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We describe the construction of a class of mappings in projective space CPy for any V. These mappings are non-linear represen-
tations of Coxeter groups by birational and therefore almost everywhere defined and invertible transformations. We give specific
examples of the construction and exhibit algebraic invariants. The class of mappings we consider has a variety of behaviours
according to the number of independent invariants. We introduce the notion of integrability of a group of mappings. The concept
is related to the notion of integrability in the realm of statistical physics and field theory as will appear elsewhere. There is a
natural set of deformation parameters of our mappings, allowing for a study of their stability. We comment on the algebraic

structures we are handling.

1. Introduction

The purpose of this Letter is to present the con-
struction and initiate the study of a class of rational
mappings in projective space CP,. This construction
takes its roots in the study of lattice spin models and
vertex models, and will eventually serve the con-
struction of integrable models in any dimensions. We
will actually show in another publication that the
transformations we consider are symmetries of basic
equations for integrable models, i.e. star-triangle
equations, Yang-Baxter equations and their higher
dimensional generalizations (as the tetrahedron
equations) [1,2].

We consider a Coxeter group [3] generated by a
finite number of involutions, I, J, K, ..., with no other
relations than /2=J?=K?= ... =1. The number of
involutions is 297! for vertex models if 4 is the lat-
tice dimension.

It is usual to represent Coxeter groups by reflec-
tions around hyperplanes in vector spaces, the par-
adigm being Weyl reflections in the root space of Lie
algebras.
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What we do is construct explicit non-linear rep-
resentations of this group in terms of (bi)rational
involutive transformations in projective space. These
transformations are obtained from elementary con-
siderations on matrix algebra. They are actually in-
versions of matrices linked with the so-called inver-
sion relations of lattice statistical mechanics.

We denote by I' the representation thus obtained
of the original Coxeter group. I" acts as an auto-
morphy group (and may be considered as a group of
symmetries ) of various quantities of interest in sta-
tistical mechanics (partition function, critical man-
ifolds, phase diagram, ...), and are of great help for
calculating them.

Our construction provides with explicit examples
of birational automorphisms of CP, for any N, es-
pecially (but not only) with integer coefficients. These
mappings have non-trivial properties which we ex-
emplify: we exhibit orbits which are dense in alge-
braic subvarieties of CPy. In other words I may have
a number of algebraic invariants, and thus reduce to
automorphisms of non-trivial subvarieties of CP,.
As a byproduct, this produces infinitely many ra-
tional points on some of these varieties.

For the sake of simplicity we describe here the
construction related to two-dimensional lattice spin
models, with nearest neighbour chiral interactions.
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We thus construct a group I' of transformations, a
priori isomorphic #' to the semi-direct product Z, X
Z (alias infinite dihedral group) **. Qur method is
not limited to this case. The construction extends to
vertex models and to higher lattice dimensions [6,2].

In section 2 we describe the construction of our
mappings from two inversion operations on matri-
ces. In the case of spin and vertex models in more
than two lattice dimensions, the construction is sim-
ilar, but from more than two involutions.

We then study in section 3 the orbits of the action
of this group I' in the parameter space CP..

We describe in section 4 some invariants of the ac-
tion of I'. Guided by the origin of the construction
(and its relation to symmetries of the star—triangle
cquations [1,2]), we also consider specific trajec-
tories in CP, X CPy, under the action of I, acting as
diag(I'xI"~ "), and exhibit more invariants of this
action. The number of invariants depends on the
model, i.¢e., on the representation of the Coxeter group
we consider.

The quest for invariants is deeply related to the
resolution of the star-triangle equations. The fun-
damental reason is that these invariants define al-
gebraic varieties where the possible spectral param-
eters — appearing in known solutions [7] - lives
[8.1].

It is a crucial issue in the resolution of the star-
triangle (respectively Yang~Baxter, tetrahedron, etc. )
equations, to decide on which type of varieties the
spectral parameters live. The most probable answer
1s just: algebraic groups, i.e. products of subgroups of
GL(#n) by Abelian varicties. The GL(#) part is re-
lated to certain similarity transformations of the ma-
trices our construction is based upon (gauge trans-
formations for vertex models, alias weak graph
duality).

