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eBirational transformations have been shown to provide powerful tools for analyzing the Yang-Baxter equations, and, beyond, to perform exa
t 
al
ulations on latti
e models of statisti
al me
han-i
s. In parti
ular the so-
alled \baxterization problem" 
an be solved very simply using birationaltransformations. Beyond, the birational transformations 
an be studied \per se" in a latti
e statis-ti
al me
hani
s framework or in a dis
rete dynami
al system framework. Considering a family ofsu
h birational transformations of two variables, depending on two parameters we 
onje
ture herea simple rational expression with integer 
oeÆ
ients for the exa
t expression of the dynami
al zetafun
tion. This yields an algebrai
 value for the exponential of the topologi
al entropy. Furthermorethe generating fun
tion for the Arnold 
omplexity is also 
onje
tured to be a rational expressionwith integer 
oeÆ
ients with the same singularities as for the dynami
al zeta fun
tion. This leads,at least in this example, to an equality between the Arnold 
omplexity and the (exponential ofthe) topologi
al entropy. We also give a semi-numeri
al method to e�e
tively 
ompute the Arnold
omplexity. We also show that rational generating fun
tions and asso
iated algebrai
 
omplexitieso

ur in a mu
h larger framework, namely the iterations of the produ
t of several rational transfor-mations depending on many 
ontinuous parameters. Beyond the narrow framework of Yang-Baxterintegrable models, these generating fun
tion 
al
ulations give a way to \
lassify" non-integrablelatti
e statisti
al models and beyond, dis
rete dynami
al systems, providing pre
ise quantitativeinstruments partitioning between integrable, weakly 
haoti
 and very 
haoti
 systems.PACS numbers: 05.45.+b, 47.52.+j, 05.50.+q, 05.20, 02.10, 02.20, 02.90.+pAMS Classif. numbers 82A68, 82A69, 14E05, 14J50, 16A46, 16A24Key words : Yang-Baxter equations, rational dynami
al zeta fun
tions, dis
rete dynami
al systems, rationalmappings, Cremona transformations, Arnold 
omplexity, Topologi
al entropy.I. INTRODUCTIONBirational transformations [1{5℄ naturally pop out as non trivial non-linear symmetries of latti
e models of statisti
alme
hani
s [6{9℄ and solid state physi
s. For example (birational) transformations of the R-matrix of the sixteen-vertex model [10℄ exist whi
h are non trivial integrable symmetries of the parameter spa
e of the model. Thesetransformations �nd their origin in the so-
alled inversion relation [11℄ and in the latti
e symmetries. They form a(generi
ally in�nite dis
rete) group generated by the 
omposition of su
h transformations. A worth noti
ing property�"Dedi
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of integrability has been found for some of these transformations, opening the question whether this integrabilityproperty is related to an underlying statisti
al me
hani
s model or not. To answer this question a wide 
lass ofbirational mapping has been introdu
ed moving the point of view from statisti
al me
hani
s to dis
rete dynami
alsystem.These mappings are generated by two kinds of transformations on q�q matri
es: the inversion of the q�q matrix anda permutation of the entries of the matrix. Permutations of two entries [7{9℄, as well as permutations 
orrespondingto dis
rete symmetries of latti
e models of statisti
al me
hani
s [1{6℄ were �rst analysed. Several integrable mappingsasso
iated with permutations of q � q matri
es, for arbitrary q, have been found [7{9℄.These birational symmetries approa
h provides very powerful tools to solve Yang-Baxter equations or their higherdimensional generalizations1 (tetrahedron equations ...). They a
tually provide a fantasti
 short-
ut for these highlyoverdetermined set equations giving immediately the uniformization of the Yang-Baxter equations whatever it is,whatever 
ompli
ated it may be [16℄ (ellipti
 
urves, abelian surfa
es, higher dimensional abelian varieties). Thisapproa
h provides the solution of the so-
alled Baxterization problem2. It is also important to underline that thesetools 
an be used beyond the \narrow" framework of Yang-Baxter integrability.A. Birational automorphisms of Yang-Baxter equationsLet us �rst 
onsider the quite general vertex model where one dire
tion, denoted dire
tion (1), is singled out.Pi
torially this 
an be interpreted as follows : kJLi (1) (1)where i and k (
orresponding to dire
tion (1)) 
an take q values while J and L take m values. One 
an de�ne a\partial" transposition on dire
tion (1) denoted t1. The a
tion of t1 on the R-matrix is given by [6℄ :(t1R)iJkL = RkJiL (2)The R-matrix is a (q m)� (q m) matrix whi
h 
an be seen as q2 blo
ks whi
h are m�m matri
es :R = 0BBBB�A[1; 1℄ A[1; 2℄ A[1; 3℄ � � � A[1; q℄A[2; 1℄ A[2; 2℄ A[2; 3℄ � � � A[2; q℄A[3; 1℄ A[3; 2℄ A[3; 3℄ � � � A[3; q℄... ... ... . . . ...A[q; 1℄ A[q; 2℄ A[q; 3℄ � � � A[q; q℄1CCCCA (3)where A[1; 1℄, A[1; 2℄, ..., A[q; q℄ are m �m matri
es. With these notations the partial transposition t1 amounts topermuting all the blo
k matri
es A[�; �℄ and A[�; �℄. We use the same notations as in [7{9℄, that is, we introdu
e thefollowing transformations, the matrix inverse bI and the homogeneous matrix inverse I :bI : R �! R�1 ; or : I : R �! det(R) �R�1 (4)The homogeneous inverse I is a homogeneous polynomial transformation on ea
h of the entries of R-matrix, whi
hasso
iates, with ea
h entry, its 
orresponding 
ofa
tor. The two transformations t1 and bI are involutions and I2 =(det(R))q m�2 � Id where Id denotes the identity transformation. We also introdu
e the (generi
ally in�nite order)transformations : K = t1 � I and bK = t1 � bI (5)Transformation bK is 
learly a birational transformation on the entries of the R-matrix, sin
e its inverse transformation,whi
h is bI � t1, is obviously a rational transformation. K is a homogeneous polynomial transformation on the entries1They are birational automorphisms of the Yang-Baxter equations or of the tetrahedron equations [3,4℄.2Far beyond the simple linear, or rational, interpolations of knot, or graph, theory.2



of the R-matrix. This general framework enables to take into a

ount the analysis of N -site monodromy matri
es [16℄(take m = qN ) of two-dimensional models, as well as the analysis of d-dimensional qd-state vertex models (takem = qd�1). Let us just give here a pi
torial representation of the two sites (N = 2) monodromy matrix of atwo-dimensional model and of a three-dimensional vertex model :kj1l1 j2l2i �����lj kmni R (6)For a three-dimensional 
ubi
 vertex model, the \partial" transposition t1 asso
iated with one of the three dire
tionsof the 
ubi
 latti
e reads [4,5℄ : (t1R)i1i2i3j1j2j3 = Rj1i2i3i1j2j3 (7)Su
h a situation 
orresponds to m = q2. Let us restri
t to q = 2. The analysis of the fa
torizations [14,16℄ asso
iatedwith the iterations of transformation K = t1 �I , a
ting on an initial R-matrixM0 
orresponding to a general 64-statethree-dimensional model (generi
 8� 8 matrix), gives the following fa
torizations :M1 = K(M0); f1 = det(M0); f2 = det(M1)f41 ; M2 = K(M1)f31 ; f3 = det(M2)f71 � f42 ; � � � (8)and, for arbitrary n, the following \string-like" fa
torizations :K(Mn) = Mn+1 � f3n � f5n�1 � �fn�2 � fn�3 � � � f1�6 (9)det(Mn) = fn+1 � f4n � f7n�1 � �fn�2 � fn�3 � fn�4 � � � f1�8 (10)where the fn's are homogeneous polynomial expressions of the entries of M0. Su
h fa
torization s
hemes o

urfor a large set of birational transformations 
orresponding to latti
e statisti
al me
hani
s and even beyond thisframework [14,16℄. For all these various birational transformations [7{9,14,16℄ the fa
torization relations take thefollowing general3 form at the n-th step of the iterations :det(Mn) = fn+1 � f�1n � f�2n�1 � f�3n�2 � f�4n�3 � f�5n�4 � � � f�n1 (11)K(Mn) = Mn+1 � f�0n � f�1n�1 � f�2n�2 � f�3n�3 � f�4n�4 � � � f�n�11 (12)det(Mn) �Mn+1 = �f�0n+1 � f�1n � f�2n�1 � f�3n�2 � f�4n�3 � � � f�n1 � �K(Mn) (13)the exponents �n's, �n's and �n's being positive integers. We will denote �n the degree of the determinant of matrixMn, and �n the degree of polynomial fn and �(x), �(x), �(x), �(x) and �(x), the generating fun
tions of the degrees�n's, �n's, and of the exponents �n's, �n's and �n's in the fa
torization s
hemes :�(x) = 1Xn=0�n � xn; �(x) = 1Xn=0�n � xn; �(x) = 1Xn=0 �n � xn; �(x) = 1Xn=0�n � xn; �(x) = 1Xn=0 �n � xnFrom fa
torizations (9), (10), one easily gets the generating fun
tions �(x) and �(x) :�(x) = 8 (1 + x)3(1� x)4 ; �(x) = 8x(1� x)3 (14)This shows that (11) and (12) 
orrespond to a polynomial growth of the degrees �n and �n. These results 
an be
ompared with the ones asso
iated with the analysis of the symmetries of the sixteen vertex model [6℄ for whi
h onegets the simple fa
torization s
heme [6℄ :3It should be noti
ed that slightly more involved, but still stable, fa
torization s
heme may o

ur where the exponents �n'sand �'s depend on the parity of n, or, more generally, on n mod. p : in that 
ase on has p sets of exponents �n's and �n's inorder to des
ribe these fa
torization s
hemes [28,29℄. Some examples are given in Appendix A.3



Mn+2 = K(Mn+1)f2n ; fn+2 = det(Mn+1)f3n ; K(Mn+2)det(Mn+2) = Mn+3fn+1fn+3 (15)and one has a hierar
hy of integrable re
ursions [16℄ :fn f2n+3 � fn+4 f2n+1fn�1 fn+3 fn+4 � fn fn+1 fn+5 = fn+1 f2n+4 � fn+5 f2n+2fn fn+4 fn+5 � fn+1 fn+2 fn+6 (16)The generating fun
tions �(x) and �(x) read :�(x) = 4 � (1 + 3x2)(1� x)3 ; �(x) = 4 � x(1� x)3 (17)Again one has a polynomial growth of the 
al
ulations, 
onsequen
e of the integrability of the mapping itself [6℄.From these two examples one should not infer that the birational transformations 
orresponding to latti
e statisti
alme
hani
s always yield polynomial growth. Vertex models studied by Stroganov or Perk and S
hultz 
orresponding toq 6= 2 provide examples of exponential growth of the 
omplexity [16℄ : this is the generi
 situation for latti
e statisti
alme
hani
s. Exponential growth rules out the existen
e of solutions of the Yang-Baxter equations.We have used the methods introdu
ed in [7{9℄ on various examples of vertex models of latti
e statisti
al me
hani
s.In parti
ular, we have analyzed the fa
torization properties of dis
rete symmetries of the parameter spa
e of theselatti
e models, represented as birational transformations. Di�erent features have emerged from su
h studies, namelythe polynomial growth of the 
omplexity of the iterations of these birational transformations [13℄, the existen
e ofre
ursion relations bearing on the fa
torized polynomials fn. The relation between these properties, or more generalstru
tures like the \quasi-integrability" [6℄, and the integrability of these latti
e models of statisti
al me
hani
s, hasbeen studied. The analysis of the fa
torizations 
orresponding to a spe
i�
 two-dimensional vertex model has shownhow the generi
 exponential growth of the 
al
ulations does redu
e to a polynomial growth when the model be
omesYang-Baxter integrable [16℄. This gives a �rst example of the fa
t that the sear
h for polynomial growth4 of theasso
iated iterations provides a new way to analyse vertex models [4,5,15℄.B. Birational transformations asso
iated with general permutations of entries of q � q matri
esThese latti
e statisti
al me
hani
s birational transformations 
orrespond to 
ombining the inversion of a matrixtogether with various permutations of the entries of the R-matrix representing geometri
al symmetries of variouseu
lidean d-dimensional latti
e. This is a motivation for 
onsidering the following problem [14,16℄ 
onsisting inanalyzing the transformations Kq = t Æ I , a
ting on a q � q matri
es M , for arbitrary permutation t of the entries.This is a quite large set of transformations : for 3� 3 matri
es one has 362880 su
h (birational) transformationsto study, and for 4� 4 matri
es, 20922789888000 transformations have to be studied. A systemati
 study of theselarge sets of (birational) transformations is performed elsewhere [28℄. Let us �rst 
on
entrate, in the �rst part ofthis paper, on a simple, but very interesting (and tutorial), example of permutation, namely the transposition of thetwo entries M1;2 with M3;2 and its asso
iated bi-polynomial transformation K. This transformation has also beenanalysed in detail in [9℄. For q � q matri
es (q � 3) the fa
torizations 
orresponding to the iterations of K read :f1 = det(M0) ; M1 = K(M0) ; f2 = det(M1)fq�21 ; M2 = K(M1)fq�31 ; f3 = det(M2)f1 � fq�32 ; M3 = K(M2)fq�32 ;f4 = det(M3)fq�11 � f2 � fq�23 ; M4 = K(M3)fq�21 � fq�33 ; f5 = det(M4)f21 � fq�12 � f3 � fq�24 ; � � � (18)and for arbitrary n :det(Mn) = fn+1 � (fq�2n � fn�1 � fq�1n�2 � f2n�3) � (fq�2n�4 � fn�5 � fq�1n�6 � f2n�7) � � � fÆn1 ; (19)K(Mn) = Mn+1 � (fq�3n � fq�2n�2 � fn�3) � (fq�3n�4 � fq�2n�6 � fn�7) � � � f�n1 (20)4In fa
t, the polynomial growth of the 
al
ulations [8℄ 
orrespond to shift on an abelian variety Cn=�.4



