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Abstract

We first study the iteration of birational mappings generated by the composition of the matrix inversion and of a permutation
of the entries of 3x 3 matrices, and consider the dege&@) of the numerators (or denominators) of the corresponding
successive rational expressions for thb iterate. The growth of this degree is (generically) exponential withi(n) ~
A", A is called the growth complexity. We introduce a semi-numerical analysis which enables to compute these growth
complexitiesi for all the 9! possible birational transformations. These growth complexities correspond to a spectrum of
eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous
polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated
birational, or even rational, transformations yield algebraic values for their growth complexities. ©1999 Elsevier Science B.V.
All rights reserved.

PACS:05.45.+b; 47.52.4j

Keywords:Arnold complexity; Discrete dynamical systems; Rational mappings; Iteration growth

1. Introduction and recalls

Birational transformations have been seen to be a powerful tool to analyze the symmetries of the parameter
space of lattice models of statistical mechanics [1,2] and to seek for some possible Yang—Baxter integrability [3,4].
Beyond the lattice statistical mechanics framework, birational transformations are worthy to be pardiedas
discrete dynamical systems. In particular, one should mention many works on birational plane mappings (Cremona
transformations) [5] and more recently results on the integrability of these birational plane mappings [6,7]. Discrete
dynamical systems have been intensively studied (see for example [8-11]). Among them polynomial examples,
like the Henon map [12], have been precious to understand some features of chaos. Beyond, rational mappings
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are of special interest since they allow some analytical calculations. Furthermore, the rational transformations also
allow numerical calculations which can be performed with any wanted precision : the existence of singularities in
the rational transformations one iterates, and their possible ‘proliferation’ is not in fact a numerical obstruction.
We will first consider mappings generated by the composition of the matrix inverse and some arbitrary, but fixed,
permutation of the entries gfx g matrices. The results, displayed in this paper, are givedq fer3, but are actually

valid, mutatis mutandi§?], for arbitraryq values.

1.1. Recalling a previoud x 3 analysis

Integrability of a mapping amounts to saying that all the orbits of the iteration correspond to elliptic, or rational,
algebraic curves [13,14]. From the point of view of the grolvtbf the complexity of the successive iterations
[13,14], such integrability in curves always yieldgpalynomial growthof the calculations [1,2], instead of the
exponential growth one generically expects. Conversely, polynomial growth is not restricted to integrability in
curves but may correspond to orbits ‘densifying’ Abelian varieties [1,2].

A first exhaustive analysis of all the 9! birational transformations generated by the composition of the matrix
inversion and of a (fixed) permutation of the entries of 3 matrices has already been performed concentrating
on the extraction of integrable mappings [19]. This analysis was exhaustive, but restricted to particular integrability
criteria? . Even from this ‘integrability-digger’ point of view some integrable mappings are missing (for example,
the so-called ‘Class III’ mappings of [20], as well as some polynomial growth situations). In the first part of this
paper we will revisit these 3 362880 birational mappings without aayriori integrability criterion and with the
help of a new equivalence relation among permutations (Symmetry). This analysis exactlpligidpolynomial
growth situations, and, far beyormdassifieghe exponential growth situations. The classification relies on the value
of the Arnold complexity{21] of the mapping. This complexity can be obtained [22] from generating functions
associated with factorization schemes [2] detailed below.

1.2. Factorization scheme and generating functions

We use the same notations as in [13,14,20], that is, we introduce the following two transformations, the usual
matrix inversel and thehomogeneoumatrix inverse/ :

[: Mo— My*, and I: Mo—> det(Mo)- My* 1)

The homogeneous invergés a homogeneous polynomial transformation, which associates, with each emfgy of
its corresponding cofactor. Transformatiois any (fixed) permutation of the entries of thex3 matrix. We also
introduce the (generically infinite order) transformations:

K=:¢-1 and K=1-1 2)

Transformatiork is clearly abirational transformatior{13,14].
For all the various birational transformations associated with permutations of the entries®fh&atrices, the
following factorization relations happen to ocaitreachiteration step [2] :

_ det(My) KMy detMy) _ K(M)

3= —

fi=detMo), Mi=K(Mp), fo=——", My=—72, . Ma=——2
e P 77 e

LWhen one iterates a rational transformations the ‘size’ of the successive rational expressions, correspondiMthtiietate, grows, in
general, exponentially. In particular, thegreeof these successive rational expressions has, generically, an exponential growth [1,15]. Growth
of the calculations related with factorizations were also introduced by Veselov for some particular Cremona transformations [16—18].

2 Associated with particular recursions [19] on some ‘determinantal’ variables [18, B4lalso introduced here in Section 1.2.
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and for arbitrary::

det(M,) = dettM,) = [ | £, , with go=1 (3)
k=0
n—1
K(M,) = (l_[ fnnkk> “Mpy1 (4)
k=0
det(M,) M, 11 = (H ,',Oilk) -K(M,) with pg=1 (%)
k=0

defining the positive integer exponengs, ¢,, and p,, such thatoy = ¢ — nx—1, n > k > 0,n_1 = 0. The f,,’s
are homogeneous polynomials of the entried\af These factorizations allow to define, at each iteration step,
the successivg,’'s one can ‘factor out’, and the ‘reduced matricas;’s, such that their entries are homogeneous
polynomial expressions of the initial entries, and have no further factorization. One finds out, looking at the first 30
iterations, that one recovers ts@mesxponents«,, ¢,, p,) at each iteration step (up to the last emerging coefficient
for f1). We assume that this regularity property holds for arbitraffhis regularity? property assumption is crucial
in our analysis.

