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Abstract

We first study the iteration of birational mappings generated by the composition of the matrix inversion and of a permutation
of the entries of 3× 3 matrices, and consider the degreed(n) of the numerators (or denominators) of the corresponding
successive rational expressions for thenth iterate. The growth of this degree is (generically) exponential withn: d(n) '
λn. λ is called the growth complexity. We introduce a semi-numerical analysis which enables to compute these growth
complexitiesλ for all the 9! possible birational transformations. These growth complexities correspond to a spectrum of
eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous
polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated
birational, or even rational, transformations yield algebraic values for their growth complexities. ©1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction and recalls

Birational transformations have been seen to be a powerful tool to analyze the symmetries of the parameter
space of lattice models of statistical mechanics [1,2] and to seek for some possible Yang–Baxter integrability [3,4].
Beyond the lattice statistical mechanics framework, birational transformations are worthy to be studiedper se, as
discrete dynamical systems. In particular, one should mention many works on birational plane mappings (Cremona
transformations) [5] and more recently results on the integrability of these birational plane mappings [6,7]. Discrete
dynamical systems have been intensively studied (see for example [8–11]). Among them polynomial examples,
like the Henon map [12], have been precious to understand some features of chaos. Beyond, rational mappings
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are of special interest since they allow some analytical calculations. Furthermore, the rational transformations also
allow numerical calculations which can be performed with any wanted precision : the existence of singularities in
the rational transformations one iterates, and their possible ‘proliferation’ is not in fact a numerical obstruction.
We will first consider mappings generated by the composition of the matrix inverse and some arbitrary, but fixed,
permutation of the entries ofq ×q matrices. The results, displayed in this paper, are given forq = 3, but are actually
valid, mutatis mutandis[2], for arbitraryq values.

1.1. Recalling a previous3 × 3 analysis

Integrability of a mapping amounts to saying that all the orbits of the iteration correspond to elliptic, or rational,
algebraic curves [13,14]. From the point of view of the growth1 of the complexity of the successive iterations
[13,14], such integrability in curves always yields apolynomial growthof the calculations [1,2], instead of the
exponential growth one generically expects. Conversely, polynomial growth is not restricted to integrability in
curves but may correspond to orbits ‘densifying’ Abelian varieties [1,2].

A first exhaustive analysis of all the 9! birational transformations generated by the composition of the matrix
inversion and of a (fixed) permutation of the entries of 3× 3 matrices has already been performed concentrating
on the extraction of integrable mappings [19]. This analysis was exhaustive, but restricted to particular integrability
criteria2 . Even from this ‘integrability-digger’ point of view some integrable mappings are missing (for example,
the so-called ‘Class III’ mappings of [20], as well as some polynomial growth situations). In the first part of this
paper we will revisit these 9!= 362880 birational mappings without anya priori integrability criterion and with the
help of a new equivalence relation among permutations (symmetry). This analysis exactly yieldsall the polynomial
growth situations, and, far beyond,classifiesthe exponential growth situations. The classification relies on the value
of the Arnold complexity[21] of the mapping. This complexity can be obtained [22] from generating functions
associated with factorization schemes [2] detailed below.

1.2. Factorization scheme and generating functions

We use the same notations as in [13,14,20], that is, we introduce the following two transformations, the usual
matrix inverseÎ and thehomogeneousmatrix inverseI :

Î : M0 → M−1
0 , and I : M0 → det(M0) · M−1

0 (1)

The homogeneous inverseI is a homogeneous polynomial transformation, which associates, with each entry ofM0,
its corresponding cofactor. Transformationt is any (fixed) permutation of the entries of the 3× 3 matrix. We also
introduce the (generically infinite order) transformations:

K = t · I and K̂ = t · Î (2)

TransformationK̂ is clearly abirational transformation[13,14].
For all the various birational transformations associated with permutations of the entries of 3× 3 matrices, the

following factorization relations happen to occurat eachiteration step [2] :

f1 = det(M0), M1 = K(M0), f2 = det(M1)

f
φ1
1

, M2 = K(M1)

f
η0
1

, f3 = det(M2)

f
φ2
1 · f

φ1
2

, M3 = K(M2)

f
η1
1 · f

η0
2

1 When one iterates a rational transformations the ‘size’ of the successive rational expressions, corresponding to theN th iterate, grows, in
general, exponentially. In particular, thedegreeof these successive rational expressions has, generically, an exponential growth [1,15]. Growth
of the calculations related with factorizations were also introduced by Veselov for some particular Cremona transformations [16–18].

2 Associated with particular recursions [19] on some ‘determinantal’ variables [13,14]xn’s, also introduced here in Section 1.2.
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and for arbitraryn:

det(Mn) = det(Mn) =
n∏

k=0

f
φk

n+1−k with φ0 ≡ 1 (3)

K(Mn) =
(

n−1∏
k=0

f
ηk

n−k

)
· Mn+1 (4)

det(Mn) Mn+1 =
(

n∏
k=0

f
ρk

n+1−k

)
· K(Mn) with ρ0 ≡ 1 (5)

defining the positive integer exponentsηn, φn andρn such thatρk = φk − ηk−1, n ≥ k > 0, η−1 ≡ 0. Thefn’s
are homogeneous polynomials of the entries ofM0. These factorizations allow to define, at each iteration step,
the successivefn’s one can ‘factor out’, and the ‘reduced matrices’Mn’s, such that their entries are homogeneous
polynomial expressions of the initial entries, and have no further factorization. One finds out, looking at the first 30
iterations, that one recovers thesameexponents (ηn, φn, ρn) at each iteration step (up to the last emerging coefficient
for f1). We assume that this regularity property holds for arbitraryn. This regularity3 property assumption is crucial
in our analysis.

