticing, that among the 53 cycles of k. of length smaller, or equal, to 11, as much as 44 are on the line
y+ 2z = 0, six are on the line y +Z = 0. Two of the three remaining cycles are of length 11, while the last is of length
eight. The particular role played by the y + z = 0 line can be simply understood. Let us calculate the inverse of
the birational transformation (24). It has a very simple form :

kzl : Zn+l = Yn — (]- - 6)7 Ynt+1 = Z2Zn- (47)

which is nothing but transformation (24) where y, and — z, have been permuted. The y,, + — z, symmetry just
corresponds to the time-reversal symmetry k. < k! transformation. The y + z = 0 line is the time-reversal
invariant line.

Also note that, among these 53 cycles, only one of the 31 complex cycles is of the form Zy, Z1, -+ Zp, Zo, Z1, -+ Zy
where Z; = (y;, z;) and Z; is the complex conjugate. The 30 remaining complex cycles are actually 15 cycles and their
complex conjugates.

For the e = 13/25 = 0.52 example these results are summarized in table Tab. I which gives the number of fixed
points, as well as their status :

n 1 2 3 4 5 6 7 8 9 10 11
# fixed points 1 1 4 5 11 16 29 44 76 121 199
# n-cycles 1 0 1 1 2 2 4 5 8 11 18
# elliptic real 1 0 0 0 1 0 1 0 1 1 1
# saddle real 0 0 1 1 1 0 1 1 3 1 5
# elliptic complex 0 0 0 0 0 0 0 0 0 3 0
# saddle complex 0 0 0 0 0 2 2 4 4 6 12
#ony+z=0 1 0 1 1 2 2 4 4 6 10 12
#Fony+z=0 0 0 0 0 0 0 0 0 2 0 4

TABLE I. Number and status of the fixed points of k;,,;. n-cycle means cycle of minimum length n
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The corresponding phase portrait is very complicated and dominated by the real fixed points [30] which are all
saddle or elliptic. We note that the same properties (all points saddle or elliptic) also holds for the complex fixed
points.

Local area preserving property : Eventually, one observes an area preserving [38] property in the neighborhood
of all the fized points of kI : the product of the modulus of the two eigenvalues of the Jacobian (i.e. the determinant)
of k', at all fixed points for n < 11, is equal to 1. This local property is rather non trivial : the determinant of
the product of the jacobian over an incomplete cycle is very complicated and only when one multiplies by the last

jacobian does the product of the determinants shrinks to 1.

Dynamical zeta function : The total number of fixed points of kY for N running from 1 to 11, yields the
following expansion, up to order eleven, for the generating function H(t) of the number of fixed points :

H(t) = t+t* +4¢3 +5¢* + 116>+ 161° +29¢" +45¢% + 76¢° + 1210 + 199 + ... (48)

This expansion coincides with the one of the rational function :

t-(1+ %)
H.(t) = ‘ ‘ 49
®) 1-¢)(1—-t—1t?) (49)
which corresponds to a very simple rational expression for the dynamical zeta function :
11—
(t) = —— 50
) = T——p (50)

Expansion (48) remains unchanged for all the other generic values of € we have also studied.
We conjecture that :
The simple rational expression (50) is the actual expression of the dynamical zeta function for any generic value

of €.

Comparing expression (28) with (50) one sees that the singularities of the dynamical zeta function happen to
coincide with the singularities of the generating functions of the Arnold complexity. In particular the complexity
growth A and h, the exponential of the topological entropy, are equal.

In fact, as far as fixed points of k¥ are concerned, there is also a fixed point at oo. If one takes into account this
fixed point at oo as well, the previous definitions are slightly modified :

Ht) — HOW) = HO) +1—,  and: (1) — 0= 2= (51)

Rational expression (50) becomes :

1+t

) = FR—" (52)

Let us consider the complexity generating function corresponding to the degrees of the numerators (or denominators)
of the two components of k¥ . The generating function of the degree of the numerator of the z component of kv,
we denote g,(t), has exactly the same expression, up to 1, as (52) :

1+ g.() = () =
= 14+2t+38 +58° + 81 + 1317 +21¢° + 341" + 55¢° + 89¢” + 1440 + 233 ¢! + - (53)

One can also introduce g, (t) the generating function of the degree of the numerator of the y component of kY | and
hy(t) and h.(t) the generating functions of the degrees of the denominators of the y and 2 components of £k :

gy(t) = t+28> +383 4+ -+, ho(t) =t +26% +483 -, hy(t) = % +2¢> +4t* +- .-

where : g:(t) = h.(t) + —, gy(t) = hy(t) + — gy(t) = t-(1+ g.(¢)) (54)

One has :
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(W = 1+ g = 2 (55)

More “canonically” recalling the homogeneous transformation (25), let us denote gpom(t) the generating function of
the successive degrees of the y,,, z,, and t,,. For generic €, one has the following relation between gpo., (t) and Ceoo) (t):

Ghom(®) + —— = () (56)

1-1¢
When mentioning zeta functions it is tempting to seek for simple functional relations relating ((t) and ((1/t). Let
us introduce the following “avatar” of the dynamical zeta function :

¢(®)

C(t LI 57
0 = 2 657)
Transformation z — z/(z — 1) is an involution. One immediately verifies that @(t) , corresponding to (50), verifies

two extremely simple, and remarkable, functional relations :

Gty = =/, and : C(t) = C(=1/p), (58)
or on the zeta function ((t) :
COf) = gy L1 = G (59)
The generating function (49) verifies :
HA(=1/t) = — H.(t) (60)

Cycle decomposition : An alternative way of writing the dynamical zeta functions relies on the decomposition
of the fixed points into cycles which corresponds to the Weyl conjectures [39]. Let us introduce N, the number of
irreducible cycles of k”: for instance for Ni» we count the number of fixed points of k2, that are not fixed points of
ke, k2, kX or k8, and divide by twelve. One can write the dynamical zeta function as :

1 1 1 1

) = o EE e TR (61)

The combination of the N,’s; inherited from the product (61), automatically takes into account the fact that the
total number of fixed points of k! can be obtained from fixed points of k?, where p divides r, and from irreducible
fixed points of k" itself (see [39] for more details). A detailed analysis of this cycle decomposition (61) for generic
values of € will be detailed elsewhere [30]. The previous exhaustive list of fixed points (up to order twelve) can be
revisited in this irreducible cycle decomposition point of view. The results of [37] yield : Ny = 1, Ny, = 0, N3 =
1,Ny =1,N;s =2,N¢ =2, N; =4, Ng =5,Ng =8, Nig =11, N;; = 18 . One actually verifies easily that
(50) and (61) have the same expansion up to order twelve with these values of the N,’s. The next N,’s should be
Niz =25, Ni3 =40, Niy =58, Ni5 =90, ---

Real dynamical functions : Introducing some generating function for the real fixed points of kY, it should be
noticed that this generating function has the following expansion up to order eleven for e = .52 :

Hredb = 482 4483 + 545 + 1165 + 415 + 1547 + 1345 + 4047 + 3140 + 674 + - (62)

This series is a quite “checkered” one. Furthermore, its coefficients depend very much on parameter €. In contrast
with generating function (41), the generating function H** has no simple universality property in . This series
does not take into account the topological invariance in the complex projective space : it just tries to describe the
dynamical system in the real space. This series H'*? corresponds to the “complexity” as seen on the phase portrait
of Fig. (3). One sees, here, the quite drastic opposition between the notions well-suited to describe transformations
in complex projective spaces, and the ones aiming at describing transformations in real variables.
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B. Dynamical zeta functions for a = 0, € non generic

To further investigate the identification of these two notions (Arnold complexity-topological entropy), we now
perform similar calculations (of fixed points and associated zeta dynamical functions) for € = 1/m with m > 4 and
€ = (m—1)/(m+3) with m > 7 odd (see Appendix B). The calculations are detailed in the Appendix B. All these
calculations are compatible with the following single expression of the ( function :

1 —¢2
1 —¢ — 2 4 ¢m+2

G/m(t) = (63)
We conjecture that this expression is exact, at every order, and for every value of m > 4. Again this expression
coincides with the corresponding expression of the Arnold complexity (see (34) with ¢t = z?).