where �n = q � 3 for n = 1 (mod 4), �n = 0 for n = 2 (mod 4), �n = q � 2 for n = 3 (mod 4) and �n = 1 for n = 0(mod 4) and Æn also depends on the trun
ation. The exa
t expressions of the generating fun
tions �(x) and �(x)read [9℄ : �(x) = q1 + x + q2 � x � �1 + x2�(1� x)(1 + x)(1� x� x3) ; �(x) = q � x � �1 + x2�1� x� x3 (21)It is 
lear that one has an exponential growth of the degrees �n's, �n's : these 
oeÆ
ients grow like �n where� � 1:465 � � �. This displays the \generi
" fa
torization s
heme. However, on various subvarieties (like the 
odimensionone subvariety � = 0 see below) the fa
torization s
heme 
an be modi�ed as a 
onsequen
e of additional fa
torizationso

urring at ea
h iteration step, thus yielding a smaller value for the 
omplexity � .This transformation 
an be seen to restri
t to a two-parameter family of mapping of two variables (see (22) below).We now 
onsider this two-parameter family of mapping of two variables, for whi
h mu
h 
an be said. In parti
ular, wewill 
onje
ture an exa
t algebrai
 value for the (exponential of the) topologi
al entropy and for the Arnold 
omplexity5.Furthermore, these two measures of 
omplexity will be found to be equal for all the values of the two parameters,generi
 or not (the notion of "generi
ity" is explained below). Note that a fundamental distin
tion must be madebetween the various \
omplexity measures" a

ording to their invarian
e under 
ertain 
lasses of transformations.One should distinguish, at least, two di�erent sets of 
omplexity measures, the ones whi
h are invariant under thelarger 
lasses of variables transformations, like the topologi
al entropy or the Arnold 
omplexity [22℄, and the othermeasures of 
omplexity whi
h also have invarian
e properties, but under a \less large" set of transformations, and aretherefore more sensitive to the details of the mapping (they may depend on the metri
 like, for instan
e, the metri
entropy [19,20℄). C. A two parameters family of birational transformationLet us 
onsider K2 instead of K (whi
h is just a simple 
hange for the 
omplexity � into �2 ). Transformation K2
an a
tually be redu
ed [9℄ to a two parameters family of birational transformations k�;� :k�;� : (un+1 ; vn+1) = �1� un + un=vn ; �+ vn � vn=un + � � (1� un + un=vn)� (22)whi
h 
an also be written proje
tively :un+1 = (vntn � unvn + untn) � unvn+1 = � � un � vn � tn + (un � tn) � v2n + � � (vntn � unvn + untn) � untn+1 = un � vn � tn (23)As far as 
omplexity 
al
ulations are 
on
erned, the � = 0 
ase is singled out [26℄. In that 
ase, it is 
onvenient touse a 
hange of variables to get the very simple form k� :k� : (yn+1 ; zn+1) = �zn + 1� � ; yn � zn � �zn + 1� (24)or on its homogeneous 
ounterpart :(yn+1 ; zn+1 ; tn+1) = �zn + tn � � � tn) � (zn + tn) ; yn � (zn � � � tn) ; tn � (zn + tn)� (25)
5To study the 
omplexity of 
ontinuous, or dis
rete, dynami
al systems, a large number of 
on
epts have been introdu
ed[17,18℄. A non exhaustive list in
ludes the Kolmogorov-Sinai metri
 entropy [19,20℄, the Adler-Konheim-M
Andrew topologi
alentropy [21℄, the Arnold 
omplexity [22℄, the Lyapounov 
hara
teristi
 exponents, the various fra
tal dimensions [23,24℄, � � � .
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II. THE COMPLEXITY GROWTHThe 
orresponden
e [9℄ between transformations Kq and k�;�, more spe
i�
ally between K2q and k�;�, is givenin [29℄. It is shown below that, beyond this 
orresponden
e, K2q and k�;� share properties 
on
erning the 
omplexity.Transformation Kq is homogeneous and of degree (q � 1) in the q2 homogeneous entries. When performing the nthiterate one expe
ts a growth of the degree of ea
h entries as (q � 1)n. It turns out that, at ea
h step of the iteration,some fa
torization of all the entries o

urs. The 
ommon fa
tor 
an be fa
torized out in ea
h entry leading to a\redu
ed" matrix Mn, whi
h is taken as the representent of the nth iterate point in the proje
tive spa
e. Due tothese fa
torizations the growth of the 
al
ulation is not (q � 1)n but rather �n where � is generi
ally the largest rootof 1 + �2 � �3 = 0 (i.e. 1.46557123 < q � 1 [9,13℄, see also (21)). We 
all � the 
omplexity growth, or simply, the
omplexity. This result is a 
onsequen
e of a stable fa
torization s
heme (see (19), (20)), from whi
h two generatingfun
tions6 �(x) and �(x) 
an be 
onstru
ted. Generating fun
tion �(x) keeps tra
k respe
tively of the degrees of thedeterminants of the su

essive \redu
ed" matri
es and �(x) of the degrees of the su

essive 
ommon fa
tors. Thea
tual value of � is the inverse of the pole of �(x) (or �(x)) of smallest modulus. The algebrai
ity of the 
omplexityis, in fa
t, a straight 
onsequen
e of the rationality of fun
tions �(x) and �(x) with integer 
oeÆ
ients [13℄. Thesame 
al
ulations have also been performed on transformations (22) and (23). In that 
ase fa
torizations also o

ur,at ea
h step, and generating fun
tions 
an be 
al
ulated. These generating fun
tions are, of 
ourse, di�erent from thegenerating fun
tions for K2q (see [13℄) but they have the same poles, and 
onsequently the same 
omplexity growth.One sees that, remarkably, the 
omplexity � does not depend on the birational representation 
onsidered : K2q for anyvalue of q, k�;� or the homogeneous transformation (23). It will be useful to de�ne some degree generating fun
tionsG(x) : G(x) = Xn dn � xn (26)where dn is the degree of some quantities we look at, at ea
h iteration step (numerators or denominators of the two
omponents of kn, degree of the entries of the \redu
ed" matri
es Mn's, degree of polynomials fn's extra
ted in thefa
torization s
hemes). The 
omplexity growth � is the inverse of the pole of smallest modulus (if G(x) is rational)of any of these degree generating fun
tions G(x) :log� = limm!1 log dmm (27)A. Complexity growth for � = 0In the � = 0 
ase, whi
h 
orresponds to a 
odimension one variety of the parameter spa
e [26,29℄, additionalfa
torizations o

ur redu
ing further the growth of the 
omplexity. The generating fun
tions are modi�ed and thenew 
omplexity is given, for Kq, by equation 1� �2 � �4 = 0; i.e. � ' 1:27202 � � � . For k�, whi
h 
orresponds toK2q , the equation reads : 1� �� �2 = 0 (28)leading to the 
omplexity � ' 1:61803 � � � ' (1:27202 � � �)2. Not surprisingly, the 
omplexity of the mappings k�;�for � = 0 (see (22)) and the one of mapping k� (see (24)), are the same: 
omplexity � 
orresponds to the asymptoti
behavior of the degree of the su

essive quantities en
ountered in the iteration (see (27)). Clearly, this behaviorremains un
hanged under simple 
hanges of variables. Note that this 
omplexity growth analysis 
an be performeddire
tly on transformation k�, or on its homogeneous 
ounterpart (25). The number of generating fun
tions in thetwo 
ases is not the same, but all these fun
tions lead to the same 
omplexity. In fa
t 
omplexity � is nothing butthe Arnold 
omplexity [22℄, known to be invariant under transformations 
orresponding to a 
hange of variables likethe 
hange of variables from (22), for � = 0, to (24) (or to (25)). Let us also re
all that the Arnold 
omplexity6The generating fun
tion �(x) should not be 
onfused with the parameter �.6




ounts the number of interse
tion between a �xed line7 and its nth iterate, whi
h 
learly goes as �n. Conversely, allthese growth 
al
ulation evaluations 
an be seen as a \handy" way of 
al
ulating the Arnold 
omplexity.All these 
onsiderations allow us to design a semi-numeri
al method to get the value of the 
omplexity growth � forany value of the parameter �. The idea is to iterate, with (24) (or (22)), a generi
 rational initial point (y0; z0) andto follow the magnitude of the su

essive numerators and denominators. During the �rst few steps some a

identalsimpli�
ations may o

ur, but, after this transient regime, the integer denominators (for instan
e) grow like �n wheren is the number of iterations. Typi
ally a best �t of the logarithm of the numerator as a linear fun
tion of n, betweenn = 10 and n = 20, gives the value of � within an a

ura
y of 0:1%. An integrable mapping yields a polynomial growthof the 
al
ulations [13℄ : the value of the 
omplexity � has to be numeri
ally very 
lose to 1 . Fig. 1 shows the valuesof the 
omplexity as a fun
tion of the parameter �. The 
al
ulations have been performed using an in�nite-pre
isionC-library [25℄.For most of the values of � we have found � ' 1:618, in ex
ellent agreement with the value predi
ted in (28). In [26℄,it has been shown that the simple rational values � = �1; 0; 1=3; 1=2; 1 yield integrable mappings. For these spe
ialvalues one gets � � 1 
orresponding to a polynomial growth [26℄. In addition, Fig. 1 singles out two sets of valuesf1=4; 1=5; 1=6; � � � ; 1=13g and f3=5; 2=3 ; 5=7g, suggesting two in�nite sequen
es � = 1=n and8 � = (m � 1)=(m+ 3)for n and m integers su
h that n � 4 and m � 7 and m odd. We 
all \non-generi
" the values of � of one of the twoforms above (together with the integrable values), and \generi
" the others. To 
on�rm these suggestions of Fig. 1,we go ba
k to (the matrix) transformation Kq, for q = 3, to get a generating fun
tion of the degrees of the fn'sextra
ted at ea
h step of iteration, namely, with the notations of [9,14,16℄, fun
tion �(x). From now on, we will givebelow, instead of �(x), the expression of the following 
omplexity generating fun
tion de�ned, for q� q matri
es, as :G�� (q; x) = �(x)q � x (29)In the following the 
al
ulations are often displayed for 3� 3 matri
es and G�� (q; x) will simply be denoted G�� (x) .Let us re
all that the value of the 
omplexity � is the inverse of the root of smallest modulus of the denominatorof this rational fun
tion. Examples of these 
al
ulations, in order to get the 
orresponding fa
torization s
heme anddedu
e the generating fun
tion �(x), or G�� (x), are given in Appendix A. Choosing an initial � = 0 matrix to iterate,we have �rst obtained the generating fun
tion G�(x) in the generi
 
ase9 for � = 0 (see (A4) in Appendix A) :G�(x) = 1 + x+ x31� x2 � x4 (30)We also got the generating fun
tion G�(x) for the di�erent \non-generi
" 
ases :G1=m(x) = 1 + x+ x3 � x2m+1 � x2m+31� x2 � x4 + x2m+4 ; with m � 4 (31)G(m�1)=(m+3)(x) = 1 + x+ x3 � x2m+61� x2 � x4 + x2m+4 ; with m � 7 m odd (32)and : Gint(x) = 1 + x+ x3 + x4 + x8 + x121� x2 � x6 + x8 � x10 + x12 + x16 � x18 (33)= 1 + x � (1 + x2) + x4 � (1 + x4 + x8)1� x2 � (1 � x12) � x6 � (1� x2 + x4 � x6 + x8 � x10 + x12)for � = 1=2 and � = 1=3. For � = 1=m (m � 4) and � = (m � 1)=(m + 3) (m � 7 and m odd), the 
orresponding
omplexities are the inverse of the roots of smallest modulus of polynomial :7Or the interse
tion of the n-th iterate of any �xed algebrai
 
urve together with any other possibly di�erent but �xed algebrai

urve.8Note that m ! (m+ 3)=(m� 1) is an involution.9It is worth noti
ing that these results are not spe
i�
 to 3 � 3 matri
es, for example relation (30) is a
tually valid simplyrepla
ing G�� (x) by G�� (q; x) . 7



1� x2 � x4 � x2m+4 = 0 (34)in agreement10 with the values of Fig. 1. This semi-numeri
al method a
ts as an `integrability dete
tor' and, further,provides a simple and eÆ
ient way to determine the 
omplexity of an algebrai
 mapping. Applied to mappings (22),Kq = t � I , or (24), it shows that the 
omplexity is, generi
ally, a universal quantity, independent of the value of theparameter �, ex
ept for the four integrable points, and for two denombrable sets of points.
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FIG. 1. Complexity for � = 0. Complexity �, for k�, as a fun
tion of �.B. Complexity growth for � 6= 0These 
omplexity growth 
al
ulations 
an straightforwardly be generalized to � 6= 0. As seen in se
tion (I B) (see(21)), the \generi
" generating fun
tion is : G��(x) = 1 + x21 � x � x3 (35)The pole of smallest modulus of (35) gives 1:46557 � � � for the value of the 
omplexity for the matrix transformationK.The 
omplexity for the transformation k�� is the square of this value: � = 2:14790 � � � . Fig. 2 shows, for � = 1=100,
omplexity � as a fun
tion of the parameter � , obtained with the semi-numeri
al method previously explained. Evenwith su
h a \small value" of � the expe
ted drasti
 
hange of value of the 
omplexity (namely 1:61803 ! 2:14790)is non-ambiguously seen.10In this �gure the �-axis has been dis
retized as M=720 (M integer) and the extra values 1/7, 1/11, 1/13 and 5/7 have beenadded.
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FIG. 2. Complexity �, for k�;�, as a fun
tion of � taken of the form M=720 for � = 1=100.Moreover, Fig. 2 
learly shows that, besides the value � = 0 known to be integrable whatever � [26℄, the followingvalues � = 1=2, � = 1=3 and � = 3=5 are asso
iated to a signi�
antly smaller 
omplexity, at least for the dis
retizationin � we have investigated. From these numeri
al results, and by analogy with � = 0, one 
ould �gure out thatall the � = 1=m are also non-generi
 values of �. In fa
t a fa
torization s
heme analysis, like the one depi
ted inAppendix A), shows that � = 1=4 or � = 1=7 a
tually 
orrespond to the generi
 (35). We got similar11 results forother values of � 6= 0. Let us just keep in mind that, besides � = 0 and � = �1, at least � = 1=2 , � = 1=3 and� = 3=5 are singled out for � 6= 0 in our semi-numeri
al analysis. The generi
 expression (for 3� 3 matri
es) for thegenerating fun
tion G(x) , namely (35), is repla
ed, for the \non-generi
" value � = 1=2 (with � 6= 0), by :G�1=2(x) = 1 + x + x3 � x161 � 2x2 � x6 + x8 � x10 + x12 + x16 (36)= (1 + x2) � (1 + x� x2 + x4 � x6 + x8 � x10 + x12 � x14)(1� x2) � (1 � x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14)For the other \non-generi
" value of �, � = 1=3, the 
omplexity generating fun
tion reads :G�1=3(x) = 1 + x+ x3 � x121� 2x2 � x6 + x8 + x12 = (1 + x2) � (1 + x � x2 + x4 � x6 + x8 � x10)(1� x2) � (1� x2 � x4 � 2x6 � x8 � x10) (37)For the \non-generi
" value � = 3=5, the 
omplexity generating fun
tion reads :G�3=5(x) = 1 + x+ x3 � x201� 2x2 � x6 + x8 � x10 + x12 � x14 + x16 + x20 (38)The denominator of (38) has a \
y
lotomi
 polynomial" simple form :�1� x2� � �1 � x2 � (1 + x + x2) � (1 � x + x2) � (1 + x4) � (1 + x8)� (39)11However, when varying � and keeping � �xed, new values of the 
omplexity � o

ur, � being some \stair-
ase" fun
tion of�. We will not exhaustively des
ribe the rather involved \strati�ed" spa
e in the (� ; �) plane, 
orresponding to the various\non generi
" 
omplexities. 9