We will denote byαn, the degree of the determinant of matrixMn, and byβn the degree of polynomialfn and
α(x), β(x), η(x), φ(x) andρ(x), the generating functions of the degreesαn’s, βn’s, and of the exponentsηn’s, ρn’s
andφn’s in the factorization schemes:

α(x) =
∞∑

n=0

αnx
n, β(x) =

∞∑
n=1

βnx
n, η(x) =

∞∑
n=0

ηnx
n, φ(x) =

∞∑
n=0

φnx
n, ρ(x) =

∞∑
n=0

ρnx
n

whereα0 = 3 andβ1 = 3. It is straightforward to show [2] that the existence of thestablefactorization schemes
(3) and (4) yields the following simple linear relations between these various ‘exponents generating functions’, for
instancex η(x) = φ(x) − ρ(x), and the ‘degree generating functions’:

α(x) + 3x η(x) β(x) = 3 + 2x α(x) (6)

x α(x) = φ(x) β(x) (7)

3 + 3ρ(x) β(x) = (1 + x) α(x) (8)

When analytically iterating an arbitrary transformationK, the degree of the successive polynomial expressions
one encounters, grow exponentially:αn or βn ' λn, whereλ measures the growth of the calculations and is closely
related, for mappings of two variables, with the notion of Arnold4 complexity [21,22] (more precisely with the
asymptotic behaviour of the Arnold complexity). From now onλ will be called the ‘growthcomplexity’ or more
simply, G-complexity. When the degree generating functionsα(x) or β(x) happen to be rational functions, the

3 In fact it is shown in [22] that other slightly more general factorizations scheme can occur on someK̂-invariant subvarieties (yielding smaller
Arnold complexity values). Such slightly more general factorizations scheme will also be detailed below (see Appendix B). However, for the
transformationsK associated with permutations ofq × q matrices, for a generic initial matrix, one gets factorization schemes like Eqs. (3) and
(4), also depicted in [2].

4 More precisely the Arnold complexityCA(n) is proportional (for plane maps) tod(n), the degree of thenth iteration of the birational mapping
which behaves liked(n) ' λn. This ‘degree notion’ was introduced by A.P. Veselov in exact correspondence with the general Arnold definition
[21]. Note that the concept of Arnold complexityis notrestricted to two-dimensional maps.
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G-complexityλ is obviously the inverse of the pole of smallest modulus. Recalling the ‘determinantal’ variables
[13,14,20]xn’s defined by:

xn(M0) = det(K̂n+1(M0)) det(K̂n(M0)) (9)

one finds out that these determinantal variables happen to decompose on a product of the homogeneous polynomials
fn’s only:

xn(M0) = f
w0
n+1 f w1

n f
w2
n−1 f

w3
n−2 f

w4
n−3 f

w5
n−4 · · · with w0 = 1, wi ∈ Z (10)

which defines some, at first sight, ‘new’ exponentswn’s and consequently a, at first sight, ‘new’ generating function
W(x):

W(x) =
∞∑

n=0

wn xn (11)

It is worth noting that the determinantal variablesxn’s induce the homogeneous polynomialsfn’s emerging from
the factorization schemes (3) and (4) and no other homogeneous polynomials. The variablesxn’s are well-suited
since they are invariant under a multiplication ofM0 by a constant:M0 → Cst · M0. In other words, thexn’s are
homogeneous expressions of degree zero. Concentrating on the degrees of the left-hand side, and right-hand side,
of Eq. (10)), one gets the following ‘degree equation’:

0 = βn+1w0 + βnw1 + · · · + βn−pwp+1 + · · · + β1wn (12)

from which one immediately deduces the simple functional equation:

W(x) β(x) = β1 w0 x = 3x (13)

This result is immediately generalized toq ×q matrices. Relation (13) becomesW(x) β(x) = q x. From Eq. (13)
one actually sees thatW(x) is nota new generating function: it is simply related to the degree generating function
β(x). The G-complexityλ is associated to thezeroesofW(x).

From relations (6)–(8), one easily gets the ‘degree generating functions’α(x) andβ(x) from two of the ‘exponent
generating functions’ (for instanceφ(x) andη(x) orη(x) andρ(x)). As a matter of fact, for most of the permutations,
the factorization schemes areperiodic(ηn = ηn+N , φn = φn+N andρn = ρn+N for some integerN ). Consequently,
the exponent generating functionsφ(x) andη(x), or ρ(x), arerational functions withN th root of unity poles [2]
(see, for instance, the exponent generating functionρ(x) in Eq. (14) or (16)). In a second step one deduces, from
relation (6), or (7), rational expressions for the degree generating functionsα(x) andβ(x). However, it will be
seen below that, for some permutations, the factorization schemesare still regular, but not with periodic exponents
(see the exponent generating functionρ(x) in Eq. (15) or (17)): the exponentsηn, φn andρn grow exponentially,
but one remarks that the associated generating functionsη(x), φ(x), ρ(x) arestill rational, and, thus,α(x) and
β(x) are also rational. The exponent generating functions can be seen as an ‘encoding’ of the degree generating
functions, and, thus of the G-complexityλ. Remark that all these rational expressions involveintegercoefficients,
yieldingalgebraicvalues for their poles and for the growth of the calculations: the degrees of the successive rational
expressions, namelyαn’s andβn’s grow like λn, whereλ is analgebraic number, and for regular factorization
schemes (like (15) or (17), see below) the exponentsηn andφn grow likeµn, whereµ is the ‘scheme complexity’.
Note thatµ is obviously such thatµ ≤ λ. Exponentµ is also the inverse of the pole of smallest modulus of
the exponent generating functions. The G-complexityλ allows all kinds of handy, efficient, and formal, or semi-



N. Abarenkova et al. / Physica D 130 (1999) 27–42 31

numerical, calculations. We will present below such a semi-numerical method and apply it toall the permutations
of entries of 3× 3 matrices5 .