We will denote by, the degree of the determinant of matfif,, and byg, the degree of polynomiaf, and
a(x), B(x), n(x), ¢ (x) andp(x), the generating functions of the degregss, B,,'s, and of the exponentg,’s, p,,'s
andg,’'s in the factorization schemes:

o o o [e¢) o
a) =Y apx", B =) Bux",  p@) =) nax", P =) gax",  px) =) pux"
n=0 n=1 n=0 n=0 n=0

whereag = 3 andp; = 3. It is straightforward to show [2] that the existence of sit@blefactorization schemes
(3) and (4) yields the following simple linear relations between these various ‘exponents generating functions’, for
instancex n(x) = ¢ (x) — p(x), and the ‘degree generating functions’:

a(x) +3xn(x) B(x) =3+ 2x a(x) (6)
xa(x) =¢(x)Bx) (7)
3+3p(x)B(x) =1+ x)alx) 8)

When analytically iterating an arbitrary transformatikin the degree of the successive polynomial expressions
one encounters, grow exponentially;: or 8, >~ A", wherex measures the growth of the calculations and is closely
related, for mappings of two variables, with the notion of Arrfoldomplexity [21,22] (more precisely with the
asymptotic behaviour of the Arnold complexity). From nowjowill be called the ‘growthcomplexity or more
simply, G-complexity. When the degree generating functi®ts) or (x) happen to be rational functions, the

3n fact it is shown in [22] that other slightly more general factorizations scheme can occur orkKsamariant subvarieties (yielding smaller
Arnold complexity values). Such slightly more general factorizations scheme will also be detailed below (see Appendix B). However, for the
transformation associated with permutations @¢fx ¢ matrices, for a generic initial matrix, one gets factorization schemes like Egs. (3) and
(4), also depicted in [2].

4More precisely the Arnold complexity 4 (n) is proportional (for plane maps) ttin), the degree of theth iteration of the birational mapping
which behaves liké(n) ~ A". This ‘degree notion’ was introduced by A.P. Veselov in exact correspondence with the general Arnold definition
[21]. Note that the concept of Arnold complexig/notrestricted to two-dimensional maps.
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G-complexity is obviously the inverse of the pole of smallest modulus. Recalling the ‘determinantal’ variables
[13,14,20]x,’s defined by:

X2 (Mo) = det(K"*1(Mo)) det(K"(Mo)) )

one finds out that these determinantal variables happen to decompose on a product of the homogeneous polynomials
fn's only:

Xa(Mo) = f00 F% F12 F1% f% f1% - with wo=1,w; €Z (10)

which defines some, at first sight, ‘new’ exponemntss and consequently a, at first sight, ‘new’ generating function
W(x):

W(x) = an x" (11)
n=0

It is worth noting that the determinantal variabigss induce the homogeneous polynomiglss emerging from
the factorization schemes (3) and (4) and no other homogeneous polynomials. The vayistdes well-suited
since they are invariant under a multiplicationi§ by a constantMy — Cst - Mp. In other words, the;,’s are
homogeneous expressions of degree zero. Concentrating on the degrees of the left-hand side, and right-hand side,
of EqQ. (10)), one gets the following ‘degree equation’:

O=ﬁn+lw0+,3nwl+"'+ﬁn—pwp+1+"'+ﬂlwn (12)
from which one immediately deduces the simple functional equation:
W(x) B(x) = Brwox = 3x (13)

This resultis immediately generalizedg¢ox ¢ matrices. Relation (13) becom®s(x) 8(x) = ¢ x. From Eg. (13)
one actually sees thaV(x) is nota new generating function: it is simply related to the degree generating function
B(x). The G-complexity is associated to theeroesof W(x).

From relations (6)—(8), one easily gets the ‘degree generating functiagnsands(x) from two of the ‘exponent
generating functions’ (for instanggx) andn(x) orn(x) andp (x)). As a matter of fact, for most of the permutations,
the factorization schemes agreriodic(n, = nu+n, dn = dnrny andp, = p,n for someintegeN). Consequently,
the exponent generating functiopigx) andn(x), or p(x), arerational functions withNth root of unity poles [2]
(see, for instance, the exponent generating fungtion in Eq. (14) or (16)). In a second step one deduces, from
relation (6), or (7), rational expressions for the degree generating funetionsand g(x). However, it will be
seen below that, for some permutations, the factorization schameasill regular, but not with periodic exponents
(see the exponent generating functjotx) in Eq. (15) or (17)): the exponents, ¢, andp,, grow exponentially
but one remarks that the associated generating functions ¢ (x), p(x) arestill rational, and, thuse(x) and
B(x) are also rational The exponent generating functions can be seen as an ‘encoding’ of the degree generating
functions, and, thus of the G-complexity Remark that all these rational expressions invahtegercoefficients,
yieldingalgebraicvalues for their poles and for the growth of the calculations: the degrees of the successive rational
expressions, namely,’s and 8,’s grow like A", wherea is analgebraic numberand for regular factorization
schemes (like (15) or (17), see below) the expongn@nde, grow like 1", whereu is the ‘scheme complexity’.
Note thatu is obviously such thatt < A. Exponentu is also the inverse of the pole of smallest modulus of
the exponent generating functions. The G-complexibllows all kinds of handy, efficient, and formal, or semi-
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numerical, calculations. We will present below such a semi-numerical method and appyl thempermutations
of entries of 3x 3 matrices .