Another important issue is to understand the
structure of the group I" when the number of gen-

#

The representation of I is faithful in the examples we describe
here. It is an open question to decide in the general case whether
or not the representation of this Coxeter group introduces any
additional relations.

If N=1 the transformations are linear and we recover the
Hecke group and other subgroups of PSL(2, C) [4]. This is
nothing but the well suited rational parametrization of the
standard scalar Potts model [5].
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erating involutions is greater than two, i.c. for lattice
dimensions larger than two.

We will say that the action of T is quasi-integrable
if the orbits of I lic in a non-trivial algebraic sub-
variety of the parameter space CP,. This terminol-
ogy i1s motivated by two facts. The first one is that
I enters the construction of the symmetry group of
the star—triangle relation [ 1 ]. The property of quasi-
integrability 1s apparently a necessary but not suf-
ficient condition for the existence of non-trivial so-
lutions of the star-triangle relations. The second is
that the setting of our construction is exactly the one
used in the analysis of stability of dynamical systems
ala Poincaré [9-11]. The property we call quasi-in-
tegrability 1s nothing but the existence of closed or-
bits in the Poincaré section of phase space. We shall
call image varieties the (algebraic) varieties in which
the orbits lie. Qur mappings are not restricted to any
interval, as 1s sometimes the case in the literature on
iterated mappings.

Our construction has a priori a certain rigidity,
showing in fact that our mappings have integer coef-
ficients. There is however a natural set of continuous
deformation parameters of our mappings. This al-
lows for a study of their stability, and of the ap-
pearance of chaos as was already largely explored for
lower dimensional systems. One feature of our map-
pings is that they are — by construction - almost
everywhere invertible. Their natural deformations
enjoy the same property.

Among the orbits of I', the ones where the group
has a finite order representation pop out immedi-
ately: they appear in the search for invariants, in the
resolution of the star-triangle equations, as well as
in the numerical analysis of our mappings, ... . This
1s no surprise, since for instance in the context of the
study of Hamiltonian systems, they are just the res-
onant tori, and in the context of integrable models,
they account for the existence of higher genus solu-
tions [12-14] (they signal the existence of an in-
creased symmetry [15.16]). This situation has nu-
merous avatars in various domains of mathematical
physics as Tutte-Behara numbers for chromatic
polynomials, representations of quantum groups ap-
pearing in rational conformal field theories, ration-
ality of critical exponents in statistical mechanics,
representations of Hecke algebras, knot theory and
the list is far from being exhaustive [17.18]. All this
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legitimates a detailed study of the finite order orbitals.
In section S, we describe some features of the al-
gebraic structures we are handling. We note in par-
ticular the existence of collineations intertwining the
different inverses in some cases of spin models and
generically for vertex models in any dimension. This
intertwining ** reduces in definite cases to an iso-
morphism between the matrix product and the dyadic
product (element by element), thus generalizing the
Kramers—Wannier duality transformation.

2. Construction

We start from two-dimensional g-state spin models
with nearest neighbour interactions. The matrix of
Boltzmann weights is a ¢ X ¢ matrix M with complex
homogeneous entries m,;. Choosing a specific model
means fixing ¢ and constraining the Boltzmann
weights. We only want to retain the constraints be-
tween weights preserved by the two inversions:

I MM, ()
J omy-1/my;, (2)

I is the matrix inverse and J is the element by ele-
ment or dyadic inverse. This allows us to keep track
of the abovementioned inversion symmetries. In the
mnversion relations of statistical mechanics [7,20-
23], one acts on the Boltzmann weights for vertical
bonds with { (J) and on the horizontal bonds with
J ().