2. G-complexity spectrum analysis for permutations

2.1. A semi-numerical method

All these considerations allow us to design asemi-numerical methodto get the value of the G-complexityλ for
the iteration ofrational transformations. The idea is to iterate, withK̂, a generic initial matrix withintegerentries.
After one iteration step the entries become rational and we follow the magnitude of the successive numerators
and denominators. During the first few iteration steps some ‘accidental’ simplifications may occur, but, after this
transient regime, the integer denominators (for instance) grow likeλn, wheren is the number of iterations. One can
systematically improve the method as follows: the initial matrix is chosen in such a way that it avoids, as much as
possible, any ‘accidental’ additional factorization in comparison with the factorization scheme associated with a
generic matrix. For instance, in a factorization scheme framework like Eqs. (3) and (4), one chooses the initial matrix
M0 with integer entries such that the determinant, and most of its cofactors, are prime numbers as large as possible.
One may impose further constraints on the initial matrices, for instance, that the first homogeneous polynomialsf2

andf3 are also prime numbers as large as possible. These conditions down-size the probability that all the entries
of the reduced matricesMn, or the polynomialsfn’s, could be divisible by some accidental additionalf1, f2 or
f3. Such initial matrices, well-suited for the iteration of the homogeneous transformationK, are also well-suited
for the iteration of the (bi)rational transformation̂K. In practice, we start with a set of initial matrices and keep
only the one for which thelessfactorizations occur (non-generic factorization can only correspond toadditional
factorizations).

The computations are done using an infinite precision C-library6 [23]. We perform as many iterations as possible
during a given CPU timeT . This number of iterations,n, is such thatT ' λn. Forλ close to 2 andT = 60 s,n is
of the order of 20 and a best fit of the logarithm of the numerator as a linear function ofn, betweenn = 10 and
n = 20, gives the value ofλ within an accuracy of 0.1%. For smaller values ofλ (typically λ < 1.5) the number of
iterations is larger, but the accuracy, for a given CPU time, is smaller. In such ‘difficult’ cases one analytically finds
the factorizations up ton = 7 and implement the first steps of these factorization schemes in the semi-numerical
method. We are then almost guaranteed that no accidental factorizations will occur forn > 7, and therefore, we can
average over many initial matrices. Even so it remains difficult to discriminate between a truly polynomial growth
[1,2] (λ = 1) and an exponential growth withλ ' 1. The G-complexity values close to one clearly need to be
revisited by other methods we present below.

2.2. Equivalence relations between permutations

Even if this semi-numerical algorithm is efficient it is quite time consuming to use it directly on the 9! permutations.
To classify the G-complexities associated to a large set of (birational) transformations like the one associated to the

5 However, one should keep in mind that there is nothing specific with 3× 3 matrices. These results simply generalize toq × q matrices (see
for instance [2]).

6 The multi-precision library gmp (GNU MP) is part of the GNU project. It is a library for arbitrary precision arithmetic, operating on signed
integers, rational numbers and floating points numbers. It is designed to be as fast as possible, both for small and huge operands. The current
version is: 2.0.2. Targeted platforms and Software/Hardware requirements are any Unix machine, DOS and others, with an operating system
including files and a C compiler.



32 N. Abarenkova et al. / Physica D 130 (1999) 27–42

Table 1

λ Polynomial R(1)
144 R(1)

72 R(∞)
144 R(∞)

72 Total

2 1− 2x 2145 640 14 33 2832
1.97481871 1− 2x + x2 − 2x3 + x4 − 2x5 + x6 0 2 0 0 2
1.97458465 1− x − 2x2 − x3 + x4 + 2x5 + x6 0 1 0 0 1
1.94893574 1− 2x + x5 − x7 0 2 0 0 2
1.94685627 1− x − x2 − x3 − x4 − x5 + x6 0 1 0 0 1
1.93318498 1− 2x + x4 − x5 0 1 0 0 1
1.89110302 1− 2x + x2 − 2x3 + 2x4 − 2x5 0 0 0 1 1
1.88320350 1− 2x + x2 − 2x3 + x4 0 2 0 6 8
1.86676040 1− 2x + x3 − x4 0 1 0 0 1
1.86007305 1− x − x2 − x4 − 2 · x5 0 1 0 0 1
1.85712752 1− 2x + x2 − x3 − x5 − x7 + x8 − 2x9 + x10 0 1 0 0 1
1.83928675 1− x − x2 − x3 0 2 0 0 2
1.75487766 1− 2x + x2 − x3 1 0 0 0 1
1.61803399 1− x − x2 0 3 0 0 3
1.57014731 1− x − x3 − x5 0 1 0 0 1
1.54257960 1− x − x3 − x7 − x8 0 1 0 0 1
1.46557123 1− x − x3 0 0 0 2 2
1 (Pol.gr.) 1− x, 1 − xN , . . . 0 0 0 9 9
1 (Period.) 0 1 0 9 10

Total 2146 660 14 60 2880

9! permutations of 3× 3 matrices, one certainly needs to reduce this set as much as possible. For instance, one can
try to find symmetries such that two permutations, related by the symmetry, yield the same G-complexityλ. These
symmetries allow to buildequivalence classesand, thus, to restrict the exhaustive analysis to only one representative
in each class. Furthermore, one may have the prejudice that any non-trivial symmetry could enable to explain a
possible integrability structure of the mappings and beyond, the structures associated with the classification of the
G-complexity of these mappings.

There actually exist quite trivial symmetries, corresponding to relabeling of rows and columns [19], for which
the G-complexities of the associatedK ’s are obviously equal. It is possible to go a step further and define a
set of equivalence relationsR(n) between the permutations, yielding new equivalence classes such that any two
permutations in the same ‘new’ equivalence class,R(n), automatically have thesame G-complexityλ. Equivalence
relationR(n) amounts to saying that two equivalent permutations are such that thenth power of their associated
transformationsK̂ are conjugated (via particular permutations, product of row permutations, column permutations
and possibly the transposition, see Appendix A for more details). An exhaustive inspection has shown that the
equivalence relationsR(n)’s ‘saturate’ aftern = 24: with obvious notationsR(∞) = R(24). One finds out that the
‘ultimate’ R(∞) equivalence classescan only have72, or 144, elements. Among the ‘ultimate’R(∞) classes, one
wants to distinguish between the classes that were alreadyR(1) classes, that we will denote from now on byR(1)

72 ,

or R(1)
144, according to their number of elements , and the other ones we denoteR(∞)

