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The Ising model: Definitions

Let σi ,j = ±1 be the spin at lattice site (i , j) of the square lattice.
The two-point correlation function is defined as

C(M, N) = 〈σ0,0σM,N〉,

and the magnetic susceptibility is given by

kT · χ =
∑

M

∑

N

(

C(M, N) −M2).

The magnetisation M is zero at high temperatures (T > Tc)
and M = (1 − s−4)1/8 for T < Tc, where s = sinh(2J/kT ) .
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The susceptibility χ

Wu, McCoy, Tracy and Barouch [Phys. Rev. B 13, 316 (1976)]
showed that the susceptibility can be expressed as an infinite
sum of n-particle contributions.
The high-temperature susceptibility is given by

kT · χH(w) =
∑

χ(2n+1)(w) =
1
s
(1 − s4)

1
4

∑

χ̃(2n+1)(w)

and the low-temperature susceptibility is given by

kT · χL(w) =
∑

χ(2n)(w) = (1 − 1/s4)
1
4

∑

χ̃(2n)(w)

in terms of the self-dual temperature variable w = 1
2s/(1 + s2).
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The n-particle contributions χ̃
(n)

The n-particle contributions are given by (n − 1)-dimensional
integrals

χ̃(n)(w) =
1
n!

·
(

n−1
∏

j=1

∫ 2π

0

dφj

2π

)(

n
∏

j=1

yj

)

· R(n) ·
(

G(n)
)2

where the so-called Fermionic term G(n) is

G(n) =
∏

1 ≤ i < j ≤ n

hij , hij =
2 sin ((φi − φj)/2) · √xi xj

1 − xixj
,

and

R(n) =
1 +

∏n
i=1 xi

1 − ∏n
i=1 xi

,
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The n-particle contributions χ̃
(n)

The variables xi and yi are given by the expressions

xi =
2w

1 − 2w cos(φi) +

√

(1 − 2w cos(φi))
2 − 4w2

,

yi =
2w

√

(1 − 2w cos(φi))
2 − 4w2

,
n

∑

j=1

φj = 0
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Some properties of χ

Both the Ising free-energy and magnetisation are holonomic
functions (i.e. differentiably finite or D-finite functions).

Guttmann and Enting [Phys. Rev. Lett. 76, 344 (1996)] argued
that the anisotropic Ising susceptibility is not D-finite.

Nickel [J. Phys. A 32 3889 (1999), 33 1693 (2000)] suggested
that the isotropic susceptibility possessed a natural boundary
on the unit circle |s| = 1.

He identified a set of singularities in χ̃(n) which become dense
on the unit circle.

Note that functions with a natural boundary cannot be D-finite.
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Series expansion for χ

Orrick et al [J. Stat. Phys. 102, 795 (2001)] used an algorithm
of complexity O(N6) to obtain the first 323 terms.

Quadratic partial difference equations are used to find C(m, n)
efficiently for high- and low-temperature series.

A series of N terms requires C(m, n) for m + n ≤ 2N, m < n.
The diagonal C(n, n) is the initial value data.

By using modular aritmetic (calculate series modulo several
primes) and FFT to perform multiplications of polynomials we
reduce the complexity to O(N4 log(N)).

We calculated the first 2000 terms using just 240 CPU hours.
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Series expansion for χ̃
(5) and χ̃

(6)

In evaluating χ̃(n) we convert to an n-fold φi integration with the
explicit phase constraint 2πδ(

∑

φi) now in the integrand.

By a Fourier transform we decouple all φi integrations at the
expense of a sum over the Fourier integer k .

The end result is that we can replace the integration by a
nested sum of products of hypergeometric functions.

Using a number of computational ‘tricks’ we finally arrive at an
algorithm of complexity O(N4 log(N)) per prime.

We calculated exact series for χ̃(5) to order 2000 and for χ̃(6) to
order 1630 in x = w2.

This took some 100000 CPU hours on a variety of machines.

Finally, for χ̃(5) we calculated the first 10000 terms modulo a
single prime. This took some 17000 CPU hours.
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Fuchsian ODEs for χ̃
(n)

Zenine, Boukraa, Hassani and Maillard [J. Phys. A 37, 9651
(2004)] made an important step towards the understanding of
the three-particle contribution χ̃(3).

They obtained the Fuchsian linear ODE for χ̃(3).

In [J. Phys. A 38, 4149 (2005)] they found the ODE for χ̃(4).

An important observation coming out of the χ̃(3) and χ̃(4) work
was that the χ̃(n) were much more complicated functions than
had been imagined.