We restrict ourselves to constraints on the matrix
of Boltzmann weights of the form m;=m,, for a
number of pairs of indices. Such constraints are au-
tomatically preserved by J and are in fact up to signs
the only invariant linear constraints. This amounts
to giving a partition of the set of the entries of M such
that all elements of a given part are set equal. Clearly
only a limited number of partitions give a pattern
that the matrix inverse / will preserve. We shall call

%> This intertwining between two products in our matrix alge-
bras is not of the same nature as the compatibility conditions
between Lie-algebra structures encountered in r-matrix for-
malism of the classical Yang-Baxter equations (difference be-
tween the approaches of Drin'feld and Semenov-Tjan-
Shanksy). This intertwining is not straightforwardly related
to the intertwining between two coproducts encountered in
quantum groups [19].
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these patterns admissible patterns [24].

The number of remaining homogeneous parame-
ters in an admissible pattern is lower than g2 It equals
the number of parts in the pattern. It will be denoted
by N in the following. On these remaining parame-
ters Xo, Xy, -.., Xy—, (that is to say an element of
CPx_,), the action of the dyadic inverse J is simply
Xi— 1/x;. The action of the matrix inverse I 1s x,— i,
(xo, X1, ..., Xn_, ), Where the i, are polynomials with
integer coefficients in the x;

An extensive study shows that the number of ad-
missible patterns is indeed extremely small com-
pared to the number of all patterns, that is to say the
number # (g*) of partitions of g° elements. To give
an idea of their scarcity we have to compare

gt s—1

2(@)=Y ¥ (-D*

s=1 k=0

(s—k)yr-!

K(s—1—k)! (3)

with the number of admissible patterns. The eval-
uation of the latter may be obtained by an exhaus-
tive inspection and is 17 for the g=3 case to be com-
pared to #2(9)=21147, and 187 for the g=4 case to
be compared to 2(16)=10480142147~10'°. We
must furthermore say that most of them are related
by trivial permutations of the row and columns. The
investigation and results for the g=15 and g=6 models
(recalling that 2(25)=4.6X%10'"® and #(36)=~
3.8 10*°) will be detailed in ref. [24].

We shall use in the following a number of specific
examples of admissible patterns:

P1. The general cyclic 4 X4 matrix

M=[ "~ nE (4)

i.e., g=4, N=4. It is the matrix of Boltzmann weights
of the four-state chiral Potts model. We shall also
consider its subpattern SP1 obtained by taking an
additional symmetry condition x,=x;, leading to
g=4, and N=3. This subcase is equivalent to the
symmetric Ashkin-Teller model.

P2. The general cyclic 5X5 matrix, i.e., coeffi-
cients Xy, ..., X4, ¢=95, N=35, and its symmetric sub-
pattern SP2 obtained with x;=x, and x,=Xx;, or
equivalently by quotienting the algebra of the group
Zs by the Zs-automorphism x—x~' (we get N=3).
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We thus have an Abelian three-dimensional algebra
generated by {1, A=c+0* B=0’+0>} where o is
the generator of Zs (shift). The product law is

A?=2+B, B?’=2+A, AB=BA=A+B. (5)

P3. A ¢=6 pattern, which is not cyclic, nor sym-
metric and with N=3. The matrix form is

X v z y z =z
z X VvV z vy =z
N ©
Yy z y x :z
z Z VvV zZ Vv X

This is the general element x1+4yA4+zB of an Abelian
subalgebra of the algebra of the (non-Abelian) per-
mutation group of three objects [24,25]. We have
the following product law in this subalgebra,

A?’=1+B, B*=2+4+24+B,
AB=BA=1+A4+B. (7)

Introducing for this model the variables u=y/x,
v=_z/x, the explicit formulae for the inversion [ are

y —u?—u+2p? (8)
| +u+2v—u?—=2uvr—v?’
wtvu—vi—v
v v (9)

— 5 3 .
t+u+2v—u—2uv—v*

P4. A reduced cyclic 7X 7 matrix, with g=7, N=3.
The matrix may be written as the generic element of
a three-dimensional subalgebra of the algebra of Z.
If g is the generator of Z,, the subaigebra is generated
by {1, A=c+0’+0*, B=0’+0°+0°}. This is the
subalgebra of the algebra of Z, obtained by quotient-
ing by the Z;-automorphism x— x?. The product law
in this subalgebra is