III. DYNAMICAL ZETA FUNCTION AND TOPOLOGICAL ENTROPYIt is well known that the �xed points of the su

essive powers of a mapping are extremely important in order tounderstand the 
omplexity of the phase spa
e. A lot of work has been devoted to study these �xed points (ellipti
or saddle �xed points, attra
tors, basin of attra
tion, et
), and to analyse related 
on
epts (stable and unstablemanifolds, homo
lini
 points, et
). We will here follow another point of view and study the generating fun
tion of thenumber of �xed points. By analogy with the Riemann � fun
tion, Artin and Mazur [27℄ introdu
ed a powerful obje
tthe so-
alled dynami
al zeta fun
tion : �(t) = exp 1Xm=1#�x(km) � tmm ! (40)where #�x(km) denotes the number12 of �xed points of km. The generating fun
tionsH(t) = X#�x(km) � tm (41)
an be dedu
ed from the � fun
tion : H(t) = t ddt (log �(t)): (42)If the dynami
al � fun
tion is rational the topologi
al entropy log(h) is simply related to its pole h :logh = limm!1 log (#�x(km))m (43)If the dynami
al zeta fun
tion 
an be interpreted as the ratio of two 
hara
teristi
 polynomials of two linear operatorA and B, namely �(t) = det(1 � t � B)=det(1 � t � A), then the number of �xed points #�x(km) 
an be expressedfrom Tr(An) � Tr(Bn). For more details on these Perron-Frobenius, or Ruelle-Araki transfer operators, and othershifts on Markov's partition in a symboli
 dynami
s framework, see for instan
e [32{35℄. In this linear operatorsframework, the rationality of the � fun
tion, and therefore the algebrai
ity of the topologi
al entropy, amounts tohaving a �nite dimensional representation of the linear operators A and B. In the 
ase of a rational � fun
tion,h, the exponential of the topologi
al entropy is the inverse of the pole of smallest modulus. Sin
e the number of�xed points remains un
hanged under topologi
al 
onjugaison (see Smale [36℄ for this notion), the � fun
tion is alsoa topologi
ally invariant fun
tion, invariant under a large set of transformations, and does not depend on a spe
i�

hoi
e of variables. Su
h invarian
es were also noti
ed for the 
omplexity growth �. It is then tempting to make a
onne
tion between the rationality of the 
omplexity generating fun
tion previously given, and a possible rationalityof the dynami
al � fun
tion. We will also 
ompare the Arnold 
omplexity � and h, the (exponential of the) topologi
alentropy. A. Dynami
al zeta fun
tion for � = 0, � generi
We try here to get the expansion of the dynami
al zeta fun
tion of the mapping k� (see (24)), for generi
13 valuesof �. We 
on
entrate on the value � = 13=25 = 0:52. This value is 
lose to the value 1/2 where the mapping isintegrable [26℄. One 
an gain an idea of the number, and lo
alization, of the (real) �xed points looking at the phaseportrait of Fig. 3.12If one of these numbers is in�nite the de�nition breaks down. For instan
e for integrable mappings there are many algebrai

urves su
h that all their points are �xed points of kn for some given integer n.13Neither of the form 1=m, nor of the form (m� 1)=(m+ 3).
10
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1FIG. 3. Phase portrait of k� for � = 0 and � = 13=25. 550 orbits of length 1000 have been generated. 50 orbits start frompoints randomly 
hosen near a �xed point of order 5 of k� = k13=25, and 500 others orbits start from randomly 
hosen pointsoutside the ellipti
 region. Only the points inside the frame are shown.The ellipti
 �xed point (y0; z0) = (:24 ; �:24) is well seen, as well as the �ve ellipti
 points and the �ve saddlepoints of k5� . Many points of higher degree are also seen. Transformation k� has a single �xed point for any �. This�xed point is ellipti
 for � � 0 and lo
alized at (y0; z0) = ((1� �)=2; (�� 1)=2). Transformation k2� has only the �xedpoint inherited from k�. The new �xed points of k3� are (2 � � ; (��1)=2), (�1; 1) and ((1��)=2; ��2). Transformationk4� has four new �xed points. At this point the 
al
ulations are a bit too large to be 
arried out with a literal �, andwe parti
ularize � = 13=25. For k5� we have �ve news ellipti
 points and �ve new saddles points. The 
oordinates zand y of these points are roots of the two polynomials (obtained from resultants) :P (z) = z2 (25 z � 13) (1 + z)(4375 z2+ 1550 z� 89) (175 z2 + 106 z + 7) (44)� (25 z + 13)2 (25 z2 + 12 z + 1)2 (25 z + 6)3Q(y) = y (y � 1)2 (25 y � 6)5 (25 y2 � 12 y + 1)3 (25 y � 12)2 (45)� (7� 106 y + 175 y2)2 (4375 y2 � 1550 y� 89)3Among the various pairings one 
an 
onsider, some 
orresponds to spurious or singular points (
omponents of k5� are ofthe form 0=0 ). For instan
e z2 (25 z �13) (1+z) (25 z+13)2 = 0 and y (y � 1)2 (25 y�12)2 = 0 
orrespond to su
hpoints to be dis
arded. After this sele
tion, the �ve pairings of roots of (44) and (45), giving the �ve ellipti
 points,are (0.530283, -0.107335), (-0.050283, -0.24), (0.372665, -0.372665), (0.107335, -0.530283), (0.24, 0.050283) andthe �ve pairings giving the �ve hyperboli
-saddle points are (0.372665, -0.075431), (0.107335, -0.107335), (0.404568,-0.24), (0.075431, -0.372665), (0.24, -0.404568). This is 
learly seen on Fig. 3 where the o

urren
e of �ve \petals"
orresponding to �ve ellipti
 points is obvious, the �ve hyperboli
 points being lo
ated between the petals. Afterdis
arding the spurious, or singular, points, the �xed points for k5� are (y ; z) points where z and �y are roots ofthe same polynomial P5(z). For arbitrary value of �, P5(z) reads :P5(z) = �(3 �� 1) � z2 + (�4 �2 + 14 � � 6) � z + �3 � 5 �2 + 10 �� 4� (46)��(3 �� 1) � z2 + (4 � 6 � � 2 �2) � z + 1 � 5 � + 6 �2� � �z2 + (1 � �) � z + 2 � � 1� � (2 z + 1� �)For transformation k6� , beyond the �xed points of k� and k3� , one gets two 
omplex saddle �xed points, i.e. trans-formation k� has two 6-
y
les. For transformation k7� , one obtains one ellipti
 real �xed point, one saddle real �xedpoint and and two 
omplex saddle �xed points. For transformation k8� , one obtains one saddle real �xed point andfour 
omplex saddle �xed points. For transformation k9� , one obtains one ellipti
 real �xed point, three saddle real11



�xed point and and four 
omplex saddle �xed points. For transformation k10� , one obtains one ellipti
 real �xedpoint, one saddle real �xed point and and three 
omplex ellipti
 �xed points and six saddle 
omplex �xed points. Thetwo ellipti
 �xed points of k10� (0.24, -0.874) and (0.874, -0.24) are seen as \ellipse" on Fig. (3). For transformationk11� , one obtains one ellipti
 real �xed point, �ve saddle real �xed point and and twelve 
omplex saddle �xed points.On Fig. (3) a �xed point of k12� lying on y + z = 0 is seen near y = �13=25. The polynomials, similar to (44) and(45), as well as the spe
i�
 pairing of roots, for the su

essive iterates kN� , are available in [37℄.It is worth noti
ing, that among the 53 
y
les of k� of length smaller, or equal, to 11, as mu
h as 44 are on the liney+ z = 0, six are on the line y +�z = 0. Two of the three remaining 
y
les are of length 11, while the last is of lengtheight. The parti
ular role played by the y + z = 0 line 
an be simply understood. Let us 
al
ulate the inverse ofthe birational transformation (24). It has a very simple form :k�1� : zn+1 = yn � (1� �) ; yn+1 = zn � yn + �yn � 1 (47)whi
h is nothing but transformation (24) where yn and � zn have been permuted. The yn $ � zn symmetry just
orresponds to the time-reversal symmetry k� $ k�1� transformation. The y + z = 0 line is the time-reversalinvariant line.Also note that, among these 53 
y
les, only one of the 31 
omplex 
y
les is of the form Z0; Z1; � � �Zp; �Z0; �Z1; � � � �Zpwhere Zi = (yi; zi) and �Zi is the 
omplex 
onjugate. The 30 remaining 
omplex 
y
les are a
tually 15 
y
les and their
omplex 
onjugates.For the � = 13=25 = 0:52 example these results are summarized in table Tab. I whi
h gives the number of �xedpoints, as well as their status :n 1 2 3 4 5 6 7 8 9 10 11# �xed points 1 1 4 5 11 16 29 44 76 121 199# n-
y
les 1 0 1 1 2 2 4 5 8 11 18# ellipti
 real 1 0 0 0 1 0 1 0 1 1 1# saddle real 0 0 1 1 1 0 1 1 3 1 5# ellipti
 
omplex 0 0 0 0 0 0 0 0 0 3 0# saddle 
omplex 0 0 0 0 0 2 2 4 4 6 12# on y + z = 0 1 0 1 1 2 2 4 4 6 10 12# on y + �z = 0 0 0 0 0 0 0 0 0 2 0 4TABLE I. Number and status of the �xed points of kn13=25. n-
y
le means 
y
le of minimum length n
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The 
orresponding phase portrait is very 
ompli
ated and dominated by the real �xed points [30℄ whi
h are allsaddle or ellipti
. We note that the same properties (all points saddle or ellipti
) also holds for the 
omplex �xedpoints.Lo
al area preserving property : Eventually, one observes an area preserving [38℄ property in the neighborhoodof all the �xed points of kn� : the produ
t of the modulus of the two eigenvalues of the Ja
obian (i.e. the determinant)of kn� , at all �xed points for n � 11, is equal to 1 . This lo
al property is rather non trivial : the determinant ofthe produ
t of the ja
obian over an in
omplete 
y
le is very 
ompli
ated and only when one multiplies by the lastja
obian does the produ
t of the determinants shrinks to 1 .Dynami
al zeta fun
tion : The total number of �xed points of kN� for N running from 1 to 11, yields thefollowing expansion, up to order eleven, for the generating fun
tion H(t) of the number of �xed points :H�(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 199 t11 + � � � (48)This expansion 
oin
ides with the one of the rational fun
tion :H�(t) = t � �1 + t2�(1� t2) (1� t� t2) (49)whi
h 
orresponds to a very simple rational expression for the dynami
al zeta fun
tion :��(t) = 1 � t21 � t � t2 (50)Expansion (48) remains un
hanged for all the other generi
 values of � we have also studied.We 
onje
ture that :The simple rational expression (50) is the a
tual expression of the dynami
al zeta fun
tion for any generi
 valueof �.Comparing expression (28) with (50) one sees that the singularities of the dynami
al zeta fun
tion happen to
oin
ide with the singularities of the generating fun
tions of the Arnold 
omplexity. In parti
ular the 
omplexitygrowth � and h, the exponential of the topologi
al entropy, are equal.In fa
t, as far as �xed points of kN� are 
on
erned, there is also a �xed point at 1. If one takes into a

ount this�xed point at 1 as well, the previous de�nitions are slightly modi�ed :H(t) �! H(1)(t) = H(t) + t1� t ; and : �(t) �! �(1)(t) = �(t)1� t (51)Rational expression (50) be
omes : �(1)� (t) = 1 + t1 � t � t2 (52)Let us 
onsider the 
omplexity generating fun
tion 
orresponding to the degrees of the numerators (or denominators)of the two 
omponents of kN� . The generating fun
tion of the degree of the numerator of the z 
omponent of kN� ,we denote gz(t), has exa
tly the same expression, up to 1, as (52) :1 + gz(t) = �(1)� (t) == 1 + 2 t+ 3 t2 + 5 t3 + 8 t4 + 13 t5 + 21 t6 + 34 t7 + 55 t8 + 89 t9 + 144 t10 + 233 t11 + � � � (53)One 
an also introdu
e gy(t) the generating fun
tion of the degree of the numerator of the y 
omponent of kN� , andhy(t) and hz(t) the generating fun
tions of the degrees of the denominators of the y and z 
omponents of kN� :gy(t) = t+ 2 t2 + 3 t3 + � � � ; hz(t) = t+ 2 t2 + 4 t3 + � � � ; hy(t) = t2 + 2 t3 + 4 t4 + � � �where : gz(t) = hz(t) + t1� t ; gy(t) = hy(t) + t1� t ; gy(t) = t � (1 + gz(t)) (54)One has : 13