2. G-complexity spectrum analysis for permutations
2.1. A semi-numerical method

All these considerations allow us to desigeeami-numerical methaot get the value of the G-complexityfor
the iteration ofational transformations. The idea is to iterate, wikh a generic initial matrix withintegerentries.
After one iteration step the entries become rational and we follow the magnitude of the successive numerators
and denominators. During the first few iteration steps some ‘accidental’ simplifications may occur, but, after this
transient regime, the integer denominators (for instance) growfikeheren is the number of iterations. One can
systematically improve the method as follows: the initial matrix is chosen in such a way that it avoids, as much as
possible, any ‘accidental’ additional factorization in comparison with the factorization scheme associated with a
generic matrix. For instance, in a factorization scheme framework like Egs. (3) and (4), one chooses the initial matrix
Mo with integer entries such that the determinant, and most of its cofactors, are prime numbers as large as possible.
One may impose further constraints on the initial matrices, for instance, that the first homogeneous polyfiomials
and f3 are also prime numbers as large as possible. These conditions down-size the probability that all the entries
of the reduced matriceX,,, or the polynomialsf,’s, could be divisible by some accidental addition@l fo or
f3. Such initial matrices, well-suited for the iteration of the homogeneous transfornfatiare also well-suited
for the iteration of the (bi)rational transformatidd. In practice, we start with a set of initial matrices and keep
only the one for which théessfactorizations occur (non-generic factorization can only correspodiddional
factorizations).

The computations are done using an infinite precision C-li5td®g]. We perform as many iterations as possible
during a given CPU tim& . This number of iterations;, is such thaf” ~ A". For close to 2 and” = 60s,n is
of the order of 20 and a best fit of the logarithm of the numerator as a linear functigrbetweerm = 10 and
n = 20, gives the value of within an accuracy of A%. For smaller values d&f (typically 2 < 1.5) the number of
iterations is larger, but the accuracy, for a given CPU time, is smaller. In such ‘difficult’ cases one analytically finds
the factorizations up ta = 7 and implement the first steps of these factorization schemes in the semi-numerical
method. We are then almost guaranteed that no accidental factorizations will oceur forand therefore, we can
average over many initial matrices. Even so it remains difficult to discriminate between a truly polynomial growth
[1,2] (. = 1) and an exponential growth with >~ 1. The G-complexity values close to one clearly need to be
revisited by other methods we present below.

2.2. Equivalence relations between permutations

Evenifthis semi-numerical algorithm is efficientitis quite time consuming to use it directly on the 9! permutations.
To classify the G-complexities associated to a large set of (birational) transformations like the one associated to the

5 However, one should keep in mind that there is nothing specific witt83natrices. These results simply generalize to ¢ matrices (see
for instance [2]).

6 The multi-precision library gmp (GNU MP) is part of the GNU project. It is a library for arbitrary precision arithmetic, operating on signed
integers, rational numbers and floating points numbers. It is designed to be as fast as possible, both for small and huge operands. The current
version is: 2.0.2. Targeted platforms and Software/Hardware requirements are any Unix machine, DOS and others, with an operating system
including files ad a C compiler.
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Table 1

A Polynomial R, RY R Ry Total
2 1-2x 2145 640 14 33 2832
1.97481871 L 2x 4 x% — 2x3 4 x4 — 205 4+ &6 0 2 0 0 2
1.97458465 x—2x2 — 334 x4+ 25 448 0 1 0 0 1
1.94893574 - 2x +x° —x7 0 2 0 0 2
1.94685627 Ex—x2—x3—x4—x54x8 0 1 0 0 1
1.93318498 - 2x + x4 —x° 0 1 0 0 1
1.89110302 - 2x 4 x% — 2x3 4 2¢% — 2x5 0 0 0 1 1
1.88320350 - 2x +x2 —2x3 4 x4 0 2 0 6 8
1.86676040 - 2x +x3 — x* 0 1 0 0 1
1.86007305 Lx—x2—x*—2.x° 0 1 0 0 1
1.85712752 2x +x2 —x3 —x® x4 x8 294 410 0 1 0 0 1
1.83928675 x—x2—x3 0 2 0 0 2
1.75487766 - 2x 4 x2 — &8 1 0 0 0 1
1.61803399 x—x2 0 3 0 0 3
1.57014731 x—x3— 0 1 0 0 1
1.54257960 x—x3—x"—x8 0 1 0 0 1
1.46557123 x—x3 0 0 0 2 2
1 (Pol.gr.) 1-x, 1—xV, ... 0 0 0 9 9
1 (Period.) 0 1 0 9 10
Total 2146 660 14 60 2880

9! permutations of X 3 matrices, one certainly needs to reduce this set as much as possible. For instance, one can
try to find symmetries such that two permutations, related by the symmetry, yield the same G-complEhége
symmetries allow to builéquivalence classesd, thus, to restrict the exhaustive analysis to only one representative

in each class. Furthermore, one may have the prejudice that any non-trivial symmetry could enable to explain a
possible integrability structure of the mappings and beyond, the structures associated with the classification of the
G-complexity of these mappings.

There actually exist quite trivial symmetries, corresponding to relabeling of rows and columns [19], for which
the G-complexities of the associatéds are obviously equal. It is possible to go a step further and define a
set of equivalence relatior8™ between the permutations, yielding new equivalence classes such that any two
permutations in the same ‘new’ equivalence cld$), automatically have theame G-complexity. Equivalence
relation R amounts to saying that two equivalent permutations are such thathtgower of their associated
transformationK are conjugated (via particular permutations, product of row permutations, column permutations
and possibly the transposition, see Appendix A for more details). An exhaustive inspection has shown that the
equivalence relationR"’s ‘saturate’ aftem: = 24: with obvious notation® > = R4, One finds out that the
‘ultimate’ R equivalence classesn only haver2, or 144, elements. Among the ‘ultimat®> classes, one

wants to distinguish between the classes that were alrB&byclasses, that we will denote from now on 12)