Similar calculations can also be performed for the second set of non-generic values of €, namely e = (m—1)/(m+3)
with m > 7, m odd (or equivalently e = (n —1)/(n + 1) with n > 4). Comparing these rational expressions for the
dynamical zeta function ((50), (B2), ...), and the rational expressions for the generating functions of the Arnold
complexity ((31), (32), (33), ...) for the generic, and non-generic, values of €, one sees that one actually has the same
singularities in these two sets of generating functions (note that ¢ has to be replaced by z? since k. is associated
with transformation K? and not K). The identification between the Arnold complexity and the (exponential of
the) topological entropy is thus valid, for a = 0, for generic values of €, and even for non-generic ones. It is
worth noticing that, due to the topologically invariant character of the dynamical zeta function, these results are of
course not specific of the y and z representation of the mapping (24) but are also valid for the (u,v) representation
(22): in particular the exact expressions of the dynamical zeta functions (namely (50), (B2) in Appendix B), remain
unchanged and, of course, the denominators of the complexity generating functions are also the same for generic, or
non-generic, values of e.

The local area preserving property in the neighborhood of all the fixed points of k' previously noticed for o = 0, €
generic, is also verified for these non generic values of e.

C. Dynamical zeta functions for « # 0

This A = h identification is not restricted to @ = 0. One can also consider mapping (22) for arbitrary values of
a and e and calculate the successive fixed points. Of course, as a consequence of the higher complexity of the a # 0
situation (the complexity jumps from 1.61803--- to 2.14789---), the number of successive fixed points is drastically
increased and the calculations cannot be performed up to order eleven anymore. In the generic case, the expansion
of the generating function H(t) of the number of fixed points can be obtained up to order seven :

HY(t) = 2t +22 + 1162 +18¢* +471° + 9545 + 21247 + --- (64)

One has two fixed points for k., no new fixed points for kie, three sets of three new fixed points for kfm (giving

3 x 3 + 2 = 11 fixed points), four sets of four new fixed points for k* (giving 4 x 4 + 2 = 18 fixed points), nine
sets of five new fixed points for k® (giving 9 x 5 + 2 = 47 fixed points), fourteen sets of six new fixed points for kge
(giving 14 x5 + 3 x 3 + 2 = 95 fixed points). This expansion corresponds to the following order seven expansion
for the dynamical zeta function :

Cot) = 142t +382 +7 +15t* +32¢° +691° + 14847 + --- (65)
thus yielding to the following rational expression for the dynamical zeta function :

(1—8)-(1+¢) _ (1 —2?)-(1 + 2?)?

*(t) = = ith : t = a? 66
® 1—t—2¢2 — 3 l—-—z—-2%)-(1+4+z+ 2?) W * (66)
This expression can also be written :
N 1—t2)-(1+1)
) = ( ) 3 (67)
1—t-(1+1)
If one counts the fixed point at infinity one gets :
1+¢)?

(=)t Sl (65)

1—t —2¢2 — ¢3
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Let us consider again the complexity generating function corresponding to the degrees of the numerators of the two
components of kY, (see (22)). The generating function g, (t) for the degrees of the numerators of the v component

of kN

(a7

has again exactly the same expression (up to 1) as (68) :

L+ g,(t) = (™)
= 1+3t+68%+13¢> + 28t + 60> + 129¢° + 27747 + - - (69)

The generating function gpen(t) of the successive degrees of the homogeneous transformation (23) of the u,, v,
and %, reads :

t-(3+t—t2—1t3)

t) = 70
Let us recall the “alternative” zeta function (57). It verifies the simple functional relation :
200 Q-0 = = - (71)
The new rational conjecture (66) corresponds to the following expression for H(t) :
t-(2 +382 +t°
HY() = e, (72)

1—2) (1—t —28 — 13

Comparing the denominators of (66) and (35), one sees that, like for a = 0, there is an identification between the
Arnold complexity A, and h, the exponential of the topological entropy :

A=h (73)

The eulerian product Weyl-decomposition (61) of the dynamical zeta function (66) corresponds to the following
numbers of r-cycles : Ny = 2, N, = 0,N3 =3, Ny =4, N; =9, Ng =14, N; = 30, Ng = 54, Ny =
107, N1p =204, N;; =408, N1» =25, Ni3 = 1593, N1y = 3162.

D. Dynamical zeta functions for o # 0 with ¢ non-generic

For a “non-generic” value of € when « # 0, namely e = 1/2, the expansions of the generating function H(t) and of
the dynamical zeta function suggest the following possible rational expression for the dynamical zeta function :

1+t—1t" L+t (1 —1t%

X (t) = = 74
Giy2(t) T—t—12 -2 — 4 — 245 — 6 7 1—t-(1—t+¢2) (1 +t+12)? (74)

This last result has to be compared with (36). The generating function g,(t) is again in agreement with a relation
1 + g,(t) = ¢(*)(t). For another “non-generic” value of ¢ when a # 0, namely ¢ = 1/3, the expansion of the
dynamical zeta function suggests the following possible rational expression :

1+t 1+t

a () — — 75
41/3() 1—t—{2_923 —4 _¢5 1—t-(1+¢2)-(1+t+1¢2) (75)

This last result with has to be compared with (37). These results'* are again in agreement with an Arnold-complexity-
topological-entropy identification (73).

The local area preserving property in the neighborhood of all the fixed points of k, . previously noticed for a =0,
is also verified, for a # 0 for (22), for generic values of € generic, as well as for these non generic values of €.

MHowever for the non-generic value of €, ¢ = 3/5, we do not have enough coefficients in the expansion of the dynamical zeta
function to actually compare it with (38).
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To sum up : Besides the integrable values, the other non-generic values can be partitioned in two sets

{1/m; m > 3} and {(m — 1)/(m +1); m > 3}. In all cases the polynomials giving the complexity growth
and the topological entropy are the same. These polynomials are listed in Tab. II.

e=1/3 e=1/2 e=L m>3 e=2= n>3|
a generic 1—t—t7 =265 —t* —¢° T—t—t7 =265 —t* —2t° — 5 —¢" generic see (66) (*) |
a=0 N-th root of unity N-th root of unity 1—t—t7+ " 1—t—t>—¢"

TABLE II. The polynomials giving the complexity growth A and h, the exponential of the topological entropy, in various

cases. The symbol(*) means that a # 0 and € = (m — 1)/(m + 1) are not generic, however A and h are extremely close to

the generic value, preventing us to compute them reliably with the semi-numerical method. a # 0 and € = 1/m is generic for
m > 3.
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A few comments :

e Heuristically, identification (73) can be understood as follows'®>. The components of k", namely yx and zy,
are of the form Pn(y,z)/Qn(y,z) and Rn(y,z)/Sn(y,z), where Pn(y,z), Qn(y,z), Rn(y,z) and Sn(y,z) are
polynomials of degree asymptotically growing like AY. The Arnold complexity amounts to taking the intersection of
the N-th iterate of a line (for instance a simple line like y = yo where yq is a constant) with another simple (fixed)
line (for instance y = yo itself or any other simple line or any fized algebraic curve). For instance, let us consider the
N-th iterate of the y = yg line, which can be parameterized as :

Py (yo,2) - Sn (Yo, 2)
QnWo,2)’ Tn(yo,2)’

with line y = yo itself. The number of intersections, which are the solutions of Py (yo,2)/Qn(Y0,2) = Yo, grows like
the degree of Py (yo,2) — @~ (y0,2) - yo: asymptotically it grows like ~ AV. On the other hand the calculation of
the topological entropy corresponds to the number of fixed points of kv, that is to the number of intersection of the
two curves :

YN (76)

Pn(y,z) — Qn(y,2) -y = 0, Rn(y,z) — Sn(y,2)-2 = 0 (77)

which are two curves of degree growing asymptotically like ~ A". The number of fixed points is obviously bounded
by =~ A2V but one can figure out that it should (generically) grow like ~ AN.

e From a general point of view, rational dynamical zeta functions (see for instance [35,40,41]) occur in the literature
through theorems where the dynamical systems are asked to be hyperbolic, or through combinatorial proofs using
symbolic dynamics arising from Markov partition [42] and even, far beyond these frameworks [43], for the so-called
“isolated expansive sets”(see [43,44] for a definition of the isolated expansive sets). There also exists an explicit
example of a rational zeta dynamical function but only in the case of an explicit linear dynamics on the torus R?/Z?,
deduced from an SL(2, Z) matrix, namely the cat map [18,45] (diffeomorphisms of the torus) :

21
; B =
11

A =

(78)

L0 ¢ = det(l1—z-B)  (1—z)?
011’ ©odet(l—2-A) 1-3-z+22

Note that golden number singularities for complexity growth generating functions have already been encountered
(see equation (7.28) in [14] or equation (5) in [46]). In our examples we are not in the context where the known
general theorems apply straightforwardly. The question of the demonstration of the rationality of zeta functions we
conjectured, remains open.

