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We describetheconstructionof aclassofmappingsin projectivespaceCPNfor anyN. Thesemappingsarenon-linearrepresen-
tationsof Coxetergroupsby birationalandthereforealmosteverywheredefinedandinvertible transformations.We give specific
examplesof theconstructionand exhibit algebraicinvariants.The classof mappingswe considerhasa variety of behaviours
accordingto thenumberof independentinvariants.We introducethenotionofintegrability ofa groupof mappings.The concept
is relatedto the notionof integrability in the realmof statistical physicsand field theoryas will appearelsewhere.There is a
naturalset of deformationparametersof our mappings,allowing for a study of their stability. We commenton thealgebraic
structureswe arehandling.

I. Introduction What we do is constructexplicit non-linearrep-
resentationsof this group in terms of (bi)rational

The purposeof this Letter is to presentthe con- involutive transformationsin projectivespace.These
structionand initiatethe studyof a classof rational transformationsareobtainedfrom elementarycon-
mappingsin projectivespaceCPN. Thisconstruction siderationson matrix algebra.They areactually in-
takesits roots in the studyoflatticespin modelsand versionsof matriceslinked with the so-calledinver-
vertex models, and will eventually serve the con- sion relationsof lattice statisticalmechanics.
structionof integrablemodelsin any dimensions.We We denoteby F the representationthusobtained
will actually show in anotherpublication that the of the original Coxetergroup. F acts as an auto-
transformationsweconsideraresymmetriesof basic morphygroup (andmaybe consideredasa groupof
equationsfor integrablemodels, i.e. star—triangle symmetries)of variousquantitiesof interestin sta-
equations,Yang—Baxterequationsandtheir higher tisticalmechanics(partition function,critical man-
dimensional generalizations(as the tetrahedron ifolds, phasediagram,...), andareof greathelp for
equations)[1,2]. calculatingthem.

We considera Coxetergroup [3] generatedby a Ourconstructionprovideswith explicit examples
finite numberof involutions, I, J,K, ..., with noother of birationalautomorphismsof CPN for any N, es-
relationsthan 12=J2=rK2= ... = 1. The numberof pecially (but notonly) with integercoefficients.These
involutions is2~ for vertexmodelsif d is the lat- mappingshavenon-trivial propertieswhich we ex-
tice dimension. emplify: we exhibit orbits which are densein alge-

It is usual to representCoxetergroupsby reflec- braicsubvarietiesof CPN. In otherwordsFmayhave
tions aroundhyperplanesin vector spaces,the par- a numberof algebraicinvariants,and thusreduceto
adigmbeingWeyl reflectionsin the root spaceof Lie automorphismsof non-trivial subvarietiesof 0PN.

algebras. As a byproduct, this producesinfinitely many ra-

tionalpoints on someof thesevarieties.* Work supportedby CNRS.
For the sakeof simplicity we describehere the

Also at: ResearchInstitutefor TheoreticalPhysics,University
of Helsinki, Siltavuorenpenger20C, SF-00170 Helsinki, constructionrelated to two-dimensionallattice spin
Finland. models,with nearestneighbourchiral interactions.
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We thus constructa group F of transformations,a cratinginvolutionsis greaterthantwo, i.e. for lattice
priori isomorphica’ to the semi-directproduct ~7 ~< dimensionslarger than two.
~ (aliasinfinite dihedralgroup) ~ Our method is We will say that the actionoff is quasi-iniegrahie
not li,n lied to this case. The constructionextendsto if the orbits of F lie in a non-trivial algebraicsub-
vertex modelsand to higher lattice dimensions16.2/. variety of the parameterspacefPv. This terminol-

In section 2 we describethe constructionof our ogy is motivatedby two facts. The first one is that
mappingsfrom two inversion operationson matri- F entersthe constructionof the symmetrygroupof
ces. In the caseof spin and vertex modelsin more thestar—trianglerelation [I ]. The propertyof quasi-
than two lattice dimensions,the constructionis sim- integrability is apparentlya necessarybut not suf-
ilar, but from more than two involutions. ficient conditionfor the existenceof non-trivial so-

We thenstudy in section 3 theorbits of theaction lutions of the star—trianglerelations.The secondis
of this group F in the parameterspacecp~. that the settingof our constructionis exactlythe one