72 or R(∞)
144 . Being anR(∞)

equivalence class which does not reduce to aR(1) equivalence class, means the existence of several non-trivial
relations between the permutations in theR(∞) equivalence class (see Eq. (A.3) in Appendix A). This implies
strong constraints on the respective orbits. One, thus, expects more properties, and structures, inherited from this
fact. The 362880 permutations are grouped into 2880 equivalence classes (instead of 30462 ‘relabeling’ equivalence
classes in [19]). In Table 1 the number of the respectiveR(1)

72 , R(1)
144,R

(∞)
72 andR(∞)

144 classes is displayed. Since
the complexities do not depend on the chosen representative, we picked a representative in eachR(∞) class and
performed, for it, the semi-numerical method previously explained.
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For 3× 3 matrices, the G-complexities are necessarily such that: 2≥ λ ≥ 1. Remarkably, instead of getting a
quite complicated distribution, or spectrum, of values for the G-complexities, we have obtained values which are
always very close, up to the accuracy of the method, to a set of 17 values given in the left column of Table 1 (see
below) and, of course, the integrable valueλ = 1. To test the accuracy of the method we got G-complexities for two
representatives of thesameclass (that should, as we know, have exactly the same G-complexity value). We always
obtained an equality of the corresponding G-complexities, up to an error of 10−3. This accuracy is, however, not
always sufficient enough to discriminate between some G-complexities displayed in the left column of Table 1. In
order to fix our mind it is necessary to obtain the exact expressions of these G-complexity values, for instance by
getting the factorization schemes (3) and (4), and, thus, the generating functionsα(x) andβ(x).

2.3. Revisiting the G-complexity spectrum via exact factorization schemes

For most of theR(∞) equivalence classes (2832 out of 2880), the G-complexity values, obtained with our semi-
numerical method, are extremely close to the upper limitλ = 2. In fact, one can figure out that these G-complexity
values are actually exactly equal to 2. Therefore, we can focus on the analysis of the remaining 48 classes, finding
systematically their factorization schemes and associated generating functions. We actually found these factorization
schemes and the associated generating functions, and were actually able to see that the previous numerical spectrum
exactlycorresponds to 18 algebraic values listed in Table 1. Among these eighteen algebraic values, let us take four
illustrative examples. We give for each example, the permutation representing theR(∞) equivalence class, the value
of λ, andµ, defined in Section 1.2, the expressions ofβ(x) andρ(x), since they respectively correspond to the
simplest ‘degree generating function’ and ‘exponent generating function’. The other generating functions can be
deduced from these two, using linear functional relations (6)–(8) between the generating functions [2]. Furthermore,
relation (10) remains valid for all the factorization schemes associated with all the various permutations studied here.
We first give the permutationt itself, using the notation, already used in [19], wherep0p1p2p3p4p5p6p7p8 means
that(tM̃)i = M̃pi

, the entries of the matrix being enumerated consecutively (i.e.,M11 = M̃0, M12 = M̃1, M13 =
M̃2, M21 = M̃3, . . . , M33 = M̃8).
• First example.Permutation 407326518 yieldsλ ' 1.61803· · · andµ = 1 and:

β(x)

3x
= 1 − x2

1 − x − x2
, ρ(x) = 1

(1 − x)2(1 + x)
(14)

• Second example.Permutation 417063582 yieldsλ ' 1.83928· · · andµ ' 1.32471· · · and:

β(x)

3x
= 1 − x2 − x3

(1 − x)2(1 + x)(1 − x − x2 − x3)
, ρ(x) = (1 + x)(1 − x + x4)

1 − x2 − x3
(15)

• Third example.Permutation 164273085 yieldsλ ' 1.83928· · · andµ = 1 and:

β(x)

3x
= 1 + x + x2

1 − x − x2 − x3
, ρ(x) = 1 + x3 + x4 + x5

1 − x6
(16)

• Fourth example.Permutation 174528603 yieldsλ ' 1.97458· · · andµ ' 1.32471· · · and:

β(x)

3x
= 1 − x2 − x3

(1 − x)(1 − x − 2x2 − x3 + x4 + 2x5 + x6)
, ρ(x) = 1 − x + x7 + x8

(1 − x + x2)(1 − x2 − x3)
(17)

The exhaustive analysis of the factorization schemes, and the associated degree, and exponent, generating functions
(α(x), β(x), η(x), φ(x) andρ(x)), confirms that the G-complexities are actually independent of the representative
in the equivalence class. On the contrary, the factorization schemes and the associated degree, and exponent,
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generating functions may depend7 on the chosen representative in the equivalence class. In other words, to two
permutations in the same class of equivalence correspond the same (up to 1−x or 1+x, orN th root of unity factors)
denominators for the degree generating functionsα(x), β(x). By contrast the numerators, as well as the exponents
generating functions arerepresentative dependent(see the previous four examples). Most of time thestability of
the factorization schemeand thus, in a second step, the occurrence ofrational generating functions, corresponds to
a simple periodicity of the exponentsηn, φn or ρn in the factorization scheme (3) and (4). This periodicity is simply
associated to the fact that the exponent generating functions haveN th root of unity poles: 1−x2, 1−x8, 1−x6, · · ·
(seeρ(x) in Eq. (16)). However, one sees, in examples (15) and (17), that one may have astabilityof the factorization
scheme with anexponential growthof these exponentsηn andφn. These exponent generating functions, of course,
have a ‘scheme complexity’µ smaller that the G-complexityλ. This ‘scheme complexity’µ is the inverse of the
poles ofρ(x), φ(x) or η(x), that is (for Eq. (17)),µ ' 1.32471· · · ≤ λ ' 1.83928· · · . Recalling Eq. (16), for
whichµ = 1 andλ ' 1.8392· · · , and Eq. (15), one sees that thesameG-complexityλ can be associated toseveral
‘scheme-complexity’µ. Conversely, comparing the fourth example (17) and the second example (15), one sees that
one ‘scheme-complexity’µ can actually yieldseveralG-complexitiesλ.