or R(li)m according to their number of elements , and the other ones we d@g@)eor R{%). Being anR(*
equivalence class which does not reduce ®B@& equivalence class, means the existence of several non-trivial
relations between the permutations in tR&°) equivalence class (see Eqg. (A.3) in Appendix A). This implies
strong constraints on the respective orbits. One, thus, expects more properties, and structures, inherited from this
fact. The 362880 permutations are grouped into 2880 equivalence classes (instead of 30462 ‘relabeling’ equivalence
classes in [19]). In Table 1 the number of the respe@%, R(ﬁfm R%"zo) andR(l‘Zﬁf classes is displayed. Since

the complexities do not depend on the chosen representative, we picked a representativeRifteathss and
performed, for it, the semi-numerical method previously explained.
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For 3 x 3 matrices, the G-complexities are necessarily such that:22> 1. Remarkably, instead of getting a
quite complicated distribution, or spectrum, of values for the G-complexities, we have obtained values which are
always very close, up to the accuracy of the method, to a set of 17 values given in the left column of Table 1 (see
below) and, of course, the integrable value- 1. To test the accuracy of the method we got G-complexities for two
representatives of theameclass (that should, as we know, have exactly the same G-complexity value). We always
obtained an equality of the corresponding G-complexities, up to an erroréf TBis accuracy is, however, not
always sufficient enough to discriminate between some G-complexities displayed in the left column of Table 1. In
order to fix our mind it is necessary to obtain the exact expressions of these G-complexity values, for instance by
getting the factorization schemes (3) and (4), and, thus, the generating furotiorend g (x).

2.3. Reuvisiting the G-complexity spectrum via exact factorization schemes

For most of theR(> equivalence classes (2832 out of 2880), the G-complexity values, obtained with our semi-
numerical method, are extremely close to the upper limit 2. In fact, one can figure out that these G-complexity
values are actually exactly equal to 2. Therefore, we can focus on the analysis of the remaining 48 classes, finding
systematically their factorization schemes and associated generating functions. We actually found these factorization
schemes and the associated generating functions, and were actually able to see that the previous humerical spectrum
exactlycorresponds to 18 algebraic values listed in Table 1. Among these eighteen algebraic values, let us take four
illustrative examples. We give for each example, the permutation representiR§thequivalence class, the value
of A, andu, defined in Section 1.2, the expressions3éf) and p(x), since they respectively correspond to the
simplest ‘degree generating function’ and ‘exponent generating function’. The other generating functions can be
deduced from these two, using linear functional relations (6)—(8) between the generating functions [2]. Furthermore,
relation (10) remains valid for all the factorization schemes associated with all the various permutations studied here.
We first give the permutationitself, using the notation, already used in [19], Whpﬁ@1p2p3p4p5p6p7p8 means
that(tM); = M,,, the entries of the matrix being enumerated consecutively §iLg.,= Mo, M1o = M1, M1z =
My, M1 = Ms, ..., M3z = Mp).

e First exampIePermutatlon 407326518 yields~ 1.61803 - - andu = 1 and:

B(x) 1—x? 1
= , =—F—— 14
3x 1—x—x2 pE) (1-x)2(1+x) ()
e Second exampl®ermutation 417063582 yields~ 1.83928 .- andu ~ 1.32471. - - and:
B(x) 1—x2—x3 (1+x)(1—x+x4)
3x 1-—x)A+x)1—x —x¢—x% 1—xc—x
e Third examplePermutation 164273085 yields~ 1.83928 - - andu = 1 and:
(x) 1+ x + x2 14+ x3+ x4+ x>
3x 1—x—x%—x 1—x
e Fourth examplePermutation 174528603 yields~ 1.97458 - - andu ~ 1.32471 - - and:
B(x) 1—x2—x3 1—x+x"+x8
= 2_ 31 .4 5. 6 P0)= 2 2_ .3 17)
3x A—x)A—x —2x% — x5+ x4+ 2x°> + x9 A—x+x9)A—x%—x%

The exhaustive analysis of the factorization schemes, and the associated degree, and exponent, generating functions
(a(x), B(x), n(x), ¢ (x) andp(x)), confirms that the G-complexities are actually independent of the representative
in the equivalence class. On the contrary, the factorization schemes and the associated degree, and exponent,
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generating functions may depehan the chosen representative in the equivalence class. In other words, to two
permutations in the same class of equivalence correspond the same {up to 1+ x, or Nth root of unity factors)
denominators for the degree generating functo(s, 8(x). By contrast the numerators, as well as the exponents
generating functions anepresentative dependefstee the previous four examples). Most of time skahility of

the factorization scherrend thus, in a second step, the occurrenaatidénal generating functions, corresponds to

a simple periodicity of the exponenis, ¢, or p, in the factorization scheme (3) and (4). This periodicity is simply
associated to the fact that the exponent generating functions\ttveot of unity poles: +-x2, 1—x8,1— x5, ...
(seep(x) i Eq. (16)). However, one sees, in examples (15) and (17), that one maystabdigy of the factorization
scheme with aexponential growtlof these exponents, and¢,. These exponent generating functions, of course,
have a ‘scheme complexityi smaller that the G-complexity. This ‘scheme complexityjs is the inverse of the
poles ofp(x), ¢ (x) or n(x), that is (for Eq. (17))pu >~ 1.32471.-- < ) ~ 1.83928 - .. Recalling Eq. (16), for
whichu = 1andx ~ 1.8392. - ., and Eq. (15), one sees that g@meG-complexitys can be associated several
‘scheme-complexityjt. Conversely, comparing the fourth example (17) and the second example (15), one sees that
one ‘scheme-complexity: can actually yieldseveralG-complexitiesi.