Wedescribein section4 someinvariantsof theac- usedin theanalysisof stability of dynamicalsystems
tion of F. Guided by the origin of the construction a Ia Poincaré[9—11].The propertywe call quasi-in-
(and its relation to symmetriesof the star—triangle tegrability is nothingbut the existenceof closedor-
equations [1,2]), we also considerspecific trajec- bits in the Poincarésectionof phasespace.We shall
tories in CPvXCPv,underthe actionoff, acting as call imagevarietiesthe (algebraic)varietiesin which
diag(FxF I) and exhibit more invariantsof this the orbitslie. Ourmappingsarenot restrictedto any
action. The numberof invariantsdependson the interval,as is sometimesthecasein theliteratureon
model, i.e..on therepresentationof theCoxetergroup iteratedmappings.
we consider. Our constructionhas a priori a certain rigidity.

The quest for invariants is deeply related to the showingin fact that our mappingshaveintegercoef-
resolution of the star—triangleequations.The fun- ficients.Thereis howevera naturalset of continuous
damentalreasonis that theseinvariantsdefine al- deformationparametersof our mappings.This al-
gebraicvarietieswherethepossiblespectralparam- lows for a study of their stability, and of the ap-
eters— appearingin known solutions [7] — lives pearanceof chaosas wasalreadylargelyexploredfor

lower dimensionalsystems.Onefeatureof our map-
[8,1].

Ii is a crucial issue in the resolutionof the star— pings is that they are — by construction— almost
everywhereinvertible. Their natural deformations

triangle (respectivelyYang—Baxter,tetrahedron,etc.)
equations,to decideon which type of varietiesthe enjoy the sameproperty.
spectralparameterslive. The mostprobableanswer Among theorbits of F, theoneswherethegroup

hasa fInite order representationpop out immedi-
Is just: algebraicgroups. i.e. productsof subgroupsof

GL(n) by Abelian varieties.The GL(n) part is re- ately: theyappearin thesearchfor invariants,in the
resolution of thestar—triangleequations,as well aslatedto certainsimilarity transformationsof thema-
in thenumericalanalysisof our mappings This

tricesour constructionis basedupon (gaugetrans- .is no surprise,sincefor instancein thecontextof the
formations for vertex models, alias weak graph studyof Hamiltonian systems,they arejust theres-
duality). onanttori, and in the contextof integrablemodels,

Another important issue is to understandthe
they accountfor theexistenceof highergenussolu-

structureof the group F when the number of gen- tions [12—14] (they signal theexistenceof an in-

creasedsymmetry [15.16]). This situation hasnu-

~ TherepresentationofI’ is faithful in theexampleswe describe merousavatarsin variousdomainsof mathematical
here,It is anopenquestionto decidein thegeneralcasewhether physics as Tutte—Behara numbers for chromatic
ornot therepresentaiionofthisCoxetergroupintroducesany polynomials,representationsof quantumgroupsap-
additionalrelations.

~ If N~1 thetransformationsare linear and we recoverthe pearingin rational conformalfield theories,ration-
Heckegroupand oihersubgroupsof PSL(2,C) [4]. This is ality of critical exponentsin statistical mechanics,
nothing but the well suited rational parametrizationof the representationsof Heckealgebras,knot theory and
standardscalarPotts model [51. thelist is far from beingexhaustive[17,181. All this
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legitimatesa detailedstudyof thefinite orderorbitals. thesepatternsadmissiblepatterns[24].
In section 5, we describesome featuresof the al- The numberof remaininghomogeneousparame-

gebraicstructureswe are handling.We note in par- tersin anadmissiblepatternis lower thanq2. It equals
ticular theexistenceof collineationsintertwiningthe the numberofpartsin thepattern.It will bedenoted
different inverses in some cases of spin models and by N in the following. On theseremainingparame-
generically for vertex models in anydimension.This ters x

0, x, XN_ (that is to say an elementof
intertwining~ reduces in definite cases to an iso- CPNI), the action of the dyadic inverseJ is simply
morphismbetweenthematrix productandthedyadic X~—*I /.v~.Theactionof thematrix inverseI isXk-~lc

product(elementby element),thusgeneralizingthe (x0, x1 x~_,),wherethe ~k are polynomialswith
Kramers—Wannierduality transformation. integercoefficientsin the x1.