2.4. To sum up

All these factorization scheme calculations confirm the results of the semi-numerical method and are summarized
in Table 1. Most of the 362880 birational transformations considered here do correspond to the most ‘chaotic G-
complexity’, namely the upper boundλ = 2: one has 359568 suchλ = 2 birational transformations, that is 99.0873%
of all the birational transformations. It is known [19], that some symmetry-classes correspond to situations where
the determinantal variablesxn’s, defined by (9), are periodic (denoted by ‘Period.’ in Table 1). Thisxn = xn+N

situation may correspond to situations where mappingK̂, itself, is of finite order (trivial integrability), but also
to polynomial growth situations, that is,λ = 1 exactly. One remarks thatR(∞)

72 containsall the integrable, or

polynomial growth, mappings and, up to one class inR(1)
72 , all the mappings such thatxn = xn+N , including the

situations where mappinĝK, itself, is of finite order.
The actual value of the upper boundλ = 2 comes from the fact that the homogeneous transformationK is a

quadratictransformation of the nine homogeneous entries of the initial 3× 3 matrix.
Let us remark that all these birational (bipolynomial forK) transformations haveother(birational) representations

than the ‘straight’ representation as a mapping bearing on eight (nine homogeneous) variables inherited from Eqs.
(1) and (2). For instance, for the mappings corresponding to theG-complexityλ ' 1.46557123· · · , it can be shown
that a point in the plane spanned byM0, K

2(M0) andK4(M0) is transformed, byK2, into another point of thesame
plane:

K2(M) = b0M0 + b1K
2(M0) + b2K

4(M0) where M = a0M0 + a1K
2(M0) + a2K

4(M0)

and, thus,K2 can be represented as a birational transformation of onlytwovariables (see Appendix A in [22]). Similar
relations occur for all the birational transformations associated with 3× 3 matrices and classified in Table 1, the
previous (projective) plane being replaced by ad-dimensional space spanned byM0, K

2(M0), · · · , K2d(M0), where
d ≤ 8 for 3× 3 matrices8 . The previous semi-numerical calculations can be applied to these other representations

7 Considering oneR(∞) equivalence class, one does not get as many factorization schemes as the number of elements in the equivalence class.
It seems, inspecting directly all the 9! factorization schemes (but only up to 12 iteration steps), that, most of the time, one gets, at most, two
possible factorization schemes for a givenR(∞) equivalence class, and that the set of all the possible factorization schemes would be 21 (besides
the polynomial growth situations which can be quite ‘rich’).

8 Examples withd = 3 ord = 6 are given in [19] for 4× 4 matrices.
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as birational transformations ond variables and yield the same values for the G-complexities (see for instance [22]
for λ ' 1.46557123· · · ).

3. Various generalizations

We now show that all these results also apply for a much larger set of rational transformations. The number
of permutations of entries of 3× 3 matrices being finite it has been possible to perform an exhaustive analysis.
For more general transformations, depending on continuous parameters, it is not anymore possible and we will
proceed just with chosen examples. These examples always combine homogeneous transformations of the entries
of a matrix together with the matrix inversion. Therefore, the transmutation relations, detailed in Appendix A, still
apply, yielding again non-trivial symmetries for these new set of transformations.

3.1. Combining differentK ’s

Let us first consider permutation 146237058, and its associatedλ ' 1.97481· · · transformationK1, and permu-
tation 471562380 and itsλ ' 1.54258· · · transformationK2. Let us compose the two previous transformations.
From these two ‘atoms’ we build the ‘molecule’K = K2 · K1. Note thatK = K1 · K2, obviously has the same
G-complexity.

This example is an interesting one since the G-complexity (obtained from the previous semi-numerical calcu-
lations) of the ‘molecule’K = K2 · K1 is smaller than the product of the two G-complexities ofK1 andK2:
λ(K) ' 2.897< 1.9748× 1.5426' 3.0463. In general the combination of two G-complexitiesλ1 andλ2 gives a
G-complexity for the ‘molecules’ larger than the productλ1 · λ2, often equal to the upper bound (hereλupper = 4).

The factorization scheme ofK is of the same type as the one described in [22], namely a ‘parity-dependent’
factorization scheme. It is detailed in Appendix B and yields a degree generating functionβ(x):

β(x)

3x
= 1 + 2x − x2 − x4 + x6

1 − 3x2 + x4 − x6 − 2x8
(18)

The G-complexity of the moleculeKdoes not identify with the G-complexity ofK1, or the one ofK2. It is a truenew
algebraic number. This algebraic expression for the G-complexity of the molecule is in good agreement with the semi-
numerical value obtained above. We have systematically studied such ‘molecules’ for a choice of 18 representatives
of the 18 G-complexities of Table 1 combined with themselves, and beyond, withother representatives. If one
barters the permutationt2 for another representativet (2)

2 in the sameR(∞) class, transformationK2 being modified

accordingly (K2 → K
(2)
2 ), the new ‘molecule’K(2) = K

(2)
2 · K1 yields, in general,anotheralgebraic value for the

G-complexityλ: the equivalence relationR(∞) is no longer compatible with the ‘molecular structure’.
For all these ‘molecules’ theparity-dependentfactorization scheme, yields algebraic numbers for the G-com-

plexities of these molecules in agreement with the values obtained from our semi-numerical now applied for the
‘molecules’. Combining among themselves all the permutations yields a large number of different algebraic
G-complexities, much larger than the number of G-complexities obtained combining only representatives of the
R(∞) classes among themselves.

3.2. From permutations to linear transformations

We got algebraic results on birational mappings associated with permutation of the entries. We now address
the following question: are these structures (existence of a stable factorization scheme) dependent of the fact that
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we are dealing with permutations? In other terms, does one loose thesealgebraicproperties when deforming the
permutations in most general transformations? The most simple, and natural, generalization amounts to replacing
the permutation of the entries bylinear combination on the entries.