2.4. Tosumup

All these factorization scheme calculations confirm the results of the semi-numerical method and are summarized
in Table 1. Most of the 362880 birational transformations considered here do correspond to the most ‘chaotic G-
complexity’, namely the upper bound= 2: one has 359568 suzh= 2 birational transformations, thatis 99.0873%
of all the birational transformations. It is known [19], that some symmetry-classes correspond to situations where
the determinantal variables’s, defined by (9), are periodic (denoted by ‘Period.’ in Table 1). This= x,1n
situation may correspond to situations where mapgindgtself, is of finite order (trivial integrability), but also

to polynomial growth situations, that i, = 1 exactly One remarks thaR(7°2°) containsall the integrable or

polynomial growth mappings and, up to one classm%), all the mappings such that = x,y, including the
situations where mappiné, itself, is of finite order.

The actual value of the upper bouihd= 2 comes from the fact that the homogeneous transforméafias a
guadratictransformation of the nine homogeneous entries of the initial3matrix.

Let us remark that all these birational (bipolynomial kbytransformations hawether(birational) representations
than the ‘straight’ representation as a mapping bearing on eight (nine homogeneous) variables inherited from Eqgs.
(1) and (2). For instance, for the mappings corresponding tGthemplexityr ~ 1.46557123 - -, it can be shown
that a point in the plane spanned My, K 2(Mo) andK 4(Mo) is transformed, by 2, into another point of theame
plane:

K?(M) = boMo + b1K*(Mo) + boK*(Mo) ~ where M = agMo + a1K *(Mo) + a2K *(Mo)

and, thusk 2 can be represented as a birational transformation oftarlyariables (see Appendix A in [22]). Similar
relations occur for all the birational transformations associated with33matrices and classified in Table 1, the
previous (projective) plane being replaced biydimensional space spannediy, K2(Mo), - - - , K% (M), where

d < 8for 3x 3 matrices . The previous semi-numerical calculations can be applied to these other representations

7 Considering on&R > equivalence class, one does not get as many factorization schemes as the number of elements in the equivalence class.
It seems, inspecting directly all the 9! factorization schemes (but only up to 12 iteration steps), that, most of the time, one gets, at most, two
possible factorization schemes for a givef*® equivalence class, and that the set of all the possible factorization schemes would be 21 (besides
the polynomial growth situations which can be quite ‘rich’).

8 Examples withi = 3 ord = 6 are given in [19] for 4< 4 matrices.
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as birational transformations ahvariables and yield the same values for the G-complexities (see for instance [22]
for » ~ 1.46557123 . -).

3. Various generalizations

We now show that all these results also apply for a much larger set of rational transformations. The number
of permutations of entries of 8 3 matrices being finite it has been possible to perform an exhaustive analysis.
For more general transformations, depending on continuous parameters, it is not anymore possible and we will
proceed just with chosen examples. These examples always combine homogeneous transformations of the entries
of a matrix together with the matrix inversion. Therefore, the transmutation relations, detailed in Appendix A, still
apply, yielding again non-trivial symmetries for these new set of transformations.

3.1. Combining differenk’s

Let us first consider permutation 146237058, and its associated.97481. - - transformationk1, and permu-
tation 471562380 and its >~ 1.54258 - - transformationk,. Let us compose the two previous transformations.
From these two ‘atoms’ we build the ‘molecul€ = K, - K3. Note thatl = Kj - K>, obviously has the same
G-complexity.

This example is an interesting one since the G-complexity (obtained from the previous semi-numerical calcu-
lations) of the ‘molecule’C = K> - K1 is smaller than the product of the two G-complexitieskaf and K»:
AK) ~ 2.897 < 1.9748x 1.5426~ 3.0463. In general the combination of two G-complexitigsandi; gives a
G-complexity for the ‘molecules’ larger than the prodiugt 1, often equal to the upper bound (hesgper = 4).

The factorization scheme @ is of the same type as the one described in [22], namepa&ty-dependent
factorization scheme. It is detailed in Appendix B and yields a degree generating fugction

Bx)  1+2x —x2—x* 48
3x  1—-3x24 x4 —x6—28

The G-complexity of the molecul€ does not identify with the G-complexity &f1, or the one oK ,. Itis a truenew
algebraic number. This algebraic expression for the G-complexity of the molecule isin good agreement with the semi-
numerical value obtained above. We have systematically studied such ‘molecules’ for a choice of 18 representatives
of the 18 G-complexities of Table 1 combined with themselves, and beyond othi#r representatives. If one
barters the permutation for another representativg) in the same&R (> class, transformatiok, being modified
accordingly K2 — Kéz)), the new ‘moleculeX® = Kéz) - K1 yields, in generalanotheralgebraic value for the
G-complexityi: the equivalence relatioR (> is no longer compatible with the ‘molecular structure’.

For all these ‘molecules’ thparity-dependentactorization scheme, yields algebraic numbers for the G-com-
plexities of these molecules in agreement with the values obtained from our semi-numerical now applied for the
‘molecules’. Combining among themselves all the permutations yields a large number of different algebraic
G-complexities, much larger than the number of G-complexities obtained combining only representatives of the
R classes among themselves.

(18)

3.2. From permutations to linear transformations

We got algebraic results on birational mappings associated with permutation of the entries. We now address
the following question: are these structures (existence of a stable factorization scheme) dependent of the fact that
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we are dealing with permutations? In other terms, does one loosealyed@aic properties when deforming the
permutations in most general transformations? The most simple, and natural, generalization amounts to replacing
the permutation of the entries imear combination on the entries.