An extensivestudy showsthat the numberof ad-
missible patternsis indeed extremelysmall corn-

2. Construction paredto thenumberof all patterns,that is to say the
number .~(q

2)of partitions of q2 elements. To give
Westart from two-dimensionalq-statespin models an ideaof their scarcity we haveto compare

with nearestneighbourinteractions.The matrix of 2

Boltzmannweights is aqxqmatrixM with complex ~(q2)= ~ ~ (—1 )k (s—k)~—‘ (3)
homogeneousentries rn,

1. Choosinga specificmodel ‘ s=i ~=o k!(s I—k)!
meansfixing q and constrainingthe Boltzmann with the number of admissible patterns. The eval-
weights. We only want to retain the constraints be-

uation of the latter may be obtained by an exhaus-
tween weights preserved by the two inversions: .

tive inspectionandis 17 for the q= 3 case to be corn-
I: M—+M’ , (1) paredto~(9)=2I 147, and 187 fortheq=4caseto

J. I / ‘2’ be compared to .~(16)=l0480l42147~10’°. We
in,) / / must furthermore say that most of them are related

I is the matrix inverseand J is the element by ele- by trivial permutationsofthe row andcolumns.The
ment or dyadicinverse.Thisallows us to keeptrack investigationand resultsfor theq= 5 and q=6 models
of theabovementionedinversionsymmetries.In the (recalling that .~(25)~4.6xlo’~ and i(36)~
inversion relationsof statisticalmechanics [7,20— 3.8x l0~°)will be detailedin ref. [24].
231, oneactson the Boltzmannweightsfor vertical We shall use in thefollowing a numberof specific
bondswith I (J) andon the horizontalbondswith examplesof admissiblepatterns:
J (1). P1. The generalcyclic 4x4 matrix

We restrictourselvesto constraintson the matrix -

of Boltzmannweights of the form m,1=mn~1for a Xo X1 X2 A3
numberof pairsof indices.Suchconstraintsareau- M= X3 X0 X, X2 (4)
tomaticallypreservedby Jandarein factup to signs X2 X3 Xo X1

the only invariant linearconstraints.This amounts Xi x2 x3 x0
to giving a partitionof thesetof theentriesof M such
thatall elementsofa givenpartaresetequal.Clearly i.e.,q=4, N=4. It is thematrix of Boltzmannweights
only a limited numberof partitionsgive a pattern of the four-statechiral Potts model. We shall also
that the matrix inverseI will preserve.We shall call considerits subpatternSP1 obtainedby taking an

additional symmetry condition x1 =x3, leading to
~ This intertwiningbetweentwo productsin our matrix alge- q= 4, and N= 3. This subcaseis equivalentto the

brasis not of thesamenatureasthecompatibilityconditions symmetricAshkin—Teller model.
betweenLie-algebrastructuresencounteredin r-matrix for- P2. The generalcyclic 5 x 5 matrix, i.e., coeffi-
malismoftheclassicalYang—Baxterequations(differencebe- cientsx0 v4, q= 5, N= 5, and its symmetric sub-
tween the approachesof Drin’feld and Semenov-Tjan-
Shanksy).This intertwining is not straightforwardlyrelated patternSP2 obtained with x1 =x4 and x2=x3, or
to the intertwining betweentwo coproductsencounteredin equivalentlyby quotientingthe algebraof thegroup
quantumgroups1191. 7/5 by the 7/5-automorphismx—~x’(we get N=3).
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We thushavean Abelian three-dimensionalalgebra integrablemappingsand the largedeformations,es-
generatedby ~1,A=a+a4, B=a2+a3} where a is pecially the oneswith integer a,. For vertexmodels
the generatorof 7/5 (shift). The productlaw is the situation is even simpler since the various in-

volutionswe considerare relatedby permutationsof
A2=2+B, B2=2+A, AB=BA=A+13. (5)

the parameters.Thesepermutationsare similarity
P3. A q6 pattern, which is not cyclic, nor sym- transformations on the matrices and one may de-

metric andwith N= 3. The matrix form is form them straightforwardly. These deformations arc
studiedin a parallel publication [6,26].