A’=A+2B, B’=B+24,
AB=BA=3+A+B. (10)

Deformations. 1t is straightforward to construct
deformations of our mappings. It suffices for ex-
ample to replace the involution J (sending X, into
1/x,), by J sending x, into a,/x,, where the a, are the
deformation parameters [6]. These deformations do
not spoil the invertibility of the mappings. One
should analyse both the perturbations around quasi-
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integrable mappings and the large deformations, es-
pecially the ones with integer a,. For vertex models
the situation is even simpler since the various in-
volutions we consider are related by permutations of
the parameters. These permutations are similarity
transformations on the matrices and one may de-
form them straightforwardly. These deformations are
studied in a parallel publication [6,26].

3. Orbits

A very efficient way to analyse the trajectories of
a point under the action of I is to look at them. Figs.
1-4 are pictures of the trajectories of points under
the iteration of 1/ (that is to say the Z part of I" given
in the (N—1)-dimensional space of the variables
U=X|/Xg, V=X3/Xo, W=X3/X0, ... ).

Fig. 5 is of a different nature: we consider a point
in a double copy of the parameter space CP,_,. We
act with /J on the first copy, and with its inverse J/
on the second one. We take the same starting point
in both copies. We take P3, where N=3, as example.
The points in the first (second) copy have coordi-
nates u, v (u, 7). We draw the projection of the tra-
jectories on the coordinate plane u, u. This analysis
is justified by the following considerations from ex-
actly solvable model theory in statistical mechanics:
the star-triangle contains three pairs of copies of the
parameter space. The compatibility relations of this
overdetermined system implies in particular that the
two members of each pair belong to an algebraic va-
riety which is stable with the abovementioned action
of IJ [1]. We are drawing this variety, keeping in
mind that the existence of this variety is not a suf-
ficient condition for the existence of solutions of the
star-triangle equations.

We have experimentally four different types of
orbits:

- the quasi-integrable case;

- the resonant (finite) case;

— the Hoffstadter-type orbits;

— the contracting (expanding) case.

By quasi-integrable we mean that the orbits will
remain inside algebraic subvarieties of the parame-
ter space. By contracting we mean that the orbits will
contract towards some fixed stable submanifolds, in-
dependently of the initial point of the orbit. Notice
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Fig. 1. 3d perspective of the orbit of (8, —7, 8.5) for P1.

that the two do not exclude, as exemplifies the
Ashkin~-Teller model SP1, according to the value of
some algebraic invariant 4 for the model [27,6]. By
resonant we mean that the orbit is finite.

Figs. 1, 2 and 3 illustrate the quasi-integrable cases
P1, SP2, P3. What is remarkable is that in the quasi-
integrable case, the orbits look like the image sub-
varieties, especially when these are curves. This
makes the graphic representation of the iteration a
very good detector of quasi integrability. As we will
see in refs. [28,25], we have for P1, SP2, and P3, an
elliptic uniformization [29], making /J a mere
translation #—60+A of the uniformizing parameter
(spectral parameter 8). The situation is that we have
non-resonant tori in the terminology of Hamiltonian
systems, or equivalently translations on the circle S'
with a shift not commensurate to the circumference
(irrational “‘rotation number’’). Notice that going to
the action~angle like coordinates (invariants, spec-

tral parameter) linearizes the action of 7 and J. If the
image varieties are Abelian varieties, that is to say
quotients of C” by some lattice, the action of I must
be compatible with the lattice. It is more than con-
ceivable that generic orbits are dense in the image
curves. In this case, we can recover properties on the
whole curve from those on the infinite discrete set of
points of the orbit.

We have not given any picture of contracting cases
here. In this situation, one could construct a fun-
damental domain for the action of the group I', tak-
ing advantage of the fact that I is generated by in-
volutions [6].