In the framework of a “diffeomorphisms of the torus” interpretation, the degree of the denominator of a rational
dynamical zeta function gives a lower bound of the dimension g of this “hidden” torus C9/Z9 where the dynamics
becomes “linearized”. On expression (B2) of Appendix B, valid for @« = 0 and € = 1/m, one notes that dimension
g grows linearly with m. The iteration of some birational transformations which “densify” Abelian surfaces (resp.
varieties) has been seen to correspond to polynomial growth of the calculations [16]. Introducing well-suited variables
0; (i =1, ---g) to uniformize the Abelian varieties, the iteration of these birational transformations just corresponds
to a shift'® §; — 6; + n-n;. For such polynomial growth situations, matrix A can be thought as the Jordan matrix
associated with this translation, its characteristic polynomial yielding eigenvalues equal to 1.

IV. FROM COMPLEX PROJECTIVE ANALYSIS TO REAL ANALYSIS

The modification of the number of fixed points, from the “generic” values of € to these particular values (1/m,
(n—1)/(n+ 1)), corresponds to fusion of some cycles, or to the disappearance of other cycles which become singular
points (indeterminations of the form 0/0). These mechanisms will be detailed in [30]. Let us just mention here that
the “non-generic” values of €, like ¢ = 1/m, correspond to a “disappearance of cycles” mechanism which modifies
the denominator of the rational generating functions and thus the topological entropy and the Arnold complexity. In

'5We use here the notations of mapping (24) but they can be replaced by the (u, v) variables of mapping (22).
15 This “diffeomorphisms of the torus” interpretation is quite obvious on figure 2 of [14].
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contrast, there actually exist for k., other singled-out values of €, like ¢ = 3 for instance, which correspond to fusion
of cycles: for instance in the ¢ — 3 limit, the order three cycle tends to the order one cycle. With the previous
cycle notations N3 = 1 becomes N3 = 0, which amounts to multiplying the dynamical zeta function by 1 — 3. The
dynamical zeta function and function H(t) read :

uai¥9;¢)j Eﬁ):t%m%@@): 79)

= t4+ 2+ +5t + 1185+ 13¢5 +29¢7 + 458 + 73¢% + 12140+ 1994 + ...

G(t) =

One notes that such “fusion-cycle” mechanism does not modify the denominator of the rational functions, and thus
the topological entropy, or the Arnold complexity, remain unchanged. However it should be underlined that ¢ = 3
is clearly singled out as far as the real dynamics is concerned. The phase portrait, for € = 3, is extremely regular,
like the one of an integrable mapping : it really “looks like” a foliation of the (y, z) parameter space in elliptic (or
rational) curves. Actually, recalling the generating function Hy.q(t) (see (62)), this function and the corresponding
zeta function, ("¢ read simple “integrable-like” forms :

Hreal (t) _ t and : Creal (t) —

1
1-t
Of course the orbits in the ¢ = 3 phase portrait are not elliptic curves but are actually transcendental curves [30].
The real dynamics “looks like” an integrable one, which is in agreement with the integrable-like form (80), but the
mapping, seen as a complez (projective) mapping, is actually a chaotic one, with the generic @ = 0 complexity
A =~ 1.618033989.

Other singled out algebraic values of €, besides € = 3, corresponding to the fusion on an N-cycle with the 1-cycle,
are for instance for N =5 and N =7 :

5 B 1 —cos(2m/7) 1 —cos(4n/7) 1 —cos(6m/7)\
€ -2 43567 = (6 1+ cos(27r/7)> <6 1 +cos(47r/7)> <€ 1+ cos(67r/7)> =0

All the (algebraic) € values of the form!7 :

1 —cos(2m- M/N)
c= 1+ cos(27 - M/N) (81)

for any integer N (with 1 < M < N/2, M not a divisor of N), do occur in such cycle-fusion mechanism. In fact
the number of real fixed points of kY, and thus the phase portrait, depend on parameter . It is true that these
numbers are not universal anymore (independent of € up to a zero measure set of non-generic values of €), however
their dependence is not a “wild one”. The number of real fixed points of k¥ depends on € in a “staircase” way. They
are constant by interval, the frontiers of the interval corresponding to algebraic values like (81). Such a situation can
be called “weak universality”.

The adaptation of the tools well-suited for topological invariance of dynamical systems seen in complex projective
space, for instance the introduction of generating functions of real fized points or “real-dynamical zeta functions” (or
simply plots of the number of real fized points for kN, for N fixed, as a function of the parameters of the mapping)
shows that the analysis of the real dynamics of our mappings do show some nice algebraic structures and some kind
of “weak universality”. We thus have a two step procedure for analyzing dynamical systems. A first “universal” step
concentrates on the topological entropy (or Arnold complexity) giving a first general classification of the mappings
and of the various non-generic subvarieties of the parameters these mappings depend on. For instance, in our example
(22), this first analysis shows that it is compulsory to discriminate between the @ # 0 and «a = 0 situation, and,
beyond, between the « # 0 and € = 1/2 ... on one side, and between the « = O and e = 1/more = (n—1)/(n+1)
situation on the other side. After this first general classification, the “second step” amounts to considering the
algebraic structures corresponding to study the system from the point of view of real dynamics. This second step of

"Other family of algebraic numbers occur. They will be described elsewhere.
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analysis based on “real-dynamical zeta functions” or real-Arnold complexity'® generating functions, yields, in example
(22), to the emergence of a second set of singled-out algebraic values of ¢ which do not modify the Arnold complexity
or topological entropy (or equivalently the singularities of the dynamical zeta functions) but do modify the “real
Arnold complexity” or the singularities of the “real dynamical zeta function” denoted 1/A;cqr :

Creal (t) = Z >‘7]‘Veal 'tN (82)
N

For instance, for ¢ = 3 (for @« = 0), the real complexity Acq, as seen on the phase portrait, is the “integrable-like”
value A.eqr = 1 (see equation (80)). It should be underlined that this A,..; = 1 situation does not correspond to
an integrability (foliation of the space in elliptic or rational curves). The phase portrait “looks like” a foliation of the
space in curves. In fact there is no such thing as a “real” integrability, or “transcendental” integrability, in opposition
with a “complex” or “algebraic” integrability. The chaotic feature of the mapping reveals through the following fact :
the curves one “sees” are actually curves associated with divergent series [30]. One has a foliation in terms of curves
associated with divergent series which is, at first sight, hard to visually distinguish from a foliation in (integrable)
elliptic (or rational) algebraic curves.

V. COMPLEXITY SPECTRUM FOR 3 x 3 PERMUTATIONS

In view of the previous rational results, and recalling the whole set of rational results obtained for all kinds of
birational transformations in [14], a systematic study of the 362880 (birational) transformations K associated with
all the permutations of entries of 3 x 3 matrices is tantalizing. This set of transformations is quite large and one would
like to reduce it using some symmetries (equivalence classes). One should recall that equivalence classes, corresponding
to quite obvious rows and columns relabeling symmetries, had already been introduced [31] and studied. For two
permutations in the same “relabeling” class, the complexities of the associated K’s are obviously equal. This reduces
the 362880 permutations into 30462 “relabeling” equivalence classes in [31]. Fortunately it is possible to go a step
further [28] : some “new symmetries” have been discovered'® which enable to define new equivalence symmetry-classes
for the 362880 permutations, reducing a systematic complexity analysis to a careful examination of 2880 representants
of 2880 symmetry-classes. Actually one first defines a set of equivalence relations R(\) such that any two permutations
in the same equivalence class of RO\ automatically have the same complezity A. Heuristically, equivalence relation R (™
amounts to saying that two equivalent permutations are such that the n-th power of their associated transformations
K are conjugated (via particular permutations which can be decomposed into product of row permutations, column
permutations and a possible transposition, see [28] for more details). An exhaustive inspection has shown that the
equivalence relations R(")’s “saturate” after n = 24: with obvious notations R(*) = R(?¥) | One finds out that the
“ultimate” R(°®) = R4 classes can only have 72 or 144 elements. Among the “ultimate” R(®) = R(EA) classes
one wants to separate the classes that were already R(Y) classes, that we will denote from now on R%) , Or RS&,

according to their number of elements, and the other ones we will denote R(éo) or Rgﬁ) . The 362880 permutations

are grouped into 2880 R(°®) equivalence classes. We have the prejudice that the R%o), or Rgﬁ), classes have more

“remarkable properties” than the R%) or Rﬁl classes, because R(>) corresponds to quite non-trivial relations. In the
table below the respective numbers of R%) , RS& , R%o) or Rgﬁ) classes are displayed. Since the complexities do

not depend on the chosen representent, we picked a representent in each R(°) class and performed a semi-numerical
complexity analysis taking care of these four groups.

