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We combine an exact functional relation, the inversion relation, with conven- 
tional high-temperature expansions to explore the analytic properties of the 
anisotropic Ising model on both the square and simple cubic lattice. In par- 
ticular, we investigate the nature of the singularities that occur in partially 
resummed expansions of the partition function and of the susceptibility. 
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1. I N T R O D U C T I O N  

One  of  the p romis ing  recent  deve lopmen t s  in the con t inu ing  quest  for exact  
results in s ta t is t ical  mechanics  is the so-cal led " invers ion rela t ion."  This  is a 
funct ional  equa t ion  satisfied by  the eigenvalues of  the t ransfer  mat r ix ,  
which leads to a co r r e spond ing  funct ional  equa t ion  for the pa r t i t i on  
funct ion and for the cor re la t ion  functions.  The  reader  is referred to 

reviews (~'2) for an i n t roduc t ion  to these ideas. Similar  ideas  occur  in 
S -mat r ix  theory,  for (1 + 1) -d imens iona l  S -mat r ix  models .  (3) 

The  invers ion re la t ion  has  been used to ob t a in  exact  so lu t ions  for 
s ta t is t ical  mechanics  models  by a n u m b e r  of  authors .  (4-7) An invers ion 
rela t ion,  and  a co r r e spond ing  funct ional  re la t ion  for the pa r t i t i on  function,  
also exists for a n u m b e r  of  mode l s  that ,  at  least  a t  present ,  are  no t  exact ly  
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solvable. These include the two-dimensional Ising model in a field, (1) the 
two-dimensional noncritical Potts model, (8) and the anisotropic cubic Ising 
model in zero field. 19) 

In this paper we will explore some of the consequences of the inversion 
relation for the anisotropic Ising models on both the square lattice and the 
simple cubic lattice. We will show that the inversion relation, combined 
with conventional high-temperature series, provides some insight into the 
analytic structure of the partition function and susceptibility of these 
models. 

2. THE PARTIT ION FUNCTION 

We consider first the anisotropic Ising model on the square lattice 
with coupling constants Kl, K2. It can be shown (e.g., Baxter (1)) that the 
partition function per site Z(K1, K2) satisfies the inverse functional relation 

Z(KI, K2) Z(Kl + i~/2, - K2) = 2i sinh 2K1 (1) 

If we introduce the standard high-temperature variables t i=  tanh Ki and 
define a quantity A(tl, t2) by 

A(tl, t2) = (2 cosh K~ cosh K2) -~ Z(K~, K2) (2) 

then it follows from (1) that 

In A(t~, t2) + In A(1/tl, -- t~) = ln(1 -- t~) (3) 

The exact Onsager solution of course satisfies this relation. 
The quantity In A can also be written as a double power series 

In A(t~, t2)= ~ am,,tTt~ (4) 
m j l  

The coefficients am, n are obtainable by standard high-temperature expan- 
sion techniques (e.g., Dombll~ in which am, n is related to the number of 
embeddings of closed graphs with m, n bonds in the two lattice directions. 
As a consequence, only terms with m, n even occur in the expansion. 

By considering the class of graphs with fixed n and m variable, we can 
effect a partial resummation of (4) to obtain 

In A(tl, t2)= ~ R~(t~) t~" (5) 
n = l  

where R,(t 2) is a rational function in the variable t 2 and can be written as 

R,(t 2) = P,(t~)/Q,(t~) (6) 

with P ,  and Q, being polynomials of the same degree. 
In Fig. 1 we illustrate the nature of this partial resummation. The 
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exact Onsager solution shows that the only zeros of Qn are t 2 = 1, and with 
this information a quick inspection of the resummed diagrams shows that 

Q.(t~) = (1 - t12) 2" - '  (7) 

Conversely, as noted by Baxter, ~1) if we assume (7), then the inversion 
relation (3) and the obvious symmetry relation A(tl ,  t2)=A(t2,  t~) com- 
pletely determine the polynomial P .  order by order. Thus, the celebrated 
Onsager solution is determined completely by these two functional 
equations and the assumption that only tl 2 = 1 singularities occur. Indeed, 
this is a very efficient way to obtain the high-temperature expansion for the 
partition function of the anisotropic square lattice Ising model. 