In the example P4 (fig. 4), there is clearly no im-
age curve. Beware that there is an extremely fast ac-
cumulation of numerical errors in the iteration. The
qualitative features of the orbit are nevertheless cor-
rect. It is worth noticing that although the examples
SP2 and P4 are both obtained in a similar way from
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Fig. 2. A few curves in the pencil for SP2.

cyclic groups [30.31], they behave quite differently.
Notice also that the Hoffstadter butterfly-like orbit
of P4 has a remarkable structure: the role of the in-
finite set of special points u=1, v=sinf(n+1)«a]/
sin{na), with tan ae=7. and of the symmetric points
obtained by exchanging u and v, will be detailed else-
where [28].

Fig. 5 shows the existence of curves in the double
copy we have considered. This is a direct conse-
quence of the existence of the above invariant, and
the ergodicity of the mapping IJ on generic image
curves. The equation of the curve is 8+ 0= const with
cvident notations. This equation is meaningful only
if the two starting points, in the two copies of the pa-
rameter space belong to the same curve (i.e., have
the same invariant). By choosing identical starting
points, we have ensured this condition. However any
pair of points on the same curve would do. We would
then get another curve in the (u, i) coordinate plane,

226

loosing the w1 symmetry which appears in fig. 5.

4. Invariants

The localization of the trajectories on curves, or
more generally smooth submanifolds of the space of
parameters, rather than clouds (see P4), is the sign
of the existence of algebraic invariants of the group
I'. The number of invariants depends on the repre-
sentation of the Coxeter group. Equating these in-
variants to some constant gives the equations of the
image subvarieties.

We indeed have such invariants. They are

For P1:

4,

(x24 x3)x, X3+ (F+x3) X000 — 2(xF X3+ x7x3)
(x1—=x3) (x3—x3) '

(1)
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Fig. 3. Orbit of (1.5, 0.5) for P3.

(11)

4= (X —x3) (X0 +x2)
T (n txa) (xo—x2)

(12)

We have a set of curves left invariant by I'. This is
shown by fig. 1, and verified explicitly by a direct
calculation. Note that the vanishing of the numer-
ator in eq. (11) (i.e., 4,=0) is the equation of the
algebraic variety of Au-Yang et al. for which the four-
state chiral Potts model is integrable [12,13,32].
Points in this variety have a finite orbit of order 8.
The value 4, =co (i.e., the denominator ineq. (11)
vanishes) corresponds to the symmetric Ashkin—
Teller model SP1. In these limits, 4, trivializes. No-
tice also that there is a large arbitrariness in the choice
of 4, and 4,. Any choice of two algebraically inde-
pendent invariants is good. We may barter 4, for a
simpler invariant

_ (X5 — X1 x3) (X3 —x,X3)
T (X0 —x2) (X +x0) () —x3) (0, +x3)

’

(13)
For SP2 (with the notations «# and v) the invariant
is
S — (2 +v2+3uv) (u—1)(v—1)
ST 2w+ 2uv— (303 —uv(u+o)

(14)

This is shown by fig. 2, and verified explicitly by a
direct calculation. We have a linear pencil of curves,
with intersection points at which the invariant is un-
determined. This is possible only because the trans-
Jformations we consider are singular at some points.
This means that our mappings are defined in CP,_,
minus some subvarieties. Notice that the points of
the curve 44p,=a0 have a finite orbit of order 6 un-
der I'.

For P3 (with the notations « and v) the invariant
is
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Fig. 4. A generic orbit for P4,

(2024 2o —u? =20 201> + v?u) (u—1?) 2

— - (tu)(l—wyti=ry——
(15)

The non-existence of invariants does not impeach
the existence of conserved subvarieties. For instance
in P4, the two lines =1 and v=1 are exchanged by
IJ and are stable by J, although they clearly do not
belong to any underlying linear pencil of curves.
Similarly, the standard scalar Potts line u=v is glob-
ally invariant.