A. Semi-numerical approach : numerical growth calculation

A semi-numerical approach to calculate the complexity A has been detailed in section (ITA) and in [29]. These

-~

semi-numerical calculations can be applied, mutatis mutandis, to homogeneous transformations K, or K, bear-

187 et us also recall that the Arnold complexity counts the number of intersections between a fixed (complex projective) line
and its n*® iterate. One counts here the number of real points which are intersections between a real fized line and its n'" iterate.
With this restriction to real points we have lost “most of the universality properties” of the (complex) Arnold complexity.

19These symmetries are sketched in [28]. They will not be detailed here. They are related to some “transmutation property”
of the matrix inversion I with two permutations of entries.
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ing on matrices, iterating an initial matrix with integer (or rational) entries chosen in a well-suited way?®. This
semi-numerical method has been applied to 2880 representants representing the 2880 symmetry-classes. For 3 x 3
matrices the complexities are necessarily such that : 2 > A > 1. Remarkably, instead of getting a quite com-
plicated distribution, or spectrum, of values for the complexities, we have obtained values which are always very
close (up to the accuracy of the method) to a set of seventeen (besides the A = 1 integrability complexity) values :
2, 1.97481, 1.97458, 1.94893, 1.94685, 1.93318, 1.89110, 1.88320, 1.866760, 1.860073 , 1.857127, 1.839286,
1.75487,1.61803, 1.57014, 1.542579, 1.46557 and of course the integrable value A = 1.

We got the following results. Among the 2146 classes of the Rﬁl set, we got 2145 classes corresponding to
complexities very close to A ~ 2 and a only one class with complexity very close to A ~ 1.75487. Among the 660
classes of the set R%), we got 640 classes corresponding to complexities very close to A >~ 2, and many non trivial
complexity values (two classes yield values close to 1.97481, one gives 1.94893 | two give 1.94685, ...). Among the
Zﬁ) classes, all classes were seen to correspond to complexities very close to A ~ 2.

The most interesting set (for integrability diggers) is clearly the set R%O) classes for which, beyond thirty three
classes corresponding to the maximal A = 2 complexity, and beyond a few non trivial complexity values, one discovers
eighteen classes with complexity values numerically very close to one. Actually it is known [31] that some symmetry-

classes correspond to situations where the determinantal variables®! x,’s are periodic (denoted Period. in the table

below). This x, = x,4+n situation corresponds to situations where the birational mapping K , itself, is of finite
order (trivial integrability), but also to polynomial growth situations, that is, A = 1 ewactly. The polynomial growth
situations without any periodicity on the x,’s are denoted “Pol.gr.” in the table below. With our semi-numerical
approach it is difficult to discriminate between these two A = 1 situations [28] : an examination of the successive x,,’s
shows that one has nine polynomial growth classes and nine x, = z,4n periodic classes.

One remarks that most of the classes correspond to complexity values numerically very close to the upper bound
A = 2. It has also been seen that this upper bound is actually reached for some permutations [14].

These semi-numerical results are revisited and confirmed in the next section (which provides exact factorization
scheme calculations), all these results are summarized in the following table :

set of fourteen Rg

A Associated polynomial Rﬁl R%) Rgiﬁ) R;;o) Total
Total 2146|660 (14 |60 |2880
2 1-2-x 2145(640 (14 |33 2832
1.97481871 [1 -2z + 2% — 22° + 2* —22° + 2F 0 2 0 0 2
1.974584654|1 —z — 22% — 2° + 2* + 22° + 2° 0 1 0 0 1
1.94893574 (1 -2z + o — a7 0 2 0 0 2
1.946856268|1 — z — 2% — z3 — 2% — 2° + 2F 0 1 1[0 0 1
1.93318498 (1 — 2z + z* — 2° 0 1 0 0 1
1.891103020|1 — 2z + 2% — 225 + 22 — 24° 0 0 0 1 1
1.88320350 |1 — 2z + 2% — 225 + 2* 0 2 0 6 8
1.866760399(1 — 2z + z° — x* 0 1 0 0 1
1.860073051|1 —z —2® —z* —2-2° 0 1 0 0 1
1.857127516(1 — 2z + 2% —2° —2° — 2" + 2% — 22° + 2|0 ) 0 1
1.83928675 |1 —z — % — 23 0 2 0 0 2
1.75487766 |1 — 2z + x? — 2° 1 0 0 0 1
1.61803399 |1 — x — z? 0 3 0 0 3
1.57014731 |1 — 2z — 2% — 2° 0 1 0 0 1
1.542579599(1 — . — 2% — 2" — 2® 0 1 0 0 1
1.46557123 |1+ = — a® 0 0 0 2 2
1(Polgr) [1—z, 1-—a™, - 0 0 |0 9 9

1 ( Period.) 0 1 0 9 10

Comments : Most of the 362880 birational transformations considered here do correspond to the most chaotic

complexity, namely the upper bound A = 2 : one has 2145 RS& classes, 640 R%) classes, fourteen Rgﬁ) classes and

2OFor integer entries one chooses initial matrices such that their determinants, and the determinants of the first reduced
matrices My’s, are as large as possible, prime numbers. N
2 The variables x,,’s are defined by =, = det(K™(Mo) - det(K" " (Mo) see [7-9,16].
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thirty three R%o) classes, that is, 2145 x 144 + 640 x 72 + 14 x 144 + 33 x 72 = 359352 birational transformations.
The ratio of completly chaotic A = 2 birational transformations is r ~ .99027. If one is mostly interested by the

integrable mappings and, more generally, by the mappings with polynomial growth, one remarks that R%o) contains

all the integrable, or polynomial growth, mappings and, up to one class in R%), all the mappings such that =, = z,+n,

including the situations where mapping K, itself, is of finite order (which can be seen as a “trivial” integrability).

B. Revisiting the spectrum though exact factorization scheme

In order to see if this set of seventeen (plus one) values for the complexities really corresponds to a set of eighteen
values or if the actual complexity values are just “close” to eighteen values with some “spread”, we have revisited all
these results and studied the factorization scheme for each of these representents for the various classes, concentrating
on the complexities different from the A\ = 2 upper limit. For that purpose we have written a driver which builds
automatically the factorization scheme (see (11), (12) and the parity-dependant factorization schemes of Appendix
A) for various original matrices?? till the factorization scheme is stable and can be trusted.

We just display here the two generating functions 3(z), p(z) for only two complexities (see [28] for more details).
The other generating functions can be deduced from these two, using linear functional relations between the generating
functions [14]. All these factorization scheme calculations confirm the results summarized in the previous table.

Among many symmetry-classes one verifies that one actually obtains :

e )\ ~ 1.570147312 (corresponding with notations of [31] to permutation 164285073). The expansions of p(x) and
B(x) read :

Blx) 1— a8 — 22 (2) = (l+z+2?) - 1—z+2?)-(1+2) (83)
3z (1—22)-(1—z—a3—2%)’ e = 1— a6 — pl2
e \ ~ 1.839286755 (corresponding, with notations of [31], to permutation 417063582) :
Blx) 1 -z -2 (z) = (x+1)-(1 — 2 + 2% (84)
3z (1-z2)2-(1+x) (1 —2 — 22 — 23)’ P = 1 —x2 — 3

It should be noticed that factorization schemes can be different from one representent to another one in the same
symmetry-class, however, the complexity A is independent of the chosen representent.
Complexity A ~ 1.839286755 can also be obtained with permutation?® 164273085 for which p(z) and 8(z) read :

B(x) 1+z +a? 1+ +at + 4P

3z  1—z—22—23’ p(z) 1—28

(85)

New singularities : Most of time the stability of the factorization scheme and thus, in a second step, the occurrence
of rational generating functions, corresponds to a simple periodicity of the exponents 7,,, ¢, or p,, in the factorization
scheme (11), (12). This periodicity is simply associated to the fact that the “exponent” generating functions have
N-th root of unity poles : 1 — 2% 1— 2%, 1 — 25, .... However one sees, on example (84), that one may have a
stability of the factorization scheme an exponential growth of these exponents 7, and ¢,. These exponent generating
functions, of course, have a growth of their coefficients smaller than A". This growth goes like u where p is the
inverse of the poles of p(z), ¢(x) or n(zx), that is (for (84)), p ~ 1.324717958 < X\ ~ 1.839286755. Recalling (85)
for which p = 1 and A ~ 1.839286755 and (84), one sees that one complexity value A can be associated to several
values of p. Conversely permutation 174528603 (with notations of [31]) gives A ~ 1.974584654 (associated with
1 -z —22% —23 +2* +22° +2% = 0) corresponding to :

z7 B l—z+2" +28 b= l—z+2" +2-28
1—22—23)-(1—2+22)’ r= (1—22—-23) - (1—z+22)’ (1 —-22—23)- (1 -z +2?)

n(z) = ( (86)

Recalling (84), one sees that one “scheme-complexity” u can actually correspond to several complexity growths A.