(x

v v
x 1’ z v

v z x ,vI
(6) 3. Orbits

V = z x z
= :i: Y X A very efficient way to analysethe trajectoriesof

v z y xl a point undertheactionoff is to look at them. Figs.
1—4 are picturesof the trajectoriesof points underThisis thegeneralelementxl +yA+ zBof an Abelian
theiterationofIf (that is to saythe7/ partoff givensubalgebraof the algebraof the (non-Abelian)per-
in the (N— 1)-dimensionalspace of the variables

mutation group of threeobjects [24,25]. We have
the following productlaw in thissubalgebra. u=x,/x

0, t’=x2/x0, w=x3/x0, ...).

Fig. 5 is of a differentnature:we considera point
A

21+B, B2=2+2A+B, in a doublecopy ofthe parameterspaceCPv,,.,.We

act with if on the first copy,and with its inverse.11.4B=BA=1+A+B. (7)
on the secondone. We take thesamestartingpoint

Introducing for this model the variables u=v/x, in bothcopies.We takeP3, whereN= 3, asexample.
v=./x, the explicit formulaefor the inversion I are The points in the first (second)copy havecoordi-

—u2—u+2u2 natesa, i’ (U, 11). We drawthe projectionof the tra-
u—÷ —~-—— (8) jectorieson the coordinateplane u, ü. This analysisI +u+2v—u2-—2uv—v2’

is justified by the following considerationsfrom cx-
u2+vu_u2_v actly solvable model theory in statisticalmechanics:

(9)
1 + u+ 2v—u2 — 2uv—v2 ‘ thestar—trianglecontainsthreepairsof copiesof the

P4. A reducedcyclic 7 x 7 matrix,with q= 7, N= 3. parameterspace.The compatibilityrelationsof this
overdeterminedsystemimpliesin particularthat theThe matrix may bewritten as thegenericelementof
two membersof eachpairbelongto analgebraicVa-

a three-dimensionalsubalgebraof the algebraof 7/-,. riety which is stablewith theabovementionedactionIf aisthegeneratorof7/7, thesubalgebrais generated

by {l. A=a+a+a4, B=cr3+a5+a6}. This is the of If [11. We are drawingthis variety, keepinginmind that the existenceof this variety is not a suf-
subalgebraof thealgebraof 7/7 obtainedby quotient- ficient conditionfor theexistenceof solutionsof the
ing by the1-automorphismx—*x2. Theproductlaw

star—triangleequations.
in this subalgebrais We haveexperimentallyfour different types of
A2=A+2B, B2=B+2A. orbits:

— the quasi-integrablecase;
AB=BA=3+A+B. (10)

— the resonant(finite) case;
Deformations. It is straightforwardto construct — the Hoffstadter-type orbits;

deformationsof our mappings.It suffices for ex- — the contracting(expanding)case.
ample to replacethe involution J (sendingx, into By quasi-integrablewe meanthat the orbits will
I /x

1), by I sendingx, into a1/x,,wherethea, arethe remain insidealgebraicsubvarietiesof the parame-
deformationparameters[61.Thesedeformationsdo terspace.By contractingwe meanthat theorbitswill
not spoil the invertibility of the mappings. One contracttowardssomefixed stablesubmanifolds,in-
shouldanalyseboththe perturbationsaroundquasi- dependentlyof the initial point of the orbit. Notice
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Fig. 1. 3dperspectiveoftheorbitof(8,—7,8.5) forPl.

that the two do not exclude, as exemplifies the tral parameter)linearizestheactionoflandf. If the
Ashkin—Tellermodel SP1, accordingto the valueof imagevarietiesare Abelian varieties,that is to say
somealgebraicinvariantzi for the model [27,6]. By quotientsof C” by somelattice,theactionoff must
resonantwe meanthat the orbit is finite, becompatiblewith the lattice.It is more thancon-