Moreover subvarieties made out of points having
finite orbits are automatically stable. For example
the integrability variety of Au-Yang et al. is such a
variety [14,23]. More examples are easy to find ex-
plicitly by writing the condition (/J) =Id, for ar-
bitrary integer r. Of course if r is divisible by r’, we
recover as particular case the points satisfying the
condition with /. When we have a pencil of image

Am =
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curves we guess that all these subvarieties belong to
the pencil.

As an explicit example we may give the points of
order rfor r=1, ..., 11 in the case P3. For r=1, 2 or
4, we have only isolated points for the orbits of order
r. Remarkably, for the other values of r, the points
of order r actually lie on curves of the pencil. r=3
corresponds to the component u— v>=0 of the curve
Ap3=0; r=6 corresponds to the whole curve 4p;=0;
r=35 corresponds to the curve 4p3=—1. For higher
values of r, there will be different curves of points of
order r corresponding to fixed 4ps. For r=7, there
are two curves with 4p; =3(7% 3ﬁ). For r=8, we
have two values dpy =1 (3 i\ﬁ). For r=9, the val-
ues of 4 are the three roots of the polynomial
x34+3x?—6x+1 which have the numerical values
1.226, —4.411, 0.1847. For r=10, we have naturally
the solution of r=35 and in addition the values of 4
corresponding to the three roots of x*—9x?+7x— |
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Fig. 5. Orbitof [(1.5,0.8), (1.5,0.8)] inthe (u, &) plane for P3.

which are 8.156, 0.1867, 0.6563. Finally the points
of order r=11 lie on the curves with 4p; solution of
the fifth degree equation x°—13x*+55x3—17x%—
4x+ 1 which has three real roots: —0.2516, 0.1873
and 0.4193.

Remark 1. If the action of T is quasi-integrable we
see that I is an infinite set of automorphisms of the
image subvarieties. Therefore, if the image subvar-
ieties are curves, they are necessarily of genus 0 or
1 [29]. A detailed analysis to be found in parallel
publications [28,25] shows that we have pencils of
curves which are generically of genus 1. For a finite
set of values of 4, the curve factorizes in a number
of genus 0 components. It is clearly the case for the
line u=v associated with the standard scalar Potts
limit for which one can introduce a rational param-
etrization to represent I' [5]. For instance, in the
model SP2, this line ¥=v comes together with a hy-
perbola of equation:

uv+3(u+v)+2=0.

Numerically, the line #=v is not stable and the it-
erations of 1J escape to the hyperbola. Remarkably
enough the existence of an invariant stabilizes the
numerics. This turns out to be an extremely fruitful
aspect of the numerical iteration of our mappings.

We have genus zero image curves only for the fol-
lowing values of 4gp,: 3, 3, 0,and § (3£ ﬁ). For the
following values of Ap3, we will also have product of
genus zero curves: 0, co, %, 8. In all of these cases,
the curve will in fact decompose in different parts
which may or may not be invariant under the group
I" by themselves.

Remark 2. When there exist image curves, we may
write down differential equations for the running
point of these curves. For example for P3, they are
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d , , ,
ch; =6, ) (920 — 202U — Qur* + 3y 9u e

=912+ 3urt — 6ute—2ut3+ 6ru — 4 — 60°

+3u*+ 30 —4utv+ 6utvt) (v—1) (16)
dU 5 ) 3 3 2.3
@ =2¢(u. v)(=2v°u—u-v'—=3ur*+4u v+ 4u-v

— w3+ 2ut —3utv—utvd— o4 3w - 200

+2ut=2u = 2u*? + 3utvH (u—-1) (17)

where ¢(u, v) is an arbitrary function.

Remark 3. Remember that all points in the orbit
of a rational point are themselves rational, since the
transformation 1/ has integer coefficients. We have
thus given examples of algebraic varieties with an in-
finite number of rational points.

Remark 4. For all our examples, the standard sca-
lar Potts limit is always compatible with I". This limit
corresponds t0 dgp, =3 for SP2, 4p, = = for P3, and
A, =00 and 4,=0 for PI.

5. Some comments on the algebraic structures

From the point of view of algebra, all our exam-
ples P1, SP1,SP2, P2, P3, P4 present a common fea-
ture. There exists a collineation C intertwining the
two involutions / and J.