Let us now consider the anisotropic simple cubic Ising model, with 
coupling constants K1, K2, K3. The partition per site now satisfies the 
inversion relation 

Z(KI ,  K2, K 3) Z(K1 + i~/2, - K2 ,  - K 3) = 2i sinh 2K~ (8) 

Defining A(t~, t2, t3)  by 

A (t 1, t2, t 3 ) = (2 cosh K1 cosh K2 cosh K 3 ) - 1 Z ( K 1 ,  K2 ,  K 3 ) ( 9 )  

we obtain 
In A(tl ,  t2, t3)  +In  A(1/tl ,  - t 2 ,  - t 3 )  

= ln(1 - t 2) + ln(1 - t3 2) (10) 

We can now use the inversion relation (10) in combination with a high- 
temperature expansion 

t2P t2rn t2n (11) l nA( t l , t 2 ,  t3)= ~. ap .. . .  -1 o2 ~3 
p,m,n 

to investigate the form of the partially resummed expansion 

In  A ( t l ,  t 2 , / 3 )  = 2 Rm,n(t2) ~ (12) 
m,n 

and, in particular, to investigate the nature of the singularities of Rm,n(t2). 
From (12) and (10) we find that the Rm, n functions must satisfy the 

constraints 
Rm,o(t 2) + Rm,o(1/t 2) = - 1 / m  (13a) 

R . . . .  (t~)+Rm,n(1/t2) =0 m , n r  (13b) 

We have evaluated the coefficients ap + m + n for p + m + n ~< 8, i.e., a 16-term, 
high-temperature expansion, and these are given in Table I. We thus have 
available the leading coefficients in the power series for the functions 
Rm,n(t2). We expect that the Rm, n c a n  again be written as a ratio of the two 
polynomials 

R,.,.( t~) = Pm,.( lZ)/Qm,.( t 2) (14) 
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n= I �9 Rl(t2)= t2p= t2/(l-t2) 

p=1 

(a) t zP = t2/( I -t z) 
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Fig. 1. 

i _t2)3 R2(t2) = (a) +.... + (f) = (t 2- ~ t% ~ t+)l(i 
& 

Partial resummation of partit ion function series for the square lattice. Evaluation of 
the functions Rl(t 2) and R2(t2). 
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Table I. Coefficientsap,n,m Defined by Eq. (11) 

Order (p, n, m) ap ..... 

0 = 4  (1, 1,0) 1 

0 = 6  (2, 1,0) 1 
(1, 1, 1) 16 

0 = 8  (3, 1,0) 1 
(2,2,0)  2�89 
(2, 1, 1) 58 

0 = 10 (4, 1, 0) 1 
(3,2,0)  5 
(3, 1, 1) 128 
(2, 2, 1) 520 

O = 12 (5, 1, 0) 1 
(4 ,2 ,0)  8�89 
(4, 1, 1) 226 
(3,3,0)  18~ 
(3, 2, 1 ) 2,262 
(2, 2, 2) 9,682 

0 = 14 (6, 1, O) 1 
(5, 2, 0) 13 
(5, 1, 1) 352 
(4, 3, O) 51 
(4, 2, 1 ) 6,746 
(3, 3, 1) 17,200 
(3, 2, 2) 75,216 

O = 16 (7, 1, 0) 1 
(6, 2, 0) 18 �89 
(6, 1, 1) 506 
(5, 3, O) 117 
(5, 2, 1) 16,014 
(4 ,4 ,0)  217�88 
(4, 3, 1) 81,410 
(4, 2, 2) 359,753 
(3, 3, 2) 949,322 

73 

The  rat ional  funct ions  Rm, o = Ro, m are o b t a i n a b l e  from the exact  Onsager  
s o l u t i o n  of  the square  lattice. The  first few are 

R , , o (  = t /(1 - 

R2,o(t~) = t1(2 - t 2 + # ) / 2 ( 1  --  t2) 3 

R3,o(t l)  = t~(3 + 10t~ --  2t 6 + t~)/3(1 - t~) 5 

(15) 

(16) 

(17) 



74 Hansel e t  al. 

The expansions of these rational functions of course agree with the high- 
temperature series. 