22The integer entries in the original matrices are choosen in such a way that the first polynomials f,’s obtained at each
iteration step are, as large as possible, prime numbers.
Z3With notations of [31].
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VI. COMPLEXITY ALCHEMY

Let us consider eighteen permutations representing the seventeen plus one complexities of the previous table, and
the associated birational transformations K; = t; - I where ¢ = 1,---18. If one combines one of these birational
transformations, namely K;, with another one, K, the complexity corresponding to the “molecule” K = K;- Kj;
obviously coincides with the one of K - K;. However it should be noticed that the complexities of these “molecules”
K do depend on the represent chosen for each of the eighteen classes. We have systematically performed all the
combinations of these eighteen representants with themselves. Among the 182 molecules we have obtained many
times the maximal complexity A = 4, however and remarkably, we got 156 molecules such that A < 4, and even 30
molecules such that A < 3. The spectrum of (algebraic) complexity values for these 182 molecules is extremely rich.
When one changes the eighteen complexity representents, the “spectrum” of complexities becomes even richer ...

A. A “molecular” factorization scheme

Let us consider (with notations [31]) permutation 146237058 and its associated A ~ 1.9748 transformation K7,
and permutation 471562380 and its A ~ 1.5426 transformation K>. From these two “atoms” let us build the
“molecule” K = K, - K; (or molecule K = K - K5 , they obviously have the same complexity). This example is
an interesting one since the complexity (obtained from the previous semi-numerical calculations) of X = K, - K is
smaller than the product of the two complexities of K; and K> : A(K) ~ 2.897 < 1.9748-1.5426 ~ 3.0463. The
factorization scheme of K is of the same type as the ones described in [28,29], namely a parity-dependent factorization
scheme (which is a straight consequence of the fact that one acts with K; and then with K5 and again ...) :

fi = det(Mo), My = Ki(Mo), f2 = det(M1), M, = Ky(M), f3= %, M; = Ki(M>),
fa = det(M3), My = K2(Ms), fs = %, M5 = %, fe = %, (87)
and for arbitrary n > 3 :
det(Mp) = fos1 - fa-fo o fa6- fas - fac10+ fac12- fa1a -
Kl(Mn) = MnJrl . fn72 (88)

for n even, and :

det(Mp) = fo+1 - fa-1- f72h3 “fn—s - f12177 : f721,79 ’ f121711 : f121713
KZ(Mn) = MnJrl ' fn73 ' fnf'? . fn79 ' fnfll ' fn713 Tt (89)

for n odd. This yields for the odd and even parts of a(x) and B(z) (label “2” for even and “1” for odd) :

6 - z? 3.2-(1 — 22)-(1 — 24
fue) - ”’” A = e

1 —32% 4% — a6 — 228’
3-(1 +4x* —42°% + 28) 6-2-(1 +a* —a® +a®)
(1—22)-(1 —32% +2* — 25 —228)

(90)

az(e) = (1—22)-(1 =322 +a2* —26 —228)’ ) =

These generating functions yield a “molecular complexity” : A >~ 2.858194057 . These generating functions verify a
parity-dependent system of functional relations which generalizes the one described in [13] :

z-on(z) — Ba(z) = Fap(a) - fa(z), v ox(z) = fi(z) = Fim(z) - B2(z) , (91)
az(z) — 3 —2-z-a1(z) + 3-Gyp - fa(z) = 0, ar(z) —2-z-a2(x) +3-Gp - P2(z) = 0

where :

8 8

2z 3 5 3 4
1— 22’ Fip = 22° — +m, Glm(l‘):x, G2p2$+1_$2

Fyy(z) = 2 +22* + 25 +
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VII. THE “SKY IS THE LIMIT”

It has been seen that, combining two different (bi)rational transformations associated with permutations of the
entries, one already gets an extremely rich set of algebraic complexities. Obviously a straight generalization amounts
to considering products of three, four .... transformations of the previous table. Not surprisingly all the previous
results generalize, mutatis mutandis, yielding again new sets of algebraic complexities. Let us now show that algebraic
complexities occur in a much larger framework, corresponding to three quite drastic generalizations. A first general-
ization will show that there is nothing specific with permutation of the entries. The same algebraic results “pop out”
for birational transformations which are the combination of a linear transformation of the entries of a ¢ x ¢ matrix and
of the matrix inversion. A second generalization will show that there is nothing specific with linear transformations of
the entries, and that one still gets algebraic complexities replacing linear transformations, by homogeneous polynomial
transformations of the entries. A last generalization will show that a random product of birational (or even rational)
transformations may yield algebraic complexities.

A. From permutations to linear transformations

Let us show that algebraic complexities occur for (generically) birational transformations, combination of a linear
transformation of the entries of a ¢ X ¢ matrix and of the matrix inversion. The previous permutations of entries can
actually be “merged” into families of linear transformations depending on r continuous parameters. Remarkably we
will see that these birational transformations, K = L-I, where L is no longer a permutation of the entries but a linear
transformation on the entries, actually exhibit factorization schemes ezactly similar to the ones previously described
in the case of permutations of entries : how does the factorization scheme (which is a rigid structure) depends on the
previous r continuous parameters ? Not surprisingly one can see that these factorization schemes are, generically,
actually constant and independent of the continuous parameters®*. Consequently, complexity A has a universality
property : it is actually independent, not only of the initial?® point My, but also of these continuous parameters.

Let us give here a set of generating functions corresponding to factorization schemes associated to bi-polynomial
transformations K = L [.

Linear transformations yielding the same complexity as permutations of entries : Let us introduce
the quite general linear transformation depending on twenty one parameters :
miy1 My M3
L: ma1 M22 M23 — (92)
m3;1 M3z M33
mi1 a11M11 + a2 mi2 + a3 M1 3 + a1 M21 + A2 M2 2 + G23 M23 + a31 M3 1 + azz M3 2 + agzms3 M3
ma1 C21 M2,1 + C22 M2 2+ Ca3Ma3 ma 3

ms1  biimig 4+ biamy s 4+ bizmy s 4+ bay ma1 4 baamo s 4+ bazma 3 4+ b3y ma 1 + bzama o +bzzms s m33

and let us consider the iterations of the homogeneous transformation K’ = L -I. They read a stable factorization
scheme identical to one factorization scheme already obtained for one representent of the previous table, corresponding
to the complexity A ~ 1.618033. The factorization scheme, up to f; and My, is the same as the generic factorization
scheme (18) (for ¢ = 3) but gets modified with f5, becoming for arbitrary n, instead of (19) and (20) :

det(Mn) = fn+1 “fn- (fnfl ’ 72z—2) : (fn73 : frzz—4) . (fn75 : f72z—6) : ( 721,—7 ’ f72z—8) T
K(Mn) = Mn+1 . fn—2 . fn—4 ’ fn—6 . fn—8 ’ fn—lO e (93)

This yields the following generating functions :

24 Except on some submanifold (probably subvariety) of this r-dimensional parameter space, where the factorization scheme
actually becomes different, associated with a smaller complexity : on these subvarieties one can only expect more factorizations
than in the generic r-dimensional parameter space.