Figs. 1, 2 and 3 illustratethequasi-integrablecases ceivablethat genericorbits are densein the image
P1, SP2,P3. What is remarkableis that in the quasi- curves.In this case,we canrecoverpropertieson the
integrablecase,the orbits look like the image sub- wholecurvefrom thoseon theinfinite discreteset of
varieties, especiallywhen these are curves. This pointsof the orbit.
makesthe graphicrepresentationof the iteration a Wehavenotgivenanypictureof contractingcases
very good detector of quasi integrability. As we will here. In this situation, one could construct a fun-
seein refs. [28,25], we haveforPt, SP2,andP3, an damentaldomainfor the actionof thegroup F, tak-
elliptic uniformization [29], making IJ a mere ing advantageof the fact that F is generatedby in-
translationO—0+A of the uniformizing parameter volutions [6].
(spectralparameter0). Thesituationis thatwe have In theexampleP4 (fig. 4), thereis clearly no im-
non-resonanttori in theterminologyof Hamiltonian agecurve.Bewarethat thereis an extremelyfastac-
systems,or equivalentlytranslationson the circle S’ cumulationof numericalerrorsin the iteration.The
with a shift not commensurateto the circumference qualitativefeaturesof the orbit are neverthelesscor-
(irrational“rotationnumber”).Noticethatgoingto rect. It is worth noticingthat althoughthe examples
the action—anglelike coordinates(invariants,spec- SP2andP4arebothobtainedin a similarway from
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4 ~

—4 —2 0 2 4

Fig.2. A fewcurvesin thepencilfor SF2.

cyclic groups[30,31], theybehavequitedifferently. loosingthe u~—*üsymmetrywhich appearsin fig. 5.
Notice also that the Hoffstadterbutterfly-like orbit
of P4 hasa remarkablestructure:the role of the in-

- . 4. Invariants
finite set of specialpointsu= 1, v=sin[(n+ I )a]/
sin(na),with tan ci=7, andof the symmetricpoints The localization of the trajectorieson curves,or
obtainedby exchangingu and v, will bedetailedelse- moregenerallysmoothsubmanifoldsof the spaceof
where [281. parameters,ratherthan clouds (seeP4), is the sign

Fig. 5 showsthe existenceof curvesin the double of the existenceof algebraicinvariantsof the group
copy we have considered.This is a direct conse- F. The numberof invariantsdependson the repre-
quenceof the existenceof the aboveinvariant, and sentationof the Coxetergroup. Equatingthese in-
the ergodicity of the mappingIf on genericimage variantsto someconstantgivesthe equationsof the
curves.The equationof thecurveis 0+O=constwith imagesubvarieties.
evidentnotations.This equationis meaningfulonly We indeedhavesuchinvariants.They are
if thetwo startingpoints,in the two copiesof thepa- ForPt:
rameterspacebelongto the samecurve (i.e., have
the same invariant). By choosing identical starting
points,we haveensuredthis condition.Howeverany — (x~+x~)x1x3+~
pair of pointson thesamecurvewould do. Wewould — (x~—x~)(x~—x~)
thengetanothercurvein the (a, U) coordinateplane, (11)
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Fig. 3. Orbitof (1.5,0.5) for P3.

(11)

(x~—x1x3) (x~—x1x3) (13)
(x1—x3)(x0+x2) (x0—x2)(x0+x2)(x1—x3)(x,+x3)

(12)
= (x, +x3) (x0—x2) ForSP2(with thenotationsu andv) the invariant

is
We havea set of curvesleft invariantby F. This is
shownby fig. 1, and verified explicitly by a direct (u

2+ v2+ 3uv)(u— 1) (v—1) (14)
calculation.Note that the vanishingof the numer- 4SP2 2u2v2+2uv—(u3+v3)—uv(u+v)
atorin eq. (11) (i.e., 4,=0) is the equation of the This is shown by fig. 2, and verified explicitly by a
algebraicvarietyof Au-Yanget al. for which thefour- directcalculation.We havea linearpencilof curves,
statechiral Potts model is integrable [12,13,32]. with intersectionpointsat which theinvariant is un-
Points in this varietyhavea finite orbit of order8. determined.This is possibleonly becausethe trans-
The value4~=x (i.e., the denominatorin eq. (1.1) formations we considerare singularat somepoints.
vanishes)correspondsto the symmetric Ashkin— This meansthatour mappingsare definedin CPN_,
Teller model SP1. In theselimits, ~2 trivializes.No- minussomesubvarieties.Notice that the points of
ticealsothatthereis a largearbitrarinessin thechoice the curve 4SP2 = = have a finite orbit of order 6 un-
of A~and ~ Any choiceof two algebraicallyinde- derF.
pendentinvariantsis good.We maybarter 4~for a ForP3 (with the notationsu andv) the invariant
simpler invariant is
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Fig. 4. A genericorbit for P4.