The function Rl,l is given by 

R~,~(t~)= l +16t~ + 58t4 +128t6 + 226t8 + 352tl~ + 506t112 + ... (18) 

We note that 

(1 - t~) 3 Rl,l(t~) = 1 + 13tl 2 + 13t 4 + t 6 + o(t{ 4) 

which suggests that 

RL1(t~)= (1 + 13t~+ 13t 4+ t6 ) / ( t - - t l )  3 (19) 

exactly. It is not difficult to obtain this result directly from a consideration 
of resummed diagrams. We note that, in contrast to the two-dimensional 
case, the function RE1 is not determined uniquely from the inversion 
and symmetry relations. The coefficient of the 2 2 tlt2t ~ term in the high- 
temperature expansion, which is 16, is also required. 

We now consider the function R2,~ = R1,2, which has the expansion 

R2,~(t2)= 1 +58t2+520t4+2262t6+6746t81+ 16,014t]~ .. .  (20) 

and we seek polynomials P, Q such that R2,1 = P2,1/Q2,1. Consideration of 
the resummed diagrams suggests that Q2,1 is divisible by ( 1 - t 2 )  5. By 
inspection we find that 

(1 -- t12)5(1 -~- t 2) R2,1(t 2) 

= 1 + 54t~ + 293t 4 + 472t 6 + 293t~ + 54t~ ~ + o(t~ 2) 

It appears likely that this expression terminates with a term t~ 2, and thus 
that the exact expression for R2,1 is 

R2 ~(t 2) = 1 + 54t 2 + 293t 4 + 472t 6 + 293t~ + 54ti ~ + t] 2 
' (1 - t~ )5(1  + t 2) ( 2 1 )  

This result reveals a new feature of the resummed high-temperature expan- 
sion for the simple cubic lattice, namely the appearance of a t 2 = - 1  
singularity in addition to the singularity at t~ = 1. 

It seems likely that the t~ = - 1  singularity will continue to appear in 
higher order, but we have insufficient terms in the high-temperature expan- 
sion to confirm this. 
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3. THE SUSCEPTIBIL ITY 

An inverse functional relation can also be established for the 
correlation functions of the anisotropic Ising model, and hence for the 
susceptibility.{~l) We therefore investigate the implications of the inversion 
relation for resummed susceptibility expansions using the same approach 
as in the previous section. 

For  the anisotropic square lattice the susceptibility satisfies the inver- 
sion relation 

X(t,, t j  + "f(1/t,, - h)  = 0 (22) 

Of course Z(tl, t j  is not known exactly for this model. However, the 
high-temperature expansion is known through 1 lth order. {12) This can be 
written in the form 

The Cm,,, ~ 

Z(t,, tJ= i c ..... tTt~= i H,,(t,)t~ (23) 
m , ~ z  ~ 0 n ~ O  

coefficients for m + n ~< 11 are given in Table II. 

Table II. Coefficients Cm." Defined by Eq. (23) 

(0, 0) 1 (7,1)  56 
(1, 0) 2 (6,2) 400 
(2,0) 2 (5,3) 1,240 
(1, 1) 8 (4, 4) 1,776 
(3,0) 2 (9,0) 2 
(2, 1) 16 (8,1) 64 
(4,0) 2 (7, 2) 544 
(3, 1) 24 (6, 3) 2,104 
(2, 2) 48 (5, 4) 4,032 
(5,0) 2 (10,0) 2 
(4,1) 32 (9,1) 72 
(3,2) 104 (8,2) 708 
(6, 0) 2 (7,3) 3,304 
(5, 1) 40 (6, 4) 7,988 
(4, 2) 180 (5,5) 10,728 
(3,3) 296 (11,0) 2 
(7, 0) 2 (10,1) 80 
(6,1) 48 (9,2) 896 
(5, 2) 280 (8,3) 4,896 
(4,3) 656 (7,4) 14,424 
(8, 0) 2 (6,5) 24,584 
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Consideration of the types of diagrams that contribute to a given 
order in t2 suggest that the H~(tl) are again rational functions 

Hn(tl) = Kn(tl)/L,(ti) (24) 

with K n and L n being polynomials of the same degree, and with Ln having 
the generic form 

L n ( t l )  ~ (1 - -  / l ) a ( 1  ~- t l )  b (25) 

This property of the partially resummed susceptibility expansion was noted 
a number of years ago by Citteur and Kasteleyn (13 15) and by Enting. (~6) 

The inversion relation (22) imposes a strong constraint on the 
functions H,(t~) in (23), namely 

H.(t,) + (-- 1 )" H.(1/t~) = 0 (26) 

which in turn means that if L.(t~) is of the form (25), then the polynomial 
K,,(t~) must be either symmetric or antisymmetric. 