�(1)� (t) = 1 + gz(t) = gy(t)t (55)More \
anoni
ally" re
alling the homogeneous transformation (25), let us denote ghom(t) the generating fun
tion ofthe su

essive degrees of the yn, zn and tn. For generi
 � , one has the following relation between ghom(t) and �(1)� (t):ghom(t) + 11� t = �(1)� (t) (56)When mentioning zeta fun
tions it is tempting to seek for simple fun
tional relations relating �(t) and �(1=t). Letus introdu
e the following \avatar" of the dynami
al zeta fun
tion :b�(t) = �(t)�(t) � 1 (57)Transformation z ! z=(z � 1) is an involution. One immediately veri�es that b��(t) , 
orresponding to (50), veri�estwo extremely simple, and remarkable, fun
tional relations :b��(t) = � b��(1=t) ; and : b��(t) = b��(�1=t) ; (58)or on the zeta fun
tion �(t) :��(1=t) = ��(t)2 � ��(t) � 1 ; and : ��(�1=t) = ��(t) (59)The generating fun
tion (49) veri�es : H�(�1=t) = �H�(t) (60)Cy
le de
omposition : An alternative way of writing the dynami
al zeta fun
tions relies on the de
ompositionof the �xed points into 
y
les whi
h 
orresponds to the Weyl 
onje
tures [39℄. Let us introdu
e Nr the number ofirredu
ible 
y
les of kr� : for instan
e for N12 we 
ount the number of �xed points of k12, that are not �xed points ofk�, k3� , k4� or k6� , and divide by twelve. One 
an write the dynami
al zeta fun
tion as :��(t) = 1(1� t)N1 � 1(1� t2)N2 � 1(1� t3)N3 � � � 1(1� tr)Nr � � � (61)The 
ombination of the Nr's, inherited from the produ
t (61), automati
ally takes into a

ount the fa
t that thetotal number of �xed points of kr� 
an be obtained from �xed points of kp� , where p divides r, and from irredu
ible�xed points of kr itself (see [39℄ for more details). A detailed analysis of this 
y
le de
omposition (61) for generi
values of � will be detailed elsewhere [30℄. The previous exhaustive list of �xed points (up to order twelve) 
an berevisited in this irredu
ible 
y
le de
omposition point of view. The results of [37℄ yield : N1 = 1 ; N2 = 0 ; N3 =1 ; N4 = 1 ; N5 = 2 ; N6 = 2 ; N7 = 4 ; N8 = 5 ; N9 = 8 ; N10 = 11 ; N11 = 18 . One a
tually veri�es easily that(50) and (61) have the same expansion up to order twelve with these values of the Nr's. The next Nr's should beN12 = 25 ; N13 = 40 ; N14 = 58 ; N15 = 90 ; � � �Real dynami
al fun
tions : Introdu
ing some generating fun
tion for the real �xed points of kN , it should benoti
ed that this generating fun
tion has the following expansion up to order eleven for � = :52 :Hreal� = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 4 t6 + 15 t7 + 13 t8 + 40 t9 + 31 t10 + 67 t11 + � � � (62)This series is a quite \
he
kered" one. Furthermore, its 
oeÆ
ients depend very mu
h on parameter � . In 
ontrastwith generating fun
tion (41), the generating fun
tion Hreal� has no simple universality property in �. This seriesdoes not take into a

ount the topologi
al invarian
e in the 
omplex proje
tive spa
e : it just tries to des
ribe thedynami
al system in the real spa
e. This series Hreal� 
orresponds to the \
omplexity" as seen on the phase portraitof Fig. (3). One sees, here, the quite drasti
 opposition between the notions well-suited to des
ribe transformationsin 
omplex proje
tive spa
es, and the ones aiming at des
ribing transformations in real variables.
14



B. Dynami
al zeta fun
tions for � = 0, � non generi
To further investigate the identi�
ation of these two notions (Arnold 
omplexity-topologi
al entropy), we nowperform similar 
al
ulations (of �xed points and asso
iated zeta dynami
al fun
tions) for � = 1=m with m � 4 and� = (m� 1)=(m+3) with m � 7 odd (see Appendix B). The 
al
ulations are detailed in the Appendix B. All these
al
ulations are 
ompatible with the following single expression of the � fun
tion :�1=m(t) = 1 � t21 � t � t2 + tm+2 (63)We 
onje
ture that this expression is exa
t, at every order, and for every value of m � 4. Again this expression
oin
ides with the 
orresponding expression of the Arnold 
omplexity (see (34) with t = x2).Similar 
al
ulations 
an also be performed for the se
ond set of non-generi
 values of � , namely � = (m�1)=(m+3)with m � 7, m odd (or equivalently � = (n� 1)=(n+ 1) with n � 4). Comparing these rational expressions for thedynami
al zeta fun
tion ((50), (B2), ...), and the rational expressions for the generating fun
tions of the Arnold
omplexity ((31), (32), (33), ...) for the generi
, and non-generi
, values of � , one sees that one a
tually has the samesingularities in these two sets of generating fun
tions (note that t has to be repla
ed by x2 sin
e k� is asso
iatedwith transformation K2 and not K). The identi�
ation between the Arnold 
omplexity and the (exponential ofthe) topologi
al entropy is thus valid, for � = 0 , for generi
 values of �, and even for non-generi
 ones. It isworth noti
ing that, due to the topologi
ally invariant 
hara
ter of the dynami
al zeta fun
tion, these results are of
ourse not spe
i�
 of the y and z representation of the mapping (24) but are also valid for the (u ; v) representation(22): in parti
ular the exa
t expressions of the dynami
al zeta fun
tions (namely (50), (B2) in Appendix B), remainun
hanged and, of 
ourse, the denominators of the 
omplexity generating fun
tions are also the same for generi
, ornon-generi
, values of �.The lo
al area preserving property in the neighborhood of all the �xed points of kn� previously noti
ed for � = 0, �generi
, is also veri�ed for these non generi
 values of �.C. Dynami
al zeta fun
tions for � 6= 0This � = h identi�
ation is not restri
ted to � = 0 . One 
an also 
onsider mapping (22) for arbitrary values of� and � and 
al
ulate the su

essive �xed points. Of 
ourse, as a 
onsequen
e of the higher 
omplexity of the � 6= 0situation (the 
omplexity jumps from 1:61803 � � � to 2:14789 � � � ), the number of su

essive �xed points is drasti
allyin
reased and the 
al
ulations 
annot be performed up to order eleven anymore. In the generi
 
ase, the expansionof the generating fun
tion H(t) of the number of �xed points 
an be obtained up to order seven :H�� (t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 47 t5 + 95 t6 + 212 t7 + � � � (64)One has two �xed points for k�;�, no new �xed points for k2�;�, three sets of three new �xed points for k3�;� (giving3 � 3 + 2 = 11 �xed points), four sets of four new �xed points for k4 (giving 4 � 4 + 2 = 18 �xed points), ninesets of �ve new �xed points for k5 (giving 9� 5 + 2 = 47 �xed points), fourteen sets of six new �xed points for k6�;�(giving 14� 5 + 3� 3 + 2 = 95 �xed points). This expansion 
orresponds to the following order seven expansionfor the dynami
al zeta fun
tion :��� (t) = 1 + 2 t + 3 t2 + 7 t3 + 15 t4 + 32 t5 + 69 t6 + 148 t7 + � � � (65)thus yielding to the following rational expression for the dynami
al zeta fun
tion :��� (t) = (1� t2) � (1 + t)1� t� 2 t2 � t3 = (1 � x2) � (1 + x2)2(1 � x � x3) � (1 + x + x3) with : t = x2 (66)This expression 
an also be written : ��� (t) = �1 � t2� � (1 + t)1 � t � (1 + t)2 (67)If one 
ounts the �xed point at in�nity one gets :�(1)(t) = (1 + t)21� t � 2 t2 � t3 (68)15



Let us 
onsider again the 
omplexity generating fun
tion 
orresponding to the degrees of the numerators of the two
omponents of kN�;� (see (22)). The generating fun
tion gv(t) for the degrees of the numerators of the v 
omponentof kN�� , has again exa
tly the same expression (up to 1) as (68) :1 + gv(t) = �(1)(t)= 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 129 t6 + 277 t7 + � � � (69)The generating fun
tion ghom(t) of the su

essive degrees of the homogeneous transformation (23) of the un, vnand tn, reads : ghom(t) = t � (3 + t� t2 � t3)(1� t) � (1� t� 2 t2 � t3) (70)Let us re
all the \alternative" zeta fun
tion (57). It veri�es the simple fun
tional relation :t2 � b��� (t) � b��� (�t) = � b��� (�1=t) � b��� (1=t) (71)The new rational 
onje
ture (66) 
orresponds to the following expression for H(t) :H�� (t) = t � (2 + 3 t2 + t3)(1� t2) � (1� t � 2 t2 � t3) (72)Comparing the denominators of (66) and (35), one sees that, like for � = 0, there is an identi�
ation between theArnold 
omplexity �, and h, the exponential of the topologi
al entropy :� = h (73)The eulerian produ
t Weyl-de
omposition (61) of the dynami
al zeta fun
tion (66) 
orresponds to the followingnumbers of r-
y
les : N1 = 2 ; N2 = 0 ; N3 = 3 ; N4 = 4 ; N5 = 9 ; N6 = 14 ; N7 = 30 ; N8 = 54 ; N9 =107 ; N10 = 204 ; N11 = 408 ; N12 = 25 ; N13 = 1593 ; N14 = 3162.D. Dynami
al zeta fun
tions for � 6= 0 with � non-generi
For a \non-generi
" value of � when � 6= 0, namely � = 1=2, the expansions of the generating fun
tion H(t) and ofthe dynami
al zeta fun
tion suggest the following possible rational expression for the dynami
al zeta fun
tion :��1=2(t) = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2 (74)This last result has to be 
ompared with (36). The generating fun
tion gv(t) is again in agreement with a relation1 + gv(t) = �(1)(t) . For another \non-generi
" value of � when � 6= 0, namely � = 1=3, the expansion of thedynami
al zeta fun
tion suggests the following possible rational expression :��1=3(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2) (75)This last result with has to be 
ompared with (37). These results14 are again in agreement with an Arnold-
omplexity-topologi
al-entropy identi�
ation (73).The lo
al area preserving property in the neighborhood of all the �xed points of kn�;� previously noti
ed for � = 0,is also veri�ed, for � 6= 0 for (22), for generi
 values of � generi
, as well as for these non generi
 values of �.
14However for the non-generi
 value of � , � = 3=5, we do not have enough 
oeÆ
ients in the expansion of the dynami
al zetafun
tion to a
tually 
ompare it with (38). 16



To sum up : Besides the integrable values, the other non-generi
 values 
an be partitioned in two sets :f1=m; m > 3g and f(m � 1)=(m + 1); m > 3g. In all 
ases the polynomials giving the 
omplexity growthand the topologi
al entropy are the same. These polynomials are listed in Tab. II.� = 1=3 � = 1=2 � = 1m m > 3 � = n�1n+1 n > 3� generi
 1� t� t2 � 2t3 � t4 � t5 1� t� t2 � 2t3 � t4 � 2t5 � t6 � t7 generi
 see (66) (*)� = 0 N -th root of unity N -th root of unity 1� t� t2 + tm+2 1� t� t2 � t2n+1TABLE II. The polynomials giving the 
omplexity growth � and h , the exponential of the topologi
al entropy, in various
ases. The symbol(*) means that � 6= 0 and � = (m � 1)=(m + 1) are not generi
, however � and h are extremely 
lose tothe generi
 value, preventing us to 
ompute them reliably with the semi-numeri
al method. � 6= 0 and � = 1=m is generi
 form > 3.
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A few 
omments :� Heuristi
ally, identi�
ation (73) 
an be understood as follows15. The 
omponents of kN , namely yN and zN ,are of the form PN (y; z)=QN(y; z) and RN (y; z)=SN(y; z) , where PN (y; z) , QN (y; z) , RN (y; z) and SN (y; z) arepolynomials of degree asymptoti
ally growing like �N . The Arnold 
omplexity amounts to taking the interse
tion ofthe N -th iterate of a line (for instan
e a simple line like y = y0 where y0 is a 
onstant) with another simple (�xed)line (for instan
e y = y0 itself or any other simple line or any �xed algebrai
 
urve). For instan
e, let us 
onsider theN -th iterate of the y = y0 line, whi
h 
an be parameterized as :yN = PN (y0; z)QN (y0; z) ; zN = SN (y0; z)TN (y0; z) ; (76)with line y = y0 itself. The number of interse
tions, whi
h are the solutions of PN (y0; z)=QN(y0; z) = y0, grows likethe degree of PN (y0; z) � QN (y0; z) � y0 : asymptoti
ally it grows like ' �N . On the other hand the 
al
ulation ofthe topologi
al entropy 
orresponds to the number of �xed points of kN , that is to the number of interse
tion of thetwo 
urves : PN (y; z) � QN (y; z) � y = 0 ; RN (y; z) � SN (y; z) � z = 0 (77)whi
h are two 
urves of degree growing asymptoti
ally like ' �N . The number of �xed points is obviously boundedby ' �2N but one 
an �gure out that it should (generi
ally) grow like ' �N .� From a general point of view, rational dynami
al zeta fun
tions (see for instan
e [35,40,41℄) o