%5 Generically of course : on some codimension-one, or codimension-two, algebraic varieties of the space of entries of My the
factorization scheme may be modified yielding another (smaller of course) value of .
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3-(1+x+a®) B(x) 1 1 x? _ l+z+4a?

ale) = (1-22)-1—-z—22)" 3=z T 1—z—z2’ plz) = @) = 1—22’ ¢(z) = 1— 22

For a codimension-one subvariety V of these twenty one parameters, the linear transformation is not invertible
anymore [28]. It is worth noticing that, even restricted to V where transformation K is not birational anymore, but
just rational, the complexity A remains unchanged, that is equal to 1.618--- Let us note that we have also found [28]
linear transformations L, yielding non trivial algebraic complexities, which are not deformations of any permutation
of entries.

B. From linear transformations to homogeneous polynomial transformations

There is nothing specific with linear transformations. Let us consider the following homogeneous polynomial
transformation @), of degree r :

T ' T
mi1 Mi2 M3 my; Mys My 3
. T r T
Qr: | ma1 M2y M3 — My My My3 (94)
T r T
m31 M3z M33 Mgz, M3y M3 3
and the associated homogeneous transformation K, = @, -I. The iteration of transformation K, yields a stable

factorization scheme which gives, for arbitrary r > 2 the following generating functions :

3-(1+2x) Blx) 1
1+2-(1—=r)-z—r 22’ 3z 1+2-(1-r) 2 —r- 22’

a(z) = n@) =r, ¢) =1+2-x

C. From periodic products of (bi)rational transformations to random products

It has previously been shown (see section (II)), that the two-dimensional mapping :

Z—E)

ke , — 1—¢€, y-
(y, 2) (Z+ €, ¥y po]

(95)

yields (generically) a complexity A ~ 1.61803 associated with polynomial 1 — ¢ — t?. The same complexity can be
obtained with the (generic) eight-parameters two-dimensional mapping :

as -z + ag
k: z — ay -z + a: as - ay)  ——— 96
(y, 2) (a1-2 + a2, (az-y + as) a7-z+a8) (96)
or even the nine parameters mapping :
az Y-z + a4y +as-z + ag

k- — . 97
(., 2) (ar-2 + a2, a; -y + ag-2 +ag ) o7

This last example can even be generalized to :

az-y"-2" + Py, z

k: (y,z) — ((11'2+a2, 31y W, )) (98)

Qy,2)

where P(y,z) and Q(y,z) are some polynomial expressions. The generating function of the successive degree of the
numerator of the z component of the N-th iterate of these various families of transformations (96), (97), (98) seems
to identify (as far as we have been able to check it) with a dynamical zeta function ((¢) and reads :

1+1¢

L+ g.(t) = 11— = ¢(t) (99)

This generating function remains unchanged if one considers the sequence product of two (generic) transformations
(95) : ke, - key - key - ke, - key -+, OF even the sequence associated with the iteration of a “molecule” KCps product of
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M different (generic) transformations k.. Of course if one prefers to consider directly Gjs, the degree generating
function of Kps, one gets for M =2, 3,--- :

1 1+T 1+T
1+ G(T) = 137 +72° 1+ Gs(T) = 1T-1.7 712’ 1+ Gu(T) = 17 T +72 (100)
1+2-T 1+3-T 1+5-T
1+%(T)—m, 1+96(T)—TT+TQ’ 1+g7(T)_1_29.T_T27
and for arbitrary M :
_ 1+ GM)-T . _ .

1+ Gu(T) = T FOI) T+ (D)7 T2 where : FM) = F(M—-1) + F(M - 2) and :

GM)=GM-1) +G(M-2) with : F2)=0, F@3) =4, G2) =0, GO =1 (101)

When comparing (99) and (100) or (101) the variable 7' must be seen as T' = t™. Since these results are valid for
any product of M transformations k., they are, in particular, valid in the limit where the k.’s are all equal, which
amounts to replacing k. into K = kM. The generating function amounts to “extracting”, in the series expansion of
(99), the coefficients of every M-th power of t . For instance the denominators of (100) are just the resultant (in t)
of 1 —t —t> and t™ — T'. One has for any integer M :

M-1
1
1+ GuM) =1+ A Z g(Wh -t), where : wM =1 (102)
n=20

More generally, generating function 1 + g.(¢) in (99) remains unchanged if one considers a random product of

transformations in the family (96) or even (97). Furthermore relations (54) and (55) are still valid. It seems that one

even has a relation 1 + ¢.(t) = (rana(t) for some dynamical zeta function suitably defined for random products.
All these mappings can also be seen as recursions. For instance (96) becomes :

as ‘- Znt+1 + a6

(103)
Q7 - Zpn+1 T 03

Zn+2 = (a3 . (a1 *Zn +(12) + (14) .

A “stochastic evolution” corresponding to random recursions (103) is thus seen to actually yield an algebraic complexity
namely A ~ 1.618033...

VIII. COMMENTS AND SPECULATIONS

In practice it is numerically easier to get the Arnold complexity generating functions than getting the dynamical
zeta functions. If one assumes the rationality of the dynamical zeta function and the identification between Arnold
complexity and (exponential of the) topological entropy, getting the Arnold complexity generating functions may be
seen as a simpler way to “guess” the denominator of the dynamical zeta functions.

Among the various complexity growth generating functions some seem to be more “canonical” and to identify
exactly with the ¢ function (see (55)).

The denominators of all the rational zeta functions encountered here are of the form : 1 — ¢-Y(¢) where Y(¢) is
product of cyclotomic polynomials [47,48]. This is particularly obvious on expressions (33) and also on expressions
(32), or (C1), or even (B2). We do not have any l-adic cohomology interpretation (see for instance [39] page 453) of
this cyclotomic polynomial “encoding” of the zeta functions or of the complexity functions G(g, ). Most of these
rational expressions for zeta functions satisfy very simple functional relations and one also expects, for (C1) or (C2)
for instance, more involved but, still simple, functional relations, may be similar to the ones obtained by Voros in [49].
Many of the generating functions G(g¢, ) can also be seen to satisfy simple functional relations relating G(g, ) and
G(q, 1/z). This will be detailed elsewhere?®.

The analysis developed here can be applied to a very large set of birational transformations of an arbitrary number of
variables, yielding again rational generating functions [14,28]. Moreover, these generating functions are always simple
rational expressions with integer coefficients (thus yielding algebraic numbers for the Arnold complexity). Most have

*6For instance the generating function of the degrees g(x) given by equation (5) in [46] verifies g(z) + g(1/z) = 1.
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the previously mentioned “cyclotomic encoding” [14]. At this point the question can be raised®” to see if the iteration
of any birational transformation of an arbitrary number of variables always yields rational generating functions for
the Arnold complexity.

It has also been shown that same results hold, mutatis mutandis, for rational transformations which are not birational
anymore (also see (7.7) and (7.28) in [14]) or which are combination of homogeneous polynomial transformations of
the entries of a ¢ x ¢ matrix, together with the matrix inversion, yielding again new algebraic spectrum independent
of a large number of continuous deformation parameters : any proof of the rationalities of these generating functions
should not depend to heavily on a simple reversibility of the mapping [50], or on the fact that the transformations
should be rational transformations with integer coeflicients.

One thus gets rational generating functions for quite arbitrary products of rational transformations which are
not invertible anymore, and may depend on many continuous parameters. The set of birational transformations is
a “huge” one, and the set of rational transformations is even “larger”. One can imagine (if one believes in “some”
universality of dynamical systems) that “most” of the dynamical systems could be very closely “approximated” by such
transformations having algebraic complexity values. It will be important to try to define, for a given discrete dynamical
system, what is the “best” approximation of this system in terms of birational, or even rational, transformations.

IX. CONCLUSION

Transformations generated by the composition of permutations of the entries and matrix inverse, naturally emerge
in the analysis of lattice statistical mechanics symmetries [16], and provide a set of efficient new tools to study lattice
statistical models (and beyond discrete dynamical systems).