Let us now consider a first example, namely thequite general linear transformationdepending on 21
parameters:

L:


m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


 →


m1,1 a11m1,1+a12m1,2+a13m1,3+a21m2,1+a22m2,2+a23m2,3+a31m3,1+a32m3,2+a33m3,3 m1,3

m2,1 c21m2,1+c22m2,2+c23m2,3 m2,3

m3,1 b11m1,1+b12m1,2+b13m1,3+b21m2,1+b22m2,2+b23m2,3+b31m3,1+b32m3,2+b33m3,3 m3,3




(19)

This particular form singles out the rows of the 3×3 matrix (and, thus, can be understood as an RCT-compatible form,
see Appendix A). Similarly to the previous paragraphs let us introduce the homogeneous transformationK = L · I .
Factorizations again occur at each iteration step. These factorizations correspond to astable factorization scheme
giving a growth likeλN , whereλ ' 1.61803· · · . It is of the general type described in Eqs. (3) and (4). This yields
the following generating functions:

β(x)

3x
= 1

1 − x − x2
, ρ(x) = 1

1 − x
(20)

These results are actually valid for any ‘sufficiently generic’ choice of the 21 parameters. One thus has a first
‘universality’ property: the G-complexityλ is ‘generically’ not dependent of the previous 21 parameters. Further-
more, relation (10) (and consequently relation (13)remains also validfor all the factorization schemes associated
with all the linear transformations studied in this section. The G-complexityλ ' 1.61803· · · (corresponding to
polynomial 1− x − x2) is a G-complexity value already found in Table 1, in the 16th row. It is noteworthy that no
choice of the 21 parameters leads to a permutation of any of the three classes corresponding toλ ' 1.61803· · · .
Besides the identity, the only choice of parameters, leading to a permutation, isb12 = a32 = 1, all others being zero.
The permutation is then the transpositionM1,2 ↔ M3,2 which corresponds to the G-complexityλ ' 1.46557· · · .
This transposition (denoted by class IV in [20]) is not isolated in the 21 parameters set of transformations. Actually,
if the parameters verify the conditionsb12a32 − a12b32 = c22 = 1 anda12+b32 = 0, all the other parameters being
zero, one then gets additional factorizations, the modified factorization scheme yielding:

ρ(x) = 1

1 − x
,

β(x)

3x
= 1 + x2

1 − x − x3
(21)

and againλ ' 1.46557· · · . There is alsopolynomial growthsubcases, for instancea12 = c22 = b32 = 1, a11

anda22 arbitrary non-zero, all the other ones being zero. Generally speaking, having a G-complexity generically
independent ofr parameters (here twenty one), one can only expectmorefactorizations on some subvariety of the
r-dimensional space, and consequently asmallerG-complexity valueλ on this very subvariety.

We now give another 11 parameter example associated with the following linear transformation:

L :


m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


 →


m1,1 m1,2 + b21m2,1 + b22m2,2 + b23m2,3 m1,3

m2,1 a12m1,2 + a21m2,1 + a22m2,2 + a23m2,3 + a32m3,2 m2,3

m3,1 m3,2 + c21m2,1 + c22m2,2 + c23m2,3 m3,3


 (22)
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ForK = L · I the corresponding generating functions are:

ρ(x) = 1

1 − x
,

β(x)

3x
= 1 − x3

1 − x − x2 − x3 + x4
(23)

The numerator ofβ(x) does not appear in Table 1: this mapping has anew valuefor the G-complexityλ '
1.72088· · · , not previously obtainedfor any of the 9! permutations.

Family (22), depending on 11 continuous parameters, also enables to address the following problem: is the growth
complexity crucially dependent on thereversible character[24] of the transformations? In fact one may lose the
birational character ofK when, for instance, the linear transformationL becomes singular. This is very easy to
realize for some condition on the 11 parameters (codimension one subvariety). For instance, takingb22 = 2, a22 =
87, a12 = 5, a32 = 7, c22 = 11, all the other parameters being zero, leads to anon-invertiblemappingK = L · I .
One easily verifies that the factorization scheme, the associated generating functions and, thus, the G-complexityλ,
areunchangedin this case and, more generally, on such singular subvarieties. With this first rational, non invertible,
example one sees that the rational character of the generating functions is not a consequence of a ‘simple’ invertibility
of the mapping (see also [2]).

3.3. From linear transformations to homogeneous polynomial transformations

There is nothing specific with linear transformations. For instance, let us consider the following quadratic trans-
formation depending on 21 parameters (which is reminiscent of Eq. (19)):

Q :


m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


 →




m2
1,1 a11m

2
1,1+a12m

2
1,2+a13m

2
1,3+a21m

2
2,1+a22m

2
2,2+a23m

2
2,3+a31m

2
3,1+a32m

2
3,2+a33m

2
3,3 m2

1,3

m2
2,1 c21m

2
2,1+c22m

2
2,2+c23m

2
2,3 m2

2,3

m2
3,1 b11m

2
1,1+b12m

2
1,2+b13m

2
1,3+b21m

2
2,1+b22m

2
2,2+b23m

2
2,3+b31m

2
3,1+b32m

2
3,2+b33m

2
3,3 m2

3,3




(24)

The homogeneous transformationK = Q · I gives againa stable factorization scheme. In this case, whereQ
is no longer a linear transformation, but a homogeneous polynomial transformation of degreer (herer = 2), the
factorization scheme remains of the general forms (3) and (4). As far as generating functions are concerned some
modifications have to be done. Firstly, theρn’s, and associatedρ(x), should be replaced by theγn’s defined by:

K̂(Mn) = K(Mn)

det(Mn)r
= Mn+1

f
γ0
n+1 · f

γ1
n · f

γ2
n−1 · · · (25)

and the corresponding generating functionγ (x). The linear relations betweenη(x), φ(x) andγ (x) are slightly
modified (see Eqs. (C.1) and (C.4) in Appendix C). Secondly, relation (10) is no longer valid here. A new relation
has to be introduced playing the same role. TransformationK̂ = Q · Î is a homogeneous transformation of degree
−r. Instead of introducing the determinantal variablesxn through Eq. (9), let us introducẽxn by:

x̃n(M0) = det(K̂n+1(M0))
(
det(K̂n(M0))

)r

(26)

These new determinantal variablesx̃n are well-suited ones since they areinvariant under a rescaling ofM0:
x̃n(Cst · M0) = x̃n(M0). Relation (10) becomes:

x̃n(M0) = f
W0
n+1f

W1
n f

W2
n−1f

W3
n−2 . . . f

Wn+1
0 (27)
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Again, one can introduce the generating function of these exponentsWn and see that relation (13) still holds.
From the stable factorization scheme ofK = Q · I one now gets:

β(x)

3x
= 1

1 − 3x − 2x2
, γ (x) = 2

1 − x

1 − 2x
(28)

This gives a G-complexity valueλ ' 3.5615· · · . Let us consider the expression ofα(x):

α(x) = 3(1 + x − 2x2 + 4x3)

(1 + 2x)(1 − 2x)(1 − 3x − 2x2)
(29)

In this expression one sees that other poles occur. The inverse of these additional poles, namely±2, are actually
smaller that the complexity value 3.56155· · · . The existence of ‘subdominant’ poles already occurred with permu-
tations of entries, or linear transformations (seeβ(x) in Eq. (15)): we often had 1− x, or 1+ x, additional factors
in the expressions of the degree generating functions. With expression (29), one sees the occurrence of a 1− 2x

factor instead of 1− x factors.
There is also nothing specific with quadratic transformations. Let us introduce the simple homogeneous polyno-

mial of degreer:

Qr :




m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3


 →




mr
1,1 mr

1,2 mr
1,3

mr
3,2 mr

2,2 mr
3,1

mr
2,3 mr

2,1 mr
3,3


 (30)

and its associated homogeneous transformationK = Qr · I . Its factorization scheme is very simple, it reads for
r ≥ 2 (for r = 1 transformation (30), andK = Qr · I , become trivial):

Mn = K(Mn−1)

f r
n−1

, det(Mn) = fn+1 f 2
n (31)

which yields the following linear relations on theαn’s andβn’s (see also Appendix C):

αn = 2rαn−1 − 3rβn−1, αn = βn+1 + 2βn (32)

It gives the following generating functions for arbitraryr ≥ 2:

β(x)

3x
= 1

1 + 2(1 − r)x − rx2
, η(x) = r, φ(x) = 1 + 2x, γ (x) = r · (1 + x) (33)

For homogeneous polynomials of degreer one can show that subdominant poles, like 1− rx, may occur instead
of the previous 1− x and 1− 2x factors.

For r = 2, one remarks that one gets a degree generating function:

β(x)

3x
= 1

1 − 2x − 2x2
(34)

which is not the limit of Eq. (28). The generic G-complexity corresponding to Eq. (28), namelyλ ' 3.56155· · ·
is changed, for Eq. (30) taken forr = 2, into λ ' 2.73205· · · . There actually exist many subvarieties of the
21 parameter space of transformation (24) on which the generic G-complexityλ ' 3.56155· · · is modified into
another (smaller) algebraic value. One remarks that the subvarieties of the 21 parameter space of transformation
(19) (for instance,a12 = c22 = b32 = 1, a11 anda22 arbitrary non-zero, all the other ones being zero, previously
mentioned as a polynomial growth subcase) also yield ‘non-generic’ G-complexities for Eq. (24).
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4. Conclusion

In previous papers [22,28], it has been shown that the (exponential of the) topological entropy, and the growth
complexityλ (related to the asymptotic of the Arnold complexity for two-dimensional mappings), actually identify
on various simple two-dimensional birational examples, and that these quantities are actually algebraic numbers.
The generating functions corresponding to these two ‘complexity measures’, namely thedynamical zeta function
[25–28] and the various ‘degree’ generating functions (likeβ(x)) were shown to be simplerational expressions
with integer coefficients [22], the dominant poles in these two sets of generating functions being the same. When
one analyzes birational transformations depending on more than two variables, it becomes very difficult to calculate
even the first coefficients of the expansion of the dynamical zeta function. On the contrary, the calculations on the
degree generating functions can be quite easily performed, even for birational transformations of many variables
(theq2 entries of a matrix [2]).

Analyzing exhaustively a first finite set of 362880 birational transformations (associated with all the permutations
of 3× 3 matrices), we have obtained non-trivial, but still simple, ‘spectrum’ of 18 algebraicG-complexities for the
corresponding dynamical systems. In a second step it has been shown that these results can be drastically general-
ized along three different linespreserving the algebraic character of the G-complexities. Firstly, one can combine
these birational transformations together, and gets extremely rich sets ofalgebraicG-complexities. Secondly, one
can consider (generically birational) transformations, associated with linear transformations of the entries of 3× 3
matrices, and still gets sets of algebraic G-complexities. Remarkably, one has anotheruniversalityproperty here:
these algebraic G-complexities do not depend on many of the continuous parameters associated with the linear
transformations. Thirdly, one still gets sets of algebraic G-complexities withrational transformations (associated
with homogeneous polynomial transformations on the entries) which again can depend on many continuous param-
eters. With this last generalization we have completely lost any invertible character of the transformations. On the
top of that these 3×3 matrix calculations can be simply generalized toq ×q matricesfor arbitrary 9 q. Combining
several of these rational transformations depending on several continuous parameters together, one certainly gets
again rich sets ofalgebraicG-complexities.

Appendix A. A transmutation property of the matrix inversion

Let us sketch here some non-trivial symmetries between the permutations. The transformations, considered
in Sections 1.2 and 2.3, are products of matrix inversion and permutations of the entries. Any such non-trivial
symmetry of the birational transformationŝK should correspond to a non-trivial relation between matrix inversion
and permutations of the entries of the matrix. Such relations actually exist. They correspond to a ‘transmutation’
property between the inversion and permutationsP andQ. There actually exist two permutationsP andQ such
that:

P · Î = Î · Q (A.1)

Permutations, such that a ‘transmutation’ relation (A.1) is satisfied, do exist: one can easily build examples
by combining product of permutations that permutesonly rowsof a q × q matrix (that we will denote by ‘R’),
permutations that permutesonly columnsof a q × q matrix (that we will denote by ‘C’) and, possibly, the matrix
transposition we denote by ‘T ’. Examples of permutationsP andQ, such that (A.1) is satisfied, read:

P = R · C · T ε where ε = 0, or 1 (A.2)

9 The ‘spectrum’ of values of the G-complexityλ depends onq, see for instance [2].
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and similarly for permutationQ. A permutationP having such a decomposition (A.2) will be called an ‘RCT’
permutation.