ur in the literaturethrough theorems where the dynami
al systems are asked to be hyperboli
, or through 
ombinatorial proofs usingsymboli
 dynami
s arising from Markov partition [42℄ and even, far beyond these frameworks [43℄, for the so-
alled\isolated expansive sets"(see [43,44℄ for a de�nition of the isolated expansive sets). There also exists an expli
itexample of a rational zeta dynami
al fun
tion but only in the 
ase of an expli
it linear dynami
s on the torus R2=Z2 ,dedu
ed from an SL(2; Z) matrix, namely the 
at map [18,45℄ (di�eomorphisms of the torus) :A = " 2 11 1 # ; B = " 1 00 1 # ; � = det(1� z � B)det(1� z � A) = (1� z)21� 3 � z + z2 (78)Note that golden number singularities for 
omplexity growth generating fun
tions have already been en
ountered(see equation (7.28) in [14℄ or equation (5) in [46℄). In our examples we are not in the 
ontext where the knowngeneral theorems apply straightforwardly. The question of the demonstration of the rationality of zeta fun
tions we
onje
tured, remains open.In the framework of a \di�eomorphisms of the torus" interpretation, the degree of the denominator of a rationaldynami
al zeta fun
tion gives a lower bound of the dimension g of this \hidden" torus Cg=Zg where the dynami
sbe
omes \linearized". On expression (B2) of Appendix B, valid for � = 0 and � = 1=m, one notes that dimensiong grows linearly with m. The iteration of some birational transformations whi
h \densify" Abelian surfa
es (resp.varieties) has been seen to 
orrespond to polynomial growth of the 
al
ulations [16℄. Introdu
ing well-suited variables�i (i = 1; � � � g) to uniformize the Abelian varieties, the iteration of these birational transformations just 
orrespondsto a shift16 �i ! �i + n � �i. For su
h polynomial growth situations, matrix A 
an be thought as the Jordan matrixasso
iated with this translation, its 
hara
teristi
 polynomial yielding eigenvalues equal to 1.IV. FROM COMPLEX PROJECTIVE ANALYSIS TO REAL ANALYSISThe modi�
ation of the number of �xed points, from the \generi
" values of � to these parti
ular values (1=m,(n� 1)=(n+1)), 
orresponds to fusion of some 
y
les, or to the disappearan
e of other 
y
les whi
h be
ome singularpoints (indeterminations of the form 0=0). These me
hanisms will be detailed in [30℄. Let us just mention here thatthe \non-generi
" values of � , like � = 1=m, 
orrespond to a \disappearan
e of 
y
les" me
hanism whi
h modi�esthe denominator of the rational generating fun
tions and thus the topologi
al entropy and the Arnold 
omplexity. In15We use here the notations of mapping (24) but they 
an be repla
ed by the (u ; v) variables of mapping (22).16This \di�eomorphisms of the torus" interpretation is quite obvious on �gure 2 of [14℄.18




ontrast, there a
tually exist for k�, other singled-out values of � , like � = 3 for instan
e, whi
h 
orrespond to fusionof 
y
les: for instan
e in the � ! 3 limit, the order three 
y
le tends to the order one 
y
le. With the previous
y
le notations N3 = 1 be
omes N3 = 0, whi
h amounts to multiplying the dynami
al zeta fun
tion by 1 � t3. Thedynami
al zeta fun
tion and fun
tion H(t) read :�3(t) = (1� t2) � (1� t3)1� t� t2 ; H3(t) = t ddt(log �3(t)) = (79)= t+ t2 + t3 + 5 t4 + 11 t5 + 13 t6 + 29 t7 + 45 t8 + 73 t9 + 121 t10 + 199 t11 + � � �One notes that su
h \fusion-
y
le" me
hanism does not modify the denominator of the rational fun
tions, and thusthe topologi
al entropy, or the Arnold 
omplexity, remain un
hanged. However it should be underlined that � = 3is 
learly singled out as far as the real dynami
s is 
on
erned. The phase portrait, for � = 3, is extremely regular,like the one of an integrable mapping : it really \looks like" a foliation of the (y ; z) parameter spa
e in ellipti
 (orrational) 
urves. A
tually, re
alling the generating fun
tion Hreal(t) (see (62)), this fun
tion and the 
orrespondingzeta fun
tion, �real, read simple \integrable-like" forms :Hreal(t) = t1� t ; and : �real(t) = 11� t (80)Of 
ourse the orbits in the � = 3 phase portrait are not ellipti
 
urves but are a
tually trans
endental 
urves [30℄.The real dynami
s \looks like" an integrable one, whi
h is in agreement with the integrable-like form (80), but themapping, seen as a 
omplex (proje
tive) mapping, is a
tually a 
haoti
 one, with the generi
 � = 0 
omplexity� ' 1:618033989.Other singled out algebrai
 values of �, besides � = 3, 
orresponding to the fusion on an N -
y
le with the 1-
y
le,are for instan
e for N = 5 and N = 7 :�2 � 10 � �+ 5 = ��� 1� 
os(2�=5)1 + 
os(2�=5)���� 1� 
os(4�=5)1 + 
os(4�=5)� = 0�3 � 21 � �2 + 35 � �� 7 = ��� 1� 
os(2�=7)1 + 
os(2�=7)���� 1� 
os(4�=7)1 + 
os(4�=7)���� 1� 
os(6�=7)1 + 
os(6�=7)� = 0All the (algebrai
) � values of the form17 : � = 1� 
os(2� �M=N)1 + 
os(2� �M=N) (81)for any integer N (with 1 < M < N=2, M not a divisor of N), do o

ur in su
h 
y
le-fusion me
hanism. In fa
tthe number of real �xed points of kN� , and thus the phase portrait, depend on parameter �. It is true that thesenumbers are not universal anymore (independent of � up to a zero measure set of non-generi
 values of �), howevertheir dependen
e is not a \wild one". The number of real �xed points of kN� depends on � in a \stair
ase" way. Theyare 
onstant by interval, the frontiers of the interval 
orresponding to algebrai
 values like (81). Su
h a situation 
anbe 
alled \weak universality".The adaptation of the tools well-suited for topologi
al invarian
e of dynami
al systems seen in 
omplex proje
tivespa
e, for instan
e the introdu
tion of generating fun
tions of real �xed points or \real-dynami
al zeta fun
tions" (orsimply plots of the number of real �xed points for kN� , for N �xed, as a fun
tion of the parameters of the mapping)shows that the analysis of the real dynami
s of our mappings do show some ni
e algebrai
 stru
tures and some kindof \weak universality". We thus have a two step pro
edure for analyzing dynami
al systems. A �rst \universal" step
on
entrates on the topologi
al entropy (or Arnold 
omplexity) giving a �rst general 
lassi�
ation of the mappingsand of the various non-generi
 subvarieties of the parameters these mappings depend on. For instan
e, in our example(22), this �rst analysis shows that it is 
ompulsory to dis
riminate between the � 6= 0 and � = 0 situation, and,beyond, between the � 6= 0 and � = 1=2 ... on one side, and between the � = 0 and � = 1=m or � = (n� 1)=(n+1)situation on the other side. After this �rst general 
lassi�
ation, the \se
ond step" amounts to 
onsidering thealgebrai
 stru
tures 
orresponding to study the system from the point of view of real dynami
s. This se
ond step of17Other family of algebrai
 numbers o

ur. They will be des
ribed elsewhere.19



analysis based on \real-dynami
al zeta fun
tions" or real-Arnold 
omplexity18 generating fun
tions, yields, in example(22), to the emergen
e of a se
ond set of singled-out algebrai
 values of � whi
h do not modify the Arnold 
omplexityor topologi
al entropy (or equivalently the singularities of the dynami
al zeta fun
tions) but do modify the \realArnold 
omplexity" or the singularities of the \real dynami
al zeta fun
tion" denoted 1=�real :�real(t) ' XN �Nreal � tN (82)For instan
e, for � = 3 (for � = 0 ), the real 
omplexity �real , as seen on the phase portrait, is the \integrable-like"value �real = 1 (see equation (80)). It should be underlined that this �real = 1 situation does not 
orrespond toan integrability (foliation of the spa
e in ellipti
 or rational 
urves). The phase portrait \looks like" a foliation of thespa
e in 
urves. In fa
t there is no su
h thing as a \real" integrability, or \trans
endental" integrability, in oppositionwith a \
omplex" or \algebrai
" integrability. The 
haoti
 feature of the mapping reveals through the following fa
t :the 
urves one \sees" are a
tually 
urves asso
iated with divergent series [30℄. One has a foliation in terms of 
urvesasso
iated with divergent series whi
h is, at �rst sight, hard to visually distinguish from a foliation in (integrable)ellipti
 (or rational) algebrai
 
urves.V. COMPLEXITY SPECTRUM FOR 3� 3 PERMUTATIONSIn view of the previous rational results, and re
alling the whole set of rational results obtained for all kinds ofbirational transformations in [14℄, a systemati
 study of the 362880 (birational) transformations K asso
iated withall the permutations of entries of 3�3 matri
es is tantalizing. This set of transformations is quite large and one wouldlike to redu
e it using some symmetries (equivalen
e 
lasses). One should re
all that equivalen
e 
lasses, 
orrespondingto quite obvious rows and 
olumns relabeling symmetries, had already been introdu
ed [31℄ and studied. For twopermutations in the same \relabeling" 
lass, the 
omplexities of the asso
iated K's are obviously equal. This redu
esthe 362880 permutations into 30462 \relabeling" equivalen
e 
lasses in [31℄. Fortunately it is possible to go a stepfurther [28℄ : some \new symmetries" have been dis
overed19 whi
h enable to de�ne new equivalen
e symmetry-
lassesfor the 362880 permutations, redu
ing a systemati
 
omplexity analysis to a 
areful examination of 2880 representantsof 2880 symmetry-
lasses. A
tually one �rst de�nes a set of equivalen
e relationsR(n) su
h that any two permutationsin the same equivalen
e 
lass ofR(n) automati
ally have the same 
omplexity �. Heuristi
ally, equivalen
e relationR(n)amounts to saying that two equivalent permutations are su
h that the n-th power of their asso
iated transformationsbK are 
onjugated (via parti
ular permutations whi
h 
an be de
omposed into produ
t of row permutations, 
olumnpermutations and a possible transposition, see [28℄ for more details). An exhaustive inspe
tion has shown that theequivalen
e relations R(n)'s \saturate" after n = 24 : with obvious notations R(1) = R(24) . One �nds out that the\ultimate" R(1) = R(24) 
lasses 
an only have 72 or 144 elements. Among the \ultimate" R(1) = R(24) 
lassesone wants to separate the 
lasses that were already R(1) 
lasses, that we will denote from now on R(1)72 , or R(1)144 ,a

ording to their number of elements, and the other ones we will denote R(1)72 or R(1)144 . The 362880 permutationsare grouped into 2880 R(1) equivalen
e 
lasses. We have the prejudi
e that the R(1)72 , or R(1)144 , 
lasses have more\remarkable properties" than the R(1)72 orR(1)144 
lasses, be
ause R(1) 
orresponds to quite non-trivial relations. In thetable below the respe
tive numbers of R(1)72 , R(1)144 , R(1)72 or R(1)144 
lasses are displayed. Sin
e the 
omplexities donot depend on the 
hosen representent, we pi
ked a representent in ea
h R(1) 
lass and performed a semi-numeri
al
omplexity analysis taking 
are of these four groups.A. Semi-numeri
al approa
h : numeri
al growth 
al
ulationA semi-numeri
al approa
h to 
al
ulate the 
omplexity � has been detailed in se
tion (IIA) and in [29℄. Thesesemi-numeri
al 
al
ulations 
an be applied, mutatis mutandis, to homogeneous transformations K, or bK, bear-18Let us also re
all that the Arnold 
omplexity 
ounts the number of interse
tions between a �xed (
omplex proje
tive) lineand its nth iterate. One 
ounts here the number of real points whi
h are interse
tions between a real �xed line and its nth iterate.With this restri
tion to real points we have lost \most of the universality properties" of the (
omplex) Arnold 
omplexity.19These symmetries are sket
hed in [28℄. They will not be detailed here. They are related to some \transmutation property"of the matrix inversion bI with two permutations of entries. 20



ing on matri
es, iterating an initial matrix with integer (or rational) entries 
hosen in a well-suited way20. Thissemi-numeri
al method has been applied to 2880 representants representing the 2880 symmetry-
lasses. For 3 � 3matri
es the 
omplexities are ne
essarily su
h that : 2 � � � 1 . Remarkably, instead of getting a quite 
om-pli
ated distribution, or spe
trum, of values for the 
omplexities, we have obtained values whi
h are always very
lose (up to the a

ura
y of the method) to a set of seventeen (besides the � = 1 integrability 
omplexity) values :2 ; 1:97481 ; 1:97458 ; 1:94893 ; 1:94685 ; 1:93318 ; 1:89110 ; 1:88320 ; 1:866760 ; 1:860073 ; 1:857127 ; 1:839286 ;1:75487 ; 1:61803 ; 1:57014 ; 1:542579 ; 1:46557 and of 
ourse the integrable value � = 1.We got the following results. Among the 2146 
lasses of the R(1)144 set, we got 2145 
lasses 
orresponding to
omplexities very 
lose to � ' 2 and a only one 
lass with 
omplexity very 
lose to � ' 1:75487. Among the 660
lasses of the set R(1)72 , we got 640 
lasses 
orresponding to 
omplexities very 
lose to � ' 2, and many non trivial
omplexity values (two 
lasses yield values 
lose to 1:97481 ; one gives 1:94893 ; two give 1:94685 ; ...). Among theset of fourteen R(1)144 
lasses, all 
lasses were seen to 
orrespond to 
omplexities very 
lose to � ' 2.The most interesting set (for integrability diggers) is 
learly the set R(1)72 
lasses for whi
h, beyond thirty three
lasses 
orresponding to the maximal � = 2 
omplexity, and beyond a few non trivial 
omplexity values, one dis
overseighteen 
lasses with 
omplexity values numeri
ally very 
lose to one. A
tually it is known [31℄ that some symmetry-
lasses 
orrespond to situations where the determinantal variables21 xn's are periodi
 (denoted Period. in the tablebelow). This xn = xn+N situation 
orresponds to situations where the birational mapping bK, itself, is of �niteorder (trivial integrability), but also to polynomial growth situations, that is, � = 1 exa
tly. The polynomial growthsituations without any periodi
ity on the xn's are denoted \Pol.gr." in the table below. With our semi-numeri
alapproa
h it is diÆ
ult to dis
riminate between these two � = 1 situations [28℄ : an examination of the su

essive xn'sshows that one has nine polynomial growth 
lasses and nine xn = xn+N periodi
 