(2v~+ 2vu— u — 2u — 2vu2+ i’2u) (u—12) 2 curveswe guessthat all thesesubvarietiesbelongto
(v+u)4(l—u)(l—v)2 ‘ the pencil.

As an explicit examplewe may give the pointsof
(15) orderr for r= I 11 in the caseP3. For r= 1, 2 or

The non-existence of invariants does not impeach 4, we have only isolated points for the orbits of order
theexistenceof conservedsubvarieties. For instance r. Remarkably,for the othervaluesof r, the points
in P4, the two linesu= I andv= 1 areexchangedby of orderr actually lie on curvesof the pencil. r=3
If andare stableby f, althoughthey clearly do ~t correspondsto thecomponentu — = 0 of thecurve
belong to any underlying linear pencil of curves. = 0; r= 6 correspondsto the wholecurvei~= 0:
Similarly, the standardscalarPotts line u= v is glob- r= 5 correspondsto the curve4~~=— 1. For higher
ally invariant, valuesof r, therewill bedifferentcurvesof pointsof

Moreoversubvarietiesmadeout of pointshaving order r correspondingto fixed /Jp~.For r= 7, there
finite orbits are automaticallystable.For example are two curveswith 4~= ~(7±~ For r= 8, we
the integrability varietyof Au-Yang et al. is such a havetwo values4~= ~ (3±~ For r= 9, the val-
variety [14,231.More examplesare easyto find cx- ues of 4 are the three roots of the polynomial
plicitly by writing the condition (If)’=ld, for ar- x3+3x2—6x+1 which have the numericalvalues
bitrary integerr. Of courseif r is divisible by r’, we 1.226. —4.411, 0.1847.Forr= 10, we havenaturally
recoveras particular casethe pointssatisfyingthe the solution of r= 5 and in additionthe valuesof 4
conditionwith r’. Whenwe havea pencil of image correspondingto thethreeroots ofx3—9x2+7x—I
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Fig. 5. Orbitof [(1.5,0.8), (1.5,0.8)1 in the (u, ü) planefor P3.

which are 8.156,0.1867,0.6563. Finally the points
2uv+3(u+v)+2=0.

of order r= 11 lie on the curveswith ~ solution of
the fifth degreeequationx5— 13x4+55x3—17x2— Numerically, the line u=v is not stableand the it-
4x+ I which hasthreereal roots: —0.2516, 0.1873 erationsof If escapeto the hyperbola.Remarkably
and0.4193. enoughthe existenceof an invariantstabilizesthe

Remark 1. If the actionoff isquasi-integrablewe numerics.This turns outto bean extremelyfruitful
seethat F is an infinite setofautomorphismsofthe aspectof the numericaliterationof our mappings.
imagesubvarieties.Therefore, if the imagesubvar- We havegenuszero imagecurvesonly for the fol-
ietiesare curves,they are necessarilyof genus0 or lowingvaluesof45P2: ~, ~, 0, and~(3±~ Forthe
1 [29]. A detailedanalysisto be found in parallel following valuesof Api, we will also haveproductof
publications [28,25] showsthat we havepencilsof genuszero curves:0, x, ~ 8. In all of thesecases,
curveswhich aregenericallyof genus1. Fora finite the curve will in fact decomposein different parts
set of valuesof 4, the curve factorizesin a number which mayor maynotbe invariantunderthegroup
of genus0 components.It is clearly the casefor the F by themselves.
line u = v associatedwith the standardscalarPotts Remark2. Whenthereexist imagecurves,we may
limit for which onecanintroducea rationalparam- write down differential equationsfor the running
etrization to representF [5]. For instance,in the point of thesecurves.For examplefor P3, they are
model SP2,this line u=v comestogetherwith ahy-
perbolaof equation:
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Abelian. It is the simultaneous diagonalization of the
du
d =Ø(u, t’) (9u

2v—2i’u—9uv3+ 3u3u+ 9ut’3 three basis matrices 1, .1, B~.
C(1)=1+.4+B, (20)