This is particularly remarkable for the model P3,
where this collineation reads

l—v l—u

v aur e U Tx2us

(18)
This collineation not only intertwines between the
inverses corresponding to the two products (matrix
product and element by element, i.e. dyadic prod-
uct) but is actually an isomorphism between the two
products. If we denote M-N the matrix product and
M= N the dyadic product. By construction all ad-
missible patterns close under the dyadic product. For
our examples they also close under the matrix prod-
uct, and we have

C(M-Ny=C(M)+C(N) . (19)

This isomorphism may exist only because the alge-
bra of matrices given by the pattern we consider is
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Abelian. It is the simultaneous diagonalization of the
three basis matrices {1, 4, B},

C(1)=14+4+B. (20)
C(4)=2-8B, (21)
C(B)=3-1. (22)

Notice that there are admissible patterns without this
algebra structure, and with such a collineation be-
tween the inverses. There are also admissible pat-
terns without this collineation between the two in-
verses for mappings with more than two variables.

Beware that C is not unique, and is not of finite
order. However, in the standard scalar Potts limit
(u=v), C is nothing but the duality transformation.
and it verifies C?=1.

Notice also that the invariant given for P3 in sec-
tion 4 is not invariant by C, while the invariants given
for P1, and SP2 are invariant by the corresponding
collineations (which in these cases are nothing but
the Kramers—Wannier duality transformations, that
is to say the Fourier transform in Z, [33,34]).

6. Conclusion

The construction we have presented opens the way
to much more work in various directions. A first set
of questions is associated to exactly solvable models
in mathematical physics. A second set is linked with
mapping theory and dynamical systems. In the first
set we have for instance:

— An exhaustive classification of admissible pat-
terns of two-dimensional lattice spin or vertex
models. It will lead to interesting results in elemen-
tary matrix algebra, algebraic geometry, Diophan-
tine problems, and statistical mechanics [24]. We
may even introduce exclusion rules very straightfor-
wardly by setting some weights to zero and perform
the same analysis.

— The description of the locus where representa-
tions of I" have finite order is a crucial step in this
classification [28,25]. We do think they are a lode
for the integrable-model-digger.

— The higher-dimensional equivalent problem, in
addition to its interest per se, is the key to the un-
covering of higher dimensional integrable models.
The situation is qualitatively different as far as the
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nature of the group generated by the involutions is
concerned, since the number of generating involu-
tions increases [2].

All the results thus obtained will enlighten the role
of the various algebraic structures we have described.

If we consider the implications for dynamical sys-
tems and also mappings, several questions could be
addressed:

- The deformations of quasi-integrable mappings,
for spin as well as for vertex models [6].

- How important is the invertibility? Is it equiv-
alent to the possibility to be written as a product of
involutions? (It seems to be the case in CP, where
reversible mappings can be written as the product of
two involutions.) Moreover, if we modify our map-
pings in such a way that they become non-invertible,
the nature of the orbits changes completely and one
stumbles on a strange attractor [6].

— Does there exist an area (volume) preserved by
our mappings? In the quasi-integrable case with im-
age curves, the answer is yes and is related to the ex-
istence of a uniformizing parameter on the curves
and to the fact that IJ is just a translation of that pa-
rameter [25]. In the same spirit, one should find the
Poisson structure on the space of parameters yield-
ing a motion on the image subvarieties.

— The description of a dynamical system (if any),
of which our mappings are a discretization. This is
to be linked with recent results on the discrete time
presentation of Hamiltonian integrable systems [35-
38]. The invariants will be conserved quantities of
the motion.

— The analysis of ergodicity of these mappings,
within the algebraic image varieties determined by
the invariants of our transformations, in order to
study the orbits of I'. The questions to be answered
are: How do the orbits fill the image varieties, or
equivalently: Is the orbit a dense subset of the va-
riety? Does the orbit have accumulation points? Does
I" have a fundamental domain? Is there a Lyapunov
function?
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