lasses.One remarks that most of the 
lasses 
orrespond to 
omplexity values numeri
ally very 
lose to the upper bound� = 2 . It has also been seen that this upper bound is a
tually rea
hed for some permutations [14℄.These semi-numeri
al results are revisited and 
on�rmed in the next se
tion (whi
h provides exa
t fa
torizations
heme 
al
ulations), all these results are summarized in the following table :� Asso
iated polynomial R(1)144 R(1)72 R(1)144 R(1)72 TotalTotal 2146 660 14 60 28802 1� 2 � x 2145 640 14 33 28321.97481871 1� 2x+ x2 � 2x3 + x4 � 2x5 + x6 0 2 0 0 21.974584654 1� x� 2x2 � x3 + x4 + 2x5 + x6 0 1 0 0 11.94893574 1� 2x+ x5 � x7 0 2 0 0 21.946856268 1� x� x2 � x3 � x4 � x5 + x6 0 1 0 0 11.93318498 1� 2x+ x4 � x5 0 1 0 0 11.891103020 1� 2x+ x2 � 2x3 + 2x4 � 2x5 0 0 0 1 11.88320350 1� 2x+ x2 � 2x3 + x4 0 2 0 6 81.866760399 1� 2x+ x3 � x4 0 1 0 0 11.860073051 1 � x � x2 � x4 � 2 � x5 0 1 0 0 11.857127516 1� 2x+ x2 � x3 � x5 � x7 + x8 � 2x9 + x10 0 1 0 0 11.83928675 1� x� x2 � x3 0 2 0 0 21.75487766 1� 2x+ x2 � x3 1 0 0 0 11.61803399 1� x� x2 0 3 0 0 31.57014731 1� x� x3 � x5 0 1 0 0 11.542579599 1� x� x3 � x7 � x8 0 1 0 0 11.46557123 1 + x� x3 0 0 0 2 21 ( Pol.gr.) 1� x ; 1� xN ; � � � 0 0 0 9 91 ( Period.) 0 1 0 9 10Comments : Most of the 362880 birational transformations 
onsidered here do 
orrespond to the most 
haoti

omplexity, namely the upper bound � = 2 : one has 2145 R(1)144 
lasses, 640 R(1)72 
lasses, fourteen R(1)144 
lasses and20For integer entries one 
hooses initial matri
es su
h that their determinants, and the determinants of the �rst redu
edmatri
es Mn's, are as large as possible, prime numbers.21The variables xn's are de�ned by xn = det( bKn(M0) � det( bKn+1(M0) see [7{9,16℄.21



thirty three R(1)72 
lasses, that is, 2145� 144 + 640� 72 + 14� 144 + 33� 72 = 359352 birational transformations.The ratio of 
ompletly 
haoti
 � = 2 birational transformations is r ' :99027 . If one is mostly interested by theintegrable mappings and, more generally, by the mappings with polynomial growth, one remarks that R(1)72 
ontainsall the integrable, or polynomial growth, mappings and, up to one 
lass inR(1)72 , all the mappings su
h that xn = xn+N ,in
luding the situations where mapping bK, itself, is of �nite order (whi
h 
an be seen as a \trivial" integrability).B. Revisiting the spe
trum though exa
t fa
torization s
hemeIn order to see if this set of seventeen (plus one) values for the 
omplexities really 
orresponds to a set of eighteenvalues or if the a
tual 
omplexity values are just \
lose" to eighteen values with some \spread", we have revisited allthese results and studied the fa
torization s
heme for ea
h of these representents for the various 
lasses, 
on
entratingon the 
omplexities di�erent from the � = 2 upper limit. For that purpose we have written a driver whi
h buildsautomati
ally the fa
torization s
heme (see (11), (12) and the parity-dependant fa
torization s
hemes of AppendixA) for various original matri
es22 till the fa
torization s
heme is stable and 
an be trusted.We just display here the two generating fun
tions �(x) , �(x) for only two 
omplexities (see [28℄ for more details).The other generating fun
tions 
an be dedu
ed from these two, using linear fun
tional relations between the generatingfun
tions [14℄. All these fa
torization s
heme 
al
ulations 
on�rm the results summarized in the previous table.Among many symmetry-
lasses one veri�es that one a
tually obtains :� � ' 1:570147312 (
orresponding with notations of [31℄ to permutation 164285073). The expansions of �(x) and�(x) read :�(x)3x = 1� x6 � x12(1� x2) � (1� x� x3 � x5) ; �(x) = (1 + x+ x2) � (1� x+ x2) � (1 + x)1� x6 � x12 (83)� � ' 1:839286755 (
orresponding, with notations of [31℄, to permutation 417063582) :�(x)3x = 1 � x2 � x3(1� x)2 � (1 + x) � (1 � x � x2 � x3) ; �(x) = (x+ 1) � (1 � x + x4)1 � x2 � x3 (84)It should be noti
ed that fa
torization s
hemes 
an be di�erent from one representent to another one in the samesymmetry-
lass, however, the 
omplexity � is independent of the 
hosen representent.Complexity � ' 1:839286755 
an also be obtained with permutation23 164273085 for whi
h �(x) and �(x) read :�(x)3x = 1 + x + x21� x� x2 � x3 ; �(x) = 1 + x3 + x4 + x51� x6 (85)New singularities : Most of time the stability of the fa
torization s
heme and thus, in a se
ond step, the o

urren
eof rational generating fun
tions, 
orresponds to a simple periodi
ity of the exponents �n, �n or �n in the fa
torizations
heme (11), (12). This periodi
ity is simply asso
iated to the fa
t that the \exponent" generating fun
tions haveN -th root of unity poles : 1 � x2, 1 � x8 , 1 � x6 ; � � �. However one sees, on example (84), that one may have astability of the fa
torization s
heme an exponential growth of these exponents �n and �n. These exponent generatingfun
tions, of 
ourse, have a growth of their 
oeÆ
ients smaller than �n. This growth goes like �N where � is theinverse of the poles of �(x), �(x) or �(x), that is (for (84)), � ' 1:324717958 � � ' 1:839286755. Re
alling (85)for whi
h � = 1 and � ' 1:839286755 and (84), one sees that one 
omplexity value � 
an be asso
iated to severalvalues of �. Conversely permutation 174528603 (with notations of [31℄) gives � ' 1:974584654 (asso
iated with1 � x � 2x2 � x3 + x4 + 2x5 + x6 = 0) 
orresponding to :�(x) = x7(1� x2 � x3) � (1� x+ x2) ; � = 1� x+ x7 + x8(1� x2 � x3) � (1� x+ x2) ; � = 1� x+ x7 + 2 � x8(1� x2 � x3) � (1� x+ x2) (86)Re
alling (84), one sees that one \s
heme-
omplexity" � 
an a
tually 
orrespond to several 
omplexity growths �.22The integer entries in the original matri
es are 
hoosen in su
h a way that the �rst polynomials fn's obtained at ea
hiteration step are, as large as possible, prime numbers.23With notations of [31℄. 22



VI. COMPLEXITY ALCHEMYLet us 
onsider eighteen permutations representing the seventeen plus one 
omplexities of the previous table, andthe asso
iated birational transformations Ki = ti � I where i = 1 ; � � � 18. If one 
ombines one of these birationaltransformations, namely Ki , with another one, Kj , the 
omplexity 
orresponding to the \mole
ule" K = Ki �Kjobviously 
oin
ides with the one of Kj �Ki . However it should be noti
ed that the 
omplexities of these \mole
ules"K do depend on the represent 
hosen for ea
h of the eighteen 
lasses. We have systemati
ally performed all the
ombinations of these eighteen representants with themselves. Among the 182 mole
ules we have obtained manytimes the maximal 
omplexity � = 4 , however and remarkably, we got 156 mole
ules su
h that � < 4 , and even 30mole
ules su
h that � < 3 . The spe
trum of (algebrai
) 
omplexity values for these 182 mole
ules is extremely ri
h.When one 
hanges the eighteen 
omplexity representents, the \spe
trum" of 
omplexities be
omes even ri
her ...A. A \mole
ular" fa
torization s
hemeLet us 
onsider (with notations [31℄) permutation 146237058 and its asso
iated � ' 1:9748 transformation K1,and permutation 471562380 and its � ' 1:5426 transformation K2. From these two \atoms" let us build the\mole
ule" K = K2 �K1 (or mole
ule K = K1 �K2 , they obviously have the same 
omplexity). This example isan interesting one sin
e the 
omplexity (obtained from the previous semi-numeri
al 
al
ulations) of K = K2 �K1 issmaller than the produ
t of the two 
omplexities of K1 and K2 : �(K) ' 2:897 < 1:9748 � 1:5426 ' 3:0463 . Thefa
torization s
heme of K is of the same type as the ones des
ribed in [28,29℄, namely a parity-dependent fa
torizations
heme (whi
h is a straight 
onsequen
e of the fa
t that one a
ts with K1 and then with K2 and again ...) :f1 = det(M0) ; M1 = K1(M0) ; f2 = det(M1) ; M2 = K2(M1) ; f3 = det(M2)f2 ; M3 = K1(M2) ;f4 = det(M3) ; M4 = K2(M3) ; f5 = det(M4)f32 � f4 ; M5 = K1(M4)f2 ; f6 = det(M5)f22 � f4 ; � � � (87)and for arbitrary n � 3 :det(Mn) = fn+1 � fn � f3n�2 � fn�6 � fn�8 � fn�10 � fn�12 � fn�14 � � �K1(Mn) = Mn+1 � fn�2 (88)for n even, and : det(Mn) = fn+1 � fn�1 � f2n�3 � fn�5 � f2n�7 � f2n�9 � f2n�11 � f2n�13 � � �K2(Mn) = Mn+1 � fn�3 � fn�7 � fn�9 � fn�11 � fn�13 � � � (89)for n odd. This yields for the odd and even parts of �(x) and �(x) (label \2" for even and \1" for odd) :�2(x) = 6 � x21 � 3x2 + x4 � x6 � 2x8 ; �1(x) = 3 � x � (1 � x2) � (1 � x4)1 � 3x2 + x4 � x6 � 2x8 ;�2(x) = 3 � (1 + 4x4 � 4x6 + x8)(1� x2) � (1 � 3x2 + x4 � x6 � 2x8) ; �1(x) = 6 � x � (1 + x4 � x6 + x8)(1� x2) � (1 � 3x2 + x4 � x6 � 2x8) (90)These generating fun
tions yield a \mole
ular 
omplexity" : � ' 2:858194057 . These generating fun
tions verify aparity-dependent system of fun
tional relations whi
h generalizes the one des
ribed in [13℄ :x � �1(x) � �2(x) = F2p(x) � �2(x) ; x � �2(x) � �1(x) = F1m(x) � �2(x) ; (91)�2(x) � 3 � 2 � x � �1(x) + 3 �G2p � �2(x) = 0; �1(x) � 2 � x � �2(x) + 3 �G1m � �2(x) = 0where :F2p(x) = x2 + 2x4 + x6 + 2 � x81� x2 ; F1m = 2x3 � x5 + x1� x2 ; G1m(x) = x3 ; G2p = x4 + x81� x223



VII. THE \SKY IS THE LIMIT"It has been seen that, 
ombining two di�erent (bi)rational transformations asso
iated with permutations of theentries, one already gets an extremely ri
h set of algebrai
 
omplexities. Obviously a straight generalization amountsto 
onsidering produ
ts of three, four .... transformations of the previous table. Not surprisingly all the previousresults generalize, mutatis mutandis, yielding again new sets of algebrai
 
omplexities. Let us now show that algebrai

omplexities o

ur in a mu
h larger framework, 
orresponding to three quite drasti
 generalizations. A �rst general-ization will show that there is nothing spe
i�
 with permutation of the entries. The same algebrai
 results \pop out"for birational transformations whi
h are the 
ombination of a linear transformation of the entries of a q�q matrix andof the matrix inversion. A se
ond generalization will show that there is nothing spe
i�
 with linear transformations ofthe entries, and that one still gets algebrai
 
omplexities repla
ing linear transformations, by homogeneous polynomialtransformations of the entries. A last generalization will show that a random produ
t of birational (or even rational)transformations may yield algebrai
 
omplexities.A. From permutations to linear transformationsLet us show that algebrai
 
omplexities o

ur for (generi
ally) birational transformations, 
ombination of a lineartransformation of the entries of a q� q matrix and of the matrix inversion. The previous permutations of entries 
ana
tually be \merged" into families of linear transformations depending on r 
ontinuous parameters. Remarkably wewill see that these birational transformations, K = L �I , where L is no longer a permutation of the entries but a lineartransformation on the entries, a
tually exhibit fa
torization s
hemes exa
tly similar to the ones previously des
ribedin the 
ase of permutations of entries : how does the fa
torization s
heme (whi
h is a rigid stru
ture) depends on theprevious r 
ontinuous parameters ? Not surprisingly one 
an see that these fa
torization s
hemes are, generi
ally,a
tually 
onstant and independent of the 
ontinuous parameters24. Consequently, 
omplexity � has a universalityproperty : it is a
tually independent, not only of the initial25 point M0 , but also of these 
ontinuous parameters.Let us give here a set of generating fun
tions 
orresponding to fa
torization s
hemes asso
iated to bi-polynomialtransformations K = L � I .Linear transformations yielding the same 
omplexity as permutations of entries : Let us introdu
ethe quite general linear transformation depending on twenty one parameters :L : 264 m1;1 m1;2 m1;3m2;1 m2;2 m2;3m3;1 m3;2 m3;3 375 �! (92)264 m1;1 a11m1;1 + a12m1;2 + a13m1;3 + a21m2;1 + a22m2;2 + a23m2;3 + a31m3;1 + a32m3;2 + a33m3;3 m1;3m2;1 
21m2;1 + 
22m2;2 + 
23m2;3 m2;3m3;1 b11m1;1 + b12m1;2 + b13m1;3 + b21m2;1 + b22m2;2 + b23m2;3 + b31m3;1 + b32m3;2 + b33m3;3 m3;3 375and let us 
onsider the iterations of the homogeneous transformation K = L � I . They read a stable fa
torizations
heme identi
al to one fa
torization s
heme already obtained for one representent of the previous table, 
orrespondingto the 
omplexity � ' 1:618033 . The fa
torization s
heme, up to f4 and M4, is the same as the generi
 fa
torizations
heme (18) (for q = 3) but gets modi�ed with f5, be
oming for arbitrary n, instead of (19) and (20) :det(Mn) = fn+1 � fn � (fn�1 � f2n�2) � (fn�3 � f2n�4) � (fn�5 � f2n�6) � (f2n�7 � f2n�8) � � � ;K(Mn) = Mn+1 � fn�2 � fn�4 � fn�6 � fn�8 � fn�10 � � � (93)This yields the following generating fun
tions :24Ex
ept on some submanifold (probably subvariety) of this r-dimensional parameter spa
e, where the fa
torization s
hemea
tually be
omes di�erent, asso
iated with a smaller 
omplexity : on these subvarieties one 
an only expe
t more fa
torizationsthan in the generi
 r-dimensional parameter spa
e.25Generi
ally of 
ourse : on some 
odimension-one, or 
odimension-two, algebrai
 varieties of the spa
e of entries of M0 thefa
torization s
heme may be modi�ed yielding another (smaller of 
ourse) value of �.24