— 9ii 3v2+ 3uv4— 6i~4r’— 2u v3 + 6vu2. 41’ ~ 61’~
C(,4)=2—B, (21)

+3u4+3t’5—4u4v+6u2v4) (v— 1) . (16)
C(B)=3—A. (22)

dv
=2Ø(u. t’)( —2v2u—u2v—3uv+4u3v+4u2v Noticethat there are admissible patterns without this

algebrastructure,and with such a collineation be-
— u3v2+2ut’4—3u4v—u3v3—vu2+ 3u ~—2i’~ tween the inverses.There are also admissiblepat-

+2u4—2u5—2u4t’2+3uv4)(u—I) , (17) ternswithout this collineationbetweenthe two in-
versesfor mappingswith more than two variables.

whereØ(u, v) is an arbitraryfunction. Bewarethat C’ is not unique, and is not offinite
Remark3. Rememberthat all points in the orbit order. However, in the standardscalarPotts limit

of a rationalpoint arethemselvesrational, sincethe (u=v), C’ is nothing but the duality transformation.
transformation If hasintegercoefficients.We have and it verifiesC2= I.
thusgiven examplesof algebraicvarietieswith an iii- Notice alsothat theinvariantgiven for P3 in see-

finite numberofrational points. tion 4 is not invariantby C’, while the invariantsgiven
Remark4. Forall our examples,thestandardsea- for P1, and SP2are invariantby thecorresponding

lar Pottslimit is alwayscompatiblewith F. This limit collineations (which in thesecasesare nothingbut
correspondsto LlsI~2= ~ for SP2, ~i’3 ~ for P3, and the Kramers—Wannierduality transformations,that
4

1=cx and /12=0 for P1. is to say the Fouriertransformin 7/,, [33,34]).

5. Somecommentson the algebraic structures 6. Conclusion

From the point of view of algebra,all Our exam- Theconstructionwe havepresentedopenstheway
pIesP1, SPI,SP2,P2,P3, P4 presenta commonfea- to muchmore work in variousdirections.A first set
ture. Thereexistsa collineation C intertwining the of questionsis associatedto exactlysolvablemodels
two involutions I andJ. in mathematicalphysics.A secondset is linked with

Thisis particularly remarkablefor the model P3, mappingtheoryanddynamicalsystems.In the first
wherethis collineation reads set we have for instance:

— An exhaustiveclassificationof admissiblepat-I—i.’ , 1—u
1-. ,. (18) terns of two-dimensional lattice spin or vertex

l+2u+3v l+2u+3i.
models.It will leadto interestingresultsin elemen-

This collineation not only intertwinesbetweenthe tary matrix algebra,algebraicgeometry,Diophan-
inversescorrespondingto the two products(matrix tine problems,and statisticalmechanics[24]. We
productand elementby element, i.e. dyadic prod- mayevenintroduceexclusionrulesvery straightfor-
uct) but is actuallyan isoinorphism between the two wardly by settingsomeweights to zero andperform
products. If we denoteMN the matrix productand the sameanalysis.
M*N the dyadic product. By constructionall ad- — The descriptionof the locus whererepresenta-
missiblepatternscloseunderthedyadicproduct.For tionsof F havefinite orderis a crucial step in this
our examplestheyalso closeunderthematrix prod- classification[28,25]. We do think they are a lode
uct, and we have for the integrable-model-digger.

— The higher-dimensionalequivalentproblem,in
C’(MN)=C(M)*C(N). (19) additionto its interestper se, is the key to the un-
This isomorphismmay exist only becausethe alge- coveringof higher dimensionalintegrablemodels.
braof matricesgiven by the patternwe consideris The situation is qualitatively differentas far as the
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nature of the group generated by the involutions is comments.Two of us (JMM andCMV) would like
concerned,since the numberof generatinginvolu- tothankthe ResearchInstitutefor TheoreticalPhys-
tionsincreases[2]. ics (TFT) of the University of Helsinki for hospi-

All theresultsthusobtainedwill enlightentherole tality and support.
of the variousalgebraicstructureswe havedescribed.

If we considerthe implicationsfor dynamicalsys-
temsand also mappings,severalquestionscouldbe
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