The Yang-Baxter equations have been seen as a “laboratory” to elaborate these concepts. In return, these tools
provide a systematic way to find integrable symmetries of the parameter space of the lattice model, which is a
first (and compulsory) step to find Yang-Baxter integrable models. Beyond the narrow framework of Yang-Baxter
integrable models, the “birational approach” gives a way to “classify” non-integrable lattice statistical models and
beyond, discrete dynamical systems, providing a classification of these systems according to their more or less chaotic
character.
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APPENDIX A: FACTORIZATION SCHEME FOR «a =0, ¢ GENERIC

For matrix
4785 1305 —2221
My = 2175 9570 1305 (A1)
—18270 3480 —16054

which corresponds to @ = 0 and € = .52, the generic (« # 0) factorization scheme (18) becomes®® :
det(M det (M- K(M,.
fi= detM), My= KMo, fo = ZM) g o kg = SEERL Dy, o KUBR)
fi i fa S
det(Mg) det(M4) K(M4)
= =0, M, = K(M. 5 = 5 o o 7 My = T £ 7
W nhg MTROR e M T A

7 After [14].
Z8These results can straightforwardly be generalized to ¢ x g matrices, they are just a bit more involved.
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_ det(Ms) _ K(Ms) _ det(Ms) _ K(Ms)
=wrmnnn M n o TTwmnepanen MTR A AR
£ = det(Mr) v - KO) 5 = det(Ms)
SRRl fe TLn T P T RBBRERE
and for arbitrary n :
det(Mp) = fopr- (fn- fooi - froo Fag) (Fama foos - fog frog) - (A2)

K(Mn) = n+1'(fn—l'fn—2'fn—3)'(fn—5'fn—6'fn—7)

for n even and :
det(Mn) = fn+1(fnfnflfn72f73—3)(fn74fn75fn76f73—7) (A3)
K(Mn) = Mn+1 'fn73 'fnf'? 'fnfll 'fn715 'fn719

for n odd.
The exact expressions of the generating functions a(z) and 3(x) read?® :

3 3-B(v)
14z + 1—22"’

z- (14 z+a?)

oz) = 1 — 22 — 2t

where : B(xz) = 3- = -3+3-(1+2)/1—22—-2%) (A4)
These generating functions give a complexity A ~ 1.272019649. It is important to note that factorization scheme
(A2), (A3) is actually stable, but of a slightly more general form, compared to (18), or the ones described in [14] :
recalling the generating functions n(z) and ¢(z) of the exponents that occur in the factorization scheme (see section
(TA) or equations (8.6) and (8.10) in [14]), one must now introduce two sets of such exponents generating functions,
M, ¢1, M2, ¢=2, in order to keep track of the parity of n, and even split these four functions into their odd and even
parts :

ni2 = (mi(z) +ni(—2))/2, nin = (ni(x) —mi(=2))/2, biz = -+ i=1,2

We must also decompose a(x) and S(z) in odd and even parts: «1(z) = (a(z) — a(-2))/2, a(z) = (a(z) +

a(—=x))/2, Bi(x) = (B(x) —B(=2))/2, P2(x) = (B(x) + B(—=))/2, namely :

322 (2241 3.z
%’ Bl(m):ﬁ’
l—2%—2x l—2z°—2x

Ba(z) =

3-(1+22%+2a%) 3-x- (2+2% +24)

@ = g ma-e oy MW= G Ao (45)
Instead of functional relations (8.6) and (8.10) in [14], one now has the following relations :
ar(z) = 2-2-ax(x) + 3-2- (n2(2) - B2(2) + mu(z) - Bi(z) = 0,
ax(x) — 2-z-01(x) =3 + 3.7 (m2(x) - Bi(z) + n21(2) - f2()) = 0,
z-ai(z) — B2(2) — (d21(z) - Pi(z) + d22(z) - Ba2(z)) = 0,
z-oz(z) — Bi(x) — (d11(x) - B2(x) + ¢r2(z) - fr(z)) = 0 (A6)

where the odd and even part of the exponents generating functions n (), ¢1(x), n2(x), ¢2(x), read :

.'L'2 T .'L'3
ma(w) = 1—zt’ mi(z) = 1_ 22’ m22(z) = 0, na1(z) = 11
z- (22 +1) x2 T 2% - (227 + 1)
oult) = > @ =275, ) = Tn, @ = T

29Result (A4) corresponds to a very simple expression for p(z) (see for instance equation (8.12) in [14]).
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Period four in the factorization scheme (A2), (A3) corresponds to the occurrence of a 1 —z! = 0 singularity for
these exponents generating functions.

The “stability” of factorization scheme (18) corresponds to the following (n — n + 1)-property : the exponents
of the f,’s occurring at the m-th step of iteration are also the one’s at (m + 1)-th step of iteration the f,’s being
changed into f,+1 : at each new iteration step one only needs to find the exponent of f; (if any). The “stability” of
factorization scheme (A2), (A3) is a straight generalization mod.2. of the previous property : the exponents of the
fn's occurring at the m-th step of iteration are also the one’s at (m + 2)-th step of iteration the f,’s being changed
into f,4+2. Let us now note that the initial matrix :

1 3 z
My= | 5 2 3 (AT)
—4 8 —z—-3
which corresponds to @« = 0 and € = —22/25 for any x, do not yield the same factorization scheme as (A2), (A3),
but still the same singularity associated with polynomial 1 — 22 — z*. One actually gets the following generating
functions:
3-(1+2zx+22%+4a23 +22* + 2P 3xz-(1+a) (1 +a?2
afa) = 21 : flay = 20D 1 re) (A8)

(1—22—2%) (1 —22) ’ 1 — 22 — 2t

Note that the “even” generating functions as(z) and B2(x) are the same as in (A5). The “odd” generating functions
ay(z) and 5 (z) read :

3.x-(2 +42% +a2)
(1—22—2x% (1 — 22)’

3-x-(1 + 2?)
1—22 — 24

Bi(z) =

a(x) =

It is corresponds to the factorization scheme :
det(Myp) = fosr- (fo- fnor faca - i 3) - (Faca~ faos - fnoe - frq) -+ (A10)
K(Mn) = MnJrl - fn73 . fnf'? - fnfll - fn715 - fn719 e
for n even and :
det(Mp) = fosr-(Fn-frios - fao-Fis) - (Faca- o5 fie-faq) -+ (Al1)
K(Mn) = MnJrl - (fnfl . fn72 - fn73) . (fn75 - fnfﬁ . fnf'?) e

for n odd. This factorization scheme is the same as (A2), (A3) where odd and even parity are permuted. The
generating functions verify the functional equations :

4

ar(z) —2-z- as(z) +3- 1f$4-51(x) - 0,

as(z) —2-z- a1 () +3-(1i4 B (z) + 1i~2 B(x)) —3 = 0,

ron@) - palo) — (2D ) w0 T ) = 0,

r-aa(e) = i) - (LI 50y + 2 @) = 0 (A12)

This factorization scheme is a slight modification of the previous one (the n;;’s and ¢;; are just permuted : ¢2;
¢1; and 125 <+ ni; ). In fact condition o = 0 factorizes into several codimension-one varieties [29]. These
subvarieties yield the same complexity but not the same factorization schemes.

1. Factorization scheme for a # 0, ¢ non generic

Let us come back to a # 0 with the non-generic value ¢ = 1/2. We consider here @« = 396/6095 ~ .06497128.
Up to the thirteenth iteration one has the previously described (n — n + 1)-property, but this property is broken
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with f15 in favor of the (n — n + 2)-property previously encountered. The previously introduced odd-even-parity
dependent exponents generating functions 7;;(x) and ¢;;(x) now read :

15
7]12(33) = 2132—|—£L“6—|—£L“10+£L“12, 7711(5”) = $3+$7+$11+ 1— g4’
) 14
7722(33) — wz+w6+w10+ 1 7721(37) — $3 +$7+$117
1 2 2\, .14
bi(r) = 24205 4207 +2° + 20" +2° 4203, Guafa) = ('*'1#4_;52+2x4+$6+2x8+x10+2x12,
—x

14222 213 . .

¢21(x) = w+2x3+2x7+w9+2w11+x5+%, boo(x) = 22 +22% + 254+ 22% + 210 42212

1 —=x

from which one deduces, from relations (A6), the rational expressions of the «a;’s and 8;’s :

3-2%- (1 + 2?)
falw) = (1-22)-(1— 2% —a* =225 — 28 — 2210 — g12 — g14)’
3x-(L+2%)-(1+2Y) (1 +2%
frlz) = 1 —2?2 —2% =226 — g8 — 2210 — 12 _ pl4”7
1+222 +52* +425 +52% + 4219 + 5212 + 52 + 3216
az(z) = 3-

(1—22)-(1—22 —x* —22% — 28 — 2210 — 12 — gl4) 7’
(2+422 +42" + 525 + 42% + 5210 + 4212 + 421

o(z) = 3.z (1 —22)-(1—2? —a* — 220 — 28 — 2210 — 12 — g14) (AL3)

yielding the rational expressions (36) for 5(z).