�(x) = 3 � (1 + x+ x3)(1� x2) � (1� x� x2) ; �(x)3x = 11� x� x2 ; �(x) = 11� x ; �(x) = x21� x2 ; �(x) = 1 + x+ x31� x2For a 
odimension-one subvariety V of these twenty one parameters, the linear transformation is not invertibleanymore [28℄. It is worth noti
ing that, even restri
ted to V where transformation K is not birational anymore, butjust rational, the 
omplexity � remains un
hanged, that is equal to 1:618 � � � Let us note that we have also found [28℄linear transformations L, yielding non trivial algebrai
 
omplexities, whi
h are not deformations of any permutationof entries. B. From linear transformations to homogeneous polynomial transformationsThere is nothing spe
i�
 with linear transformations. Let us 
onsider the following homogeneous polynomialtransformation Qr of degree r :Qr : 264 m1;1 m1;2 m1;3m2;1 m2;2 m2;3m3;1 m3;2 m3;3 375 �! 2664 mr1;1 mr1;2 mr1;3mr2;1 mr2;2 mr2;3mr3;1 mr3;2 mr3;3 3775 (94)and the asso
iated homogeneous transformation Kr = Qr � I . The iteration of transformation Kr yields a stablefa
torization s
heme whi
h gives, for arbitrary r � 2 the following generating fun
tions :�(x) = 3 � (1 + 2x)1 + 2 � (1� r) � x� r � x2 ; �(x)3x = 11 + 2 � (1� r) � x � r � x2 ; �(x) = r ; �(x) = 1 + 2 � xC. From periodi
 produ
ts of (bi)rational transformations to random produ
tsIt has previously been shown (see se
tion (II)), that the two-dimensional mapping :k� : (y ; z) �! �z + 1 � � ; y � z � �z + 1 � (95)yields (generi
ally) a 
omplexity � ' 1:61803 asso
iated with polynomial 1 � t � t2. The same 
omplexity 
an beobtained with the (generi
) eight-parameters two-dimensional mapping :k : (y ; z) �! �a1 � z + a2 ; (a3 � y + a4) � a5 � z + a6a7 � z + a8 � (96)or even the nine parameters mapping :k : (y ; z) �! �a1 � z + a2 ; a3 � y � z + a4 � y + a5 � z + a6a7 � y + a8 � z + a9 � (97)This last example 
an even be generalized to :k : (y ; z) �! �a1 � z + a2 ; a3 � yn � zn + P (y; z)Q(y; z) � (98)where P (y; z) and Q(y; z) are some polynomial expressions. The generating fun
tion of the su

essive degree of thenumerator of the z 
omponent of the N -th iterate of these various families of transformations (96), (97), (98) seemsto identify (as far as we have been able to 
he
k it) with a dynami
al zeta fun
tion �(t) and reads :1 + gz(t) = 1 + t1� t� t2 = �(t) (99)This generating fun
tion remains un
hanged if one 
onsiders the sequen
e produ
t of two (generi
) transformations(95) : k�1 � k�2 � k�1 � k�2 � k�1 � � �, or even the sequen
e asso
iated with the iteration of a \mole
ule" KM produ
t of25



M di�erent (generi
) transformations k�. Of 
ourse if one prefers to 
onsider dire
tly GM , the degree generatingfun
tion of KM , one gets for M = 2 ; 3 ; � � � :1 + G2(T ) = 11 � 3 � T + T 2 ; 1 + G3(T ) = 1 + T1 � 4 � T � T 2 ; 1 + G4(T ) = 1 + T1 � 7 � T + T 2 ; (100)1 + G5(T ) = 1 + 2 � T1 � 11 � T � T 2 ; 1 + G6(T ) = 1 + 3 � T1 � 18 � T + T 2 ; 1 + G7(T ) = 1 + 5 � T1 � 29 � T � T 2 ; � � �and for arbitrary M :1 + GM (T ) = 1 + G(M) � T1 � F (M) � T + (�1)M � T 2 ; where : F (M) = F (M � 1) + F (M � 2) and :G(M) = G(M � 1) +G(M � 2) with : F (2) = 0 ; F (3) = 4 ; G(2) = 0 ; G(3) = 1 (101)When 
omparing (99) and (100) or (101) the variable T must be seen as T = tM . Sin
e these results are valid forany produ
t of M transformations k�, they are, in parti
ular, valid in the limit where the k�'s are all equal, whi
hamounts to repla
ing k� into K = kM� . The generating fun
tion amounts to \extra
ting", in the series expansion of(99), the 
oeÆ
ients of every M -th power of t . For instan
e the denominators of (100) are just the resultant (in t)of 1 � t � t2 and tM � T . One has for any integer M :1 + GM (tM ) = 1 + 1M �M�1Xn=0 g(!N � t) ; where : !M = 1 (102)More generally, generating fun
tion 1 + gz(t) in (99) remains un
hanged if one 
onsiders a random produ
t oftransformations in the family (96) or even (97). Furthermore relations (54) and (55) are still valid. It seems that oneeven has a relation 1 + gz(t) = �rand(t) for some dynami
al zeta fun
tion suitably de�ned for random produ
ts.All these mappings 
an also be seen as re
ursions. For instan
e (96) be
omes :zn+2 = �a3 � (a1 � zn + a2) + a4� � a5 � zn+1 + a6a7 � zn+1 + a8 (103)A \sto
hasti
 evolution" 
orresponding to random re
ursions (103) is thus seen to a
tually yield an algebrai
 
omplexitynamely � ' 1:618033::. VIII. COMMENTS AND SPECULATIONSIn pra
ti
e it is numeri
ally easier to get the Arnold 
omplexity generating fun
tions than getting the dynami
alzeta fun
tions. If one assumes the rationality of the dynami
al zeta fun
tion and the identi�
ation between Arnold
omplexity and (exponential of the) topologi
al entropy, getting the Arnold 
omplexity generating fun
tions may beseen as a simpler way to \guess" the denominator of the dynami
al zeta fun
tions.Among the various 
omplexity growth generating fun
tions some seem to be more \
anoni
al" and to identifyexa
tly with the � fun
tion (see (55)).The denominators of all the rational zeta fun
tions en
ountered here are of the form : 1 � t � Y (t) where Y (t) isprodu
t of 
y
lotomi
 polynomials [47,48℄. This is parti
ularly obvious on expressions (33) and also on expressions(32), or (C1), or even (B2). We do not have any l-adi
 
ohomology interpretation (see for instan
e [39℄ page 453) ofthis 
y
lotomi
 polynomial \en
oding" of the zeta fun
tions or of the 
omplexity fun
tions G(q; x) . Most of theserational expressions for zeta fun
tions satisfy very simple fun
tional relations and one also expe
ts, for (C1) or (C2)for instan
e, more involved but, still simple, fun
tional relations, may be similar to the ones obtained by Voros in [49℄.Many of the generating fun
tions G(q; x) 
an also be seen to satisfy simple fun
tional relations relating G(q; x) andG(q; 1=x). This will be detailed elsewhere26.The analysis developed here 
an be applied to a very large set of birational transformations of an arbitrary number ofvariables, yielding again rational generating fun
tions [14,28℄. Moreover, these generating fun
tions are always simplerational expressions with integer 
oeÆ
ients (thus yielding algebrai
 numbers for the Arnold 
omplexity). Most have26For instan
e the generating fun
tion of the degrees g(x) given by equation (5) in [46℄ veri�es g(x) + g(1=x) = 1.26



the previously mentioned \
y
lotomi
 en
oding" [14℄. At this point the question 
an be raised27 to see if the iterationof any birational transformation of an arbitrary number of variables always yields rational generating fun
tions forthe Arnold 
omplexity.It has also been shown that same results hold, mutatis mutandis, for rational transformations whi
h are not birationalanymore (also see (7.7) and (7.28) in [14℄) or whi
h are 
ombination of homogeneous polynomial transformations ofthe entries of a q� q matrix, together with the matrix inversion, yielding again new algebrai
 spe
trum independentof a large number of 
ontinuous deformation parameters : any proof of the rationalities of these generating fun
tionsshould not depend to heavily on a simple reversibility of the mapping [50℄, or on the fa
t that the transformationsshould be rational transformations with integer 
oeÆ
ients.One thus gets rational generating fun
tions for quite arbitrary produ
ts of rational transformations whi
h arenot invertible anymore, and may depend on many 
ontinuous parameters. The set of birational transformations isa \huge" one, and the set of rational transformations is even \larger". One 
an imagine (if one believes in \some"universality of dynami
al systems) that \most" of the dynami
al systems 
ould be very 
losely \approximated" by su
htransformations having algebrai
 
omplexity values. It will be important to try to de�ne, for a given dis
rete dynami
alsystem, what is the \best" approximation of this system in terms of birational, or even rational, transformations.IX. CONCLUSIONTransformations generated by the 
omposition of permutations of the entries and matrix inverse, naturally emergein the analysis of latti
e statisti
al me
hani
s symmetries [16℄, and provide a set of eÆ
ient new tools to study latti
estatisti
al models (and beyond dis
rete dynami
al systems).The Yang-Baxter equations have been seen as a \laboratory" to elaborate these 
on
epts. In return, these toolsprovide a systemati
 way to �nd integrable symmetries of the parameter spa
e of the latti
e model, whi
h is a�rst (and 
ompulsory) step to �nd Yang-Baxter integrable models. Beyond the narrow framework of Yang-Baxterintegrable models, the \birational approa
h" gives a way to \
lassify" non-integrable latti
e statisti
al models andbeyond, dis
rete dynami
al systems, providing a 
lassi�
ation of these systems a

ording to their more or less 
haoti
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ial support.APPENDIX A: FACTORIZATION SCHEME FOR � = 0, � GENERICFor matrix M0 = 264 4785 1305 �22212175 9570 1305�18270 3480 �16054 375 (A1)whi
h 
orresponds to � = 0 and � = :52 , the generi
 (� 6= 0 ) fa
torization s
heme (18) be
omes28 :f1 = det(M0) ; M1 = K(M0) ; f2 = det(M1)f1 ; M2 = K(M1) ; f3 = det(M2)f21 � f2 ; M3 = K(M2)f1 ;f4 = det(M3)f1 � f2 � f3 ; M4 = K(M3) ; f5 = det(M4)f21 � f22 � f23 � f4 ; M5 = K(M4)f1 � f2 � f3 ;27After [14℄.28These results 
an straightforwardly be generalized to q � q matri
es, they are just a bit more involved.27



f6 = det(M5)f1 � f22 � f3 � f4 � f5 ; M6 = K(M5)f2 ; f7 = det(M6)f21 � f2 � f23 � f24 � f25 � f6 ; M7 = K(M6)f1 � f3 � f4 � f5f8 = det(M7)f1 � f2 � f3 � f24 � f5 � f6 � f7 ; M8 = K(M7)f4 ; f9 = det(M8)f21 � f22 � f23 � f4 � f25 � f26 � f27 � f8 ; � � �and for arbitrary n :det(Mn) = fn+1 � (fn � f2n�1 � f2n�2 � f2n�3) � (fn�4 � f2n�5 � f2n�6 � f2n�7) � � � (A2)K(Mn) = Mn+1 � (fn�1 � fn�2 � fn�3) � (fn�5 � fn�6 � fn�7) � � �for n even and : det(Mn) = fn+1 � (fn � fn�1 � fn�2 � f2n�3) � (fn�4 � fn�5 � fn�6 � f2n�7) � � � (A3)K(Mn) = Mn+1 � fn�3 � fn�7 � fn�11 � fn�15 � fn�19 � � �for n odd.The exa
t expressions of the generating fun
tions �(x) and �(x) read29 :�(x) = 31 + x + 3 � �(x)1� x2 ; where : �(x) = 3 � x � �1 + x+ x3�1 � x2 � x4 = � 3 + 3 � (1 + x)=(1� x2 � x4) (A4)These generating fun
tions give a 
omplexity � ' 1:272019649 . It is important to note that fa
torization s
heme(A2), (A3) is a
tually stable, but of a slightly more general form, 
ompared to (18), or the ones des
ribed in [14℄ :re
alling the generating fun
tions �(x) and �(x) of the exponents that o

ur in the fa
torization s
heme (see se
tion(IA) or equations (8.6) and (8.10) in [14℄), one must now introdu
e two sets of su
h exponents generating fun
tions,�1, �1, �2, �2, in order to keep tra
k of the parity of n, and even split these four fun
tions into their odd and evenparts : �i2 = (�i(x) + �i(�x))=2 ; �i1 = (�i(x)� �i(�x))=2 ; �i2 = � � � i = 1 ; 2We must also de
ompose �(x) and �(x) in odd and even parts: �1(x) = (�(x) � �(�x))=2 ; �2(x) = (�(x) +�(�x))=2 ; �1(x) = (�(x) � �(�x))=2 ; �2(x) = (�(x) + �(�x))=2 , namely :�2(x) = 3 � x2 � �x2 + 1�1� x2 � x4 ; �1(x) = 3 � x1� x2 � x4 ;�2(x) = 3 � (1 + 2x2 + 2x4)(1� x2) (1� x2 � x4) ; �1(x) = 3 � x � �2 + x2 + x4�(1� x2) (1� x2 � x4) (A5)Instead of fun
tional relations (8.6) and (8.10) in [14℄, one now has the following relations :�1(x) � 2 � x � �2(x) + 3 � x � (�12(x) � �2(x) + �11(x) � �1(x)) = 0 ;�2(x) � 2 � x � �1(x) � 3 + 3 � x � (�22(x) � �1(x) + �21(x) � �2(x)) = 0 ;x � �1(x) � �2(x) � (�21(x) � �1(x) + �22(x) � �2(x)) = 0 ;x � �2(x) � �1(x) � (�11(x) � �2(x) + �12(x) � �1(x)) = 0 (A6)where the odd and even part of the exponents generating fun
tions �1(x), �1(x), �2(x), �2(x), read :�12(x) = x21� x4 ; �11(x) = x1� x2 ; �22(x) = 0 ; �21(x) = x31� x4 ;�11(x) = x � �2x2 + 1�1� x4 ; �12(x) = 2 x21� x2 ; �21(x) = x1� x2 ; �22(x) = x2 � �2x2 + 1�1� x4 ;29Result (A4) 
orresponds to a very simple expression for �(x) (see for instan
e equation (8.12) in [14℄).28