This gives considerable urgency to finding new results for
higher order χ̃(n).
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The form of our Fuchsian ODE

We consider only Fuchsian ODEs. So x = 0 and x = ∞ are
regular singular points and we use operators of the form

LMD =
M

∑

m=0

D
∑

d=0

amd · xd · (x d
dx

)m, aM0 6= 0, aMD 6= 0. (1)

aM0 6= 0 makes x = 0 a regular singular point.

Use of the operator x d
dx makes analysis around x = ∞ simple.

aMD 6= 0 makes x = ∞ (y = 0) a regular singular point.

The coefficients in the ODE are given by LMD(S(x)) = 0.
This yields a set of linear equations.
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Finding the Fuchsian ODEs modulo a prime

There exists a non-trivial solution if the NMD × NMD determinant
(with NMD = (M + 1) · (D + 1)) vanishes.

By Gaussian elimination we create an upper triangular matrix
U. If U(N, N) = 0 for some N a non-trivial solution exists.

We set aM0 = 1 and determine the rest by back substitution.

The N for which U(N, N) = 0 is the minimum number of
coefficients needed to find the ODE for a given M and D.

Henceforth, D will always refer to the minimum D for which a
solution is found for a given M.

We define a unique non-negative deviation ∆ by N = NMD − ∆.
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A linear relationship for Fuchsian ODEs

A striking empirical observation arises from our work on χ̃(5).
For reasons we don’t understand there is a linear relationship

N = A · M + B · D + C = (M + 1) · (D + 1) − ∆. (2)

A, B and C are constants depending on the particular series.
For χ̃(5) they are A = 72, B = 33, C = −900.

This relationship also holds for many other problems.

Eq. (2) has no (positive) solution for D if M < B.
Thus B = M0 is the minimum order possible for the linear
differential operator that annihilates the original series.

Similarly, A = D0 is the minimum possible degree.
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The Fuchsian ODE for χ̃
(5)

M is the order of the ODE, D the degree of the polynomials,
NMD = (M + 1)(D + 1), N is the number of terms predicted by
(2), and ∆ is the difference NMD − N.

Terms needed to find χ̃(5)

M D NMD N ∆

52 141 7526 7497 29
53 137 7452 7437 15
54 134 7425 7410 15
55 132 7448 7416 32
56 129 7410 7389 21
57 127 7424 7395 29
58 125 7434 7401 33
59 123 7440 7407 33
60 121 7442 7413 29
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.

Find the ODE requiring the least number of terms.
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.

Find the ODE requiring the least number of terms.

Generate series for more primes pi and find the ODEs.
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.

Find the ODE requiring the least number of terms.

Generate series for more primes pi and find the ODEs.

Turn ODE into recurrence and generate longer series.
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.

Find the ODE requiring the least number of terms.

Generate series for more primes pi and find the ODEs.

Turn ODE into recurrence and generate longer series.

Find the minimal order ODE mod these primes.
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Exact ODEs from the modular ODEs

Procedure for finding the exact minimum order ODE.

Generate a long series modulo a single prime.

Find the ODE requiring the least number of terms.

Generate series for more primes pi and find the ODEs.

Turn ODE into recurrence and generate longer series.

Find the minimal order ODE mod these primes.

Combine to find the exact minimal order ODE:
Use Chinese Remainder Theorem to get coefficients aij .
This gives us Q = aij mod P, where P =

∏

pi .
Find the exact rational coefficients say by using the Maple
call aij = iratrecon(Q, P).
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Some properties of ODE for χ̃
(5)

In earlier work [ZBHM, J. Phys A, 38, 1875 and 4149 (2005)]
we observed a “Russian-doll” structure for the linear differential
equations for χ̃(3) and χ̃(4).

We conjecture for arbitrary χ̃(n) that differential operator for χ̃(n)

right-divides the differential operator for χ̃(n+2).

We have verified this conjecture on χ̃(5).

A stronger property amounts to saying that in the differential
operator for χ̃(n+2) the differential operator for χ̃(n) occurs as
part of a direct sum.

Such a reduction was found for 6χ̃(n+2) − nχ̃(n), n = 1 or 2,
and we now verify this conjecture for the case n = 3.
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The Fuchsian ODE for 2χ̃
(5) − χ̃

(3)

M is the order of the ODE, D the degree of the polynomials,
NMD = (M + 1)(D + 1), N is the number of terms predicted by
(2), and ∆ is the difference NMD − N.