From the results of Table II, or by a direct calculation from the resum- 
med diagrams, we find that 

Ho(tl)= (1 + t l ) / ( 1 -  tl) (27) 

H, ( t l )  = 2(1 +/1)2/(1 - tl) 2 (28) 

By inspection we also find that 

(1 - t~)3(1 + t~) H2(t~)=2+ 12tl + 16t 2+ 12t~ + 2 t  4+ o(t~ ~ 

which suggests that H2 is given exactly by 

H2(t~)=2(l+6t~+8t2+6t3+t~)/(1-t~)3(l+t~) (29) 

Similarly, by inspection, we find that 

(1 - t~) 4 H3(tl) = 2 +  16t1 + 2 0 t ~ +  16t 3+ t 4+o(t 9) 

which suggest that n 3 is given exactly by 

H3(I1) = 2(1 + 8tl + 10t~ + 8t 3 + t4)/(1 - t l )  4 (30) 

On the basis of these results it might be expected that H4(t~) will have 
a denominator of the form ( 1 -  tl)5(1 + t l )  b with 0 ~<b< 5. However, this 
does not appear to be the case. The closest candidate is b = 3, for which 

( 1  - -  tl)5(1 + t l )  3 H4(tl) 

= 2 + 28tl + l12t~ + 244t 3 + 296t 4+ 236t~ + 120t 6 + 28t~ 7+ --- 
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However, this is not quite symmetric, and hence does not satisfy the inver- 
sion relation. We have not found a solution for H 4 with polynomials of 
degree less than or equal to 13. 

What  makes this even more surprising is that there appears to be a 
fairly simple result for Hs. In particular, we find 

(1 --  /'1)6(1 -]- /'1) 2 H 5 ( / I )  

= 2 +  32/'1+ 128t~+288/` 3+  332t 4+288/`~ + 128/' 6+  .. .  

which suggests that 

2(1 + 16t1+64t  2+  144t~+ 166t 4+  144t~ + 6 4 t  6+  16t~+ t~) 
Hs(tl) = (31) 

( 1 - - / 1 ) 6 ( ] + / 1 )  2 

exactly. 
We finally consider the susceptibility of the fully anisotropic simple 

cubic lattice, which satisfies the inverse functional relation 

)~(/1, t2, t3) + z(l/ t~,  -- t2, -- t3) = 0 (32) 

The high-temperature expansion for this case can be written as 

)~(tl, t2, 1 3 ) :  2 p m n (33) Cp .... t l t2t3= 2 am,n(ll)t'~t~ 
p , m , n  m , n  

The coefficients Cp ...... for p + m + n ~< 11 have been computed (1'12~ and are 
given in Table III. 

We again expect that the Hm,n(t~) are rational functions 

nm,n(t  1 ) = gm,n(l 1 ) / tm,n( t  I ) (34)  

with Km, n and Lm, n being polynomials. Since for m = 0 or n = 0 the square 
lattice results apply, we concentrate on the cases with m, n-~ 0. 

By inspection we find that 

(1 - - / l )  3 H~,~(t~) = 8 + 24tl + 24/2 + 8t 3 + o(t] ~ 

which suggest that 

Hl,~(tl) = 8(1 + 3t~ + 3t~ + t~)/(1 - t~) 3 (35) 

exactly. Similarly, 

(1 - t l )  4 H2,1(t1)  = 16 + 80t~ + l12t~ + 80tl 3 + 16t 4 + o(t 9) 
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Table III. Coeff ic ients Cp,m, . Defined by Eq. (33) 