Period four in the fa
torization s
heme (A2), (A3) 
orresponds to the o

urren
e of a 1 � x4 = 0 singularity forthese exponents generating fun
tions.The \stability" of fa
torization s
heme (18) 
orresponds to the following (n ! n + 1)-property : the exponentsof the fn's o

urring at the m-th step of iteration are also the one's at (m + 1)-th step of iteration the fn's being
hanged into fn+1 : at ea
h new iteration step one only needs to �nd the exponent of f1 (if any). The \stability" offa
torization s
heme (A2), (A3) is a straight generalization mod.2. of the previous property : the exponents of thefn's o

urring at the m-th step of iteration are also the one's at (m+ 2)-th step of iteration the fn's being 
hangedinto fn+2. Let us now note that the initial matrix :M0 = 264 1 3 x5 2 3�4 8 �x� 3 375 (A7)whi
h 
orresponds to � = 0 and � = �22=25 for any x , do not yield the same fa
torization s
heme as (A2), (A3),but still the same singularity asso
iated with polynomial 1 � x2 � x4. One a
tually gets the following generatingfun
tions: �(x) = 3 � (1 + 2x+ 2x2 + 4x3 + 2x4 + x5)(1� x2 � x4) (1� x2) ; �(x) = 3 � x � (1 + x) � (1 + x2)1 � x2 � x4 (A8)Note that the \even" generating fun
tions �2(x) and �2(x) are the same as in (A5). The \odd" generating fun
tions�1(x) and �1(x) read :�1(x) = 3 � x � (2 + 4x2 + x4)(1� x2 � x4) � (1 � x2) ; �1(x) = 3 � x � (1 + x2)1� x2 � x4 (A9)It is 
orresponds to the fa
torization s
heme :det(Mn) = fn+1 � (fn � fn�1 � fn�2 � f2n�3) � (fn�4 � fn�5 � fn�6 � f2n�7) � � � (A10)K(Mn) = Mn+1 � fn�3 � fn�7 � fn�11 � fn�15 � fn�19 � � �for n even and : det(Mn) = fn+1 � (fn � f2n�1 � f2n�2 � f2n�3) � (fn�4 � f2n�5 � f2n�6 � f2n�7) � � � (A11)K(Mn) = Mn+1 � (fn�1 � fn�2 � fn�3) � (fn�5 � fn�6 � fn�7) � � �for n odd. This fa
torization s
heme is the same as (A2), (A3) where odd and even parity are permuted. Thegenerating fun
tions verify the fun
tional equations :�1(x) � 2 � x � �2(x) + 3 � x41� x4 � �1(x) = 0 ;�2(x) � 2 � x � �1(x) + 3 � � x31� x4 � �1(x) + x21� x2 � �2(x)� � 3 = 0 ;x � �1(x)� �2(x) � �x �2x2 + 1�1� x4 � �1(x) + 2 x21� x2 � �2(x)� = 0 ;x � �2(x)� �1(x) � �x2 �2x2 + 1�1� x4 � �1(x) + x1� x2 � �2(x)� = 0 (A12)This fa
torization s
heme is a slight modi�
ation of the previous one (the �ij 's and �ij are just permuted : �2j $�1j and �2j $ �1j ). In fa
t 
ondition � = 0 fa
torizes into several 
odimension-one varieties [29℄. Thesesubvarieties yield the same 
omplexity but not the same fa
torization s
hemes.1. Fa
torization s
heme for � 6= 0, � non generi
Let us 
ome ba
k to � 6= 0 with the non-generi
 value � = 1=2. We 
onsider here � = 396=6095 ' :06497128.Up to the thirteenth iteration one has the previously des
ribed (n ! n + 1)-property, but this property is broken29



with f15 in favor of the (n ! n + 2)-property previously en
ountered. The previously introdu
ed odd-even-paritydependent exponents generating fun
tions �ij(x) and �ij(x) now read :�12(x) = x2 + x6 + x10 + x12 ; �11(x) = x3 + x7 + x11 + x151� x4 ;�22(x) = x2 + x6 + x10 + x141� x4 ; �21(x) = x3 + x7 + x11 ;�11(x) = x+ 2x3 + 2x7 + x9 + 2x11 + x5 + 2x13 ; �12(x) = (1 + 2x2) � x141� x4 + x2 + 2x4 + x6 + 2x8 + x10 + 2x12 ;�21(x) = x+ 2x3 + 2x7 + x9 + 2x11 + x5 + (1 + 2x2) � x131 � x4 ; �22(x) = x2 + 2x4 + x6 + 2x8 + x10 + 2x12from whi
h one dedu
es, from relations (A6), the rational expressions of the �i's and �i's :�2(x) = 3 � x2 � (1 + x2)(1� x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) ;�1(x) = 3 � x � (1 + x2) � (1 + x4) � (1 + x8)1 � x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14 ;�2(x) = 3 � 1 + 2x2 + 5x4 + 4x6 + 5x8 + 4x10 + 5x12 + 5x14 + 3x16(1� x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) ;�1(x) = 3 � x � (2 + 4x2 + 4x4 + 5x6 + 4x8 + 5x10 + 4x12 + 4x14)(1 � x2) � (1� x2 � x4 � 2x6 � x8 � 2x10 � x12 � x14) (A13)yielding the rational expressions (36) for �(x).These results have also been 
he
ked, using the previously depi
ted semi-numeri
al 
omplexity growth evaluationmethod, for � = 1=2 and � = 396=6095 ' :06497 � � � . The following value for the 
omplexity has been obtained :� ' 1:46199 , in good agreement with the exa
t algebrai
 value dedu
ed from (A13), namely : � ' 1:46188 � � � (tobe 
ompared with the generi
 algebrai
 value of � , � ' 1:4655 � � � asso
iated with 1� x� x3 = 0 ).The singularities of (A13) are in agreement with the dynami
al zeta fun
tion 
al
ulated for these values of � and �:�(t) = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2These 
al
ulations 
an also be performed, for � 6= 0, for the other non-generi
 value of � : � = 1=3. As far asthe fa
torization s
heme is 
on
erned one gets exa
tly the same s
enario as the one for � = 1=2, the breaking of the(n ! n+1)-property and the o

urren
e of a (n ! n+2)-property taking pla
e with f11 instead of f15 previously.For � = 1=3 and, for instan
e, for � = 237=6095 ' :038884 � � �, one gets expressions (37) for �(x) :�(x) = 3 � x � (1 + x2) � (1 + x � x2 + x4 � x6 + x8 � x10)(1� x2) � (1� x2 � x4 � 2x6 � x8 � x10) (A14)Again these results have been 
ompared with the 
omplexity growth dedu
ed from the semi-numeri
al method, for� = 1=3 and � = 237=6095 ' :038884 � � �. We have obtained the following value for the 
omplexity : � ' 1:44865in good agreement with the exa
t algebrai
 value dedu
ed from (A14), namely : � ' 1:44717 � � �.The singularities of (A14) are in agreement with the dynami
al zeta fun
tion 
al
ulated for these values of � and �:�(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2)APPENDIX B: DYNAMICAL ZETA FUNCTIONS FOR � = 0 WITH � NON-GENERICTo further investigate the identi�
ation of these two notions (Arnold 
omplexity-topologi
al entropy), we nowperform similar 
al
ulations (of �xed points and asso
iated zeta dynami
al fun
tions) for � = 1=m with m � 4 and� = (m � 1)=(m+ 3) with m � 7 odd. The 
al
ulations have been performed for � = 1=m for m = 4 ; 5 ; 7 and9, giving the expansion of H�(t) up to order eleven : 30



H1=4(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 10 t6 + 22 t7 + 29 t8 + 49 t9 + 71 t10 + 111 t11 + � � �H1=5(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 22 t7 + 37 t8 + 58 t9 + 91 t10 + 144 t11 + � � �H1=7(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 67 t9 + 111 t10 + 177 t11 + � � �H1=9(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 188 t11 + � � � (B1)All these expressions are 
ompatible with this single expression of the � fun
tion :�1=m(t) = 1 � t21 � t � t2 + tm+2 (B2)We 
onje
ture that this expression is exa
t, at every order, and for every value of m � 4. Again this expression is inagreement with the polynomial expression giving the Arnold 
omplexity (see (34)). If one 
ounts the point at in�nitythe zeta fun
tion (51) be
omes : �(1)1=m(t) = 1 + t1 � t � t2 + tm+2 (B3)Let us 
onsider again the 
omplexity generating fun
tion 
orresponding to the degrees of the numerators of the two
omponents of kN� . The generating fun
tion gz(t) for the degrees of the numerators of the z 
omponent of kN� , for� = 1=m , has again exa
tly the same expression (up to 1) as (B3) :1 + gz(t) = �(1)1=m(t)Note that relations (54) are still valid.The generating fun
tion ghom(t) of the su

essive degrees of the homogeneous transformation (25) of the yn, znand tn, reads : ghom(t) = 1� tm+3(1� t) � (1� t� t2 + tm+2)As far as fun
tional relations relating �(t) and �(�1=t) are 
on
erned, re
alling (57), one immediately veri�es thatb�(t) , 
orresponding to (B2), veri�es the simple fun
tional relation :tm+1 � b�1=m(t) = b�1=m(1=t) ; or : �1=m(1=t) = tm+1 � �1=m(t)tm+1 � �1=m(t) � �1=m(t) + 1A
tually b�1=m(t) has a very simple n-th root of unity form :b�1=m(t) = 1� t2t � (1� tm+1)Also note that when m is odd, and only in that 
ase, b�1=m(t) also satis�es the fun
tional relation :tm+1 � b�1=m(t) = � b�1=m(�1=t)No simple fun
tional relation, similar to (60), 
an be dedu
ed on H1=m(t).Similar 
al
ulations 
an also be performed for the se
ond set of non-generi
 values of � , namely � = (m�1)=(m+3)with m � 7, m odd. For m = 7, that is � = 3=5, one gets, up to order eleven, the same expansion as the one for� = 1=7 : H3=5(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 67 t9 + 111 t10 + 177 t11 + � � �yielding again, if this equality of expansions is still true at higher orders, the dynami
al zeta fun
tion :�3=5(t) = 1 � t21 � t � t2 + t9 or : �(1)3=5 (t) = 1 + t1 � t � t2 + t9Again the generating fun
tion of the numerator of the z 
omponent of kN� , gz(t), has exa
tly the same expression,up to 1, as �(1)3=5 (t) : 31



1 + gz(t) = �(1)3=5 (t) = gy(t)t == 1 + 2 t+ 3 t2 + 5 t3 + 8 t4 + 13 t5 + 21 t6 + 34 t7 + 55 t8 + 88 t9 + 141 t10 + 226 t11 + � � �For m = 9, that is � = 2=3, one gets :H2=3(t) = t+ t2 + 4 t3 + 5 t4 + 11 t5 + 16 t6 + 29 t7 + 45 t8 + 76 t9 + 121 t10 + 177 t11 + � � �A 
ompatible zeta fun
tion 
ould be30 :�2=3(t) = 1 � t2 � t11 � t12 � t131 � t � t2 + t11 (B4)Rational expression (B4) is not the same as (B2), however it has the same pole. Note that relations (54) are still validfor � = 2=3 and � = 3=5. At the order where the iterations have been performed, a relation like 1 + gz(t) = �(1)2=3 (t)is not ruled out. One gets, however, a very simple expression for gy(t)=t :gy(t)t = 1 + t1 � t � t2 + t11whi
h rules out a simple �2=3(t)1 = gy(t)=t relation (see (55)).APPENDIX C: DYNAMICAL ZETA FUNCTIONS FOR � 6= 0 WITH � NON-GENERICFor a \non-generi
" value of � when � 6= 0, namely � = 1=2, the expansion of the generating fun
tion H(t) and ofthe dynami
al zeta fun
tion read respe
tively :H�1=2(t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 47 t5 + 95 t6 + 198 t7 + � � ���1=2(t) = 1 + 2 t+ 3 t2 + 7 t3 + 15 t4 + 32 t5 + 69 t6 + 146 t7 + � � �A possible rational expression for the dynami
al zeta fun
tion is for instan
e :��1=2 = 1 + t� t71� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7 = 1 + t � �1 � t6�1 � t � (1 � t + t2) � (1 + t + t2)2 (C1)This last result has to be 
ompared with (36).The generating fun
tion gv(t) 
orresponding to the degrees of the numerators of the v 
omponent of kN�;1=2 reads :1 + gv(t) = 1 + t� t7(1� t) � (1� t� t2 � 2 t3 � t4 � 2 t5 � t6 � t7)= 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 129 t6 + 275 t7 + � � �This expression is again in agreement with a relation 1 + gv(t) = �(1)(t) .For another \non-generi
" value of � when � 6= 0, namely � = 1=3 the expansion of the generating fun
tion H(t)and of the dynami
al zeta fun
tion read respe
tively :H�1=3(t) = 2 t+ 2 t2 + 11 t3 + 18 t4 + 42 t5 + 83 t6 + 177 t7 + � � ���1=3(t)(t) = 1 + 2 t+ 3 t2 + 7 t3 + 15 t4 + 31 t5 + 65 t6 + 136 t7 + � � �A possible rational expression for the dynami
al zeta fun
tion is for instan
e :��1=3(t) = 1 + t1� t� t2 � 2 t3 � t4 � t5 = 1 + t1 � t � (1 + t2) � (1 + t + t2) (C2)30The series are not large enough to 
on�rm this form. A set of simple and qui
k 
al
ulations seem to give for the next
oeÆ
ients � � �+ 296 t12 + 469 t13 + 785 t14 + � � � in agreement with (B4).32



A possible generating fun
tion gv(t) 
orresponding to the degrees of the numerators of the v 
omponent of kN�;1=3reads : 1 + gv(t) = 1 + t+ t5 � t6(1� t) � (1� t� t2 � 2 � t3 � t4 � t5) == 1 + 3 t+ 6 t2 + 13 t3 + 28 t4 + 60 t5 + 125 t6 + 262 t7 + � � �
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