Terms needed to find 2χ̃(5) − χ̃(3)

M D NMD N ∆

48 131 6468 6450 18
49 128 6450 6428 22
50 125 6426 6406 20
51 123 6448 6414 34
52 120 6413 6392 21
53 118 6426 6400 26
54 116 6435 6408 27
55 114 6440 6416 24
56 112 6441 6424 17
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Further reductions of the ODE for 2χ̃
(5) − χ̃

(3)

Simple solutions of the 2χ̃(5) − χ̃(3) ODE/operator can be used
to further reduce the number of term required.

There are 2 order 1 operators whose solutions also occured in
the analysis of the differential operator for χ̃(3)

S1 = w/(1 − 4 w) and S2 = w2/((1 − 4 w)
√

1 − 16 w2).

We have also found an order 1 operator whose solution

S3 = w2/(1 − 4 w)2

is a solution of the differential operator for 2χ̃(5) − χ̃(3), but not a
solution of the differential operator for χ̃(3).
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Further reductions of the ODE for χ̃
(5)

Let L2 be the differential operator annihilating both S1 and S2,
and L3 the differential operator annilating S3 as well.
When these act on the series 2χ̃(5) − χ̃(3) the reductions are

Series N = D0M + M0D + C M D NMD N
χ̃(5) 72M + 33D − 900 56 129 7410 7389

2χ̃(5) − χ̃(3) 68M + 30D − 744 52 120 6413 6392
L2 65M + 28D − 526 50 117 6018 6000
L3 64M + 27D − 409 49 117 5900 5886

So 5900 terms are enough to get the ODE for χ̃(5).

We believe we have found more complicated operators as well.
Using these we think 5100 terms should suffice.
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Singularities of the ODE for χ̃
(5)

In [J. Phys A 40, 11713 (2007)] BHMZ performed a detailed
analysis of the integrals Φ

(n)
H obtained by removing (G(n))2

Φ
(n)
H (w) =

1
n!

·
(

n−1
∏

j=1

∫ 2π

0

dφj

2π

)(

n
∏

j=1

yj

)

· 1 +
∏n

i=1 xi

1 −
∏n

i=1 xi
.

They obtained the following polynomial factors for the head
polynomial expressed in terms of Chebyshev polynomials of
the first and second kind:

T2p1
(1/2w + 1) = Tn−2p1−2p2

(1/2w − 1) ,

0 ≤ p1 ≤ [n/2], 0 ≤ p2 ≤ [n/2] − p1,
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Singularities of the ODE for χ̃
(5)

and the polynomial arising from the elimination of z in:

Tn1(z) − Tn2

( 4w − z
1 − 4w z

)

= 0,

Tn1

(

1
2w

− z
)

− Tn2

( 1
2w

− 4w − z
1 − 4w z

)

= 0,

Un2−1(z) · Un1−1

( 1
2w

− 4w − z
1 − 4w z

)

−Un2−1

(

1
2w

− z
)

· Un1−1

( 4w − z
1 − 4w z

)

= 0,

n1 = p1, n2 = n − p1 − 2p2,

0 ≤ p1 ≤ n, 0 ≤ p2 ≤ [(n − p1)/2].
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Singularities of the ODE for χ̃
(5)

From the linear ODE for χ̃(5) obtained modulo a prime, one can
easily reconstruct the singularity polynomials of the ODE as
they appear at the highest derivative. These polynomials read

w33 · (1 − 4w)22(1 + 4w)16(1 − w)4(1 + 2w)4(1 + 3w + 4w2)4

(1 + w)(1 − 3w + w2)(1 + 2w − 4w2)(1 − w − 3w2 + 4w3)

(1 + 8w + 20w2 + 15w3 + 4w4)(1 − 7w + 5w2 − 4w3)

(1 + 4w + 8w2)(1 − 2w).

All these singularities, except (1 − 2w), are predicted by the
model integrals.
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Exponents of the ODE for χ̃
(5)

Singularity Exponents
w33 15, 24, 34, 43, 53, 63, 72, 82, 92,

10, 122, 15, 25
(1 − 4w)22 −2,−7/4,−3/2,−5/4,−13,−1/2, 04,

1/2, 12, 22, 3, 4, 5, 6, 7
(1 + 4w)16 −1,−1/2, 04, 1/2, 12, 3/2, 22, 32, 4, 5

1/w19 03, 14, 22, 33, 42, 52, 6, 7, 8
(1 + 2w)4 2, 5/2, 32

(1 − w)4 2, 32, 4
(1 + 3w + 4w2)4 0, 12, 2

(1 + w) 11
(1 + 2w − 4w2) 11
(1 − 3w + w2) 11

(1 + 8w + 20w2 + 15w3 + 4w4) 7
(1 − 7w + 5w2 − 4w3) 5
(1 − w − 3w2 + 4w3) 7

(1 + 4w + 8w2) 5
(1 − 2w) 7/2
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Diff-Padé analysis: Introduction

A diff-Padé or differential approximant analysis consists of
finding an ODE of order M with polynomials of degree D
reproducing the first N = (M + 1)(D + 1) terms of the series.