Let us now consider a first example, namely tipeite general linear transformatiomlepending on 21
parameters:

mi1 mi12 mi3
L: mp1 mp2 m23 | —>

m31 m32 m33

m11 aiymii-+aiomai 2+aizmi 3+azim 1+azomo 2+az3mp 3+azima 1+azxm3 2+a3zm3 3  mi3

m21 C21mM2 1+C22M2 2+C23M2 3 m23
m31  biimi1+bioma 2+bizma 3+boimo 14+boomo 2+-bozmo 3+bzimz 14+b3omz 2+bzzmz 3z ma3
(19)

This particular form singles out the rows of the 3 matrix (and, thus, can be understood as an RCT-compatible form,
see Appendix A). Similarly to the previous paragraphs let us introduce the homogeneous transfakmnation/ .
Factorizations again occur at each iteration step. These factorizations correspatdhite dactorization scheme
giving a growth liker", wherex ~ 1.61803 - - . It is of the general type described in Egs. (3) and (4). This yields
the following generating functions:

1 1
ﬂ?fj)zl—x—xz’ p(x):l_x (20)

These results are actually valid for any ‘sufficiently generic’ choice of the 21 parameters. One thus has a first
‘universality’ property: the G-complexity is ‘generically’ not dependent of the previous 21 parameters. Further-
more, relation (10) (and consequently relation (&8hains also validor all the factorization schemes associated
with all the linear transformations studied in this section. The G-complexity 1.61803- - - (corresponding to
polynomial 1— x — x?) is a G-complexity value already found in Table 1, in the 16th row. It is noteworthy that no
choice of the 21 parameters leads to a permutation of any of the three classes corresponding;.6a.803. - - .
Besides the identity, the only choice of parameters, leading to a permutatiensasz, = 1, all others being zero.

The permutation is then the transpositiéfi » <> M3 2 which corresponds to the G-complexity~ 1.46557- - -.

This transposition (denoted by class IV in [20]) is not isolated in the 21 parameters set of transformations. Actually,
if the parameters verify the conditiohgyazz — a12b32 = c22 = 1 andaio+b32 = 0, all the other parameters being
zero, one then gets additional factorizations, the modified factorization scheme yielding:

Bx) 1+ x?
3x  1—x—2x3

P = 1o (21)
— X
and agaim. >~ 1.46557---. There is alsgolynomial growthsubcases, for instanegas = c22 = b3z = 1, a11
anday; arbitrary non-zero, all the other ones being zero. Generally speaking, having a G-complexity generically
independent of parameters (here twenty one), one can only experefactorizations on some subvariety of the
r-dimensional space, and consequentiyrallerG-complexity value. on this very subvariety.
We now give another 11 parameter example associated with the following linear transformation:

mi1 mi2 mi3 mi11 my2~+ boimp 1+ boomo o + boamo 3 mi 3
L: | mp1 mp2 ma3 | — | ma1 aiomi2+ azxima 1+ agomo o + azzmo 3+ azomaz m23 | (22)
m31 m32 m33 m31 m32 -+ c21m2 1 + c22m2 2 + C23M2 3 m3 3
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For K = L - I the corresponding generating functions are:

Bx) 1—x3
1—x’ 3  1—x—x2—x34x4

The numerator of8(x) does not appear in Table 1: this mapping hasew valuefor the G-complexityr ~
1.72088. - -, not previously obtainetbr any of the 9! permutations.

Family (22), depending on 11 continuous parameters, also enables to address the following problem: is the growth
complexity crucially dependent on theversible charactef24] of the transformations? In fact one may lose the
birational character oK when, for instance, the linear transformatibrbecomes singular. This is very easy to
realize for some condition on the 11 parameters (codimension one subvariety). For instancéptaki®yazs =
87,a12 = 5, az2 = 7, co2 = 11, all the other parameters being zero, leadsnorainvertiblemappingk = L - 1.

One easily verifies that the factorization scheme, the associated generating functions and, thus, the G-camplexity
areunchangedn this case and, more generally, on such singular subvarieties. With this first rational, non invertible,
example one sees that the rational character of the generating functions is not a consequence of a ‘simple’ invertibility
of the mapping (see also [2]).

(23)

p(x) =

3.3. From linear transformations to homogeneous polynomial transformations

There is nothing specific with linear transformations. For instance, let us consider the following quadratic trans-
formation depending on 21 parameters (which is reminiscent of Eq. (19)):

mi1 mi2 mi3
Q. | mpy1 mpp mp3 | —
m31 m32 m33

2 2 2 2 2 2 2 2 2 2 2
miq a11my +aiami ,+aigmy z+azim; | +azams; o, +a23m; 3 +azims 1 +azams ,+azamy 3 mi 3

m%,l 521m§,1+522m%,2+023’”%,3 m%,s

m§q bumf (+b1om? y+b1gm? 5+baum3 1 +boom3 y+bogns g+b3im} 1 +bagm3 o +b3yns 5 m3 4
(24)

The homogeneous transformati&n= Q - I gives agaira stable factorization schemmn this case, wher@®
is no longer a linear transformation, but a homogeneous polynomial transformation of dégezer = 2), the
factorization scheme remains of the general forms (3) and (4). As far as generating functions are concerned some
modifications have to be done. Firstly, thgs, and associated(x), should be replaced by thg’s defined by:

A K(M,) M1
KM,) = = 25
M) = Getat,y TR (25)

and the corresponding generating functipfx). The linear relations betweey(x), ¢ (x) andy (x) are slightly
modified (see Egs. (C.1) and (C.4) in Appendix C). Secondly, relation (10) is no longer valid here. A new relation
has to be introduced playing the same role. Transformatiea Q - I is a homogeneous transformation of degree
—r. Instead of introducing the determinantal variabigshrough Eg. (9), let us introducg, by:

% (Mo) = det(K" (M) (det( K" (Mo)) )’ (26)