Let us consider two permutationst1 andt2, yielding the two birational transformationŝK1 = t1 · Î andK̂2 = t2 · Î ,
respectively. Let us introduce the following relation of equivalence between two permutationst1 andt2: t1 andt2

will be related if they are such that there exists an ‘RCT’ permutation,b0, such that:

K̂n
1 = b0 · K̂n

2 · b−1
0 (A.3)

Relation (A.3) can easily be seen to define a relation of equivalence betweent1 andt2, we will denoteR(n):

t1R
(n)t2 (A.4)

Note that thisR(n) equivalence relation is compatible with the inverse in the permutation groupt → t−1.
Also, note that the equivalence of two permutations, up to simple rows and columns relabeling, is anR(1) equivalence,
however, conversely, theR(1) equivalence does not reduce to the simple, and quite trivial, equivalence of two
permutations up to simple rows and columns relabeling. Obviously, rows and columns relabeling of the matrices
do not modify their integrability properties [19], as well as the growth of the calculations.

It is obvious that ift1R(n)t2 thent1R(n×p)t2 for any natural integerp. This is a consequence of the fact that:

K̂n
1 = b0 · K̂n

2 · b−1
0 yields K̂

np

1 = b0 · K̂
np

2 · b−1
0 (A.5)

If two permutations,t1 andt2, are in the same equivalence class with respect toR(m), and if t2 andt3 are in the
same equivalence class with respect toR(n) wheren 6= m, t1 andt3 are in the same equivalence class with respect
to R(n×m), or with respect toR(N) for some ‘large enough’ integerN . In fact, it can be shown, on the example
of the equivalence classification of the permutations of 3× 3 matrices, that this value ofN corresponding to the
(‘asymptotic’ equivalence) relation is actually equal toN = 24.

If two permutationst1 andt2 are in the same equivalence class, with respect toR(m), the G-complexities (which
are real positive numbers), associated with their respective birational transformationsK̂1 andK̂2, we denote byλ1

andλ2 are, as a straight consequence of Eq. (A.3), related by:

λm
1 = λm

2 (A.6)

Therefore, one sees that theirG-complexities are equal:λ1 = λ2. In particular, if one considers the (largest)
equivalence classes corresponding, for 3× 3 matrices, toR(24), all the representatives in one of theseR(24)

equivalence classes will have thesame growth complexityλ.

Appendix B. A molecular factorization scheme

The factorization scheme ofK = t1·I ·t2·I , corresponding to permutation 146237058 and permutation 471562380
(see Section 3.1), is of the same type as the one described in [22], namely aparity-dependentfactorization scheme
(which is a straight consequence of the fact that one acts withK1, and then withK2, and again ...):

f1 = det(M0) M1 = K1(M0), f2 = det(M1), M2 = K2(M1), f3 = det(M2)

f2
, M3 = K1(M2),

f4 = det(M3), M4 = K2(M3), f5 = det(M4)

f 3
2 f4

, M5 = K1(M4)

f2
, f6 = det(M5)

f 2
2 f4

, · · · (B.1)
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and for arbitraryn ≥ 3:

det(Mn) = fn+1 fn f 3
n−2 fn−6 fn−8 fn−10fn−12fn−14 · · ·

K1(Mn) = Mn+1 fn−2
(B.2)

for n even and:

det(Mn) = fn+1 fn−1 f 2
n−3 fn−5 f 2

n−7 f 2
n−9 f 2

n−11f 2
n−13 · · ·

K2(Mn) = Mn+1 fn−3 fn−7 fn−9 fn−11fn−13 · · · (B.3)

for n odd. This yields the following expressions for the odd and even parts ofα(x) andβ(x) (‘2’ for even and ‘1’
for odd):

β2(x) = 6x2

1 − 3x2 + x4 − x6 − 2x8
, β1(x) = 3x(1 + x2) (−1 + x)2 (x + 1)2

1 − 3x2 + x4 − x6 − 2x8

α2(x) = 3(1 + 4x4 − 4x6 + x8)

(1 − x2)(1 − 3x2 + x4 − x6 − 2x8)
, α1(x) = 6x(1 + x4 − x6 + x8)

(1 − x2)(1 − 3x2 + x4 − x6 − 2x8)
(B.4)

These generating functions yield a ‘molecular G-complexity’:λ ' 2.8581· · · . These generating functions verify
a parity dependent system of functional relations which generalizes the ones described in [2]:

x α1(x) − β2(x) = F2p(x)β2(x), x α2(x) − β1(x) = F1m(x)β2(x)

α2(x) − 3 − 2xα1(x) + 3G2pβ2(x) = 0, α1(x) − 2xα2(x) + 3G1mβ2(x) = 0 (B.5)

where:

F2p(x) = x2 + 2x4 + x6 + 2x8

1 − x2
, F1m = 2x3 − x5 + x

1 − x2
, G1m(x) = x3, G2p = x4 + x8

1 − x2

Appendix C. Exponent generating functions for homogeneous polynomial transformations of degreer

Let us consider a homogeneous transformationQr of degreer (like Eq. (30), or like Eq. (24) forr = 2) and
its associated homogeneous transformationK = Qr · I . Relations (3) and (4) are still valid but yield a slight
modification of the linear functional relations (6) and (7), namely:

((q − 1)rx − 1) · α(x) + q − qxη(x)β(x) = 0 (C.1)

xα(x) = φ(x)β(x) (C.2)

Let us recall that, for homogeneous transformations of degreer, one must introduce, instead ofρ(x), the generating
functionγ (x) (see Section 3.3) defined by:

K̂(Mn) = K(Mn)

det(Mn)r = Mn+1

f
γ0
n+1 f

γ1
n f

γ2
n−1 · · · (C.3)

This last relation yields a new relation:

q + qγ (x)β(x) = (1 + rx)α(x) (C.4)

which has to be compatible with the previous two Eqs. (C.1) and (C.2):

rφ(x) = γ (x) + xη(x) (C.5)
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