If not the exact ODE it will fail for subsequent coefficients.

By varying M and D many approximate ODEs can be analysed.

We analyse the 2000 term exact series for χ̃(5).

The 1600 (non-zero) tems of χ̃(5).

Various combinations such as χ̃ − χ̃(1) − χ̃(3) − χ̃(5) which will
tell us something about χ̃(n), n ≥ 7.
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Diff-Padé analysis: General procedure

Analyzing very long exact series is computionally expensive.

We start by looking at ODEs using only a few hundred terms.

We locate the dominant singularities and explicitly add these to
the head polynomial(s).

To find the multiplicity of a root we repeat our analysis until the
singularity no longer occurs.

We then repeat the analysis using more and more terms,
keeping some of the already found singularities in the head
polynomial.
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Results for χ̃
(5)

Since we have obtained the exact linear ODE for χ̃(5) this case
provides a valuable test of our diff-Padé analysis.

The main conclusion is that a diff-Padé analysis can provide
accurate information about the exact ODE.

The comparison with the exact ODE results shows that the
diff-Padé analysis on only 2000 terms is able to correctly give
all the singularities together with the correct multiplicity.

The indicial exponents are accurate enough to “guess” their
exact values in agreement with the exact ODE results.

These results give us confidence that our analysis of χ̃(6) and
of higher order susceptibility components is correct.
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The number of significant digits found from our diff-Padé
analysis of series of length 400, 1250 and 1980 terms.

Singularity polynomial 400 1250 1980
(1 + w) 36

(1 + 2w − 4w2) 36
(1 − 3w + w2) 36

(1 + 8w + 20w2 + 15w3 + 4w4) 12 15 67
(1 − 7w + 5w2 − 4w3) 12 15 67
(1 − w − 3w2 + 4w3) 4 15 51

(1 + 4w + 8w2) - 8 17
(1 + 2w) 3 5 7
(1 − w) 3 3 5

(1 + 3w + 4w2) - - 4
(1 − 2w) - 12 27
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Results for χ̃
(6)

In a diff-Padé analysis, increasing the order of the linear ODE
and the degree of the polynomials, the singularities predicted by
the Φ

(6)
H model integral are obtained with increasing accuracy.

Our calculations show the existence of a new singularity at
x = 1/8. So the factor 1 − 8w2 = 0 must appear in the head
polynomial of the true ODE. Note that these new singularities
lie on the unit circle |s| = 1.

The singularities and corresponding exponents for χ̃(6) are
summarised in the next slides.
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The number of significant digits found from a diff-Padé analysis.

Singularity 387 terms, 387 terms, 997 terms,
Polynomial order 12 order 16 order 31

1 − x 28 29
1 − 4x 30 30
1 − 9x 30 30

1 − 25x 13 14
1 − x + 16x2 8 10

1 − 10x + 29x2 10 12
1 − 8x 3 4 26
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Exponents for χ̃
(6)

Exponents for χ̃(6) found by the diff-Padé analysis.

Singularity Exponents
Polynomial (diff-Padé)

x 0,−12,−1/2
1 − 16x −3/2,−1, 05, 1

1/x −12, 02,−1/22, 1/26

1 − x 33/2
1 − 4x 11/2, 13/22, 15/2, 33/2
1 − 9x 33/2
1 − 25x 17/2

1 − x + 16x2 17/2
1 − 10x + 29x2 23/2

1 − 8x 7
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Main results for χ̃
(n), n ≥ 7

We know the first 2000 (1630) coefficients for χ̃(5) (χ̃(6)), and
the series for χ̃(n), n ≤ 4, up to an arbitrary number of
coefficients.

We examine if the total χ̃ with the lower χ̃(n) terms removed,
can yield any information about the singularities of the linear
ODE of χ̃(n), n ≥ 7.