These new determinantal variablés are well-suited ones since they aneariant under a rescaling oMo:
Xn(Cst - Mp) = x,,(Mp). Relation (10) becomes:

By W W, W,
Ba(Mo) = £l0 g2 s, gy (27)
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Again, one can introduce the generating function of these expoféntnd see that relation (13) still holds.
From the stable factorization schemekf= Q - I one now gets:

Bx) 1 1—x

= =2 28
3 1-a_22 YT (28)
This gives a G-complexity value ~ 3.5615. - - . Let us consider the expressionafr):
3(14x — 202 4 413
alx) = d+x + %) (29)

(14+2x)(1—2x)(1 —3x — 2x2)

In this expression one sees that other poles occur. The inverse of these additional poles;h2armedyactually
smaller that the complexity value55155 - - . The existence of ‘subdominant’ poles already occurred with permu-
tations of entries, or linear transformations (g&e) in Eq. (15)): we often had * x, or 1+ x, additional factors
in the expressions of the degree generating functions. With expression (29), one sees the occurrene@of a 1
factor instead of 1 x factors.

There is also nothing specific with quadratic transformations. Let us introduce the simple homogeneous polyno-
mial of degree:

my1 mi2 mi3 myq mi, mig
0 : ma1 m2 mp3 | —> | mj, mh, my, (30)
m31 m32 m33 mya myg myg

and its associated homogeneous transformakioa Q, - I. Its factorization scheme is very simple, it reads for
r > 2 (forr = 1 transformation (30), anf = Q, - I, become trivial):
K(M,_1)
M, =—2"—=,  detM,) = fui1 f? (31)
Jn—1

which yields the following linear relations on thg’s andg,’s (see also Appendix C):
o, = 27'0[,,71 — 3}’/3”71, oy = ,3n+l + 2/371 (32)
It gives the following generating functions for arbitrary- 2:

Bx) 1
3x 1420 —r)x —rx?’

nx)=r, ¢(x) =1+ 2x, y(x)=r-(1+x) (33)

For homogeneous polynomials of degreene can show that subdominant poles, like Ax, may occur instead
of the previous  x and 1— 2x factors.
Forr = 2, one remarks that one gets a degree generating function:

By 1
3x  1—2x—2x2

which is not the limit of Eq. (28). The generic G-complexity corresponding to Eq. (28), nanmel8.56155. - -

is changed, for Eq. (30) taken for= 2, into» ~ 2.73205 - -. There actually exist many subvarieties of the

21 parameter space of transformation (24) on which the generic G-complexit.56155 - - is modified into

another (smaller) algebraic value. One remarks that the subvarieties of the 21 parameter space of transformation
(19) (for instanceq12 = c22 = b3z = 1, a11 andayy arbitrary non-zero, all the other ones being zero, previously
mentioned as a polynomial growth subcase) also yield ‘non-generic’ G-complexities for Eq. (24).

(34)
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4., Conclusion

In previous papers [22,28], it has been shown that the (exponential of the) topological entropy, and the growth
complexitya (related to the asymptotic of the Arnold complexity for two-dimensional mappings), actually identify
on various simple two-dimensional birational examples, and that these quantities are actually algebraic numbers.
The generating functions corresponding to these two ‘complexity measures’, namdiyntimaical zeta function
[25—-28] and the various ‘degree’ generating functions (BKe)) were shown to be simplational expressions
with integer coefficients [22], the dominant poles in these two sets of generating functions being the same. When
one analyzes birational transformations depending on more than two variables, it becomes very difficult to calculate
even the first coefficients of the expansion of the dynamical zeta function. On the contrary, the calculations on the
degree generating functions can be quite easily performed, even for birational transformations of many variables
(theg? entries of a matrix [2]).

Analyzing exhaustively a first finite set of 362880 birational transformations (associated with all the permutations
of 3 x 3 matrices), we have obtained non-trivial, but still simple, ‘spectrum’ of 18 algetraiomplexities for the
corresponding dynamical systems. In a second step it has been shown that these results can be drastically general-
ized along three different linggeserving the algebraic character of the G-complexitkésstly, one can combine
these birational transformations together, and gets extremely rich satgebfaicG-complexities. Secondly, one
can consider (generically birational) transformations, associated with linear transformations of the entxie3 of 3
matrices, and still gets sets of algebraic G-complexities. Remarkably, one has amitieesalityproperty here:
these algebraic G-complexities do not depend on many of the continuous parameters associated with the linear
transformations. Thirdly, one still gets sets of algebraic G-complexitiesnaitbnal transformations (associated
with homogeneous polynomial transformations on the entries) which again can depend on many continuous param-
eters. With this last generalization we have completely lost any invertible character of the transformations. On the
top of that these & 3 matrix calculations can be simply generalizeg to g matricesfor arbitrary ® ¢. Combining
several of these rational transformations depending on several continuous parameters together, one certainly gets
again rich sets adlgebraicG-complexities.

Appendix A. A transmutation property of the matrix inversion

Let us sketch here some non-trivial symmetries between the permutations. The transformations, considered
in Sections 1.2 and 2.3, are products of matrix inversion and permutations of the entries. Any such non-trivial
symmetry of the birational transformatiofsshould correspond to a non-trivial relation between matrix inversion
and permutations of the entries of the matrix. Such relations actually exist. They correspond to a ‘transmutation’
property between the inversion and permutatiénand Q. There actually exist two permutatio@sand Q such
that:

P.i=1i-0 (A.1)

Permutations, such that a ‘transmutation’ relation (A.1) is satisfied, do exist: one can easily build examples
by combining product of permutations that permutedy rowsof ag x ¢ matrix (that we will denote byR’),
permutations that permutesly columnf ag x ¢ matrix (that we will denote byC’) and, possibly, the matrix
transposition we denote by'. Examples of permutation8 and Q, such that (A.1) is satisfied, read:

P=R-C-T¢ where ¢ =0, or 1 (A.2)

9 The ‘spectrum’ of values of the G-complexitydepends o, see for instance [2].
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and similarly for permutatiorQ. A permutationP having such a decomposition (A.2) will be called an ‘RCT’
permutation.