(0 ,0 ,0 )  1 (9, O, O) 2 
(1,0,0) 2 (8, 1, O) 64 
(2, 0,0) 2 (7, 2, o) 544 
(1,1,0) 8 (7, 1, 1) 1,584 
(3, 0,0) 2 (6, 3, O) 2,104 
(2, 1,0) 16 (6, 2, 1) 11,504 
(1,1,1) 48 (5,4, O) 4,032 
(4, O, O) 2 (5, 3, 1) 35,248 
(3, 1, O) 24 (5, 2, 2) 63,856 
(2,2,0) 48 (4, 4, 1) 50,704 
(2, 1, 1) 144 (4, 3, 2) 145,280 
(5,0,0) 2 (3,3,3) 228,592 
(4, 1,0) 32 (10,0,0) 2 
(3,2,0) 104 (9, 1,0) 72 
(3,1, 1) 304 (8, 2, O) 708 
(2, 2, 1) 592 (8, 1,1) 2,064 
(6, O, O) 2 (7, 3, O) 3,304 
(5, 1, O) 40 (7, 2, 1) 18,032 
(4, 2, O) 180 (6, 4, O) 7,988 
(4, 1, 1) 528 (6,3, 1) 69,744 
(3, 3, O) 296 (6, 2, 2) 125,584 
(3, 2, 1) 1,648 (5, 5, O) 10,728 
(2, 2, 2) 3,024 (5, 4, 1) 134,256 
(7,0, O) 2 (5, 3, 2) 382,448 
(6, 1, O) 48 (4, 4, 2) 542,352 
(5, 2, O) 280 (4, 3, 3) 855,120 
(5,1,1) 816 (11,0,0) 2 
(4,3,0) 656 (10, 1,0) 80 
(4, 2,1) 3,616 (9, 2,0) 896 
(3, 3, 1) 5,808 (9, 1, 1) 2,608 
(3, 2, 2) 10,672 (8,3,0) 4,896 
(8, O, O) 2 (8, 2, 1) 26,688 
(7, 1, O) 56 (7, 4, O) 14,424 
(6, 2,0) 400 (7,3, 1) 125,488 
(6, 1, 1) 1,168 (7, 2, 2) 226,224 
(5,3,0) 1,240 (6, 5,0) 24,584 
(5,2,1) 6,800 (6,4, 1) 307,136 
(4, 4, O) 1,776 (6, 3, 2) 871,088 
(4, 3, 1) 15,664 (5, 5, 1) 411,952 
(4, 2, 2) 28,336 (5, 4, 2) 1,659,456 
(3, 3,2) 45,456 (5,3,3) 2,595,952 

(4, 4, 3) 3,685,552 
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which suggests that 

H2,1(t1) = 16(1 + 5t 1 + 7t~ + 5t 3 + t4)/(1 - tl) 4 (36) 

We also find that 

(1 - tl) 5 H3,1(tx) = 24 + 184tl + 368t~ + 368t~ + 184t 4 + 24t~ + o(t~) 

which suggests that 

H3,1(h)=8(3+23t~+46t3+23t4+3t~)/(1-t l)  5 (37) 

exactly. 
This rather simple and appealing structure does not appear to persist 

to higher orders. In fact, we have not found a solution for H2,2, or for any 
of the higher order ones. 

4. CONCLUSION 

The aim of this investigation has been to explore the analytical proper- 
ties of resummed high-temperature expansions of the Ising model on 
anisotropic square and simple cubic lattices. Our approach has been to 
combine an analytic result, the inversion relation, with conventional high- 
temperature expansions. In the process we have obtainad a 16-term series 
for the partition function of the anisotropic cubic Ising model and an 
l l - term series for the susceptibility of the square lattice and of the fully 
anisotropic simple cubic lattice. 

It is known from the exact Onsager solution that for the resummed 
partition function of the square lattice only t~ = 1 singularities occur, Our 
analysis indicates that for the simple cubic lattice not only t ~ = l  
singularities, but also t~ = - 1  singularities occur in the partition function. 
This is a new result, which we feel is of some importance. 

The resummed susceptibility series for the square lattice has 
singularities at t I = 1 and tl = - 1 ,  and for low orders of t2 the rational 
functions H , ( t l )  have a simple form, which has been explicitly found. 
However, the order of the polynomials appears to increase rapidly with 
increasing n, a rather surprising result. For  the simple cubic lattice similar 
behavior is found. 
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