These results have also been checked, using the previously depicted semi-numerical complexity growth evaluation
method, for ¢ = 1/2 and a = 396/6095 ~ .06497---. The following value for the complexity has been obtained :
A ~ 1.46199, in good agreement with the exact algebraic value deduced from (A13), namely : A ~ 1.46188--- (to
be compared with the generic algebraic value of A, A ~ 1.4655--- associated with 1 —z — 23 = 0).

The singularities of (A13) are in agreement with the dynamical zeta function calculated for these values of a and e:

) = 14+t—1t7 _ 1+t-(1—1t%
ol =t —t2 =283 4 =245 6 — T 1 —t- (1 —t +12)- (1 +t +12)2
These calculations can also be performed, for @ # 0, for the other non-generic value of € : ¢ = 1/3. As far as

the factorization scheme is concerned one gets exactly the same scenario as the one for ¢ = 1/2, the breaking of the
(n — n+ 1)-property and the occurrence of a (n — n + 2)-property taking place with f1; instead of fi5 previously.
For € = 1/3 and, for instance, for a = 237/6095 ~ .038884 - - -, one gets expressions (37) for f(z) :

3ex-(1+2?)-(1 4z — 2% +2* — 2% + 2® — 2'9)
(1—2?)-(1—a%—a*—225 — a8 — z10)

Blz) =

(A14)

Again these results have been compared with the complexity growth deduced from the semi-numerical method, for
e = 1/3 and o = 237/6095 ~ .038884 --.. We have obtained the following value for the complexity : A ~ 1.44865
in good agreement with the exact algebraic value deduced from (A14), namely : A ~ 1.44717---.

The singularities of (A14) are in agreement with the dynamical zeta function calculated for these values of o and e:

() = 1+t _ 1+t
Col—t—2 =28 —tt—t5 1 —t-(1+12)-(1 +t +12)

APPENDIX B: DYNAMICAL ZETA FUNCTIONS FOR a = 0 WITH ¢ NON-GENERIC

To further investigate the identification of these two notions (Arnold complexity-topological entropy), we now
perform similar calculations (of fixed points and associated zeta dynamical functions) for € = 1/m with m > 4 and
e = (m—1)/(m+ 3) with m > 7 odd. The calculations have been performed for € = 1/m for m = 4,5,7 and
9, giving the expansion of H.(¢) up to order eleven :
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Hij(t) = t+ 2 +482 +5¢" +11¢° + 1025 +22¢7 +29¢% +49¢° + 714" + 1114 +- -

His(t) = t+¢2+48° + 56" + 1167+ 16¢° + 2217 +37¢% + 5817 + 9140 + 144¢ + - -

Hyq(t) = t+ 8 +43 +5¢* + 1162 +16¢° +29¢7 +45¢° +67¢° + 111¢"0 + 177¢ + - -

Hyjg(t) = t+ 6 +4t> +5¢* +11¢° +16¢° +29¢" +45¢° + 76¢° + 121¢'° + 188¢" + - (B1)

All these expressions are compatible with this single expression of the ¢ function :

1 —¢2
1 —t — 2 4 ¢m+2

Gym(t) = (B2)

We conjecture that this expression is exact, at every order, and for every value of m > 4. Again this expression is in
agreement with the polynomial expression giving the Arnold complexity (see (34)). If one counts the point at infinity
the zeta function (51) becomes :

1+t
1 —t — 12 +¢m+2

(o) = (B3)

Let us consider again the complexity generating function corresponding to the degrees of the numerators of the two
components of k¥ . The generating function g.(t) for the degrees of the numerators of the z component of kY, for
e = 1/m, has again ezactly the same expression (up to 1) as (B3) :

L+ g.(t) = ¢

Note that relations (54) are still valid.
The generating function gpem(t) of the successive degrees of the homogeneous transformation (25) of the y,, z,
and t,, reads :
1— tm+3
(I—t)- (1 —t— ¢+ tmt2)

Jhom(t) =

As far as functional relations relating ((¢) and ((£1/t) are concerned, recalling (57), one immediately verifies that
¢(t), corresponding to (B2), verifies the simple functional relation :

L Cl/m(t)
tmHL - Cym(t) = Cym(t) + 1

gt 'Zl/m(t) = Zl/m(l/t)a or : Cl/m(l/t) =

Actually 21 /m(t) has a very simple n-th root of unity form :

1—¢2

Ciym(t) = =)

Also note that when m is odd, and only in that case, 61 /m(t) also satisfies the functional relation :

" G () = = Cym(—1/1)

No simple functional relation, similar to (60), can be deduced on Hj s, (t).

Similar calculations can also be performed for the second set of non-generic values of €, namely e = (m—1)/(m+3)
with m > 7, m odd. For m = 7, that is ¢ = 3/5, one gets, up to order eleven, the same expansion as the one for
e = 1/7:

Hyus(t) = t+ 62 +48 +5¢* + 1167 +16¢° +29¢" + 4565+ 67¢° + 11140 + 1774 + .-
yielding again, if this equality of expansions is still true at higher orders, the dynamical zeta function :

1 -2 (c0)
Gys(t) = T i+ or : G5 (1) =

14+t
1—t—2+1°

Again the generating function of the numerator of the z component of k¥, g.(t), has evactly the same expression,
up to 1, as (,o(,;;) (t) :
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Lo = ¢Pm = 20

= 1+2t+3t2+5t3+8t* + 13¢5 +21¢° +34¢" +55¢3 +88¢% + 1410 +226¢' + ---

For m =9, that is e = 2/3, one gets :
Hyps(t) = t+ 6" +48% + 5" + 1167 + 16¢° +29¢7 + 45¢° + 76° + 121¢'0 +177¢" + - -+
A compatible zeta function could be3° :

1 _t2_t11_t12_t13

B4
1—t —t2 ¢l (B4)

Cz/3 (t) =

Rational expression (B4) is not the same as (B2), however it has the same pole. Note that relations (54) are still valid
for e = 2/3 and € = 3/5. At the order where the iterations have been performed, a relation like 1 + g.(t) = (é%) (t)
is not ruled out. One gets, however, a very simple expression for g,(t)/t :

gy(t) _ 1+t

t 1—¢t ¢+l

which rules out a simple (y/3(t)*° = g,(t)/t relation (see (55)).

APPENDIX C: DYNAMICAL ZETA FUNCTIONS FOR a # 0 WITH ¢ NON-GENERIC

For a “non-generic” value of € when a # 0, namely € = 1/2, the expansion of the generating function H(t) and of

the dynamical zeta function read respectively :

Po(t) = 26+ 287 +114° + 184" +47° +95¢° + 19847 +---
(Fat) = 14264+ 38 + 76 + 156" +32¢° +69¢° + 14647 + - -

A possible rational expression for the dynamical zeta function is for instance :

o = 14+t —t7 _ 1L+t-(1—1t5 ©1)
V27 1t =22 -2 —t4 =285 — 16 —¢7 1 —t-(1 —t +12)-(1 +1t +12)2

This last result has to be compared with (36).

The generating function g,(t) corresponding to the degrees of the numerators of the v component of k:flv 1/2 reads :
14+t —1t"
1 t) = -
+9u(t) (1—t) - (1 —t—12 =243 — 4 — 245 — 6 —¢T)
= 143t+6¢+13¢° +28t* + 601 +129¢° +275¢" + - -
This expression is again in agreement with a relation 1 + g,(t) = ¢(*)(¢).

For another “non-generic” value of € when « # 0, namely € = 1/3 the expansion of the generating function H(t)
and of the dynamical zeta function read respectively :

Pa(t) = 26428 +114% + 184" +42¢° + 835 + 17747 + - --
(a®)(t) = 1+2t 438 + 78 + 154" + 317 +65¢° + 13647 + - -

A possible rational expression for the dynamical zeta function is for instance :

1+t 1+t

@ = = 2
Grp) = T —Eap—a—p L—t-(L+82)-(1+t+12) (€2)

30The series are not large enough to confirm this form. A set of simple and quick calculations seem to give for the next
coefficients --- + 296 t'% + 469¢'3 + 7854 + ... in agreement with (B4).

32



A possible generating function g,(t) corresponding to the degrees of the numerators of the v component of kév 1/3
reads :
14+t+1°—1f
1 t) = —
+9u(t) (1—t)- (1 —t—12—2-13 —t4 — 15)

= 14+3t+6t>+13t> +28¢* +60¢° +125¢° +262¢" + ---
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