Let us consider two permutationsands,, yielding the two birational transformatios, = ¢1-7 andK» =151,
respectively. Let us introduce the following relation of equivalence between two permutatamdz,: 11 andz,
will be related if they are such that there exists an ‘RCT’ permutatipnsuch that:

K} =bo-Kj byt (A.3)
Relation (A.3) can easily be seen to define a relation of equivalence betwaedr,, we will denoteR™:
nR™r, (A.4)

Note that thisR™ equivalence relation is compatible with the inverse in the permutation groug> L.
Also, note that the equivalence of two permutations, up to simple rows and columns relabelifRf ¥saquivalence,
however, conversely, th® D equivalence does not reduce to the simple, and quite trivial, equivalence of two
permutations up to simple rows and columns relabeling. Obviously, rows and columns relabeling of the matrices
do not modify their integrability properties [19], as well as the growth of the calculations.

It is obvious that ifr; R ™1, thensy R *P)r, for any natural integep. This is a consequence of the fact that:

K =bo- K3 byt vields Ki¥ =bo- Ky - byt (A.5)

If two permutationsy; andr,, are in the same equivalence class with respe®t8, and ifr, andzz are in the
same equivalence class with respecRt®’ wheren # m, 11 andrz are in the same equivalence class with respect
to RU>*™  or with respect taR™ for some ‘large enough’ integey. In fact, it can be shown, on the example
of the equivalence classification of the permutations &f 3 matrices, that this value @& corresponding to the
(‘fasymptotic’ equivalence) relation is actually equaNo= 24.

If two permutations; andr; are in the same equivalence class, with respe®8, the G-complexities (which
are real positive numbers), associated with their respective birational transformétians K », we denote by
anda, are, as a straight consequence of Eq. (A.3), related by:

m_ (A.6)

Therefore, one sees that théircomplexities are equak; = 2. In particular, if one considers the (largest)
equivalence classes corresponding, fox 3 matrices, toR?%, all the representatives in one of theRé?
equivalence classes will have teame growth complexity.

Appendix B. A molecular factorization scheme
The factorization scheme &f = #1-1-1- I, corresponding to permutation 146237058 and permutation 471562380

(see Section 3.1), is of the same type as the one described in [22], napelyyadependenfactorization scheme
(which is a straight consequence of the fact that one actsKittand then withkK», and again ...):

det(M
fi=detMg) Mi=Ki1(Mo), f2=detM1), My=K(My), fz3= ¥, M3 = K1(M»),
det(My) K1(My) det(Ms)
=det(M3), M4s= Kr(M3), =——, Ms= , = ——", B.1
fa=det(M3) 4 2(M3), fs 2 5 % 2 (B.1)
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and for arbitrary: > 3:

detMy) = fursfo o fab fo-8 fa-10 fa-12 fa14- - 8.2)

Ki(M,) = Mn+l fn—Z .
for n even and:

detM,) = fut1 fu-1 fn2_3 Jn-5 fn2,7 f,,z_g fnz_ll fn2_13' e (B.3)

Ko(Myp) = Myy1 fn-3 fu-7 fu—9 fu—11 fn-13---

for n odd. This yields the following expressions for the odd and even patigxfandg(x) (‘2’ for even and ‘1’
for odd):

6x2 3x(1+x2) (—1+x)% (x + 1)?
Ba(x) = R g Br(x) = 2. . 4_ 6 8
1—3xe+x%—x%—2x 1—3xc+x%—x%—2x
3(1 + 4x* — 4x8 + x8) 6x (14 x% — x8+x8)
az(x) = a1(x) = (B.4)

(1—x2)(1—3x? +x%— x6—2x8)’ (1—x?)(1—3x2 + x* — x5 —2x8)

These generating functions yield a ‘molecular G-complexity 2.8581. - - . These generating functions verify
a parity dependent system of functional relations which generalizes the ones described in [2]:

x ag(x) — p2(x) = F2p(x)f2(x), x az(x) = B1(x) = Fuu(x)B2(x)

a2(x) — 3 — 2xa1(x) + 3G2pB2(x) =0, a1(x) — 2xa2(x) + 3G yuP2(x) =0 (B.5)
where:
2 4 6 8 3 5 x 3 4 x8
Fop(x) =x“+2x" +x +1—x2’ Fiyy =2x° —x +1—x2’ Gun(x) =x7, Gzp=x +1—x2

Appendix C. Exponent generating functions for homogeneous polynomial transformations of degree

Let us consider a homogeneous transformatipnof degreer (like Eqg. (30), or like Eq. (24) for = 2) and
its associated homogeneous transformation= Q, - I. Relations (3) and (4) are still valid but yield a slight
modification of the linear functional relations (6) and (7), namely:

(g —=Drx =1 -a(x)+q —qxnx)Bx) =0 (C1)
xa(x) = ¢(x)B(x) (C.2)

Letusrecall that, for homogeneous transformations of degmee mustintroduce, insteadofx), the generating
functiony (x) (see Section 3.3) defined by:

> K(Mn) Mn+1
K(M,) = = C.3
(M) = GetMny T (C.3)

This last relation yields a new relation:
g +qy@)px) = (L+rxa(x) (C.4)

which has to be compatible with the previous two Egs. (C.1) and (C.2):

r¢(x) =yx) +xnx) (C.5)
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