From the “limited" analysis done here for χ̃(n), n ≥ 7, our main
conclusion is that there are no new singularities that are not in
the “known" sets from the model integrals.
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The high-temperature series χ̃ − χ̃
(1) − χ̃

(3) − χ̃
(5)

500 terms 900 terms 1956 terms
n Singularity polynomial Digits Order Digits Order Digits Order

7 1 − 5w + 6w2 − w3 18 12 33 19 50 18
7 1 + 2w − w2 − w3 16 11 28 15 58 18
7 1 + 2w − 8w2 − 8w3 18 11 34 15 58 18
9 1 − w - - 15 14
9 1 + 2w - 6 13 30 16
9 1 + 3w − w2 5 11 16 15 45 15
9 1 − 6w + 9w2 − w3 7 12 20 13 45 18
9 1 − 3w2 − w3 - 8 15 30 18
9 1 − 12w2 + 8w3 - 14 14 40 20

11 1 − 9w + 28w2 − 35w3 + 15w4 − w5 - 7 13 30 18
11 1 + 2w − 5w2 − 2w3 + 4w4 − w5 - - 23 17
11 1 + 2w − 16w2 − 24w3 + 48w4 + 32w5 - - 20 20
13 1 − 11w + · · · + w6 - - 16 16
13 1 + 2w − 20w2 + · · · − 64w6 - - 7 18
15 1 + 2w − 4w2 - - 5 14
15 1 − 9w + · · · + w4 - - 5 14
7 1 + 12w + 54w2 + · · · + 4w6 - 6 13 12 17
7 1 − 3w − 10w2 + · · · − 16w8 - - 4 12
9 1 + 16w + 104w2 + · · · + 4w8 - - 7 17
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The low-temperature series χ̃ − χ̃
(2) − χ̃

(4) − χ̃
(6)

n Singularity polynomial Order 14 Order 20
8, 12, 16 1 − 4x 69 72

8, 16 1 − 2x 51 52
8, 16 1 − 8x 74 75
8, 16 1 − 12x + 4x2 73 79

10, 12 1 − x 21 24
10 1 − 5x 43 46
10 1 − 7x + x2 42 44
10 1 − 12x + 16x2 49 53
10 1 − 15x + 25x2 55 59
12 1 − 9x 12 16
12 1 − 3x 10 12
12 1 − 12x 9 13
12 1 − 14x + x2 35 40
12 1 − 8x + 4x2 6 6

14 1 − 21x + 98x2 − 49x3 21 24
16 1 − 24x + 148x2 − 176x3 + 4x4 10 12
8 1 − 20x + 16x2 − 16x3 8 7
8 1 − 26x + 242x2 − 960x3 + 1685x4 − 1138x5 6 6

10 1 − 24x + 128x2 − 289x3 - 4
10 1 − 46x + 866x2 + · · · − 56642x9 - 6
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Notes on the full susceptibility χ

In our paper we also extend the Landau singularity analysis of
Boukraa, Hassani, Maillard and Zenine [J. Phys A 40, 2583 and
11713 (2007)] and Nickel [J. Phys. A 38, 4517 (2005)] of χ̃(n).

We show that in the absence of the “Fermionic factor”, the
singularities found by Boukraa et al are exhaustive.

We also show that none of these singularities, beyond those
found by Nickel [J. Phys. A 32, 3889 (1999)], can lie on the
principal s-plane unit circle.

This dispels any hope of singularity cancellation. As a result the
unit circle must be a natural boundary.
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Some final remarks

The exact χ̃(5) ODE confirms that the singularities are the ones
of Φ

(5)
H together with the new factor 1 − 2w .

The diff-Padé calculations confirmed that the singularities of the
as yet unknown ODE for χ̃(6) are (at least) the ones of Φ

(6)
H

together with the roots of a new polynomial 1 − 8w2.

For χ̃(n) with n ≥ 7 we found no evidence of singularities other
than those predicted by Φ

(n)
H .

We do not know whether or not these extra singularities of the
χ̃(n) ODEs are singularities of the actual integrals.

The most common case is that in which all the singularities of
the ODE and the integral are the same.
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Some final remarks

This is the case for χ̃(3) if one takes into account analytical
continuations. For example both the Landau analysis and the
ODE for χ̃(3) predict a singularity at s = (−1 + i

√
7)/4 for which

|s| < 1. So χ̃(3) on the principal disc is not singular at this point,
but there exists an analytic continuation of χ̃(3) that is.

Our analysis of certain “toy” integrals provides an example of a
difference between the singularities of the ODE and those of
the integral. The ODE for the toy analog of χ̃(5) has
singularities at w = 1/2 and w2 = 1/8 but our Landau analysis
of the toy integral fails to find singularities at these points.

This may be a genuine distinction, or it may be that we missed
something in the Landau analysis, or that the Landau analysis
can’t be guaranteed to give all singularities.
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